JP6346839B2 - Detour optical line construction method and detour optical line system - Google Patents

Detour optical line construction method and detour optical line system Download PDF

Info

Publication number
JP6346839B2
JP6346839B2 JP2014212890A JP2014212890A JP6346839B2 JP 6346839 B2 JP6346839 B2 JP 6346839B2 JP 2014212890 A JP2014212890 A JP 2014212890A JP 2014212890 A JP2014212890 A JP 2014212890A JP 6346839 B2 JP6346839 B2 JP 6346839B2
Authority
JP
Japan
Prior art keywords
detour
optical line
propagation delay
delay amount
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014212890A
Other languages
Japanese (ja)
Other versions
JP2016082439A (en
Inventor
雅晶 井上
雅晶 井上
岡本 圭司
圭司 岡本
優介 古敷谷
優介 古敷谷
和典 片山
和典 片山
真鍋 哲也
哲也 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2014212890A priority Critical patent/JP6346839B2/en
Publication of JP2016082439A publication Critical patent/JP2016082439A/en
Application granted granted Critical
Publication of JP6346839B2 publication Critical patent/JP6346839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、伝送装置間を結ぶ光ファイバによる現用光線路に対して、例えば、支障移転工事等における一時的な光線路切替のために設けられる迂回光線路の構築方法、およびこのような迂回光線路が設けられてなる迂回光線路システムに関し、さらに詳しくは、伝搬遅延量が容易に制御される迂回光線路の構築方法および迂回光線路システムに関する。   The present invention relates to a method of constructing a detour optical line provided for temporarily switching an optical line, for example, in a troubled relocation work, etc., and such a detour light beam, with respect to a working optical line using an optical fiber connecting between transmission devices. More particularly, the present invention relates to a bypass optical line construction method and a bypass optical line system in which a propagation delay amount is easily controlled.

近年、光通信網の支障移転工事等において、通信サービスを維持しながら、すなわち、インサービスにおいて、現用光線路から迂回光線路にサービス移転させることを可能とするサービス無瞬断切替技術が開発されている(例えば,非特許文献1および非特許文献2を参照)。   In recent years, service interruption switching technology has been developed that enables the transfer of services from the working optical line to the detour optical line while maintaining the communication service, such as in-service, in trouble relocation work of the optical communication network, etc. (For example, see Non-Patent Document 1 and Non-Patent Document 2).

このようなサービス無瞬断切替技術を達成するためには、現用光線路から迂回光線路への切替時においても、切替前後の通信に影響がないように、迂回される区間における現用光線路と、迂回光線路との伝搬遅延量を一致させつつ、両路線を二重化する必要がある。   In order to achieve such service uninterruptible switching technology, even when switching from the working optical line to the detouring optical line, the working optical line in the detoured section is not affected so that communication before and after switching is not affected. It is necessary to duplicate both routes while matching the propagation delay amount with the detour optical line.

したがって、迂回される区間における現用光線路を伝搬する光信号と、迂回光線路を伝搬する光信号との伝搬遅延差を正確に把握する必要がある。   Therefore, it is necessary to accurately grasp the propagation delay difference between the optical signal propagating through the working optical line and the optical signal propagating through the detour optical line in the detoured section.

このような伝搬遅延差の計測手段としては、ONU上り信号を試験光として用いた信号パターンの類似性(相関)から、迂回される区間の現用光線路と迂回光線路との伝搬遅延差を計測する方式と、信号の位相差を検出して高精度に伝搬遅延差を計測する微計測方式との併用が提案されている(非特許文献3を参照)。   As a means of measuring the propagation delay difference, the propagation delay difference between the working optical line and the detour optical line in the detoured section is measured from the similarity (correlation) of the signal pattern using the ONU upstream signal as the test light. And a fine measurement method for detecting a phase difference of a signal and measuring a propagation delay difference with high accuracy have been proposed (see Non-Patent Document 3).

真鍋他:“可変電気遅延器を用いた光線路無瞬断切替システムの基本検討”,信学技報, OFT2012-46, pp. 23-26, 2012.Manabe et al .: “Basic study of optical fiber uninterruptible switching system using variable electrical delay device”, IEICE Technical Report, OFT2012-46, pp. 23-26, 2012. 井上他:“Dynamic Delay Adjustment Characterization using Buffer-type Delay Line for Changing Optical Access Line Routes without Service Interruption”,OECC/ACOFT 2014, TH10C, Melbourne, Australia, July 2014.Inoue et al: “Dynamic Delay Adjustment Characterization using Buffer-type Delay Line for Changing Optical Access Line Routes without Service Interruption”, OECC / ACOFT 2014, TH10C, Melbourne, Australia, July 2014. 井上他:“パルス相関解析と位相検出器を用いる二重化伝送路間の広範囲・高精度な遅延差計測”,信学技報, OFT2013-16, pp. 17-20, 2013.Inoue et al: “Wide-range, high-accuracy delay difference measurement between duplex transmission lines using pulse correlation analysis and phase detector”, IEICE Technical Report, OFT2013-16, pp. 17-20, 2013.

既に存在する現用光線路における伝搬遅延量を現状よりも減少させることは不可能であるので、迂回される区間における現用光線路と迂回光線路との伝搬遅延量を一致させるように調整するためには、迂回光線路を通過する光信号の伝搬遅延量を、増加させることにより達成する必要がある。   Since it is impossible to reduce the propagation delay amount in the existing working optical line from the current state, in order to adjust the propagation delay amount between the working optical line and the detouring optical line in the detoured section to match. Needs to be achieved by increasing the propagation delay of the optical signal passing through the detour optical line.

そのためには、迂回光線路の途中に、光信号の伝搬遅延量を増加させるための伝搬遅延量調整部を設ける必要がある。   For this purpose, it is necessary to provide a propagation delay amount adjusting unit for increasing the propagation delay amount of the optical signal in the middle of the detour optical line.

しかしながら、従来、現用光線路と迂回光線路とには、同一仕様の光ファイバが用いられることが多い。この場合、迂回される区間における現用光線路と迂回光線路との長さが同一であれば、迂回される区間における現用光線路と迂回光線路との伝搬遅延量は、理論的には同一となる。   However, conventionally, optical fibers having the same specifications are often used for the working optical line and the bypass optical line. In this case, if the lengths of the working optical line and the bypass optical line in the bypassed section are the same, the propagation delay amounts of the active optical line and the bypass optical line in the bypassed section are theoretically the same. Become.

しかしながら、迂回される区間における現用光線路と迂回光線路との長さが厳密に同一になることは現実的ではなく、仮に同一であったとしても、光ファイバ固有の製造誤差も相俟って、迂回される区間における現用光線路と迂回光線路との伝搬遅延量が同一になることはないであろう。   However, it is not realistic that the lengths of the working optical line and the detour optical line in the detoured section are exactly the same, and even if they are the same, there are also manufacturing errors inherent to the optical fiber. The propagation delay amount between the working optical line and the detour optical line in the detoured section will not be the same.

したがって、依然として、迂回光線路の途中に、光信号の伝搬遅延量を増加させるための遅延調整部を設ける必要性は排除されない。   Therefore, the necessity of providing a delay adjustment unit for increasing the propagation delay amount of the optical signal still in the middle of the detour optical line is not excluded.

しかしながら、迂回光線路の途中に、このような伝搬遅延量調整部を設けてしまうと、伝搬遅延量調整部自体の固有の伝搬遅延量も加わることによって、迂回光線路の伝搬遅延量がさらに増加してしまう。   However, if such a propagation delay amount adjustment unit is provided in the middle of the detour optical line, the propagation delay amount of the detour optical line further increases by adding the inherent propagation delay amount of the propagation delay amount adjustment unit itself. Resulting in.

したがって、迂回光線路の伝搬遅延量は、伝搬遅延量調整部の固有の伝搬遅延量が加えられてもなお、迂回される区間における現用光線路の伝搬遅延量よりも小さくしなければならない。   Therefore, the propagation delay amount of the detour optical line must be smaller than the propagation delay amount of the working optical line in the detoured section, even if the propagation delay amount inherent in the propagation delay amount adjusting unit is added.

この発明は上記事情に着目してなされたもので、その目的とするところは、伝搬する光の伝搬速度が、迂回される区間における現用光線路を通過する光の伝搬速度よりも速くなるような迂回光線路とし、さらに、迂回光線路に設けられた伝搬遅延量調整手段によって迂回光線路の伝搬遅延量を増加させることによって、迂回光線路の伝搬遅延量を、迂回される区間における現用光線路の伝搬遅延量に一致させることが可能な、迂回光線路の構築方法および迂回光線路システムを提供することにある。   The present invention has been made paying attention to the above circumstances, and the purpose thereof is to make the propagation speed of the propagating light faster than the propagation speed of the light passing through the working optical line in the detoured section. A bypass optical line is used, and further, the propagation delay amount of the bypass optical line is increased by a propagation delay amount adjusting means provided in the bypass optical line, thereby reducing the propagation delay amount of the bypass optical line in the section to be bypassed. It is an object of the present invention to provide a detour optical line construction method and detour optical line system that can match the propagation delay amount of the detour optical path.

上記目的を達成するためにこの発明の第1の観点は、以下のような構成要素を備えている。   In order to achieve the above object, a first aspect of the present invention includes the following components.

また、この発明の第2の観点は、以下のような構成要素を備えている。   The second aspect of the present invention includes the following components.

すなわち、本発明の第2の観点による伝送装置間を結ぶ現用光線路に対する迂回光線路の構築方法および迂回光線路システムは、現用光線路における迂回開始端および迂回終了端にそれぞれ接続された一対の光カプラに迂回光線路の両端を接続し、迂回光線路を伝搬する信号の伝搬遅延量を調整する伝搬遅延量調整手段を迂回光線路の途中に設けてなる。さらに、現用光線路と、迂回光線路とを、同一仕様の光ファイバとする。また、迂回開始端から迂回終了端までの迂回光線路の長さを、迂回開始端から迂回終了端までの現用光線路の長さよりも短くする。これによって、迂回開始端から迂回終了端まで迂回光線路を伝搬する信号の、迂回光線路と伝搬遅延量調整手段とによる伝搬遅延量の合計を、迂回開始端から迂回終了端まで現用光線路を伝搬する信号の伝搬遅延量よりも小さくする。   That is, the detouring optical line construction method and the detouring optical line system for the working optical line connecting between the transmission apparatuses according to the second aspect of the present invention include a pair of detouring start ends and a detouring end end respectively connected to the working optical line. Propagation delay amount adjusting means for connecting the both ends of the bypass optical line to the optical coupler and adjusting the propagation delay amount of the signal propagating through the bypass optical line is provided in the middle of the bypass optical line. Furthermore, the working optical line and the bypass optical line are optical fibers having the same specifications. Further, the length of the detour optical line from the detour start end to the detour end end is made shorter than the length of the working optical line from the detour start end to the detour end end. As a result, the total propagation delay amount of the signal propagating through the detour optical line from the detour start end to the detour end end by the detour optical line and the propagation delay amount adjusting means is changed from the detour start end to the detour end end. The propagation delay amount of the signal to be propagated is made smaller.

一例として、迂回開始端から迂回終了端までの現用光線路のうち、迂回開始端から迂回終了端までの迂回光線路よりも長い現用光線路部分を、迂回開始端または迂回終了端の近傍において束ねるようにしても良い。   As an example, among the working optical lines from the detour start end to the detour end end, the working optical line portion longer than the detour optical line from the detour start end to the detour end end is bundled in the vicinity of the detour start end or the detour end end. You may do it.

そして、これら第1および第2の観点ではさらに、伝搬遅延量調整手段によって、迂回光線路を伝搬する信号を遅延させることによって、迂回開始端から迂回終了端まで迂回光線路を伝搬する信号の、迂回光線路と伝搬遅延量調整手段とによる伝搬遅延量の合計を、迂回開始端から迂回終了端まで現用光線路を伝搬する信号の伝搬遅延量と一致させる。これによって、インサービスにおける現用光線路から迂回光線路への無瞬断切替を可能とする。   And in these 1st and 2nd viewpoints, the signal which propagates a detour optical line from a detour start end to a detour end end is further made by delaying a signal which propagates a detour optical line by propagation delay amount adjustment means, The total propagation delay amount by the detour optical line and the propagation delay amount adjusting means is made to coincide with the propagation delay amount of the signal propagating through the working optical line from the detour start end to the detour end end. This enables uninterrupted switching from the working optical line to the bypass optical line in service.

すなわちこの発明によれば、伝搬する光の伝搬速度が、迂回される区間における現用光線路を伝搬する光の伝搬速度よりも速くなるような迂回光線路とし、迂回光線路に設けられた伝搬遅延量調整手段によって迂回光線路の伝搬遅延量を増加させることによって、迂回光線路の伝搬遅延量を、迂回される区間における現用光線路の伝搬遅延量に一致させることが可能な、迂回光線路の構築方法および迂回光線路システムを提供することができる。   That is, according to the present invention, the propagation delay of the propagation light provided in the bypass optical line is such that the propagation speed of the propagating light is higher than the propagation speed of the light propagating through the working optical line in the bypassed section. By increasing the propagation delay amount of the bypass optical line by the amount adjusting means, the propagation delay amount of the bypass optical line can be matched with the propagation delay amount of the working optical line in the bypassed section. A construction method and a bypass optical line system can be provided.

これによって、サービス無瞬断切替技術を行う際の迂回光線路の選定が容易になるとともに、ユーザインパクトを最小化するサービス無瞬断切替技術の適用対象を拡大することが可能となる。   This makes it easy to select a bypass optical line when performing the service uninterruptible switching technology, and it is possible to expand the application target of the service uninterrupted switching technology that minimizes the user impact.

本発明の第1の実施形態に係る構築方法によって構築される迂回光線路システムの構成例を示すブロック図である。It is a block diagram showing an example of composition of a detour optical line system constructed by a construction method concerning a 1st embodiment of the present invention. 中空光ファイバとシングルモードファイバ(SMF)の光線路長に対する伝搬遅延量の比較図である。It is a comparison figure of the propagation delay amount with respect to the optical line length of a hollow optical fiber and a single mode fiber (SMF). 本発明の第2の実施形態に係る構築方法によって構築される迂回光線路システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the detour optical line system constructed | assembled by the construction method which concerns on the 2nd Embodiment of this invention.

以下、図面を参照してこの発明に係わる各実施形態を説明する。以下に説明する各実施形態は本発明を実施するための例であり、本発明は、これら実施形態に制限されるものではない。   Embodiments according to the present invention will be described below with reference to the drawings. Each embodiment described below is an example for carrying out the present invention, and the present invention is not limited to these embodiments.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る構築方法によって構築される迂回光線路システムの構成例を示すブロック図である。
(First embodiment)
FIG. 1 is a block diagram showing a configuration example of a detour optical line system constructed by the construction method according to the first embodiment of the present invention.

すなわち、本実施形態に係る迂回光線路システム10は、伝送装置(OLT:Optical Line Terminal)11と伝送装置(ONU:Optical Network Unit)12との間を結ぶ光ファイバによる現用光線路15のうちの迂回区間Bに迂回光線路16を備えてなる。   That is, the detour optical line system 10 according to the present embodiment includes an active optical line 15 using an optical fiber that connects between a transmission apparatus (OLT: Optical Line Terminal) 11 and a transmission apparatus (ONU: Optical Network Unit) 12. A bypass optical line 16 is provided in the bypass section B.

迂回光線路16の両端は、現用光線路15における迂回開始端Sにおける所内光カプラ13と、現用光線路15における迂回終了端Eにおける所外光カプラ14にそれぞれ接続されている。   Both ends of the detour optical line 16 are connected to the in-house optical coupler 13 at the detour start end S in the working optical line 15 and the outside optical coupler 14 at the detour end E in the working optical line 15, respectively.

迂回光線路16の途中には、迂回光線路16を伝搬する信号の伝搬遅延量を調整する伝搬遅延量調整部17が設けられている。また、所内光カプラ13には、伝搬遅延量計測部18が接続されている。   A propagation delay amount adjusting unit 17 that adjusts the propagation delay amount of a signal propagating through the detour optical line 16 is provided in the middle of the detour optical line 16. A propagation delay amount measuring unit 18 is connected to the in-house optical coupler 13.

伝搬遅延量調整部17は、迂回光線路16内を伝搬する光信号を電気信号に変換することにより光信号の遅延を制御し、電気−光変換にて再度光信号に変換し出射する。この時、出射する光信号の波長は、通信に影響を与えないように、試験光波長とする。これを実現するために、OLT11およびONU12内には、試験光波長を有する試験光を遮断するフィルタ(図示せず)を設置する。現用光線路15を伝搬する通信光と当該試験光とは、所内光カプラ13にて合波され、当該合波信号が伝搬遅延量計測部18へ入力されるようになっている。   The propagation delay amount adjusting unit 17 controls the delay of the optical signal by converting the optical signal propagating through the detour optical line 16 into an electric signal, and converts the optical signal into an optical signal again by the electric-optical conversion and emits it. At this time, the wavelength of the emitted optical signal is set to the test light wavelength so as not to affect the communication. In order to realize this, a filter (not shown) that blocks test light having a test light wavelength is installed in the OLT 11 and the ONU 12. The communication light propagating through the working optical line 15 and the test light are combined by the in-house optical coupler 13, and the combined signal is input to the propagation delay amount measuring unit 18.

伝搬遅延量計測部18は、以下に示すように、2つの方式を併用して、遅延区間Bにおける現用光線路15に対する迂回光線路16の伝搬遅延差を計測する。すなわち、第1の方式は、非特許文献3に記載されているように、信号パターンの類似性(相関)から、遅延区間Bにおける現用光線路15に対する迂回光線路16の伝搬遅延差を計測する方式である。第2の方式は、遅延区間Bにおける現用光線路15を伝搬する信号と、迂回光線路16を伝搬する信号との位相差を検出し、この位相差に基づいて、遅延区間Bにおける現用光線路15に対する迂回光線路16の伝搬遅延差を高精度で計測する微計測方式と呼ばれる方式である。   The propagation delay amount measuring unit 18 measures the propagation delay difference of the detour optical line 16 with respect to the working optical line 15 in the delay section B by using two methods in combination as described below. That is, as described in Non-Patent Document 3, the first method measures the propagation delay difference of the detour optical line 16 with respect to the working optical line 15 in the delay section B from the similarity (correlation) of the signal pattern. It is a method. The second method detects the phase difference between the signal propagating through the working optical line 15 in the delay section B and the signal propagating through the detour optical line 16, and based on this phase difference, the working optical line in the delay section B This is a method called a fine measurement method for measuring the propagation delay difference of the detour optical line 16 with respect to 15 with high accuracy.

伝搬遅延量調整部17は、伝搬遅延量計測部18によって計測された伝搬遅延差に基づいて、迂回光線路16を伝搬する信号の伝搬遅延量を増加させることによって、迂回光線路16を伝搬する信号の伝搬遅延量が、遅延区間Bにおける現用光線路15を伝搬する信号の伝搬遅延量と一致するように調整する。   The propagation delay amount adjustment unit 17 propagates the detour optical line 16 by increasing the propagation delay amount of the signal propagating through the detour optical line 16 based on the propagation delay difference measured by the propagation delay amount measurement unit 18. The propagation delay amount of the signal is adjusted so as to coincide with the propagation delay amount of the signal propagating through the working optical line 15 in the delay section B.

伝搬遅延量調整部17は、迂回光線路16を伝搬する信号に、電気的に遅延を付与することによって、迂回光線路16の伝搬遅延量を、正の方向にのみ可変することができる。また、伝搬遅延量調整部17は、光・電気部品によって構成されているため、固有の伝搬遅延量を有する。   The propagation delay amount adjusting unit 17 can vary the propagation delay amount of the detour optical line 16 only in the positive direction by electrically adding a delay to the signal propagating through the detour optical line 16. Further, since the propagation delay amount adjusting unit 17 is composed of optical / electrical parts, it has a unique propagation delay amount.

したがって、光線路二重化を行うためには、迂回区間Bにおける現用光線路15の伝搬遅延量よりも、迂回光線路16と伝搬遅延量調整部17とによる合計の伝搬遅延量が小さくなる必要がある。   Therefore, in order to make the optical line duplex, the total propagation delay amount by the detour optical line 16 and the propagation delay amount adjusting unit 17 needs to be smaller than the propagation delay amount of the working optical line 15 in the detour section B. .

このため、迂回光線路16は、例えば中空光ファイバ19のように、現用光線路15に用いられている光ファイバよりも低い屈折率を有する低屈折率媒質によって構成する。なお、迂回光線路16は、そのすべてが中空光ファイバ19のような低屈折率媒質である必要はなく、大部分が現用光線路15と同じ光ファイバであり、一部のみを中空光ファイバ19に置き換えることによって構成しても良い。図1では、所外光カプラ14側の迂回光線路16に、中空光ファイバ19を用い、それ以外は、現用光線路15と同一仕様である、例えばシングルモードファイバ(SMF)のような光ファイバを用いている例を示している。   For this reason, the detour optical line 16 is configured by a low refractive index medium having a lower refractive index than the optical fiber used for the working optical line 15, for example, a hollow optical fiber 19. The detour optical line 16 does not necessarily have to be a low refractive index medium like the hollow optical fiber 19, and most of the detour optical line 16 is the same optical fiber as the working optical line 15, and only a part thereof is the hollow optical fiber 19. You may comprise by replacing with. In FIG. 1, a hollow optical fiber 19 is used for the detour optical line 16 on the outside optical coupler 14 side, and other than that, the optical fiber such as a single mode fiber (SMF) having the same specifications as the working optical line 15 is used. The example which uses is shown.

図2は、中空光ファイバ19とシングルモードファイバ(SMF)の光線路長(km)に対する伝搬遅延量(μs:マイクロ秒)の比較図である。   FIG. 2 is a comparison diagram of propagation delay amounts (μs: microseconds) with respect to the optical line length (km) of the hollow optical fiber 19 and the single mode fiber (SMF).

図2には、光線路を中空光ファイバ19とし、屈折率として空気の屈折率:1.0003を用いて計算された光の伝搬遅延量aと、光線路をSMFとし、SMFの屈折率1.4671を用いて計算された光の伝搬遅延量bと、伝搬遅延量bと伝搬遅延量aの差分である伝搬遅延量差cとが示されている。光の波長は、1310nmとしている。   In FIG. 2, the optical transmission line is a hollow optical fiber 19 and the refractive index of air is calculated as a refractive index: 1.0003. The light propagation delay amount a is calculated using S0003, and the optical transmission line is SMF. The propagation delay amount b of light calculated using .4671 and the propagation delay amount difference c which is the difference between the propagation delay amount b and the propagation delay amount a are shown. The wavelength of light is 1310 nm.

伝搬遅延量aおよび伝搬遅延量bの傾きは、伝搬速度(いわゆる群速度)を示しており、中空光ファイバ19中の光速は299702547.2(m/s)、SMF中の光速は204340852.4(m/s)となる。   The slopes of the propagation delay amount a and the propagation delay amount b indicate the propagation speed (so-called group speed), the light speed in the hollow optical fiber 19 is 299702547.2 (m / s), and the light speed in the SMF is 204340852.4. (M / s).

図2に示されているように、光線路長に比例して伝搬遅延量差cは拡大する。すなわち、中空光ファイバ19内では、SMF内よりも、伝搬速度が速く、伝搬遅延量は低い。したがって、迂回光線路16の大部分を現用光線路15と同一仕様の光ファイバ(例えばSMF)とする一方、迂回光線路16の残りの部分を中空光ファイバ19としても、迂回区間Bにおける現用光線路15における伝搬遅延量よりも、迂回光線路16における伝搬遅延量を低くすることができる。   As shown in FIG. 2, the propagation delay difference c increases in proportion to the optical line length. That is, the propagation speed is faster and the propagation delay amount is lower in the hollow optical fiber 19 than in the SMF. Accordingly, even if the majority of the bypass optical line 16 is an optical fiber (for example, SMF) having the same specifications as that of the active optical line 15, while the remaining part of the bypass optical line 16 is a hollow optical fiber 19, the active ray in the bypass section B is used. The propagation delay amount in the detour optical line 16 can be made lower than the propagation delay amount in the path 15.

図2の結果を用いると、例えば、迂回区間Bの長さ(すなわち、図2における光線路長)が8kmであり、伝搬遅延量調整部17の固定遅延量が4μsである場合、迂回光線路16の2km以上を中空光ファイバ19とし、迂回光線路16の残り、すなわち6km以下を、現用光線路15と同一仕様のSMFとすることで、8kmの光線路長を有する現用光線路15の伝搬遅延量よりも、8kmの光線路長を有する迂回光線路16(うち、2km以上が中空光ファイバ19であり、6km以下がSMF)と、伝搬遅延量調整部17との合計の伝搬遅延量は低くなる。   When the result of FIG. 2 is used, for example, when the length of the bypass section B (that is, the optical line length in FIG. 2) is 8 km and the fixed delay amount of the propagation delay amount adjusting unit 17 is 4 μs, the bypass optical line Propagation of the working optical line 15 having an optical line length of 8 km by making the hollow optical fiber 19 of 2 km or more of 16 and the SMF having the same specification as that of the working optical line 15 of the remainder of the bypass optical line 16, that is, 6 km or less. The total propagation delay amount of the detour optical line 16 having an optical line length of 8 km (of which 2 km or more is the hollow optical fiber 19 and 6 km or less is SMF) and the propagation delay amount adjusting unit 17 is greater than the delay amount. Lower.

そして、伝搬遅延量調整部17が、迂回光線路16を伝搬する信号を遅延させることによって、迂回光線路16および伝搬遅延量調整部17を介して迂回区間Bを通過する信号の伝搬遅延量を、現用光線路15を介して同区間を伝搬する信号の伝搬遅延量と一致させる。これによって、現用光線路15から迂回光線路16に切り替えても、伝搬遅延量が同じであるので、通信に影響を与えることなく信号の二重化が可能となり、通信を維持したまま、すなわち、インサービスで、現用光線路15からの無瞬断切断を可能とする迂回光線路16を構築することが可能となる。   Then, the propagation delay amount adjusting unit 17 delays the signal propagating through the bypass optical line 16, thereby reducing the propagation delay amount of the signal passing through the bypass section B via the bypass optical line 16 and the propagation delay amount adjusting unit 17. The propagation delay amount of the signal propagating in the same section via the working optical line 15 is matched. As a result, even if the working optical line 15 is switched to the detour optical line 16, the propagation delay amount is the same. Therefore, the signal can be duplicated without affecting the communication, and the communication is maintained, that is, in-service. Thus, it is possible to construct the detour optical line 16 that enables uninterrupted disconnection from the working optical line 15.

それに加えて、本実施形態に係る迂回光線路システム10によれば、迂回光線路16の伝搬遅延量を低減できるので、従来の無瞬断切替方式の前提条件であった、迂回区間Bにおける現用光線路15の長さよりも、迂回光線路16の長さを短くしなければならないという制約が緩和され、インサービスでの無瞬断での切替を可能とする適用領域を拡大することが可能となる。   In addition, according to the detour optical line system 10 according to the present embodiment, since the propagation delay amount of the detour optical line 16 can be reduced, the current use in the detour section B, which is a precondition of the conventional uninterruptible switching method. The restriction that the length of the detour optical line 16 must be shorter than the length of the optical line 15 is relaxed, and it is possible to expand the application area that enables switching without interruption in service. Become.

(第2の実施形態)
図3は、本発明の第2の実施形態に係る構築方法によって構築される迂回光線路システム30の構成例を示すブロック図である。
(Second Embodiment)
FIG. 3 is a block diagram showing a configuration example of the detour optical line system 30 constructed by the construction method according to the second embodiment of the present invention.

本実施形態は、第1の実施形態の変形例であるので、以下では、第1の実施形態と異なる点のみ説明し、同一箇所については、図3において同一符号を付し、重複説明を避ける。   Since the present embodiment is a modification of the first embodiment, only the differences from the first embodiment will be described below, and the same portions are denoted by the same reference numerals in FIG. 3 to avoid redundant description. .

すなわち、図3に示す迂回光線路システム30において、図1と異なる点は、迂回光線路16に中空光ファイバ19を用いていないことと、所外光カプラ14の代わりに、所外光カプラ31を適用している点である。   In other words, the detour optical line system 30 shown in FIG. 3 differs from FIG. 1 in that the hollow optical fiber 19 is not used in the detour optical line 16 and the outside optical coupler 31 is used instead of the outside optical coupler 14. It is a point that is applied.

すなわち、迂回光線路16には、現用光線路15と同一仕様の光ファイバ(例えばSMF)が用いられる。   That is, an optical fiber (for example, SMF) having the same specifications as the working optical line 15 is used for the bypass optical line 16.

また、本実施形態では、迂回区間Bにおける現用光線路15は、同区間における迂回光線路16よりも長くなっている。そして、この長い分を、余長ファイバ32として、所内光カプラ13または所外光カプラ31に割り入れたり、その近傍において束ねておく。図3は、その一例を示すものであり、余長ファイバ32を、所外光カプラ31に割り入れている。   In the present embodiment, the working optical line 15 in the bypass section B is longer than the bypass optical line 16 in the section. Then, this long portion is inserted into the in-house optical coupler 13 or the off-site optical coupler 31 as the extra-length fiber 32 or bundled in the vicinity thereof. FIG. 3 shows an example of this, and the extra length fiber 32 is inserted into the off-site optical coupler 31.

所外光カプラ31は、このように余長ファイバ32を割り入れることができるスペースを備えているという点を除けば、図1に示される所外光カプラ14と同じ構成をしている。   The outside optical coupler 31 has the same configuration as the outside optical coupler 14 shown in FIG. 1 except that the outside optical coupler 31 has a space in which the extra length fiber 32 can be inserted.

このような構成により、図3に示す迂回光線路システム30もまた、図1に示す迂回光線路システム10と同様に、迂回区間Bにおける現用光線路15の伝搬遅延量よりも、迂回光線路16の伝搬遅延量を小さくしている。   With such a configuration, the detour optical line system 30 shown in FIG. 3 also has the detour optical line 16 more than the propagation delay amount of the working optical line 15 in the detour section B, similarly to the detour optical line system 10 shown in FIG. The propagation delay amount is reduced.

ただし、図1に示す迂回光線路システム10では、迂回光線路16の一部に、屈折率の低い中空光ファイバ19を用い、迂回光線路16における光の伝搬速度を高めることによって実現している。   However, the detour optical line system 10 shown in FIG. 1 uses a hollow optical fiber 19 having a low refractive index as a part of the detour optical line 16 to increase the light propagation speed in the detour optical line 16. .

それに対して、図3に示す迂回光線路システム30では、迂回光線路16に、現用光線路15と同一仕様の光ファイバを用いながらも、迂回区間Bにおける現用光線路15の長さよりも、迂回光線路16の長さを短くすることによって実現している。   On the other hand, in the detour optical line system 30 shown in FIG. 3, the detour optical line 16 uses an optical fiber having the same specifications as the work optical line 15, but is detoured more than the length of the work optical line 15 in the detour section B. This is realized by shortening the length of the optical line 16.

このような構成によっても、第1の実施形態と同様に、伝搬遅延量調整部17が、迂回光線路16を伝搬する信号を遅延させることによって、迂回光線路16および伝搬遅延量調整部17を介して迂回区間Bを通過する信号の伝搬遅延量を、現用光線路15を介して同区間を伝搬する信号の伝搬遅延量と一致させることができる。   Even with such a configuration, similarly to the first embodiment, the propagation delay amount adjusting unit 17 delays the signal propagating through the detour optical line 16, so that the detour optical line 16 and the propagation delay amount adjusting unit 17 are changed. Therefore, the propagation delay amount of the signal passing through the bypass section B can be made to coincide with the propagation delay amount of the signal propagating through the section via the working optical line 15.

これによって、現用光線路15から迂回光線路16に切り替えても、伝搬遅延量が同じであるので、通信に影響を与えることなく信号の二重化が可能となり、通信を維持したまま、すなわち、インサービスで、無瞬断で現用光線路15の切断を可能とする迂回光線路16を構築することが可能となる。   As a result, even if the working optical line 15 is switched to the detour optical line 16, the propagation delay amount is the same. Therefore, the signal can be duplicated without affecting the communication, and the communication is maintained, that is, in-service. Thus, it becomes possible to construct the detour optical line 16 that enables the working optical line 15 to be disconnected without instantaneous interruption.

前述したような迂回光線路システム30を実現するためには、余長ファイバ32ができるように現用光線路15の長さを予め長く確保しておかねばならないことが前提となる。しかしながら、図1のような中空光ファイバ19を適用する必要はなく、迂回光線路16はすべて現用光線路15と同一仕様の光ファイバで構成することができるので、構成を簡素化できるというメリットがある。   In order to realize the detour optical line system 30 as described above, it is assumed that the length of the working optical line 15 must be secured in advance so that the extra length fiber 32 can be formed. However, it is not necessary to apply the hollow optical fiber 19 as shown in FIG. 1, and the detour optical line 16 can be composed of all optical fibers having the same specifications as the working optical line 15, so that the configuration can be simplified. is there.

なお、この発明は上記各実施形態に限定されるものではない。例えば、第1の実施形態では、迂回光線路16の一部を、中空光ファイバ19としたが、現用光線路15よりも低い屈折率を有する光伝搬媒質であれば、中空光ファイバ19に限られるものではない。   The present invention is not limited to the above embodiments. For example, in the first embodiment, a part of the bypass optical line 16 is the hollow optical fiber 19. However, the optical fiber 19 is limited to the hollow optical fiber 19 as long as it is a light propagation medium having a refractive index lower than that of the working optical line 15. It is not something that can be done.

また、図1では、中空光ファイバ19を所外光カプラ14側に設けた例が示されているが、中空光ファイバ19を、所内光カプラ13側に設けても、あるいは、迂回光線路16の中央部に設け、中空光ファイバ19の両端側を現用光線路15と同一仕様の光ファイバで構成しても良い。   Further, FIG. 1 shows an example in which the hollow optical fiber 19 is provided on the outside optical coupler 14 side. However, the hollow optical fiber 19 may be provided on the in-house optical coupler 13 side or the detour optical line 16. The both ends of the hollow optical fiber 19 may be formed of optical fibers having the same specifications as the working optical line 15.

また、図3では、余長ファイバ32は、所外光カプラ31に割り入れられた例が示されているが、所内光カプラ13内に割り入れるようにしても良い。   3 shows an example in which the extra-length fiber 32 is inserted into the outside optical coupler 31, but it may be inserted into the inside optical coupler 13.

その他、さまざまな組み合わせや変形等についても、この発明の要旨を逸脱しない範囲で種々変形して実施可能である。   In addition, various combinations and modifications can be implemented with various modifications without departing from the spirit of the present invention.

要するにこの発明は、上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   In short, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the components without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

10 迂回光線路システム、11 伝送装置、12 伝送装置、13 所内光カプラ、14 所外光カプラ、15 現用光線路、16 迂回光線路、17 伝搬遅延量調整部、18 伝搬遅延量計測部、19 中空光ファイバ、30 迂回光線路システム、31 所外光カプラ、32 余長ファイバ。 DESCRIPTION OF SYMBOLS 10 Detour optical line system, 11 Transmission apparatus, 12 Transmission apparatus, 13 In-house optical coupler, 14 Outside optical coupler, 15 Current optical line, 16 Detour optical line, 17 Propagation delay amount adjustment part, 18 Propagation delay amount measurement part, 19 Hollow optical fiber, 30 detour optical line system, 31 off-site optical coupler, 32 extra-length fiber.

Claims (4)

伝送装置間を結ぶ現用光線路に対する迂回光線路の構築方法であって、
前記現用光線路における迂回開始端および迂回終了端にそれぞれ接続された一対の光カプラに迂回光線路の両端を接続し、
前記迂回光線路を伝搬する信号の伝搬遅延量を調整する伝搬遅延量調整手段を前記迂回光線路の途中に設け、
前記現用光線路と、前記迂回光線路とを、同一仕様の光ファイバとし、
前記迂回開始端から前記迂回終了端までの前記迂回光線路の長さを、前記迂回開始端から前記迂回終了端までの前記現用光線路の長さよりも短くすることによって、前記迂回開始端から前記迂回終了端まで前記迂回光線路を伝搬する信号の、前記迂回光線路と前記伝搬遅延量調整手段とによる伝搬遅延量の合計を、前記迂回開始端から前記迂回終了端まで前記現用光線路を伝搬する信号の伝搬遅延量よりも小さく
前記迂回開始端から前記迂回終了端までの前記現用光線路のうち、前記迂回開始端から前記迂回終了端までの前記迂回光線路よりも長い現用光線路部分を、前記迂回開始端または前記迂回終了端の近傍において束ねるようにした、迂回光線路の構築方法。
A method of constructing a detour optical line for an active optical line connecting between transmission devices,
Connecting both ends of the detour optical line to a pair of optical couplers respectively connected to the detour start end and detour end end in the working optical line;
Providing a propagation delay amount adjusting means for adjusting a propagation delay amount of a signal propagating through the detour optical line in the middle of the detour optical line,
The working optical line and the detour optical line are optical fibers of the same specification,
By making the length of the detour optical line from the detour start end to the detour end end shorter than the length of the working optical line from the detour start end to the detour end end, the detour start end to the detour end end Propagate the total propagation delay amount of the signal propagating through the detour optical line to the detour end end by the detour optical line and the propagation delay amount adjusting unit from the detour start end to the detour end end. smaller than the propagation delay of a signal,
Among the working optical lines from the detour start end to the detour end end, a working optical line portion longer than the detour optical line from the detour start end to the detour end end is the detour start end or the detour end. A method of constructing a detour optical line that is bundled in the vicinity of the end .
前記伝搬遅延量調整手段によって、前記迂回光線路を伝搬する信号を遅延させることによって、前記迂回開始端から前記迂回終了端まで前記迂回光線路を伝搬する信号の、前記迂回光線路と前記伝搬遅延量調整手段とによる伝搬遅延量の合計を、前記迂回開始端から前記迂回終了端まで前記現用光線路を伝搬する信号の伝搬遅延量と一致させ、もって、インサービスにおける前記現用光線路から前記迂回光線路への無瞬断切替を可能とした、請求項に記載の迂回光線路の構築方法。 By delaying the signal propagating through the detour optical line by the propagation delay amount adjusting means, the detour optical line and the propagation delay of the signal propagating through the detour optical line from the detour start end to the detour end end A total amount of propagation delay by the amount adjusting means is matched with a propagation delay amount of a signal propagating through the working optical line from the detour start end to the detour end end, so that the detour from the working optical line in service The detouring optical line construction method according to claim 1 , wherein switching to an optical line without interruption is possible. 伝送装置間を結ぶ現用光線路に対する迂回光線路を備えてなる迂回光線路システムであって、
前記現用光線路における迂回開始端および迂回終了端にそれぞれ接続された一対の光カプラに両端が接続された迂回光線路と、
前記迂回光線路の途中に設けられ、前記迂回光線路を伝搬する信号の伝搬遅延量を調整する伝搬遅延量調整手段とを備え、
前記現用光線路と、前記迂回光線路とを、同一仕様の光ファイバとし、
前記迂回開始端から前記迂回終了端までの前記迂回光線路の長さを、前記迂回開始端から前記迂回終了端までの前記現用光線路の長さよりも短くすることによって、前記迂回開始端から前記迂回終了端まで前記迂回光線路を伝搬する信号の、前記迂回光線路と前記伝搬遅延量調整手段とによる伝搬遅延量の合計を、前記迂回開始端から前記迂回終了端まで前記現用光線路を伝搬する信号の伝搬遅延量よりも小さく
前記迂回開始端から前記迂回終了端までの前記現用光線路のうち、前記迂回開始端から前記迂回終了端までの前記迂回光線路よりも長い現用光線路部分を、前記迂回開始端または前記迂回終了端の近傍において束ねるようにした、迂回光線路システム。
A detour optical line system comprising a detour optical line for a working optical line connecting between transmission devices,
A detour optical line having both ends connected to a pair of optical couplers respectively connected to a detour start end and a detour end in the working optical line;
Propagation delay amount adjusting means for adjusting a propagation delay amount of a signal that is provided in the middle of the bypass optical line and propagates through the bypass optical line,
The working optical line and the detour optical line are optical fibers of the same specification,
By making the length of the detour optical line from the detour start end to the detour end end shorter than the length of the working optical line from the detour start end to the detour end end, the detour start end to the detour end end Propagate the total propagation delay amount of the signal propagating through the detour optical line to the detour end end by the detour optical line and the propagation delay amount adjusting unit from the detour start end to the detour end end. smaller than the propagation delay of a signal,
Among the working optical lines from the detour start end to the detour end end, a working optical line portion longer than the detour optical line from the detour start end to the detour end end is the detour start end or the detour end. A detour optical line system that is bundled near the end .
前記伝搬遅延量調整手段によって、前記迂回光線路を伝搬する信号を遅延させることによって、前記迂回開始端から前記迂回終了端まで前記迂回光線路を伝搬する信号の、前記迂回光線路と前記伝搬遅延量調整手段とによる伝搬遅延量の合計を、前記迂回開始端から前記迂回終了端まで前記現用光線路を伝搬する信号の伝搬遅延量と一致させ、もって、インサービスにおける前記現用光線路から前記迂回光線路への無瞬断切替を可能とした、請求項に記載の迂回光線路システム。 By delaying the signal propagating through the detour optical line by the propagation delay amount adjusting means, the detour optical line and the propagation delay of the signal propagating through the detour optical line from the detour start end to the detour end end A total amount of propagation delay by the amount adjusting means is matched with a propagation delay amount of a signal propagating through the working optical line from the detour start end to the detour end end, so that the detour from the working optical line in service The detour optical line system according to claim 3 , which enables uninterrupted switching to an optical line.
JP2014212890A 2014-10-17 2014-10-17 Detour optical line construction method and detour optical line system Active JP6346839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014212890A JP6346839B2 (en) 2014-10-17 2014-10-17 Detour optical line construction method and detour optical line system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014212890A JP6346839B2 (en) 2014-10-17 2014-10-17 Detour optical line construction method and detour optical line system

Publications (2)

Publication Number Publication Date
JP2016082439A JP2016082439A (en) 2016-05-16
JP6346839B2 true JP6346839B2 (en) 2018-06-20

Family

ID=55956550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014212890A Active JP6346839B2 (en) 2014-10-17 2014-10-17 Detour optical line construction method and detour optical line system

Country Status (1)

Country Link
JP (1) JP6346839B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4536039B2 (en) * 2006-07-18 2010-09-01 中国電力株式会社 Optical cable surplus length processing tool and optical cable surplus length processing method
JP5509001B2 (en) * 2010-09-08 2014-06-04 日本電信電話株式会社 Optical path length difference detection and adjustment device for duplex optical line
US20120219301A1 (en) * 2011-02-25 2012-08-30 Koch Iii Karl William Low-loss, low-latency, hollow core fiber communication system
JP5613622B2 (en) * 2011-05-31 2014-10-29 日本電信電話株式会社 Optical access network system and communication redundancy method therefor

Also Published As

Publication number Publication date
JP2016082439A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP5115995B2 (en) Optical line switching method and apparatus
US9838112B2 (en) Method and apparatus for providing a differential latency
ITPD970025A1 (en) REFLECTOMETRIC INSTRUMENT FOR THE MEASUREMENT OF BIRIFRANGENCE DISTRIBUTED IN SINGLE-MODE FIBER OPTICS
US10924182B2 (en) Integrated optical switching and splitting for troubleshooting in optical networks
JP5033703B2 (en) Non-instantaneous switching method and non-instantaneous switching device for optical communication lines
JP5509001B2 (en) Optical path length difference detection and adjustment device for duplex optical line
JP5613622B2 (en) Optical access network system and communication redundancy method therefor
JP5396301B2 (en) Optical path length adjusting method and apparatus for optical line
CN107453836B (en) Cascade optical fiber phase compensator and optical fiber transmission system
JP6346839B2 (en) Detour optical line construction method and detour optical line system
JP2017072495A (en) Test light multi/demultiplexer and light beam path testing system
JP2015012325A (en) Crosstalk measuring device and crosstalk measuring method
JP5847016B2 (en) Duplex device for optical transmission line and method for duplexing the same
US20080037925A1 (en) DGD compensating apparatus
JP5409670B2 (en) Optical path length adjusting device and optical path length adjusting method
JP5778317B1 (en) Mode-to-mode power ratio measuring method, power-ratio measuring device, and mode-to-mode power ratio measuring system
JP5970412B2 (en) Optical path delay measuring method and measuring apparatus for duplex optical line
Spenner et al. Measurement Based Modeling of Mode Coupling Effects in a 50 μm Graded Index Multi Mode Fiber
JP5412452B2 (en) Optical path length adjusting device and optical path length adjusting method
JP2009017498A (en) Detour method and detour device for communication path
Spenner et al. Experimental Analysis of Inter Mode Group Coupling at Connectors in Graded Index Multi Mode Fibers
JP6360777B2 (en) Duplex determination device, signal duplex determination method, and optical line installation method
JP4173967B2 (en) Optical fiber loss measuring method and measuring apparatus
JP2011146990A (en) Polarization mode dispersion measuring method and polarization mode dispersion measuring apparatus
JP2838146B2 (en) Optical signal switching method and optical signal transmission path

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6346839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150