JP2013243496A - Duplex device and duplex method of optical transmission line - Google Patents

Duplex device and duplex method of optical transmission line Download PDF

Info

Publication number
JP2013243496A
JP2013243496A JP2012114941A JP2012114941A JP2013243496A JP 2013243496 A JP2013243496 A JP 2013243496A JP 2012114941 A JP2012114941 A JP 2012114941A JP 2012114941 A JP2012114941 A JP 2012114941A JP 2013243496 A JP2013243496 A JP 2013243496A
Authority
JP
Japan
Prior art keywords
signal light
optical
signal
upstream
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012114941A
Other languages
Japanese (ja)
Other versions
JP5847016B2 (en
Inventor
Tetsuya Manabe
哲也 真鍋
Nagetsu Honda
奈月 本田
Kazutaka Nando
一貴 納戸
Yuji Higashi
裕司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012114941A priority Critical patent/JP5847016B2/en
Publication of JP2013243496A publication Critical patent/JP2013243496A/en
Application granted granted Critical
Publication of JP5847016B2 publication Critical patent/JP5847016B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the uplink test signal light without entering it by means of a lower optical branch coupler.SOLUTION: A test signal is obtained by demultiplexing the uplink signal light by means of a lower optical branch coupler 201, and converting the wavelength of the uplink signal light thus obtained into the test signal wavelength. Since the optical path length difference can be determined from the uplink signal light and the test signal light multiplexed by an upper optical branch coupler 202, it is not required to enter the test signal light from the lower optical branch coupler, and a 2-input 1-output or 1-input 2-output optical branch coupler can be utilized as the lower optical branch coupler 201.

Description

本発明は、光伝送路の支障移転工事等における光伝送路切替時の一時的な迂回路を形成するための光伝送路の二重化技術に関する。   The present invention relates to an optical transmission line duplexing technique for forming a temporary detour at the time of switching an optical transmission line in a troubled transfer work of the optical transmission line.

これまでの光伝送の路二重化技術としては、迂回路における信号伝送を全て光信号のまま行う方式や一旦電気信号に変換する方式がある(例えば、非特許文献1、非特許文献2参照)。
これらの方式では、本線路と迂回路の光路長差検出のための試験信号光を上部もしくは下部光分岐カプラより入射する必要がある。そのために、上部光分岐カプラおよび下部光分岐カプラについては、共に2入力・2出力の光分岐カプラを用いる。ここで、上部光分岐カプラとしては、通信設備ビル内に既に設置された試験用途の光分岐カプラを用いることが可能であるが、下部光分岐カプラは既設設備には設置されておらず、側方光入出力技術(例えば、非特許文献3)による一時的な光分岐カプラが必要となる。
As a conventional optical transmission path duplexing technique, there are a system in which all signal transmission in a detour is performed as an optical signal and a system in which it is temporarily converted into an electrical signal (for example, see Non-Patent Document 1 and Non-Patent Document 2).
In these systems, the test signal light for detecting the optical path length difference between the main line and the detour needs to be incident from the upper or lower optical branching coupler. Therefore, both the upper optical branch coupler and the lower optical branch coupler are two-input / two-output optical branch couplers. Here, as the upper optical branching coupler, it is possible to use the optical branching coupler already installed in the communication equipment building for the test use, but the lower optical branching coupler is not installed in the existing equipment, A temporary optical branching coupler based on the direction input / output technology (for example, Non-Patent Document 3) is required.

しかしながら、現在実現されつつある側方光入出力技術を用いた光分岐カプラは、下り2入力・1出力、上り1入力・2出力の分岐であり、上り試験信号光の入射端が得られず、光伝送路二重化に必要な2入力・2出力の光分岐カプラとしては利用できないという問題があった。   However, the optical branching coupler using the side light input / output technology that is currently being realized is a branch with 2 downstream inputs and 1 output and 1 upstream input and 2 outputs, and the incident end of the upstream test signal light cannot be obtained. There is a problem that it cannot be used as a two-input / two-output optical branching coupler required for duplexing optical transmission lines.

東他:光アクセス媒体切り替え方式の基礎検討−サービス無瞬断光媒体切り替えシステム−,信学技法OFT2008-52, pp.27-31, 2008Higashi et al .: Basic study on optical access media switching system -Service uninterrupted optical media switching system-, IEICE Technical OFT2008-52, pp.27-31, 2008 田中他:サービス無瞬断光線路切替技術の信頼性向上,信学技法OFT2010-18, pp.11-16, 2010.Tanaka et al .: Improving the reliability of optical fiber switching technology without service interruption, Science technique OFT2010-18, pp.11-16, 2010. 納戸他、光ファイバ側方入射法の高性能化、2011電子情報通信学会総合大会講演論文集、p324、2011Nado et al., High-performance optical fiber side-incidence method, 2011 IEICE General Conference Proceedings, p324, 2011 エルミック株式会社、PDH4ビット、6ビット高速プログラマブルディレイライン:http://www.elmec.co.jp/programmable.htmlElmic Corporation, PDH 4-bit, 6-bit high-speed programmable delay line: http://www.elmec.co.jp/programmable.html

以上述べたように、現在実現されつつある側方光入出力技術を用いた光分岐カプラは、2入力・1出力または1入力・2出力の分岐であり、上り試験信号光の入射端が得られないため、光伝送路の二重化に必要な2入力・2出力の光分岐カプラとして利用することができない。   As described above, the optical branching coupler using the side light input / output technology that is currently being realized is a 2-input / 1-output or 1-input / 2-output branch, and an incident end of the upstream test signal light is obtained. Therefore, it cannot be used as a 2-input / 2-output optical branching coupler required for duplexing the optical transmission line.

本発明は、上記の課題を解決するためになされたもので、下部光分岐カプラにて上り試験信号光を入射しなくても上り試験信号光を得ることができ、下部光分岐用として2入力・1出力または1入力・2出力の光分岐カプラを利用して光伝送路を二重化することのできる光伝送路の二重化装置及びその二重化方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problem. The upstream test signal light can be obtained without the upstream test signal light being incident on the lower optical branching coupler. An object of the present invention is to provide an optical transmission line duplexing apparatus and a duplexing method thereof that can duplex an optical transmission path by using a 1-output or 1-input / 2-output optical branching coupler.

上記の課題を解決するため、本発明に係る光伝送路の二重化装置は、以下の態様で構成される。
(1)対向する局側伝送装置と加入者側伝送装置が現用光ファイバを介して信号光を送受信する光伝送装置に用いられ、前記現用光ファイバ中の任意の2箇所に介在される上部迂回用光分岐カプラと下部迂回用光分岐カプラとの間に迂回路を形成し、通信を二重化する光伝送路二重化装置において、それぞれ前記上部・下部迂回用光分岐カプラの分岐端に接続され、前記加入者側伝送装置から発せられる上り波長の上り信号光と、前記局側伝送装置から発せられる下り波長の下り信号光と、および試験信号発生器から発せられる試験波長の試験信号光との波長を合分波する一対の波長分割多重カプラと、前記一対の波長分割多重カプラ間に形成され、前記上り光信号を上り電気信号に変換する上り信号光−電気変換器、前記上り電気信号を設定時間遅延させる上り信号可変遅延器、前記上り電気信号を信号光に変換する上り信号電気−光変換器、前記上り信号光を出力・停止する上り信号光遮断スイッチを備える上り信号光伝送手段と、前記一対の波長分割多重カプラ間に形成され、前記下り信号光を電気信号に変換する下り信号光−電気変換器、前記下り電気信号を設定時間遅延させる下り信号可変遅延器、前記下り電気信号を下り信号光に変換する下り信号電気−光変換器、前記下り信号光を出力・停止する下り信号光遮断スイッチを備える下り信号光伝送手段と、前記一対の波長分割多重カプラ間に形成され、前記上り信号光−電気変換器により変換された電気信号を試験電気信号として取り込んで設定時間遅延させる試験信号可変遅延器、前記試験電気信号を試験信号光に変換し前記試験波長に変換する試験信号電気−光変換手段、前記試験信号光を出力・停止する試験信号光遮断スイッチを備える試験信号光伝送手段と、前記上部光分岐カプラで分岐される前記試験信号光および前記上り信号光を受信し、前記現用光ファイバと前記迂回用光ファイバの光路長差の有無を検出する光路長差検出器と、前記光路長差の有無を監視して前記試験信号可変遅延器の遅延時間を制御し、前記光路長差無しが検出されたときの前記試験信号可変遅延器に設定される遅延時間を前記上り信号可変遅延器及び下り信号可変遅延器に設定する制御器とを具備する態様とする。
In order to solve the above-described problems, a duplexer for an optical transmission line according to the present invention is configured in the following manner.
(1) Upper detour used in an optical transmission apparatus in which the opposite station-side transmission apparatus and subscriber-side transmission apparatus transmit and receive signal light via the working optical fiber and are interposed at any two locations in the working optical fiber Forming a detour between the optical branching coupler for the lower part and the optical branching coupler for the lower part of the bypass, and in the optical transmission line duplexer for duplexing the communication, respectively connected to the branch ends of the upper and lower bypass optical branching couplers, Wavelengths of the upstream signal light of the upstream wavelength emitted from the subscriber side transmission device, the downstream signal light of the downstream wavelength emitted from the station side transmission device, and the test signal light of the test wavelength emitted from the test signal generator A pair of wavelength division multiplexing couplers for multiplexing and demultiplexing, an upstream optical signal-electric converter formed between the pair of wavelength division multiplexing couplers for converting the upstream optical signal into an upstream electrical signal, and the upstream electrical signal are provided. Uplink signal variable delay device that delays the time, an uplink signal electro-optical converter that converts the uplink electrical signal into signal light, an uplink signal light transmission means that includes an uplink signal light blocking switch that outputs and stops the uplink signal light, and A downlink signal light-electric converter formed between the pair of wavelength division multiplexing couplers for converting the downlink signal light into an electrical signal, a downlink signal variable delay device for delaying the downlink electrical signal for a set time, and the downlink electrical signal Formed between a pair of wavelength division multiplexing couplers, a downlink signal light-to-light converter for converting to downlink signal light, a downlink signal light transmission means including a downlink signal light blocking switch for outputting and stopping the downlink signal light, and A test signal variable delay device that takes in an electrical signal converted by an upstream signal light-electric converter as a test electrical signal and delays it for a set time, and converts the test electrical signal into a test signal light In other words, test signal electro-optical conversion means for converting to the test wavelength, test signal light transmission means including a test signal light cutoff switch for outputting and stopping the test signal light, and the test branched by the upper optical branching coupler An optical path length detector that receives the signal light and the upstream signal light, detects the presence or absence of an optical path length difference between the working optical fiber and the bypass optical fiber, and monitors the presence or absence of the optical path length difference and the test signal Control for controlling the delay time of the variable delay device and setting the delay time set in the test signal variable delay device when the difference in optical path length is detected in the uplink signal variable delay device and the downlink signal variable delay device It is set as the aspect which comprises a vessel.

(2)(1)において、前記光路長差検出器は、前記上部光分岐カプラを通った上り信号光及び試験信号光の伝送信号光が一方の入力端に与えられる2入力・2出力光スイッチと、前記2入力・2出力光スイッチの一方の出力端から出力される伝送信号光を取り込んで前記試験信号光の波長を選択し、選択され試験信号光を2入力・2出力光スイッチの他方の入力端に出力する試験信号波長選択フィルタと、前記2入力・2出力光スイッチの他方の出力端から出力される伝送信号光を取り込んで前記試験信号光および前記上り信号光を電気信号に変換する試験信号・上り信号光−電気変換器と、前記試験信号・上り信号光−電気変換器から出力される伝送信号からクロックを抽出し、その抽出時のエラーを検出するクロックデータリカバリーエラー検出器とを具備し、前記クロックデータリカバリーエラー検出器の検出結果から前記光路長差の有無を検出する態様とする。   (2) In (1), the optical path length difference detector is a two-input / two-output optical switch in which transmission signal light of upstream signal light and test signal light that has passed through the upper optical branching coupler is provided to one input terminal And taking the transmission signal light output from one output end of the two-input / two-output optical switch, selecting the wavelength of the test signal light, and sending the selected test signal light to the other of the two-input / two-output optical switch. A test signal wavelength selection filter to be output to the input terminal of the optical signal and a transmission signal light output from the other output terminal of the two-input / two-output optical switch to convert the test signal light and the upstream signal light into electrical signals Clock signal recovery for extracting a clock from a test signal / upstream signal optical-electrical converter and a transmission signal output from the test signal / upstream optical signal-electrical converter and detecting an error at the time of extraction ; And a color detector, a manner for detecting the presence or absence of the optical path length difference from the detection result of the clock data recovery error detector.

(3)(1)において、前記試験信号電気−光変換手段は、前記試験信号可変遅延器で遅延された前記試験電気信号を前記試験波長の試験信号光に変換する試験信号電気−光変換器を備える態様とする。
(4)(1)において、前記現用光ファイバを新規光ファイバに交換した際に前記新規光ファイバ中に設けられ、前記上り信号光を前記試験波長に変換する波長変換器を備え、前記光路長検出器は、前記上部光分岐カプラで分岐される前記新規光ファイバからの試験信号光および前記迂回伝送路からの試験信号光を受信し、前記新規光ファイバと前記迂回伝送路との光路長差の有無を検出し、前記制御器は、前記光路長差の有無を監視して前記試験信号可変遅延器の遅延時間を制御し、前記光路長差無しが検出されたときの前記試験信号可変遅延器に設定される遅延時間から前記波長変換器の変換遅延時間を差し引いて前記上り信号可変遅延器及び下り信号可変遅延器に設定する態様とする。
(3) In (1), the test signal electro-optical conversion means converts the test electric signal delayed by the test signal variable delay device into test signal light of the test wavelength. It is set as the aspect provided with.
(4) In (1), the optical path length is provided in the new optical fiber when the working optical fiber is replaced with a new optical fiber, and converts the upstream signal light into the test wavelength. The detector receives the test signal light from the new optical fiber branched by the upper optical branching coupler and the test signal light from the bypass transmission path, and an optical path length difference between the new optical fiber and the bypass transmission path The controller monitors the presence or absence of the optical path length difference to control the delay time of the test signal variable delay device, and the test signal variable delay when the optical path length difference is detected is detected. In this aspect, the upstream signal variable delay device and the downstream signal variable delay device are set by subtracting the conversion delay time of the wavelength converter from the delay time set in the device.

また、本発明に係る光伝送路の二重化方法は、以下の態様で構成される。
(5)対向する局側伝送装置と加入者側伝送装置が現用光ファイバを介して信号光を送受信する光伝送装置に用いられ、前記現用光ファイバ中の任意の2箇所に介在される上部迂回用光分岐カプラと下部迂回用光分岐カプラとの間に迂回路を形成し、通信を二重化する光伝送路二重化方法において、それぞれ前記上部・下部迂回用光分岐カプラの分岐端に一対の波長分割多重カプラを接続して、前記加入者側伝送装置から発せられる上り波長の上り信号光と、前記局側伝送装置から発せられる下り波長の下り信号光と、および試験信号発生器から発せられる試験波長の試験信号光との波長を合分波させるようにし、前記一対の波長分割多重カプラ間に、前記上り光信号を上り電気信号に変換する上り信号光−電気変換器、前記上り電気信号を設定時間遅延させる上り信号可変遅延器、前記上り電気信号を信号光に変換する上り信号電気−光変換器、前記上り信号光を出力・停止する上り信号光遮断スイッチを備える上り信号光伝送路と形成し、前記一対の波長分割多重カプラ間に、前記下り信号光を電気信号に変換する下り信号光−電気変換器、前記下り電気信号を設定時間遅延させる下り信号可変遅延器、前記下り電気信号を下り信号光に変換する下り信号電気−光変換器、前記下り信号光を出力・停止する下り信号光遮断スイッチを備える下り信号光伝送路を形成し、前記一対の波長分割多重カプラ間に、前記上り信号光−電気変換器により変換された電気信号を試験電気信号として取り込んで設定時間遅延させる試験信号可変遅延器、前記試験電気信号を試験信号光に変換し前記試験波長に変換する試験信号電気−光変換手段、前記試験信号光を出力・停止する試験信号光遮断スイッチを備える試験信号光伝送路を形成し、前記上部光分岐カプラで分岐される前記試験信号光および前記上り信号光を受信し比較して前記現用光ファイバと前記迂回用光ファイバの光路長差の有無を検出し、前記光路長差の有無を監視して前記試験信号可変遅延器の遅延時間を制御し、前記光路長差無しが検出されたときの前記試験信号可変遅延器に設定される遅延時間を前記上り信号可変遅延器及び下り信号可変遅延器に設定する態様とする。
Moreover, the duplexing method of the optical transmission line according to the present invention is configured in the following manner.
(5) Upper detour used in an optical transmission apparatus in which the opposite station-side transmission apparatus and subscriber-side transmission apparatus transmit and receive signal light via the working optical fiber and are interposed at any two locations in the working optical fiber In the optical transmission path duplexing method in which a detour is formed between the optical branching coupler for lower use and the optical branching coupler for lower detouring to duplex communication, a pair of wavelength divisions are made at the branching ends of the upper and lower detouring optical branching couplers, respectively. Multiplex couplers are connected, the upstream signal light of the upstream wavelength emitted from the subscriber side transmission apparatus, the downstream signal light of the downstream wavelength emitted from the station side transmission apparatus, and the test wavelength emitted from the test signal generator An upstream optical signal-to-electric converter that converts the upstream optical signal into an upstream electrical signal between the pair of wavelength division multiplexing couplers, and the upstream electrical signal Upstream signal optical transmission line comprising an upstream signal variable delay device that delays by a fixed time, an upstream signal electro-optical converter that converts the upstream electrical signal into signal light, an upstream signal light blocking switch that outputs and stops the upstream signal light, and A downstream signal light-electric converter for converting the downstream signal light into an electrical signal between the pair of wavelength division multiplexing couplers, a downstream signal variable delay device for delaying the downstream electrical signal for a set time, and the downstream electrical signal Forming a downstream signal light transmission path including a downstream signal light blocking switch that outputs and stops the downstream signal light, and between the pair of wavelength division multiplexing couplers, A test signal variable delay device that takes the electrical signal converted by the upstream signal light-electric converter as a test electrical signal and delays it for a set time, and converts the test electrical signal into a test signal light. Test signal electro-optical conversion means for converting to the test wavelength, a test signal light transmission line comprising a test signal light cut-off switch for outputting and stopping the test signal light, and the test branched by the upper optical branch coupler The signal light and the upstream signal light are received and compared to detect the presence or absence of an optical path length difference between the working optical fiber and the bypass optical fiber, and the presence or absence of the optical path length difference is monitored to The delay time is controlled, and the delay time set in the test signal variable delay device when the difference in optical path length is detected is set in the uplink signal variable delay device and the downlink signal variable delay device.

(6)(5)において、前記現用光ファイバを新規光ファイバに交換した際に前記新規光ファイバ中に前記上り信号光を前記試験波長に変換する波長変換器を配置し、前記上部光分岐カプラで分岐される前記新規光ファイバからの試験信号光および前記迂回伝送路からの試験信号光から前記新規光ファイバと前記迂回伝送路との光路長差の有無を検出し、前記光路長差の有無を監視して前記試験信号可変遅延器の遅延時間を制御し、前記光路長差無しが検出されたときの前記試験信号可変遅延器に設定される遅延時間から前記波長変換器の変換遅延時間を差し引いて前記上り信号可変遅延器及び下り信号可変遅延器に設定する態様とする。   (6) In (5), when the working optical fiber is replaced with a new optical fiber, a wavelength converter for converting the upstream signal light into the test wavelength is disposed in the new optical fiber, and the upper optical branching coupler Detecting the presence or absence of an optical path length difference between the new optical fiber and the detour transmission path from the test signal light from the new optical fiber and the test signal light from the detour transmission path branched at To control the delay time of the test signal variable delay device, and the conversion delay time of the wavelength converter is determined from the delay time set in the test signal variable delay device when the difference in optical path length is detected. It is set as the aspect which deducts and sets to the said upstream signal variable delay device and the downstream signal variable delay device.

本発明の光伝送路の二重化装置は、上り信号光を下部光分岐カプラにて分波し、その一方で得られる上り信号光の波長を波試験信号波長に変換することで試験信号を得ることとする。その際の、上り信号光の波長を試験信号光波長への変換については、光−光変換であっても良く、また、一旦、上り信号光を試験電気信号に変換し、電気回路による処理を行い、さらに、電気信号を試験信号光波長に変換することでもよい。これにより、上部光分岐カプラにおいて合波された上り信号光と試験信号光から光路長差を検出することが可能となるものである。このように、上り信号光から試験信号光を得るため、従来のように試験信号光を下部光分岐カプラから入射する必要が無いことから、下部光分岐カプラに2入力・2出力の光分岐カプラを必要とせず、2入力・1出力または1入力・2出力の光分岐カプラを利用することが可能となるものである。   The duplexer of the optical transmission line of the present invention demultiplexes the upstream signal light by the lower optical branching coupler, and obtains the test signal by converting the wavelength of the upstream signal light obtained to the wave test signal wavelength. And In this case, the conversion of the wavelength of the upstream signal light to the wavelength of the test signal light may be light-to-light conversion, or once the upstream signal light is converted into a test electrical signal and processed by an electrical circuit. In addition, the electrical signal may be converted to a test signal light wavelength. Thereby, the optical path length difference can be detected from the upstream signal light and the test signal light combined in the upper optical branching coupler. In this way, since the test signal light does not need to be incident from the lower optical branch coupler as in the prior art in order to obtain the test signal light from the upstream signal light, the lower optical branch coupler has a two-input / two-output optical branch coupler. Therefore, it is possible to use a 2-input / 1-output or 1-input / 2-output optical branching coupler.

したがって、本発明によれば、下部光分岐カプラにて上り試験信号光を入射しなくても上り試験信号光を得ることができ、下部光分岐用として2入力・1出力または1入力・2出力の光分岐カプラを利用して光伝送路を二重化することのできる光伝送路の二重化装置及びその二重化方法を提供することができる。   Therefore, according to the present invention, it is possible to obtain the upstream test signal light without entering the upstream test signal light by the lower optical branching coupler, and for the lower optical branching, two inputs / one output or one input / two outputs. It is possible to provide an optical transmission line duplexing apparatus and a duplexing method thereof that can duplex an optical transmission path by using the optical branching coupler.

本発明に係る光伝送路の二重化装置とその構成要素の一つである迂回路構成器の内部構成を示すブロック図である。1 is a block diagram illustrating an internal configuration of a duplexer for an optical transmission line according to the present invention and a detour component that is one of its components. FIG. 図1に示す装置において、二重化構成となった初期の状態で、現用光ファイバで通信している最中に光路長差を検出する場合の信号光および試験光の流れを示すブロック図である。FIG. 2 is a block diagram illustrating the flow of signal light and test light when detecting a difference in optical path length during communication using an active optical fiber in the initial state of a duplex configuration in the apparatus shown in FIG. 1. 図2の初期状態での制御器の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the controller in the initial state of FIG. 図1に示す装置において、迂回路構成器で通信している最中に光路長差を検出する場合の信号光および試験光の流れを示すブロック図である。FIG. 2 is a block diagram illustrating the flow of signal light and test light when detecting a difference in optical path length during communication using a bypass component in the apparatus illustrated in FIG. 1. 図4の初期状態での制御器の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the controller in the initial state of FIG. 図4に示す装置の構成要素の一つである上り信号波長変換器の内部構成を示すブロック図である。FIG. 5 is a block diagram showing an internal configuration of an upstream signal wavelength converter that is one of the components of the apparatus shown in FIG. 4. 図1に示す装置の構成要素の一つである光路長差検出器の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the optical path length difference detector which is one of the components of the apparatus shown in FIG.

添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。
図1は、本発明に係る光伝送路の二重化装置とその構成要素の一つである迂回路構成器の内部構成を示すブロック図である。図1において、局側伝送装置100から送出された波長λDownの下り信号光は、上り・下り共に2入力・2出力の上部光分岐カプラ202で分岐され、それぞれ現用光ファイバ102および上部迂回用光ファイバ103に分けられる。上部迂回用光ファイバ103を伝搬した波長λDownの下り信号光は、上部WDM(波長分割多重:Wavelength Division Multiplexing)カプラ1で分波され、下り信号光−電気変換器10に入射され、ここで電気信号に変換される。変換された下りの電気信号は、下り信号可変遅延器30により設定時間遅延されて下り信号電気−光変換器20に入力され、ここで再度波長λDownの下り信号光に変換される。この波長λDownの信号光は、下り信号光遮断スイッチ60を通過した後、下部WDMカプラ2により合波され、下部迂回用光ファイバ104を通じ、下り2入力・1出力、上り1入力・2出力の下部光分岐カプラ201にて現用光ファイバ102を伝搬してきた波長λDownの下り信号光と合波されて加入者側伝送装置101に到達する。
Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment.
FIG. 1 is a block diagram showing the internal configuration of an optical transmission line duplexing apparatus according to the present invention and a detour constructer which is one of its components. In FIG. 1, the downstream signal light having the wavelength λ Down transmitted from the station-side transmission apparatus 100 is branched by the upper optical branching coupler 202 having two inputs and two outputs, both upstream and downstream, respectively. The optical fiber 103 is divided. The downstream signal light of wavelength λ Down propagated through the upper bypass optical fiber 103 is demultiplexed by an upper WDM (Wavelength Division Multiplexing) coupler 1 and incident on the downstream signal light-electrical converter 10, where It is converted into an electrical signal. The converted downstream electrical signal is delayed for a set time by the downstream signal variable delay device 30 and input to the downstream signal electro-optical converter 20, where it is converted again into downstream signal light having the wavelength λ Down . The signal light having the wavelength λ Down passes through the downstream signal light cut-off switch 60, and then is combined by the lower WDM coupler 2 and passes through the lower bypass optical fiber 104 and has 2 downstream inputs and 1 output and 1 upstream input and 2 outputs. The lower optical branching coupler 201 combines the downstream signal light having the wavelength λ Down propagated through the working optical fiber 102 and reaches the subscriber side transmission apparatus 101.

加入者側伝送装置101から送出された波長λUpの上り信号光は、下部光分岐カプラ201で分岐され、現用光ファイバ102と下部迂回用光ファイバ104に分けられる。下部迂回用光ファイバ104を伝搬した波長λUpの上り信号光は、下部WDMカプラ2で分波され、上り信号光−電気変換器11に入射され、ここで電気信号に変換される。変換された上りの電気信号は、上り信号可変遅延器31に供給される。 The upstream signal light having the wavelength λ Up transmitted from the subscriber-side transmission apparatus 101 is branched by the lower optical branching coupler 201 and divided into the working optical fiber 102 and the lower bypass optical fiber 104. The upstream signal light of wavelength λ Up propagated through the lower bypass optical fiber 104 is demultiplexed by the lower WDM coupler 2 and incident on the upstream signal light-electrical converter 11 where it is converted into an electrical signal. The converted upstream electrical signal is supplied to the upstream signal variable delay unit 31.

この上り信号可変遅延器31に供給された上り信号は、設定時間遅延された後、上り信号電気−光変換器21により再度波長λUpの上り信号光に変換される。この波長λUpの上り信号光は、上り信号光遮断スイッチ61を通過した後、上部WDMカプラ2により合波され、上部迂回用光ファイバ103を通じ、上部光分岐カプラ202にて現用光ファイバ102を伝搬してきた波長λUpの上り信号光と合波され、光路長差検出器41および局側伝送装置100に到達する。 The upstream signal supplied to the upstream signal variable delay device 31 is delayed for a set time and then converted again into upstream signal light having the wavelength λ Up by the upstream signal electro-optical converter 21. The upstream signal light having the wavelength λ Up passes through the upstream signal light blocking switch 61 and is then combined by the upper WDM coupler 2, and passes through the upper bypass optical fiber 103 and passes through the working optical fiber 102 by the upper optical branching coupler 202. The propagated upstream signal light having the wavelength λ Up is combined and reaches the optical path length difference detector 41 and the station-side transmission device 100.

一方、上記上り信号光−電気変換器11で得られた上りの電気信号は試験信号可変遅延器32にも供給され、試験信号の生成に供される。この試験信号は、現用光ファイバ102と、上部迂回用光ファイバ103、下部迂回用光ファイバ104および迂回路構成器1000により構成される迂回ルートとの信号伝搬時間が一致しているかどうかを検出するための信号であり、上り信号光−電気変換器11により上り信号光を電気信号に変換することで生成する。この試験信号は、試験信号可変遅延器32により設定時間遅延された後に、試験信号電気−光変換器22により波長λSenseの試験信号光に変換される。この波長λSenseの試験信号光は、試験信号光遮断スイッチ62を通過した後、上部WDMカプラ1により合波され、上部迂回用光ファイバ103を通じ、光路長差検出器41に到達する。 On the other hand, the upstream electrical signal obtained by the upstream signal optical-electrical converter 11 is also supplied to the test signal variable delay device 32 to be used for generating a test signal. This test signal detects whether or not the signal propagation times of the working optical fiber 102 and the detour route constituted by the upper detour optical fiber 103, the lower detour optical fiber 104, and the detour constructer 1000 match. And is generated by converting the upstream signal light to an electrical signal by the upstream signal light-electrical converter 11. This test signal is delayed for a set time by the test signal variable delay device 32 and then converted into test signal light having the wavelength λ Sense by the test signal electro-optical converter 22. The test signal light having the wavelength λ Sense passes through the test signal light cutoff switch 62, and is then combined by the upper WDM coupler 1 and reaches the optical path length difference detector 41 through the upper bypass optical fiber 103.

なお、上り信号可変遅延器31、下り信号可変遅延器32、および試験信号可変遅延器33の構成としては、半導体ディレイライン等を用いることが可能である(例えば、非特許文献4参照)。
制御器50では、検出信号線51を通じて光路長差検出器41で検出される光路長差の有無を確認することができるので、可変遅延器制御線52により試験信号可変遅延器32の遅延時間を変化させ、光路長差が一致した時の遅延時間を用いて下り信号可変遅延器30および上り信号可変遅延器31の遅延時間を設定する。これにより、局側伝送装置100と加入者側伝送装置101との間の光伝送路二重化が実現される。
As the configuration of the upstream signal variable delay device 31, the downstream signal variable delay device 32, and the test signal variable delay device 33, a semiconductor delay line or the like can be used (see, for example, Non-Patent Document 4).
Since the controller 50 can confirm the presence or absence of the optical path length difference detected by the optical path length difference detector 41 through the detection signal line 51, the delay time of the test signal variable delay unit 32 is set by the variable delay control line 52. The delay times of the downstream signal variable delay device 30 and the upstream signal variable delay device 31 are set using the delay time when the optical path length difference coincides. Thereby, duplexing of the optical transmission path between the station side transmission apparatus 100 and the subscriber side transmission apparatus 101 is realized.

上記構成において、光伝送路に迂回ルートを設けることにより二重化構成となった初期の状態で、現用光ファイバ102と迂回ルートとの光路長差の有無を検出し、両者を一致させる制御処理について、図2及び図3を参照して説明する。
図2は、二重化構成となった初期の状態で、現用光ファイバ102側のルートで通信中に、現用光ファイバ102と迂回ルートとの光路長差を検出する際の上り信号光および試験信号光の流れを示すブロック図である。また、図3は、初期状態での制御器50の制御手順を示すフローチャートである。
In the above configuration, with respect to the control processing for detecting the presence or absence of the optical path length difference between the working optical fiber 102 and the detour route in the initial state where the duplex configuration is provided by providing the detour route in the optical transmission path, This will be described with reference to FIGS.
FIG. 2 shows an upstream signal light and a test signal light when an optical path length difference between the working optical fiber 102 and the detour route is detected during communication on the route on the working optical fiber 102 side in an initial state where the duplex configuration is established. It is a block diagram which shows the flow. FIG. 3 is a flowchart showing the control procedure of the controller 50 in the initial state.

まず、制御器50では、光伝送路に迂回ルートが設けられ、二重化構成の組み込みが完了した初期状態で、迂回ルートの光路長制御の開始指示が与えられると(ステップS11)、図1に示す上り信号光遮断スイッチ61及び下り信号光遮断スイッチ60をオン状態として上り信号光および下り信号光を遮断させ、試験信号光遮断スイッチ62をオフ状態として試験信号光を出力させる(ステップS12)。これにより、上り信号光から生成された試験信号光と現用光ファイバ102を流れる上り信号光が上部光分岐カプラ202を通じて光路長差検出器41に送られる。   First, in the controller 50, when a bypass route is provided in the optical transmission line and an instruction to start optical path length control of the bypass route is given in the initial state in which the duplication configuration has been incorporated (step S11), FIG. The upstream signal light blocking switch 61 and the downstream signal light blocking switch 60 are turned on to block upstream signal light and downstream signal light, and the test signal light blocking switch 62 is turned off to output test signal light (step S12). As a result, the test signal light generated from the upstream signal light and the upstream signal light flowing through the working optical fiber 102 are sent to the optical path length difference detector 41 through the upper optical branching coupler 202.

ここで、現用光ファイバ102で通信を維持している状態で光路長差の有無を計測する場合は、現用光ファイバ102を伝搬してきた波長λUpの上り信号光2000と波長λSenseの試験信号光2001を光路長差検出器41にて同時に受信して光路長差の有無を検出する。この検出において、現用光ファイバ102と迂回ルートとの信号伝搬時間が一致していれば、波長λUpの上り信号光と波長λSenseの試験信号光は信号波形パターンが一致する。これに対し、光路長が一致していなければ、両者の信号波形パターンが不一致となる。この原理を用いて、光路長差検出器41では両者の信号波形パターンを検出し、検出パターンの一致・不一致を判定することによって光路長差の有無を検出し、その結果を制御器50に通知する。 Here, when measuring the presence or absence of the optical path length difference while maintaining communication with the working optical fiber 102, the upstream signal light 2000 of the wavelength λ Up and the test signal of the wavelength λ Sense propagated through the working optical fiber 102. The light 2001 is simultaneously received by the optical path length difference detector 41 to detect the presence or absence of the optical path length difference. In this detection, if the signal propagation times of the working optical fiber 102 and the detour route match, the upstream signal light of wavelength λ Up and the test signal light of wavelength λ Sense match. On the other hand, if the optical path lengths do not match, both signal waveform patterns do not match. Using this principle, the optical path length difference detector 41 detects both signal waveform patterns, detects the presence / absence of an optical path length difference by determining whether the detected patterns match, and notifies the controller 50 of the result. To do.

制御器50では、上記光路長差検出器41からの光路長差有無の検出結果を受け取って、光路長差有りか否かを判定する(ステップS13)。光路長差有りの場合には、試験信号可変遅延器32の遅延時間を変化させて光路長差無しの状態をサーチする(ステップS14)。光路長差無しの場合には、試験信号可変遅延器32に設定されている遅延時間を下り信号可変遅延器30及び上り信号可変遅延器31に同じ遅延時間を設定する(ステップS15)。続いて、上り信号光遮断スイッチ61及び下り信号光遮断スイッチ60を共にオフ状態として上り信号光および下り信号光を出力させ、試験信号光遮断スイッチ62をオン状態として試験信号光の出力を停止させて(ステップS16)、初期状態での制御処理を完了する。   The controller 50 receives the detection result of the optical path length difference from the optical path length difference detector 41 and determines whether there is an optical path length difference (step S13). If there is a difference in optical path length, the delay time of the test signal variable delay device 32 is changed to search for a state in which there is no optical path length difference (step S14). If there is no difference in optical path length, the same delay time is set in the downlink signal variable delay device 30 and the uplink signal variable delay device 31 as the delay time set in the test signal variable delay device 32 (step S15). Subsequently, the upstream signal light blocking switch 61 and the downstream signal light blocking switch 60 are both turned off to output the upstream signal light and the downstream signal light, and the test signal light blocking switch 62 is turned on to stop the output of the test signal light. (Step S16), the control process in the initial state is completed.

以上の制御処理により、光路長差計測後に光伝送路を二重化する際に、試験信号可変遅延器33の設定遅延時間が上り信号可変遅延器31および下り信号可変遅延器32に設定されているので、迂回ルートでも現用光ファイバ102と光路長差の無い状態となり、伝送路の二重化を完全に確立させることができる。   With the above control processing, when the optical transmission line is duplexed after the optical path length difference measurement, the set delay time of the test signal variable delay device 33 is set in the upstream signal variable delay device 31 and the downstream signal variable delay device 32. Even in the detour route, there is no difference in optical path length from the working optical fiber 102, and duplication of the transmission path can be completely established.

次に、先の図3の制御処理により現用光ファイバ102のルートと迂回ルートの光路長を調整し一致させた後、現用光ファイバルートから通信光を迂回ルートに切り替えた後の状態、即ち、迂回路構成器側のルートで通信中の状態において、迂回ルートと新たに敷設する新規光ファイバ105との光路長差の有無を検出し、両者を一致させる制御処理について、図4及び図5を参照して説明する。   Next, after adjusting and matching the optical path lengths of the route of the working optical fiber 102 and the detour route by the control processing of FIG. 3, the state after switching the communication light from the working optical fiber route to the detour route, that is, FIG. 4 and FIG. 5 are used for control processing for detecting the presence or absence of an optical path length difference between the detour route and the newly installed new optical fiber 105 in a state where communication is being performed on the route on the side of the detour constructer. The description will be given with reference.

図4は、伝送路が二重化されて迂回路構成器1000側のルートで通信中の状態において、迂回ルートと新たに敷設する新規光ファイバ105との光路長差の有無を検出し、両者の光路長を一致させる際の上り信号光および試験信号光の流れを示すブロック図である。また、図5は、制御器50の迂回ルートと新たに敷設する新規光ファイバ105との光路長を一致させる制御手順を示すフローチャートである。   FIG. 4 shows whether or not there is a difference in optical path length between the bypass route and the newly laid new optical fiber 105 in a state where the transmission path is duplexed and communication is being performed using the route on the side of the bypass component 1000. It is a block diagram which shows the flow of the upstream signal light and test signal light at the time of making length match. FIG. 5 is a flowchart showing a control procedure for matching the optical path lengths of the bypass route of the controller 50 and the newly laid new optical fiber 105.

まず、上部迂回用光ファイバ103、下部迂回用光ファイバ104および迂回路構成器1000により通信を維持している時、即ち迂回ルートで通信を行っている時に、新たに敷設する新規光ファイバ105と迂回ルートとの光路長差を計測する場合は、新規光ファイバ105に上り信号光波長変換器71を挿入し、新規光ファイバ105に分岐される波長λUp上り信号光2000を波長λSenseの試験信号光2001’に変換するように構成する。 First, when the communication is maintained by the upper bypass optical fiber 103, the lower bypass optical fiber 104, and the detour constructer 1000, that is, when communication is being performed on the detour route, When measuring the optical path length difference from the detour route, the upstream signal light wavelength converter 71 is inserted into the new optical fiber 105, and the wavelength λ Up upstream signal light 2000 branched to the new optical fiber 105 is tested for the wavelength λ Sense . It is configured to convert to signal light 2001 ′.

図6は、上記上り信号光波長変換器71の内部構成例を示すブロック図である。図6において、上り信号光2000は、上り信号光−電気変換器72により電気信号に変換された後、試験信号電気−光変換器73により波長λSenseの試験信号光2001’に変換される。 FIG. 6 is a block diagram illustrating an internal configuration example of the upstream signal light wavelength converter 71. In FIG. 6, the upstream signal light 2000 is converted into an electrical signal by the upstream signal light-electrical converter 72, and then converted into the test signal light 2001 ′ having the wavelength λ Sense by the test signal electrical-optical converter 73.

上記構成において、まず、制御器50では、新規光ファイバ105に対する光路長制御の開始指示が与えられると(ステップS21)、図1に示す上り信号光遮断スイッチ61、下り信号光遮断スイッチ60および試験信号光遮断スイッチ62を全てオフ状態にして、上り信号光、下り信号光および試験信号光を全て伝送状態とする(ステップS22)。これにより、上部迂回用光ファイバ103、下部迂回用光ファイバ104および迂回路構成器1000により通信を維持している時、即ち迂回ルートで通信を行っている時に、上り信号光波長変換器71で生成された試験信号光2001’は、上部光分岐カプラ202を通じて光路長差検出器41にて受信される。また、迂回路構成器1000において、上り信号光2000から変換されて生成された試験信号光2001についても、上部光分岐カプラ202を通じて光路長差検出器41にて受信される。光路長差検出器41では、これらの試験信号光2001,2001’の受信光を比較することにより光路長差の有無を検出する。   In the above configuration, first, when the controller 50 is instructed to start optical path length control for the new optical fiber 105 (step S21), the upstream signal light blocking switch 61, the downstream signal light blocking switch 60 and the test shown in FIG. All the signal light cutoff switches 62 are turned off, and all of the upstream signal light, downstream signal light, and test signal light are transmitted (step S22). As a result, when the communication is maintained by the upper detour optical fiber 103, the lower detour optical fiber 104, and the detour constructer 1000, that is, when communication is performed by the detour route, the upstream signal light wavelength converter 71 The generated test signal light 2001 ′ is received by the optical path length difference detector 41 through the upper optical branching coupler 202. In addition, the test path light 2001 generated by being converted from the upstream signal light 2000 in the detour constituent device 1000 is also received by the optical path length difference detector 41 through the upper optical branching coupler 202. The optical path length difference detector 41 detects the presence or absence of an optical path length difference by comparing the received lights of these test signal lights 2001 and 2001 '.

ここで、新規光ファイバ105と迂回ルートとの信号伝搬時間が一致していれば、2つの経路を経て合波された波長λSenseの試験信号光2001,2001’は信号波形パターンが一致するが、光路長が一致していなければ両者の信号波形パターンが崩れる。この原理を用いて、光路長差検出器41ではこの信号波形パターンの状態から光路長差の有無を検出する。 Here, if the signal propagation times of the new optical fiber 105 and the detour route match, the signal waveform patterns of the test signal lights 2001 and 2001 ′ having the wavelength λ Sense combined through the two paths match. If the optical path lengths do not match, the signal waveform patterns of the two are destroyed. Using this principle, the optical path length difference detector 41 detects the presence or absence of an optical path length difference from the state of this signal waveform pattern.

制御器50では、上記光路長差検出器41からの光路長差有無の検出結果を受け取って、光路長差有りか否かを判定する(ステップS23)。光路長差有りの場合には、試験信号可変遅延器32の遅延時間を変化させて光路長差無しの状態をサーチする(ステップS24)。光路長差無しの場合には、試験信号可変遅延器32に設定されている遅延時間から、新規光ファイバ105に挿入された信号光波長変換器71の予め計測された遅延時間分を差し引いて、下り信号可変遅延器30及び上り信号可変遅延器31に同じ遅延時間を設定する(ステップS25)。続いて、試験信号光遮断スイッチ62をオン状態として試験信号光の出力を停止させて(ステップS26)、一連の制御処理を完了する。   The controller 50 receives the detection result of the optical path length difference from the optical path length difference detector 41, and determines whether or not there is an optical path length difference (step S23). If there is an optical path length difference, the delay time of the test signal variable delay device 32 is changed to search for a state without an optical path length difference (step S24). When there is no optical path length difference, the delay time measured in advance of the signal light wavelength converter 71 inserted in the new optical fiber 105 is subtracted from the delay time set in the test signal variable delay device 32, The same delay time is set for the downstream signal variable delay device 30 and the upstream signal variable delay device 31 (step S25). Subsequently, the test signal light cutoff switch 62 is turned on to stop the output of the test signal light (step S26), and the series of control processing is completed.

図7は、上記光路長差検出器41の内部構成例を示すブロック図である。図7において、上部光分岐カプラ202を通った波長λUpの上り信号光2000と波長λSenseの試験信号光2001は、2入力×2出力光スイッチ45の一つの入力(入力1)に送られる。 FIG. 7 is a block diagram illustrating an internal configuration example of the optical path length difference detector 41. In FIG. 7, the upstream signal light 2000 having the wavelength λ Up and the test signal light 2001 having the wavelength λ Sense that have passed through the upper optical branching coupler 202 are sent to one input (input 1) of the 2-input × 2-output optical switch 45. .

この2入力×2出力光スイッチ45は、ストレートの状態(入力1→出力1、入力2→出力2)、およびクロスの状態(入力1→出力2、入力2→出力1)の二種類の状態に設定することができる。ストレートの状態では、波長λUpの上り信号光2000と波長λSenseの試験信号光2001の両方が試験信号・上り信号光−電気変換器44に到達する。クロスの状態では、入力1が出力2を介して試験信号波長選択フィルタ43に送られ、ここで試験信号波長λSenseの試験信号光2001のみが選択されて、再度信号光−電気変換器44の入力2および出力1を通じて試験信号・上り信号光−電気変換器44に到達する。 The 2-input × 2-output optical switch 45 has two types of states: a straight state (input 1 → output 1, input 2 → output 2), and a cross state (input 1 → output 2, input 2 → output 1). Can be set to In the straight state, both the upstream signal light 2000 having the wavelength λ Up and the test signal light 2001 having the wavelength λ Sense reach the test signal / upstream signal light-electrical converter 44. In the crossed state, the input 1 is sent to the test signal wavelength selection filter 43 via the output 2, where only the test signal light 2001 having the test signal wavelength λ Sense is selected, and the signal light-electrical converter 44 again is selected. The test signal / upstream signal optical-electrical converter 44 is reached through the input 2 and the output 1.

試験信号・上り信号光−電気変換器44によって電気信号に変換された試験信号は、クロックデータリカバリ−(CDR)エラー検出器42に送られる。このクロックデータリカバリ−(CDR)エラー検出器42は、伝送信号からクロックを抽出し、その抽出時のエラーを検出するもので、このエラーの有無の検出結果に基づいて光路長差の有無を検出する。   The test signal / upstream signal optical-electrical converter 44 converts the test signal into an electrical signal and sends it to a clock data recovery (CDR) error detector 42. The clock data recovery (CDR) error detector 42 extracts a clock from a transmission signal and detects an error at the time of extraction, and detects the presence or absence of an optical path length difference based on the detection result of the presence or absence of the error. To do.

上記構成による光路長差検出器41については、構成する光スイッチを適切に選択することにより、図2と図4のいずれも場合においても適用することが可能となる。つまり、図2で示した現用光ファイバで通信中に光路長差を検出する場合は、2入力×2出力光スイッチ45をストレートの状態に設定し、図4で示した迂回路構成器で通信中に光路長差を検出する場合は、2入力×2出力光スイッチ45をクロスの状態に設定することで、光路長差の検出に適用可能である。   The optical path length difference detector 41 having the above configuration can be applied to both cases of FIGS. 2 and 4 by appropriately selecting the optical switch to be configured. That is, when the optical path length difference is detected during communication using the working optical fiber shown in FIG. 2, the 2-input × 2-output optical switch 45 is set in a straight state, and communication is performed using the bypass circuit configuration unit shown in FIG. In the case of detecting the optical path length difference, it is applicable to the detection of the optical path length difference by setting the 2-input × 2-output optical switch 45 to the cross state.

以上説明したように、本発明によれば、下部光分岐カプラ201から試験信号を供給する必要がなくなるので、下部光分岐カプラ201として利用できる光分岐カプラの条件を大幅に緩和することが可能となる。
これにより、従来であれば適用できなかった2入力・1出力または1入力・2出力の側方光入出力技術を用いた光分岐カプラの利用が可能となる。また、任意の場所で迂回ルートを作成できることから、光伝送路二重化装置を用いた支障移転工事等における光線路切替作業の適用領域を拡大することが可能となる。
As described above, according to the present invention, since it is not necessary to supply a test signal from the lower optical branching coupler 201, it is possible to greatly relax the conditions of the optical branching coupler that can be used as the lower optical branching coupler 201. Become.
This makes it possible to use an optical branching coupler using a 2-input / 1-output or 1-input / 2-output side optical input / output technology that could not be applied conventionally. In addition, since a detour route can be created at an arbitrary place, it is possible to expand an application area of optical line switching work in trouble relocation work or the like using an optical transmission line duplexing device.

その他、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成を削除してもよい。さらに、異なる実施形態例に亘る構成要素を適宜組み合わせてもよい。   In addition, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some configurations may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different example embodiments may be combined as appropriate.

1…上部WDMカプラ
2…下部WDMカプラ
10…下り信号光−電気変換器
11…上り新語宇高-電気変換器
20…下り信号電気−光変換器
21…上り信号電気−光変換器
22…試験信号電気−光変換器
30…下り信号可変遅延器
31…上り信号可変遅延器
32…試験信号可変遅延器
41…光路長差検出器
42…CDRエラー検出器
43…試験信号波長選択フィルタ
44…試験信号・上り信号光−電気変換器
45…2入力×2出力光スイッチ
50…制御器
51…検出信号線
52…可変遅延器制御線
60…下り信号光遮断スイッチ
61…上り信号光遮断スイッチ
62…試験信号光遮断スイッチ
71…上り信号光波長変換器
72…上り信号光−電気変換器
73…試験信号電気−光変換器
100…局側伝送装置
101…加入者側伝送装置
102…現用光ファイバ
103…上部迂回用光ファイバ
104…下部迂回用光ファイバ
105…新規光ファイバ
201…下部光分岐カプラ
202…上部光分岐カプラ
1000…迂回路構成器
2000…上り信号光
2001,2001’…試験信号光
DESCRIPTION OF SYMBOLS 1 ... Upper WDM coupler 2 ... Lower WDM coupler 10 ... Downstream signal light-electrical converter 11 ... Upward new word Udaka-electrical converter 20 ... Downstream signal electrical-optical converter 21 ... Upstream signal electrical-optical converter 22 ... Test signal Electric-to-optical converter 30 ... Downlink signal variable delay 31 ... Uplink signal variable delay 32 ... Test signal variable delay 41 ... Optical path length difference detector 42 ... CDR error detector 43 ... Test signal wavelength selection filter 44 ... Test signal -Upstream signal light-electric converter 45 ... 2 input x 2 output optical switch 50 ... Controller 51 ... Detection signal line 52 ... Variable delay device control line 60 ... Downstream signal light cutoff switch 61 ... Upstream signal light cutoff switch 62 ... Test Signal light cut-off switch 71 ... Uplink signal light wavelength converter 72 ... Uplink signal light-electric converter 73 ... Test signal electric-optical converter 100 ... Station side transmission device 101 ... Subscriber side transmission device 102 ... Current use Fiber 103 ... Upper bypass optical fiber 104 ... Lower bypass optical fiber 105 ... New optical fiber 201 ... Lower optical branch coupler 202 ... Upper optical branch coupler 1000 ... Bypass component 2000 ... Upstream signal light 2001, 2001 '... Test signal light

Claims (6)

対向する局側伝送装置と加入者側伝送装置が現用光ファイバを介して信号光を送受信する光伝送装置に用いられ、前記現用光ファイバ中の任意の2箇所に介在される上部迂回用光分岐カプラと下部迂回用光分岐カプラとの間に迂回路を形成し、通信を二重化する光伝送路二重化装置において、
それぞれ前記上部・下部迂回用光分岐カプラの分岐端に接続され、前記加入者側伝送装置から発せられる上り波長の上り信号光と、前記局側伝送装置から発せられる下り波長の下り信号光と、および試験信号発生器から発せられる試験波長の試験信号光との波長を合分波する一対の波長分割多重カプラと、
前記一対の波長分割多重カプラ間に形成され、前記上り光信号を上り電気信号に変換する上り信号光−電気変換器、前記上り電気信号を設定時間遅延させる上り信号可変遅延器、前記上り電気信号を信号光に変換する上り信号電気−光変換器、前記上り信号光を出力・停止する上り信号光遮断スイッチを備える上り信号光伝送手段と、
前記一対の波長分割多重カプラ間に形成され、前記下り信号光を電気信号に変換する下り信号光−電気変換器、前記下り電気信号を設定時間遅延させる下り信号可変遅延器、前記下り電気信号を下り信号光に変換する下り信号電気−光変換器、前記下り信号光を出力・停止する下り信号光遮断スイッチを備える下り信号光伝送手段と、
前記一対の波長分割多重カプラ間に形成され、前記上り信号光−電気変換器により変換された電気信号を試験電気信号として取り込んで設定時間遅延させる試験信号可変遅延器、前記試験電気信号を試験信号光に変換し前記試験波長に変換する試験信号電気−光変換手段、前記試験信号光を出力・停止する試験信号光遮断スイッチを備える試験信号光伝送手段と、
前記上部光分岐カプラで分岐される前記試験信号光および前記上り信号光を受信し、前記現用光ファイバと前記迂回用光ファイバの光路長差の有無を検出する光路長差検出器と、
前記光路長差の有無を監視して前記試験信号可変遅延器の遅延時間を制御し、前記光路長差無しが検出されたときの前記試験信号可変遅延器に設定される遅延時間を前記上り信号可変遅延器及び下り信号可変遅延器に設定する制御器と
を具備することを特徴とする光伝送路二重化装置。
Upper detour optical branching used in an optical transmission apparatus in which the opposite station side transmission apparatus and subscriber side transmission apparatus transmit and receive signal light via the working optical fiber and are interposed at any two locations in the working optical fiber In the optical transmission line duplication device that forms a detour between the coupler and the lower detour optical branching coupler, and duplexes the communication,
Respectively connected to the branch ends of the upper and lower bypass optical branching couplers, the upstream signal light of the upstream wavelength emitted from the subscriber side transmission device, the downstream signal light of the downstream wavelength emitted from the station side transmission device, And a pair of wavelength division multiplex couplers for multiplexing and demultiplexing the wavelength of the test signal light of the test wavelength emitted from the test signal generator,
An upstream signal optical-electrical converter formed between the pair of wavelength division multiplexing couplers for converting the upstream optical signal into an upstream electrical signal, an upstream signal variable delay device for delaying the upstream electrical signal for a set time, and the upstream electrical signal An upstream signal light transmission means comprising an upstream signal electrical-to-optical converter that converts the upstream signal light into a signal light, and an upstream signal light blocking switch that outputs and stops the upstream signal light;
A downlink signal light-electric converter formed between the pair of wavelength division multiplexing couplers for converting the downlink signal light into an electrical signal, a downlink signal variable delay device for delaying the downlink electrical signal for a set time, and the downlink electrical signal Downstream signal light transmission means comprising a downstream signal electro-optical converter for converting into downstream signal light, a downstream signal light blocking switch for outputting and stopping the downstream signal light, and
A test signal variable delay device that is formed between the pair of wavelength division multiplex couplers, takes an electrical signal converted by the upstream optical signal-electrical converter as a test electrical signal, and delays a set time, and the test electrical signal is a test signal. Test signal electro-optical conversion means for converting to light and converting to the test wavelength, test signal light transmission means comprising a test signal light cutoff switch for outputting and stopping the test signal light,
An optical path length difference detector that receives the test signal light and the upstream signal light branched by the upper optical branching coupler, and detects the presence or absence of an optical path length difference between the working optical fiber and the bypass optical fiber;
The presence or absence of the optical path length difference is monitored to control the delay time of the test signal variable delay device, and the delay time set in the test signal variable delay device when the optical path length difference is detected is detected as the upstream signal. And a controller for setting the variable delay unit and the downlink signal variable delay unit.
前記光路長差検出器は、
前記上部光分岐カプラを通った上り信号光及び試験信号光の伝送信号光が一方の入力端に与えられる2入力・2出力光スイッチと、
前記2入力・2出力光スイッチの一方の出力端から出力される伝送信号光を取り込んで前記試験信号光の波長を選択し、選択され試験信号光を2入力・2出力光スイッチの他方の入力端に出力する試験信号波長選択フィルタと、
前記2入力・2出力光スイッチの他方の出力端から出力される伝送信号光を取り込んで前記試験信号光および前記上り信号光を電気信号に変換する試験信号・上り信号光−電気変換器と、
前記試験信号・上り信号光−電気変換器から出力される伝送信号からクロックを抽出し、その抽出時のエラーを検出するクロックデータリカバリーエラー検出器と
を具備し、
前記クロックデータリカバリーエラー検出器の検出結果から前記光路長差の有無を検出することを特徴とする請求項1記載の光伝送路二重化装置。
The optical path length difference detector is
A two-input / two-output optical switch in which the transmission signal light of the upstream signal light and the test signal light that has passed through the upper optical branching coupler is applied to one input terminal;
The transmission signal light output from one output terminal of the two-input / two-output optical switch is taken in, the wavelength of the test signal light is selected, and the selected test signal light is input to the other input of the two-input / two-output optical switch. Test signal wavelength selection filter to be output to the end,
A test signal / upstream signal light-electrical converter that takes in transmission signal light output from the other output terminal of the two-input / two-output optical switch and converts the test signal light and the upstream signal light into electrical signals;
A clock data recovery error detector that extracts a clock from a transmission signal output from the test signal / upstream signal optical-electrical converter and detects an error at the time of extraction;
2. The optical transmission line duplex device according to claim 1, wherein the presence or absence of the optical path length difference is detected from a detection result of the clock data recovery error detector.
前記試験信号電気−光変換手段は、前記試験信号可変遅延器で遅延された前記試験電気信号を前記試験波長の試験信号光に変換する試験信号電気−光変換器を備えることを特徴とする請求項1記載の光伝送路二重化装置。   The test signal electro-optical conversion means includes a test signal electro-optical converter that converts the test electric signal delayed by the test signal variable delay device into test signal light having the test wavelength. Item 2. The optical transmission line duplex device according to Item 1. 前記現用光ファイバを新規光ファイバに交換した際に前記新規光ファイバ中に設けられ、前記上り信号光を前記試験波長に変換する波長変換器を備え、
前記光路長検出器は、前記上部光分岐カプラで分岐される前記新規光ファイバからの試験信号光および前記迂回伝送路からの試験信号光を受信し、前記新規光ファイバと前記迂回伝送路との光路長差の有無を検出し、
前記制御器は、前記光路長差の有無を監視して前記試験信号可変遅延器の遅延時間を制御し、前記光路長差無しが検出されたときの前記試験信号可変遅延器に設定される遅延時間から前記波長変換器の変換遅延時間を差し引いて前記上り信号可変遅延器及び下り信号可変遅延器に設定することを特徴とする請求項1記載の光伝送路二重化装置。
Provided in the new optical fiber when the working optical fiber is replaced with a new optical fiber, comprising a wavelength converter for converting the upstream signal light into the test wavelength;
The optical path length detector receives test signal light from the new optical fiber branched by the upper optical branching coupler and test signal light from the detour transmission path, and connects the new optical fiber and the detour transmission path. Detect the presence or absence of optical path length difference,
The controller monitors the presence or absence of the optical path length difference to control the delay time of the test signal variable delay device, and sets a delay set in the test signal variable delay device when the optical path length difference is detected. 2. The optical transmission line duplexing apparatus according to claim 1, wherein a subtracting delay time of the wavelength converter is subtracted from the time to set in the upstream signal variable delay device and the downstream signal variable delay device.
対向する局側伝送装置と加入者側伝送装置が現用光ファイバを介して信号光を送受信する光伝送装置に用いられ、前記現用光ファイバ中の任意の2箇所に介在される上部迂回用光分岐カプラと下部迂回用光分岐カプラとの間に迂回路を形成し、通信を二重化する光伝送路二重化方法において、
それぞれ前記上部・下部迂回用光分岐カプラの分岐端に一対の波長分割多重カプラを接続して、前記加入者側伝送装置から発せられる上り波長の上り信号光と、前記局側伝送装置から発せられる下り波長の下り信号光と、および試験信号発生器から発せられる試験波長の試験信号光との波長を合分波させるようにし、
前記一対の波長分割多重カプラ間に、前記上り光信号を上り電気信号に変換する上り信号光−電気変換器、前記上り電気信号を設定時間遅延させる上り信号可変遅延器、前記上り電気信号を信号光に変換する上り信号電気−光変換器、前記上り信号光を出力・停止する上り信号光遮断スイッチを備える上り信号光伝送路と形成し、
前記一対の波長分割多重カプラ間に、前記下り信号光を電気信号に変換する下り信号光−電気変換器、前記下り電気信号を設定時間遅延させる下り信号可変遅延器、前記下り電気信号を下り信号光に変換する下り信号電気−光変換器、前記下り信号光を出力・停止する下り信号光遮断スイッチを備える下り信号光伝送路を形成し、
前記一対の波長分割多重カプラ間に、前記上り信号光−電気変換器により変換された電気信号を試験電気信号として取り込んで設定時間遅延させる試験信号可変遅延器、前記試験電気信号を試験信号光に変換し前記試験波長に変換する試験信号電気−光変換手段、前記試験信号光を出力・停止する試験信号光遮断スイッチを備える試験信号光伝送路を形成し、
前記上部光分岐カプラで分岐される前記試験信号光および前記上り信号光を受信し比較して前記現用光ファイバと前記迂回用光ファイバの光路長差の有無を検出し、
前記光路長差の有無を監視して前記試験信号可変遅延器の遅延時間を制御し、前記光路長差無しが検出されたときの前記試験信号可変遅延器に設定される遅延時間を前記上り信号可変遅延器及び下り信号可変遅延器に設定することを特徴とする光伝送路二重化方法。
Upper detour optical branching used in an optical transmission apparatus in which the opposite station side transmission apparatus and subscriber side transmission apparatus transmit and receive signal light via the working optical fiber and are interposed at any two locations in the working optical fiber In the optical transmission path duplexing method in which a bypass is formed between the coupler and the lower bypass optical branching coupler, and the communication is duplexed.
A pair of wavelength division multiplex couplers are connected to the branch ends of the upper and lower bypass optical branching couplers, respectively, and upstream signal light of the upstream wavelength emitted from the subscriber side transmission device and emitted from the station side transmission device The wavelength of the downstream signal light of the downstream wavelength and the test signal light of the test wavelength emitted from the test signal generator are multiplexed and demultiplexed,
Between the pair of wavelength division multiplexing couplers, an upstream optical signal-electric converter that converts the upstream optical signal into an upstream electrical signal, an upstream signal variable delay device that delays the upstream electrical signal for a set time, and the upstream electrical signal as a signal An upstream signal light-transmission path including an upstream signal light-to-light converter that converts the upstream signal light into light, and an upstream signal light blocking switch that outputs and stops the upstream signal light;
Between the pair of wavelength division multiplexing couplers, a downstream signal light-electric converter that converts the downstream signal light into an electrical signal, a downstream signal variable delay device that delays the downstream electrical signal for a set time, and the downstream electrical signal as a downstream signal Forming a downstream signal light transmission path comprising a downstream signal light-to-light converter for converting into light, a downstream signal light blocking switch for outputting and stopping the downstream signal light,
A test signal variable delay device for taking an electrical signal converted by the upstream signal light-electric converter as a test electrical signal between the pair of wavelength division multiplex couplers and delaying it for a set time, and converting the test electrical signal into a test signal light A test signal electro-optical converting means for converting and converting to the test wavelength, and forming a test signal light transmission line including a test signal light cut-off switch for outputting and stopping the test signal light,
Receiving and comparing the test signal light and the upstream signal light branched by the upper optical branching coupler to detect the presence or absence of an optical path length difference between the working optical fiber and the bypass optical fiber,
The presence or absence of the optical path length difference is monitored to control the delay time of the test signal variable delay device, and the delay time set in the test signal variable delay device when the optical path length difference is detected is detected as the upstream signal. A duplexing method for optical transmission lines, characterized by being set in a variable delay unit and a downstream signal variable delay unit.
前記現用光ファイバを新規光ファイバに交換した際に前記新規光ファイバ中に前記上り信号光を前記試験波長に変換する波長変換器を配置し、
前記上部光分岐カプラで分岐される前記新規光ファイバからの試験信号光および前記迂回伝送路からの試験信号光から前記新規光ファイバと前記迂回伝送路との光路長差の有無を検出し、
前記光路長差の有無を監視して前記試験信号可変遅延器の遅延時間を制御し、前記光路長差無しが検出されたときの前記試験信号可変遅延器に設定される遅延時間から前記波長変換器の変換遅延時間を差し引いて前記上り信号可変遅延器及び下り信号可変遅延器に設定することを特徴とする請求項5記載の光伝送路二重化方法。
A wavelength converter for converting the upstream signal light into the test wavelength in the new optical fiber when the current optical fiber is replaced with a new optical fiber;
Detecting the presence or absence of optical path length difference between the new optical fiber and the detour transmission path from the test signal light from the new optical fiber branched by the upper optical branching coupler and the test signal light from the detour transmission path;
Monitoring the presence / absence of the optical path length difference to control the delay time of the test signal variable delay unit, and from the delay time set in the test signal variable delay unit when the optical path length difference is detected, the wavelength conversion 6. The method for duplicating an optical transmission line according to claim 5, wherein the uplink signal variable delay device and the downlink signal variable delay device are set by subtracting the conversion delay time of the optical device.
JP2012114941A 2012-05-18 2012-05-18 Duplex device for optical transmission line and method for duplexing the same Expired - Fee Related JP5847016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012114941A JP5847016B2 (en) 2012-05-18 2012-05-18 Duplex device for optical transmission line and method for duplexing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012114941A JP5847016B2 (en) 2012-05-18 2012-05-18 Duplex device for optical transmission line and method for duplexing the same

Publications (2)

Publication Number Publication Date
JP2013243496A true JP2013243496A (en) 2013-12-05
JP5847016B2 JP5847016B2 (en) 2016-01-20

Family

ID=49843994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012114941A Expired - Fee Related JP5847016B2 (en) 2012-05-18 2012-05-18 Duplex device for optical transmission line and method for duplexing the same

Country Status (1)

Country Link
JP (1) JP5847016B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015154133A (en) * 2014-02-12 2015-08-24 住友電気工業株式会社 Delay time difference measurement system and delay time difference measurement method
JP2016111617A (en) * 2014-12-09 2016-06-20 日本電信電話株式会社 Optical transmission path duplicating device and method
JP2016111551A (en) * 2014-12-08 2016-06-20 日本電信電話株式会社 Delay amount adjustment device for duplex optical line, and optical line switching method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281825A (en) * 1985-10-04 1987-04-15 Furukawa Electric Co Ltd:The Hitless switching method for optical line
JPH03268630A (en) * 1990-03-19 1991-11-29 Nippon Telegr & Teleph Corp <Ntt> Method for switching optical fiber line
JP2009253884A (en) * 2008-04-10 2009-10-29 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for hitlessly switching optical communication line
JP2012060408A (en) * 2010-09-08 2012-03-22 Nippon Telegr & Teleph Corp <Ntt> Detection and adjustment device of optical path length difference in duplicated optical lines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281825A (en) * 1985-10-04 1987-04-15 Furukawa Electric Co Ltd:The Hitless switching method for optical line
JPH03268630A (en) * 1990-03-19 1991-11-29 Nippon Telegr & Teleph Corp <Ntt> Method for switching optical fiber line
JP2009253884A (en) * 2008-04-10 2009-10-29 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for hitlessly switching optical communication line
JP2012060408A (en) * 2010-09-08 2012-03-22 Nippon Telegr & Teleph Corp <Ntt> Detection and adjustment device of optical path length difference in duplicated optical lines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015022955; 真鍋 哲也 他: '「光線路無瞬断切替のための光電変換を用いた伝送路二重化の検討」' 2012年電子情報通信学会総合大会講演論文集 通信2 , 20120306, p. 341 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015154133A (en) * 2014-02-12 2015-08-24 住友電気工業株式会社 Delay time difference measurement system and delay time difference measurement method
JP2016111551A (en) * 2014-12-08 2016-06-20 日本電信電話株式会社 Delay amount adjustment device for duplex optical line, and optical line switching method
JP2016111617A (en) * 2014-12-09 2016-06-20 日本電信電話株式会社 Optical transmission path duplicating device and method

Also Published As

Publication number Publication date
JP5847016B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
US8718467B2 (en) Method of switching optical path, and apparatus thereof
WO2012024982A1 (en) System and method for detecting fiber failure
WO2012024977A1 (en) Method and system for detecting fiber fault in passive optical network
JP5033703B2 (en) Non-instantaneous switching method and non-instantaneous switching device for optical communication lines
JP5847016B2 (en) Duplex device for optical transmission line and method for duplexing the same
JP2006324796A (en) Optical switch and optical access network method using same
WO2018137212A1 (en) Passive wavelength division mobile fronthaul network system
JP2012060408A (en) Detection and adjustment device of optical path length difference in duplicated optical lines
JP5613622B2 (en) Optical access network system and communication redundancy method therefor
JP5873706B2 (en) Redundant optical transmission line apparatus and method
RU2607724C2 (en) Wave multiplexer and method and program of faulty section identification
JP5856927B2 (en) Optical path length difference detection method and detector for duplexed optical transmission line
JP2006287889A (en) Fault location detecting apparatus for optical line in wavelength division multiplexed passive optical subscriber communication network
JP5970412B2 (en) Optical path delay measuring method and measuring apparatus for duplex optical line
EP3874630B1 (en) Optical protection switching for single fibre bidirectional wdm optical ring
JP4015091B2 (en) Optical line monitoring device
JP6248027B2 (en) Redundant optical transmission line apparatus and method
JP6193144B2 (en) Delay time difference measurement system and delay time difference measurement method
JP5849032B2 (en) Redundant optical transmission line and duplexing method
JP6360777B2 (en) Duplex determination device, signal duplex determination method, and optical line installation method
JP7211426B2 (en) Optical transmission line monitoring device, optical transmission line monitoring system, and optical transmission line monitoring method
JP6116468B2 (en) Optical path delay measuring method and measuring apparatus for duplex optical line
JP6148187B2 (en) Delay time difference measurement system and delay time difference measurement method
JP6346839B2 (en) Detour optical line construction method and detour optical line system
JP2012157060A (en) Station circuit termination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151124

R150 Certificate of patent or registration of utility model

Ref document number: 5847016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees