JP2013241874A - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP2013241874A
JP2013241874A JP2012115219A JP2012115219A JP2013241874A JP 2013241874 A JP2013241874 A JP 2013241874A JP 2012115219 A JP2012115219 A JP 2012115219A JP 2012115219 A JP2012115219 A JP 2012115219A JP 2013241874 A JP2013241874 A JP 2013241874A
Authority
JP
Japan
Prior art keywords
oil supply
passage
oil
compressor
coil spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012115219A
Other languages
Japanese (ja)
Inventor
Shoichi Kano
奨一 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012115219A priority Critical patent/JP2013241874A/en
Publication of JP2013241874A publication Critical patent/JP2013241874A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a hermetic compressor in which a spiral passage forming member can be arranged in an oil supply piece or an oil supply passage in a crank shaft without considering the positional relationship between the oil supply piece or the oil supply passage in the crank shaft and the spiral passage forming member to form a spiral passage for executing the pumping action.SOLUTION: A spiral passage forming member is provided between an inlet of a spiral passage formed in a crank shaft and an oil supply piece mounted on an oil supply passage of the crank shaft. Thus, the assembly can be executed without considering the correct positional relationship between the oil supply piece or the oil supply passage in the crank shaft and the spiral passage forming member for executing the pumping action. As a result, any abnormal noise or wear caused by uneven touch is not generated between the oil supply passage in the crank shaft or the oil supply piece and a spring member.

Description

本発明は冷蔵庫等の冷蔵装置、或いは冷凍装置に搭載されている冷凍サイクルに使用される冷媒を圧縮するための圧縮機に係り、特に往復動型の圧縮機の摺動部に冷凍機油を供給する給油機構を備えた密閉型圧縮機に関するものである。   The present invention relates to a compressor for compressing a refrigerant used in a refrigeration apparatus such as a refrigerator or a refrigeration cycle mounted in a refrigeration apparatus, and in particular, supplies refrigeration oil to a sliding portion of a reciprocating compressor. The present invention relates to a hermetic compressor including an oil supply mechanism.

冷凍サイクルに使用される冷媒を圧縮するための圧縮機は通常では密閉形の往復動圧縮機が使用されている。そして、この種の往復動圧縮機においてはピストンとシリンダの摺動部やピストンに連結されたコネクティングロッド(以下、コンロッドという)とクランク軸の摺動部に冷凍機油を供給してやることが必要である。   Usually, a hermetic reciprocating compressor is used as a compressor for compressing a refrigerant used in the refrigeration cycle. In this type of reciprocating compressor, it is necessary to supply the refrigerating machine oil to the sliding portion of the piston and cylinder, the connecting rod (hereinafter referred to as the connecting rod) connected to the piston, and the sliding portion of the crankshaft. .

この冷凍機油を供給する給油機構は、クランク軸に圧入されたポンプ作用を行なう給油ピースとクランク軸に形成した給油通路及び螺旋状通路を流体的に接続し、螺旋状通路を介して供給されてきた冷凍機油をピストンとシリンダの摺動部やピストンに連結されたコンロッドとクランク軸の摺動部に供給してやる構造となっている。ここで、給油ピースの先端には往復動圧縮機の密閉容器の底部に貯留されている冷凍機油を吸い込むための先端穴が設けられている。   This oil supply mechanism for supplying refrigeration oil fluidly connects an oil supply piece that is press-fitted into a crankshaft and performs a pumping action, and an oil supply passage and a spiral passage formed in the crankshaft, and is supplied via the spiral passage. The refrigeration oil is supplied to the sliding part of the piston and the cylinder and the connecting part connected to the piston and the sliding part of the crankshaft. Here, a tip hole for sucking the refrigerating machine oil stored in the bottom of the hermetic container of the reciprocating compressor is provided at the tip of the oil supply piece.

このような給油機構において、クランク軸が回転することにより給油ピースの先端穴より流入した冷凍機油は遠心力によって給油通路の中心付近から外側の壁面に向かって上方へ押し上げられる。その後クランク軸の外周に形成した螺旋状通路の入口まで届くと粘性等により螺旋状通路に沿って上方へ運ばれる。   In such an oil supply mechanism, the refrigerating machine oil that has flowed from the tip hole of the oil supply piece by the rotation of the crankshaft is pushed upward from the vicinity of the center of the oil supply passage toward the outer wall surface by centrifugal force. Thereafter, when it reaches the entrance of the spiral passage formed on the outer periphery of the crankshaft, it is carried upward along the spiral passage due to viscosity or the like.

この後、クランク軸の外周面を伝わってクランク軸とコンロッドの間の摺動部を潤滑したり、遠心力によってこの冷凍機油を飛散させてシリンダとピストンの摺動部を潤滑するようにしている。   Thereafter, the sliding portion between the crankshaft and the connecting rod is lubricated along the outer peripheral surface of the crankshaft, or the refrigeration oil is scattered by centrifugal force to lubricate the sliding portion between the cylinder and the piston. .

しかしながら、このような給油機構では圧縮機が低速で運転された場合にクランク軸の回転数も低下するため、給油ピースの回転運動に基づく遠心力も弱まって冷凍機油が上方に押し上げられる割合が低くなり、この結果、冷凍機油が螺旋状通路の入口に至らず給油能力が低下して給油量が不足するようになる。   However, in such an oil supply mechanism, when the compressor is operated at a low speed, the number of revolutions of the crankshaft also decreases, so that the centrifugal force based on the rotational movement of the oil supply piece is weakened and the ratio of the refrigeration oil being pushed upward is reduced. As a result, the refrigerating machine oil does not reach the inlet of the spiral passage, so that the oil supply capacity is lowered and the oil supply amount becomes insufficient.

したがって、低速運転時に給油不足による潤滑不良が発生することで、圧縮機の信頼性が確保できない、冷凍機油によるシリンダとピストンの冷却が不足して吸入される冷媒が過熱される、シリンダとピストンのシール性が低下することによって圧縮機の体積効率が低下するといった現象があった。   Therefore, poor lubrication due to insufficient lubrication during low-speed operation cannot ensure the reliability of the compressor, the cooling of the cylinder and piston by the refrigeration oil is insufficient, and the sucked refrigerant is overheated. There has been a phenomenon that the volumetric efficiency of the compressor is lowered due to a decrease in sealing performance.

このような、現象を回避するために特開2000−314380号公報(特許文献1)では、密閉容器の内部底面部にばね部材を固定し、このばね部材を給油ピース内部、給油通路内部を通して螺旋状通路の入口まで延ばすことで、低速運転時であっても充分な冷凍機油が螺旋状通路の入口まで届くようにした技術が開示されている。このばね部材は給油ピース内部、給油通路内部の間に螺旋状のポンプ通路を形成するものであって、このばね部材によってポンプ作用を行なうように機能するものである。   In order to avoid such a phenomenon, in Japanese Patent Laid-Open No. 2000-314380 (Patent Document 1), a spring member is fixed to the inner bottom surface portion of the hermetic container, and the spring member is spiraled through the oil supply piece and the oil supply passage. A technique is disclosed in which a sufficient amount of refrigeration oil reaches the inlet of the spiral passage by extending to the entrance of the spiral passage even during low-speed operation. The spring member forms a spiral pump passage between the oil supply piece and the oil supply passage, and functions to perform a pump action by the spring member.

特開2000−314380号公報JP 2000-314380 A

ところで、特許文献1に記載のばね部材は圧縮機を収容する密閉容器の内部底面部に固定される構成となっており次に述べるような課題があった。   By the way, the spring member described in Patent Document 1 is configured to be fixed to the inner bottom surface of the sealed container that houses the compressor, and has the following problems.

つまり、ばね部材の固定位置と給油ピース、クランク軸内の給油通路の位置関係を正確に設定しないとクランク軸内の給油通路や給油ピースとばね部材の間に片当たりが生じて異音や摩耗が生じて好ましいものではない。   In other words, if the positional relationship between the fixed position of the spring member, the oil supply piece, and the oil supply passage in the crankshaft is not set correctly, contact between the oil supply passage or oil supply piece in the crankshaft and the spring member will occur, causing abnormal noise and wear. Is not preferable.

また、ばね部材とクランク軸内の給油通路や給油ピースの間の摩擦熱によって密閉容器内の冷凍機油の温度が上昇して圧縮機のシリンダとピストンの冷却が不足して吸入される冷媒が過熱されるといった課題が発生する。   In addition, the frictional heat between the spring member and the oil supply passage or oil supply piece in the crankshaft increases the temperature of the refrigeration oil in the sealed container, and the refrigerant and the refrigerant sucked are overheated due to insufficient cooling of the compressor cylinder and piston. A problem occurs.

本発明の目的は、給油ピース、クランク軸内の給油通路とポンプ作用を行なう螺旋状の通路を形成する螺旋通路形成部材の間の位置関係を考慮しないで螺旋通路形成部材を給油ピース、クランク軸内の給油通路に配置できる密閉形圧縮機を提供することにある。   An object of the present invention is to provide an oil supply piece, a crankshaft without considering the positional relationship between the oil supply piece, the oil supply passage in the crankshaft, and the spiral passage forming member that forms a spiral passage that performs a pumping action. An object of the present invention is to provide a hermetic compressor that can be disposed in an oil supply passage.

本発明の特徴は、クランク軸に形成した螺旋状通路の入口とクランク軸の給油通路に取り付けた給油ピースとの間に螺旋通路形成部材を設けるようにした、ところにある。   The present invention is characterized in that a spiral passage forming member is provided between an inlet of a spiral passage formed in the crankshaft and an oil supply piece attached to the oil supply passage of the crankshaft.

本発明によれば、螺旋状通路の入口とクランク軸の給油通路に取り付けた給油ピースとの間に螺旋通路形成部材を設けることで、給油ピース、クランク軸内の給油通路とポンプ作用を行なう螺旋通路形成部材の間の正確な位置関係を考慮しなくて組み立てができるようになる。この結果、クランク軸内の給油通路や給油ピースとばね部材の間に片当たりが生じて異音や摩耗が生じることがないものである。   According to the present invention, the spiral passage forming member is provided between the inlet of the spiral passage and the oil supply piece attached to the oil supply passage of the crankshaft, so that the oil supply piece, the oil supply passage in the crankshaft, and the spiral that performs a pump action Assembling can be performed without taking into account the exact positional relationship between the passage forming members. As a result, there is no contact between the oil supply passage or oil supply piece in the crankshaft and the spring member, and no noise or wear occurs.

本発明の一実施例になる給油機構が設けられた密閉型圧縮機の縦断面図である。1 is a longitudinal sectional view of a hermetic compressor provided with an oil supply mechanism according to an embodiment of the present invention. 給油ピースによる給油を行なっている場合の冷凍機油の挙動を示す説明図である。It is explanatory drawing which shows the behavior of the refrigerating machine oil in the case of performing oil supply by the oil supply piece. 本発明の他の実施例(第2の実施形態)になるばね部材の外観斜視図である。It is an external appearance perspective view of the spring member used as the other Example (2nd Embodiment) of this invention. 本発明の他の実施例(第3の実施形態)になる給油機構に使用される給油ピースの斜視図である。It is a perspective view of the oil supply piece used for the oil supply mechanism which becomes the other Example (3rd Embodiment) of this invention. 本発明の他の実施例(第4の実施形態)になる給油機構の要部拡大断面図である。It is a principal part expanded sectional view of the oil supply mechanism which becomes the other Example (4th Embodiment) of this invention. 従来の給油ピースによる給油状態を説明するための給油ピース部分の拡大断面図である。It is an expanded sectional view of the oil supply piece part for demonstrating the oil supply state by the conventional oil supply piece.

以下、本発明の実施例を図面に従い詳細に説明するが、本発明においては複数の実施例を提案している。したがって実施例毎にその詳細な説明を行なうが、本発明はこれらの実施例に限定されることなく本発明の基本的な概念の中で種々の変形例や応用例を含むものである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, but a plurality of embodiments are proposed in the present invention. Therefore, although the detailed description is given for each embodiment, the present invention is not limited to these embodiments and includes various modifications and applications within the basic concept of the present invention.

次に本発明の第1の実施形態を図1に基づいて説明する。図1において、参照番号10は圧縮機11と電動機12を収納する密閉容器であり、この密閉容器10の内部に圧縮機11の機械的摺動部に給油するための冷凍機油30が貯溜される構成となっている。   Next, a first embodiment of the present invention will be described with reference to FIG. In FIG. 1, reference numeral 10 is a sealed container that houses a compressor 11 and an electric motor 12, and refrigerating machine oil 30 for supplying oil to a mechanical sliding portion of the compressor 11 is stored in the sealed container 10. It has a configuration.

圧縮機11は、シリンダブロック13と、このシリンダブロック13内に配置されたピストン14と、ピストン14とシリンダブロック13の間に形成された圧縮室15と、ピストン14とクランク軸16を接続するコンッド17と、冷媒を吸入、排出する吸気弁と排気弁(それぞれ図示せず)等より構成されている。   The compressor 11 includes a cylinder block 13, a piston 14 disposed in the cylinder block 13, a compression chamber 15 formed between the piston 14 and the cylinder block 13, and a cond that connects the piston 14 and the crankshaft 16. 17, an intake valve for sucking and discharging refrigerant, an exhaust valve (each not shown), and the like.

シリンダブロック13の一部を構成する軸受部18にはクランク軸9が回転自在に軸支されており、このクランク軸16の一端にはコンロッド17が回転自在に軸支されている。   A crankshaft 9 is rotatably supported on a bearing portion 18 constituting a part of the cylinder block 13, and a connecting rod 17 is rotatably supported on one end of the crankshaft 16.

また、クランク軸16の他端には電動機12の回転子19が固定されており、この回転子19の回転がクランク軸16に伝えられるようになっている。   A rotor 19 of the electric motor 12 is fixed to the other end of the crankshaft 16, and the rotation of the rotor 19 is transmitted to the crankshaft 16.

電動機12は天地方向で見てシリンダブロック13の下側に配置されており、電動機12を構成する円環状の固定子20の内部に回転子19が収納されている。固定子20はシリンダブロック13と固定ボルト等を使用して一体化されており、回転子19はクランク軸16によって固定子20内に保持されている。   The electric motor 12 is arranged below the cylinder block 13 when viewed in the vertical direction, and a rotor 19 is accommodated in an annular stator 20 constituting the electric motor 12. The stator 20 is integrated with the cylinder block 13 using a fixing bolt or the like, and the rotor 19 is held in the stator 20 by a crankshaft 16.

圧縮機11と電動機12は4本の支持ばね21によって密閉容器10内に支持されている。   The compressor 11 and the electric motor 12 are supported in the sealed container 10 by four support springs 21.

このような構成の密閉型圧縮機において、図示しないインバータ装置からの三相交流電流によって回転子19が回転すると、この回転はクランク軸16に伝えられ、クランク軸16の回転運動をコンロッド17によってピストン14を往復動させて冷媒を吸入して圧縮することによって冷凍サイクルを稼働させるようになるものである。このような圧縮機の動作は既に周知なのでこれ以上の説明は省略する。   In the hermetic compressor having such a configuration, when the rotor 19 is rotated by a three-phase alternating current from an inverter device (not shown), this rotation is transmitted to the crankshaft 16, and the rotational movement of the crankshaft 16 is transferred to the piston by the connecting rod 17. The refrigerating cycle is operated by reciprocating 14 to suck and compress the refrigerant. Since the operation of such a compressor is already well known, further explanation is omitted.

次に、本発明の特徴である給油機構について以下に説明する。クランク軸の他方(コンロッド17が連結されていない側)は内部が中空状に形成された給油通路22が設けられており、この給油通路22はクランク軸16外周部に形成された螺旋状溝23に流体的に接続されている。   Next, an oil supply mechanism that is a feature of the present invention will be described below. The other of the crankshaft (the side where the connecting rod 17 is not connected) is provided with an oil supply passage 22 having a hollow interior, and this oil supply passage 22 is formed in a spiral groove 23 formed on the outer periphery of the crankshaft 16. Fluidly connected to the

この螺旋状溝23はシリンダブロック13の軸受部18との間で螺旋状通路を形成して冷凍機油30を流す働きを備えている。   The spiral groove 23 has a function of forming a spiral passage with the bearing portion 18 of the cylinder block 13 and flowing the refrigerating machine oil 30.

螺旋状溝23は給油通路22とは接続開口23Aを介して接続されており、この接続開口23Aはクランク軸16の外周に形成された螺旋状溝23とクランク軸16の内周に形成された給油通路22を繋ぐクランク軸16の内部に形成した連通孔である。   The spiral groove 23 is connected to the oil supply passage 22 via a connection opening 23A. The connection opening 23A is formed on the outer periphery of the crankshaft 16 and the inner periphery of the crankshaft 16. It is a communication hole formed in the crankshaft 16 that connects the oil supply passage 22.

接続開口23Aとは反対側の螺旋状溝23はクランク軸16のコンロッド17を軸支する部分に開口した流出開口23Bと接続され、冷凍機油をコンロッド17の軸受部やピストン14とシリンダブロック13の摺動部に供給するようになっている。   The spiral groove 23 on the opposite side of the connection opening 23A is connected to an outflow opening 23B that is open at a portion of the crankshaft 16 that supports the connecting rod 17 so that the refrigerating machine oil is supplied to the bearing portion of the connecting rod 17 and the piston 14 and the cylinder block 13. It is designed to be supplied to the sliding part.

クランク軸16の他方に形成された給油通路22には中空状の給油ピース24が圧入等の方法によって固定されており、この給油ピース24は下方向に垂下して密閉容器10に溜められた冷凍機油30中に浸かるように延びている。給油ピース24の先端には開口24Aが形成してあり、この開口24Aは冷凍機油30を給油ピース24内に導入する役割を有している。   A hollow oil supply piece 24 is fixed to the oil supply passage 22 formed on the other side of the crankshaft 16 by a method such as press fitting, and the oil supply piece 24 hangs downward and is stored in the sealed container 10. It extends so as to be immersed in the machine oil 30. An opening 24 </ b> A is formed at the tip of the oil supply piece 24, and this opening 24 </ b> A has a role of introducing the refrigerating machine oil 30 into the oil supply piece 24.

また、給油ピース24内には回転翼24Cが軸方向に延びるように固定されており、この回転翼24Cの回転によって給油ピース24内の冷凍機油30に回転を与え、遠心力によって冷凍機油30を給油通路22内の壁面に沿って押し上げるように機能する。   Further, a rotary blade 24C is fixed in the oil supply piece 24 so as to extend in the axial direction. The rotation of the rotary blade 24C rotates the refrigerating machine oil 30 in the oil supply piece 24, and the refrigerating machine oil 30 is supplied by centrifugal force. It functions to push up along the wall surface in the oil supply passage 22.

このような給油機構において、図示しないインバータ回路から電動機12に電力が供給されると、回転子19はこれに応じて回転を行なう。回転子19が回転するとこれに固定されているクランク軸16も回転され、クランク軸16が回転するとこれに同期して給油ピース24も回転を行なう。   In such an oil supply mechanism, when electric power is supplied to the electric motor 12 from an inverter circuit (not shown), the rotor 19 rotates accordingly. When the rotor 19 rotates, the crankshaft 16 fixed to the rotor 19 also rotates. When the crankshaft 16 rotates, the oil supply piece 24 also rotates in synchronization therewith.

この時、密閉容器10内の冷凍機油30はクランク軸16の下端に取り付けられた給油ピース24内に導入されて遠心力によって給油通路22の壁面にそって上昇する。図6にその冷凍機油30の挙動を示しており、冷凍機油30はクランク軸16及び給油ピース24の回転によって生じる遠心力に応じて給油通路22内の壁面に沿って上側に押し上げられていく。   At this time, the refrigerating machine oil 30 in the sealed container 10 is introduced into the oil supply piece 24 attached to the lower end of the crankshaft 16 and rises along the wall surface of the oil supply passage 22 by centrifugal force. FIG. 6 shows the behavior of the refrigerating machine oil 30. The refrigerating machine oil 30 is pushed upward along the wall surface in the oil supply passage 22 according to the centrifugal force generated by the rotation of the crankshaft 16 and the oil supply piece 24.

この押し上げられた冷凍機油30は螺旋状溝23の接続開口23Aから螺旋溝23に遠心力、粘性の作用によって上側に進入していき、流出開口23Bから冷凍機油30をコンロッド17の軸受部やピストン14とシリンダブロック13の摺動部に供給するようになっている。   The pushed-up refrigeration oil 30 enters the spiral groove 23 from the connection opening 23A of the spiral groove 23 by centrifugal force and viscous action, and enters the refrigerator oil 30 from the outlet opening 23B. 14 and the cylinder block 13 are supplied to the sliding portion.

この冷凍機油30は流出開口23Bからシリンダブロック13の摺動面となるピストン14の外周面に飛散されることで給油を行なうようにされている。また、シリンダブロック13とピストン14の間、ピスト14とコンロッド17の間、コンロッド17とクランク軸16の間、クランク軸16と軸受部18の間のそれぞれの摺動面において油膜を形成することで摺動面での金属接触を防ぎ信頼性を確保するようにしている。   The refrigerating machine oil 30 is supplied with oil by being scattered from the outflow opening 23 </ b> B to the outer peripheral surface of the piston 14 which is the sliding surface of the cylinder block 13. In addition, oil films are formed on the sliding surfaces between the cylinder block 13 and the piston 14, between the piston 14 and the connecting rod 17, between the connecting rod 17 and the crankshaft 16, and between the crankshaft 16 and the bearing portion 18. The metal contact on the sliding surface is prevented to ensure reliability.

しかしながら、この給油機構はクランク軸16の回転によって生じる遠心力を利用する構造になっているため、回転数が低い運転領域では遠心力が小さくなる傾向になる。   However, since this oil supply mechanism is structured to use the centrifugal force generated by the rotation of the crankshaft 16, the centrifugal force tends to be small in the operation region where the rotational speed is low.

このため、給油通路22の壁面に沿って上昇する冷凍機油30の上昇高さが低下することで、螺旋状溝23に進入する冷凍機油30の給油量が減少してしまって圧縮機11を構成する機械要素の摺動部分に充分な冷凍機油30を供給することができなくなる。   For this reason, when the rising height of the refrigerating machine oil 30 rising along the wall surface of the oil supply passage 22 decreases, the refueling amount of the refrigerating machine oil 30 entering the spiral groove 23 decreases, and the compressor 11 is configured. Therefore, sufficient refrigeration oil 30 cannot be supplied to the sliding portion of the machine element.

これらの摺動部分に充分な冷凍機油30を供給することができなくなると、例えば、シリンダブロック13とピストン14の摺動面への冷凍機油30の給油量が低下してこの部分での油膜形成が困難となるため。これにより、シリンダブロック13とピストン14の摺動面で金属接触が発生して圧縮機自体の信頼性の低下や、圧縮室15から冷媒ガスが外部に漏れ出すことで圧縮機11の冷力の低下を招くといった不具合を生じる。   If sufficient refrigerating machine oil 30 cannot be supplied to these sliding parts, for example, the amount of refrigerating machine oil 30 supplied to the sliding surfaces of the cylinder block 13 and the piston 14 decreases, and an oil film is formed in this part. Because it becomes difficult. As a result, metal contact is generated on the sliding surface of the cylinder block 13 and the piston 14 to reduce the reliability of the compressor itself, or the refrigerant gas leaks out from the compression chamber 15 to reduce the cooling power of the compressor 11. This causes problems such as lowering.

このような不具合を解決すると方法として、特許文献1に記載されているようなばね部材による冷凍機油の補助的な給油機構を新たに設ける技術が提案されている。   As a method for solving such a problem, a technique of newly providing an auxiliary oil supply mechanism for refrigerating machine oil by a spring member as described in Patent Document 1 has been proposed.

しかしながら、この特許文献1に記載の技術ではばね部材の固定位置と給油ピース、クランク軸内の給油通路の位置関係を正確に設定しないとクランク軸内の給油通路や給油ピースとばね部材の間に片当たりが生じて異音や摩耗が生じて好ましいものではない。また、ばね部材とクランク軸内の給油通路や給油ピースの間の摩擦熱によって密閉容器内の冷凍機油の温度が上昇して圧縮機のシリンダとピストンの冷却が不足して吸入される冷媒が過熱されるといった課題が発生する。   However, in the technique disclosed in Patent Document 1, unless the positional relationship between the fixed position of the spring member, the oil supply piece, and the oil supply passage in the crankshaft is set accurately, the oil supply passage in the crankshaft, the oil supply piece, and the spring member This is not preferable because the contact with one piece causes abnormal noise and wear. In addition, the frictional heat between the spring member and the oil supply passage or oil supply piece in the crankshaft increases the temperature of the refrigeration oil in the sealed container, and the refrigerant and the refrigerant sucked are overheated due to insufficient cooling of the compressor cylinder and piston. A problem occurs.

本発明は、このような課題を解決するため以下に述べるような構成を採用したものである。   The present invention adopts the following configuration in order to solve such problems.

図1及び図2において、給油通路22内には螺旋状に巻かれた圧縮コイルばねよりなるばね部材31が設けられており、このばね部材31は給油通路22の上端部22Aと下端部22B、或いは下端部22Bを越えて延びてくる給油ピース24の上端部24Bの間に圧縮状態で介装されている。本実施例では、ばね部材31は給油通路22の上端部22Aと給油ピース24の上端部24Bの間に圧縮状態で介装されている。   1 and 2, a spring member 31 formed of a helically wound compression coil spring is provided in the oil supply passage 22, and the spring member 31 includes an upper end portion 22 </ b> A and a lower end portion 22 </ b> B of the oil supply passage 22. Alternatively, it is interposed in a compressed state between the upper end portion 24B of the oil supply piece 24 extending beyond the lower end portion 22B. In this embodiment, the spring member 31 is interposed between the upper end portion 22A of the oil supply passage 22 and the upper end portion 24B of the oil supply piece 24 in a compressed state.

また、ばね部材31は給油通路22の内径とほぼ同様の外径を有しており、この結果、ばね部材31の線間と給油通路22の内周面との間に螺旋状のポンプ通路32を形成するようになっている。   Further, the spring member 31 has an outer diameter that is substantially the same as the inner diameter of the oil supply passage 22, and as a result, a spiral pump passage 32 between the lines of the spring member 31 and the inner peripheral surface of the oil supply passage 22. Is supposed to form.

このばね部材31は上述の通り圧縮コイルばねであり、圧縮コイルばねは圧縮方向への変位はもちろん、径方向にも若干変位できるので給油通路22内にそれほど寸法精度を必要としないで設置できる。   The spring member 31 is a compression coil spring as described above, and the compression coil spring can be slightly displaced not only in the compression direction but also in the radial direction, so that it can be installed in the oil supply passage 22 without requiring much dimensional accuracy.

このポンプ通路32は少なくとも給油ピースの上端部24Bと螺旋状溝23の接続開口23Aの間を繋ぐものである。このため、この間においてばね部材31を形成する線材の線間は圧縮された状態で密着している。   This pump passage 32 connects at least the upper end portion 24B of the oil supply piece and the connection opening 23A of the spiral groove 23. For this reason, between the wires of the wire forming the spring member 31 is in close contact with each other in a compressed state.

接続開口23Aは少なくともポンプ通路32から冷凍機油30が供給されていれば良く、このため接続開口23がポンプ通路32に臨むように開口していれば良い。本実施例では接続開口23Aがよりポンプ通路23に臨むように、接続開口23A付近のばね部材31の線間すき間Cを大きくしている。   The connection opening 23 </ b> A only needs to be supplied with at least the refrigerating machine oil 30 from the pump passage 32. For this reason, the connection opening 23 only needs to be opened so as to face the pump passage 32. In the present embodiment, the gap C between the spring members 31 in the vicinity of the connection opening 23A is increased so that the connection opening 23A faces the pump passage 23 more.

つまり、図2からわかるように給油ピース24の上端部24Bから接続開口23Aの下端側まではばね部材31の線間は密着する値に決められ、接続開口23Aの下端側から上ではばね部材31の線間は密着しない値に決められ、この結果接続開口23がポンプ通路32に臨む割合が大きくなっている。   That is, as can be seen from FIG. 2, the line between the spring members 31 is determined to be in close contact from the upper end portion 24B of the oil supply piece 24 to the lower end side of the connection opening 23A, and the spring member 31 extends from the lower end side of the connection opening 23A. The line is determined to be in close contact with each other, and as a result, the ratio of the connection opening 23 facing the pump passage 32 is increased.

更に、このように構成することによって通常の回転領域で遠心力によって冷凍機油30が押し上げられてきた時に、冷凍機油30を円滑に接続開口23Aに進入させることができる。   Furthermore, by comprising in this way, when the refrigerating machine oil 30 is pushed up by centrifugal force in the normal rotation area | region, the refrigerating machine oil 30 can be smoothly entered into the connection opening 23A.

尚、ばね部材31の線径は適宜必要な線径のものを使用すれば良いが、あまり線径が細いと充分なポンプ通路面積が得られなく、線径が大きすぎるとポンプ通路面積が大きくなりすぎて冷凍機油30が進入しにくくなる。このため、本実施例においては、適用される圧縮機の回転数や給油通路22の軸方向長さ、ばね部材31によるポンプ通路32の傾き(ピッチ角)等によって冷凍機油30を接続開口23Aまで持ち上げる形状のものを採用すれば良いものである。   The wire diameter of the spring member 31 may be appropriately selected. However, if the wire diameter is too thin, a sufficient pump passage area cannot be obtained. If the wire diameter is too large, the pump passage area becomes large. It becomes too much and it becomes difficult for the refrigerating machine oil 30 to enter. For this reason, in the present embodiment, the refrigerating machine oil 30 is connected to the connection opening 23A according to the rotation speed of the compressor to be applied, the axial length of the oil supply passage 22, the inclination (pitch angle) of the pump passage 32 by the spring member 31, and the like. What is necessary is just to employ the shape of lifting.

以上において、通常の圧縮機11の駆動時には回転数が高いので図6にあるように冷凍機油30は遠心力によって給油通路22の壁面側に押し上げられる。このため、この給油通路22の壁面に開口した接続開口23Aまで冷凍機油30が押し上げられるので充分な冷凍機油30を螺旋状溝23まで供給することができる。この場合はばね部材31の線間すき間Cが大きい部分を通って冷凍機油30が接続開口23Aに送られるものである。   In the above, since the rotational speed is high when the normal compressor 11 is driven, the refrigerating machine oil 30 is pushed up to the wall surface side of the oil supply passage 22 by centrifugal force as shown in FIG. For this reason, since the refrigerating machine oil 30 is pushed up to the connection opening 23 </ b> A opened in the wall surface of the oil supply passage 22, sufficient refrigerating machine oil 30 can be supplied to the spiral groove 23. In this case, the refrigerating machine oil 30 is sent to the connection opening 23 </ b> A through the portion where the gap C between the spring members 31 is large.

一方、圧縮機11の回転が低い場合は図6にあるように冷凍機油30は遠心力が不足して給油通路22の壁面側に押し上げられなくなる。このため、この給油通路22の壁面に開口した接続開口23Aまで冷凍機油30が押し上げられないので冷凍機油30を螺旋状溝23まで供給することができなくなる。   On the other hand, when the rotation of the compressor 11 is low, the refrigerating machine oil 30 does not have enough centrifugal force to be pushed up to the wall surface side of the oil supply passage 22 as shown in FIG. For this reason, the refrigerating machine oil 30 cannot be pushed up to the spiral groove 23 because the refrigerating machine oil 30 cannot be pushed up to the connection opening 23 </ b> A opened in the wall surface of the oil supply passage 22.

これに対して、本実施例によれば螺旋状に巻かれたばね部材31と給油通路22の間に形成された螺旋状のポンプ通路32の働きによって冷凍機油30を接続開口23Aまで進入させることができるようになる。   On the other hand, according to the present embodiment, the refrigerating machine oil 30 can be caused to enter the connection opening 23A by the action of the spiral pump passage 32 formed between the spring member 31 wound spirally and the oil supply passage 22. become able to.

つまり、給油ピース24から螺旋状のばね部材31の下側に供給された冷凍機油30は螺旋状のポンプ通路32に進入してくるが、冷凍機油30に作用する遠心力と冷凍機油30の粘性等によって冷凍機油30は螺旋状のポンプ通路32を上側に進入して接続開口23Aに至る。   That is, the refrigerating machine oil 30 supplied from the oil supply piece 24 to the lower side of the helical spring member 31 enters the helical pump passage 32, but the centrifugal force that acts on the refrigerating machine oil 30 and the viscosity of the refrigerating machine oil 30. For example, the refrigerating machine oil 30 enters the spiral pump passage 32 upward and reaches the connection opening 23A.

その後、接続開口23Aに達した冷凍機油30は螺旋状通路23を経由して、出口開口23Bから冷凍機油30をコンロッド17の軸受部やピストン14とシリンダブロック13の摺動部に供給するようになっている。   Thereafter, the refrigerating machine oil 30 that has reached the connection opening 23 </ b> A is supplied to the bearing part of the connecting rod 17 and the sliding part of the piston 14 and the cylinder block 13 from the outlet opening 23 </ b> B via the spiral passage 23. It has become.

このように、圧縮機11が低速で駆動されている状態でも、冷凍機油30はシリンダブロック13とピストン14の間、ピスト14とコンロッド17の間、コンロッド17とクランク軸16の間、クランク軸16と軸受部18の間のそれぞれの摺動面において油膜を形成することで摺動面での金属接触を防ぎ信頼性を確保することができる。   As described above, even when the compressor 11 is driven at a low speed, the refrigerating machine oil 30 remains between the cylinder block 13 and the piston 14, between the piston 14 and the connecting rod 17, between the connecting rod 17 and the crankshaft 16, and between the crankshaft 16. By forming an oil film on each sliding surface between the bearing portion 18 and the bearing portion 18, metal contact on the sliding surface can be prevented and reliability can be ensured.

また、本実施例においてはポンプ作用を行なうばね部材31が給油通路22内に配置されているので、単に給油通路22内に圧縮状態で介装するだけなので正確な寸法管理はそれほど正確でなくても良いものである
更に、本実施例においてはばね部材31を給油通路22内に配置するだけなので、特許文献1にあるように給油通路22とばね部材が片当たりして異音や摩耗を生じることもなく、ばね部材と給油通路や給油ピースの間の摩擦熱によって密閉容器内の冷凍機油の温度が上昇して圧縮機のシリンダとピストンの冷却が不足して吸入される冷媒が過熱されるといったこともないものである。
Further, in this embodiment, the spring member 31 that performs the pump action is disposed in the oil supply passage 22, and therefore, the precise dimension control is not so accurate because it is simply inserted in the oil supply passage 22 in a compressed state. Furthermore, in the present embodiment, since the spring member 31 is only disposed in the oil supply passage 22, the oil supply passage 22 and the spring member come into contact with each other and cause noise and wear as disclosed in Patent Document 1. The temperature of the refrigerating machine oil in the sealed container rises due to frictional heat between the spring member and the oil supply passage or oil supply piece, and the refrigerant and the refrigerant sucked are overheated due to insufficient cooling of the compressor cylinder and piston. There is no such thing.

図3は本発明の第2の実施形態におけるばね部材31の外観斜視図であり、図1に示すばね部材31が圧縮コイルばねであるに対して、図3に示すばね部材31は螺旋状に巻かれた捩じりコイルばねである点で実施例1と異なっている。   FIG. 3 is an external perspective view of the spring member 31 according to the second embodiment of the present invention. The spring member 31 shown in FIG. 1 is a compression coil spring, whereas the spring member 31 shown in FIG. This is different from the first embodiment in that it is a wound torsion coil spring.

図3に示すばね部材31は螺旋状に巻かれた捩じりコイルばねであり、図1に示すばね部材31と同様に、給油ピースの上端部24Bと螺旋状溝23の接続開口23Aの間を繋ぐポンプ通路32を形成し、この間においてばね部材31の線間は圧縮された状態で密着する。   The spring member 31 shown in FIG. 3 is a torsion coil spring wound in a spiral shape, and is similar to the spring member 31 shown in FIG. 1 between the upper end portion 24B of the fueling piece and the connection opening 23A of the spiral groove 23. Are formed, and the spring members 31 are in close contact with each other in a compressed state.

また、接続開口23Aがよりポンプ通路32に臨むように、接続開口23A付近のばね部材31の線材の線間すき間を大きくしている。   Further, the gap between the wires of the spring member 31 in the vicinity of the connection opening 23A is increased so that the connection opening 23A faces the pump passage 32 more.

捩じりコイルばねを使用すると、圧縮方向及び径方向に変位できるので圧縮コイルばねに比べて寸法精度を必要としないでばね部材31を給油通路22内に設置できる効果がある。   When the torsion coil spring is used, the spring member 31 can be installed in the oil supply passage 22 without requiring dimensional accuracy as compared with the compression coil spring because it can be displaced in the compression direction and the radial direction.

また実施例1と共通するが、接続開口23Aがよりポンプ通路32に臨むように、接続開口23A付近のばね部材31の線材の線間すき間Cを大きくしている。このため、通常の回転数領域において回転翼24Cによって冷凍機油30が螺旋状溝23の接続開口23A付近まで上昇してきた場合でもねじりコイルばねに形成した線間すき間を通して冷凍機油30を円滑に供給することができる。   Although common to the first embodiment, the gap C between the wires of the spring member 31 near the connection opening 23A is increased so that the connection opening 23A faces the pump passage 32 more. For this reason, even when the refrigerating machine oil 30 rises to the vicinity of the connection opening 23A of the spiral groove 23 by the rotary blade 24C in the normal rotation speed region, the refrigerating machine oil 30 is smoothly supplied through the gap between the lines formed in the torsion coil spring. be able to.

図4は本発明の第3の実施形態における給油ピース24の外観斜視図であり、図1に示す給油ピース24の上端部24Bが平坦な円環状であるのに対し、本実施例は平坦な円環状ではなく、例えば段部のような回り止め部24Dが形成されている点で実施例1と異なっている。   FIG. 4 is an external perspective view of an oil supply piece 24 according to the third embodiment of the present invention, and the upper end portion 24B of the oil supply piece 24 shown in FIG. This is different from the first embodiment in that a non-rotating portion 24D such as a step portion is formed instead of an annular shape.

この回り止め部24Dは、この実施例においては段部の下部から段部の上部に向けて螺旋状に延びる円環状の端面に形成されている。この段部の高さはばね部材31の線径と同程度にしておけば、段部の下部から段部の上部に向けて螺旋状に延びる円環状の端面はばね部材31の最下面の線材の形状(ピッチ角)と一致するため、ばね部材31の坐りが良いものである。   In this embodiment, the anti-rotation portion 24D is formed on an annular end surface that spirally extends from the lower portion of the step portion toward the upper portion of the step portion. If the height of the step portion is approximately the same as the wire diameter of the spring member 31, the annular end surface that spirally extends from the lower portion of the step portion toward the upper portion of the step portion is the wire rod on the lowermost surface of the spring member 31. Therefore, the sitting of the spring member 31 is good.

この回り止め部24Dの働きは、給油ピース24の上端部24Bにばね部材31を圧縮状態で載置したときに、この回り止め部24Dにばね部材31の端部が引っ掛かり、ばね部材31が回転するのを防ぐものである。具体的は圧縮機11のクランク軸16が回転を始めて数回転の間にばね部材31の端部は螺旋状に延びる円環状の端面を滑りながら回り止め部24Dに引っ掛かる。このため、給油機構の組立てを行う際は、給油ピース24上端部24Bに形成した段部状の回り止め部24Dとばね部材31の端部の位置決めを必要としないため、容易に組立てを行うことができる。   The anti-rotation portion 24D functions as follows. When the spring member 31 is placed in a compressed state on the upper end portion 24B of the oil supply piece 24, the end portion of the spring member 31 is caught by the anti-rotation portion 24D, and the spring member 31 rotates. It is to prevent it. Specifically, the end portion of the spring member 31 is hooked on the rotation preventing portion 24D while sliding on the annular end surface extending in a spiral manner during several rotations after the crankshaft 16 of the compressor 11 starts rotating. For this reason, when assembling the oil supply mechanism, it is not necessary to position the end portion of the stepped rotation-preventing portion 24D formed on the upper end portion 24B of the oil supply piece 24 and the spring member 31, so that the assembly is easily performed. Can do.

図5は本発明の第4の実施形態における給油機構の要部断面図であり、図1及び図2に示したばね部材31には接続開口23Aに冷凍機油30を導く線間すき間C形成したが、本実施例はこの線間すき間Cを有しない場合にばね部材を途中で係止する係止部22Eを設けた点で実施例1と異なっている。   FIG. 5 is a cross-sectional view of an essential part of an oil supply mechanism according to the fourth embodiment of the present invention. The spring member 31 shown in FIGS. 1 and 2 is formed with a gap C between lines leading the refrigerator oil 30 to the connection opening 23A. The present embodiment is different from the first embodiment in that a locking portion 22E that locks the spring member in the middle when the gap C between the lines is not provided.

図5において、接続開口23Aの下端面付近の給油通路22の壁面に等間隔、例えば90°間隔に形成した係止部22Eが、給油通路22の壁面の内側に突出して設けられている。この係止部22Eは例えば、接続開口23Aを避けた給油通路22の内周に壁面を抉って内側に突出するように形成することができる。もちろん、この他に給油通路22の外周側からピン様の係止部を差し込んで形成することも可能である。   In FIG. 5, locking portions 22 </ b> E formed at equal intervals, for example, 90 ° intervals, are provided on the wall surface of the oil supply passage 22 near the lower end surface of the connection opening 23 </ b> A so as to protrude inside the wall surface of the oil supply passage 22. For example, the locking portion 22E can be formed so as to protrude inward over the inner periphery of the oil supply passage 22 avoiding the connection opening 23A. Of course, it is also possible to insert a pin-like locking portion from the outer peripheral side of the oil supply passage 22.

そして、ばね部材31は給油通路22内の係止部22Eと給油ピース24の上端部24Bの間に圧縮状態で収納され、このばね部材31は線材が密着状態となっている。   The spring member 31 is housed in a compressed state between the locking portion 22E in the oil supply passage 22 and the upper end portion 24B of the oil supply piece 24, and the wire member is in close contact with the spring member 31.

以上において、通常の圧縮機11の駆動時には回転数が高いので冷凍機油30は遠心力によって給油通路22の壁面側に押し上げられる。このため、この給油通路22の壁面に開口した接続開口23A付近まで冷凍機油30が押し上げられる。そして、本実施例ではばね部材31が接続開口23A付近で係止部22Eで係止されているので、冷凍機油30はばね部材31の最上面の密着部(係止部24Eの付近)を越えて接続開口23Aに送られるものである。   In the above, since the rotational speed is high when the normal compressor 11 is driven, the refrigerating machine oil 30 is pushed up to the wall surface side of the oil supply passage 22 by centrifugal force. For this reason, the refrigerating machine oil 30 is pushed up to the vicinity of the connection opening 23 </ b> A opened in the wall surface of the oil supply passage 22. In this embodiment, since the spring member 31 is locked by the locking portion 22E in the vicinity of the connection opening 23A, the refrigerating machine oil 30 exceeds the close contact portion (near the locking portion 24E) of the spring member 31. Are sent to the connection opening 23A.

一方、圧縮機11の回転が低い場合は実施例1や実施例2と同様に、給油ピース24からばね部材31の下側に供給された冷凍機油30は螺旋状のポンプ通路32に進入してくるが、冷凍機油30に作用する遠心力と冷凍機油30の粘性等によって冷凍機油30は螺旋状のポンプ通路32を上側に進入して接続開口23Aに至るようになる。   On the other hand, when the rotation of the compressor 11 is low, the refrigerating machine oil 30 supplied from the oil supply piece 24 to the lower side of the spring member 31 enters the spiral pump passage 32 as in the first and second embodiments. However, due to the centrifugal force acting on the refrigerating machine oil 30 and the viscosity of the refrigerating machine oil 30, the refrigerating machine oil 30 enters the spiral pump passage 32 to the upper side and reaches the connection opening 23A.

以上説明したように、本発明によれば、螺旋状通路の入口とクランク軸の給油通路に取り付けた給油ピースとの間に螺旋通路形成部材を設けることで、給油ピース、クランク軸内の給油通路とポンプ作用を行なう螺旋通路形成部材の間の正確な位置関係を考慮しなくて組み立てができるようになる。この結果、特許文献1にあるようなクランク軸内の給油通路や給油ピースとばね部材の間に片当たりが生じて異音や摩耗が生じることがないものである。   As described above, according to the present invention, the helical passage forming member is provided between the inlet of the spiral passage and the oil supply piece attached to the oil supply passage of the crankshaft, so that the oil supply piece and the oil supply passage in the crankshaft are provided. Assembling can be performed without taking into account the exact positional relationship between the hose and the spiral passage forming member that performs the pumping action. As a result, there is no contact between the oil supply passage or the oil supply piece in the crankshaft and the spring member as in Patent Document 1, and no noise or wear occurs.

10…密閉容器,11…圧縮機、12…電動機、13…シリンダブロック、14…ピストン、15…圧縮室、16…クランク軸、17…コンロッド、18…軸受部、19…回転子、20…固定子、21…支持ばね、22…給油通路、23…螺旋状溝、
23A…接続開口、23B…出口開口、24…給油ピース、24A…開口、24B…上端面、31…ばね部材、32…螺旋状のポンプ通路。
DESCRIPTION OF SYMBOLS 10 ... Airtight container, 11 ... Compressor, 12 ... Electric motor, 13 ... Cylinder block, 14 ... Piston, 15 ... Compression chamber, 16 ... Crankshaft, 17 ... Connecting rod, 18 ... Bearing part, 19 ... Rotor, 20 ... Fixed Child, 21 ... support spring, 22 ... oil supply passage, 23 ... spiral groove,
23A ... Connection opening, 23B ... Outlet opening, 24 ... Refueling piece, 24A ... Opening, 24B ... Upper end surface, 31 ... Spring member, 32 ... Spiral pump passage.

Claims (7)

冷凍サイクルの冷媒を圧縮する圧縮機と、前記圧縮機を駆動する電動機と、前記圧縮機と前記電動機を収納し、前記圧縮機の摺動部を潤滑する冷凍機油を貯留する密閉容器とよりなる密閉型圧縮機において、
前記圧縮機のクランク軸に前記圧縮機の摺動部に冷凍機油を流す通路と接続開口を介して接続される給油通路を形成し、この給油通路に前記密閉容器に貯留した冷凍機油を導く給油ピースを設けると共に、前記給油ピースと前記接続開口の間の前記給油通路内に前記給油ピースを介して導入される冷凍機油を前記接続開口まで流す螺旋状のポンプ通路を設けたことを特徴とする密閉型圧縮機。
A compressor for compressing refrigerant in the refrigeration cycle; an electric motor for driving the compressor; and a sealed container for storing the compressor and the electric motor and storing refrigerating machine oil for lubricating the sliding portion of the compressor. In a hermetic compressor,
An oil supply passage that is connected to a crankshaft of the compressor through a passage through which the refrigeration oil flows to the sliding portion of the compressor and a connection opening is formed, and the refrigeration oil stored in the sealed container is guided to the oil supply passage In addition to providing a piece, a helical pump passage is provided in the oil supply passage between the oil supply piece and the connection opening to flow the refrigerating machine oil introduced through the oil supply piece to the connection opening. Hermetic compressor.
請求項1に記載の密閉型圧縮機において、
前記ポンプ通路は前記給油通路内に配置された螺旋状に巻かれたばね部材と前記給油通路の壁面とによって形成されていることを特徴とする密閉型圧縮機。
The hermetic compressor according to claim 1, wherein
The hermetic compressor, wherein the pump passage is formed by a spirally wound spring member disposed in the oil supply passage and a wall surface of the oil supply passage.
請求項2に記載の密閉型圧縮機において、
前記螺旋状に巻かれたばね部材は圧縮されて線材が密着した状態の圧縮コイルばねであり、前記圧縮コイルばねは前記給油通路の壁面に密着して螺旋状のポンプ通路を形成することを特徴とする密閉型圧縮機。
The hermetic compressor according to claim 2, wherein
The helically wound spring member is a compression coil spring that is compressed and in close contact with a wire, and the compression coil spring is in close contact with the wall surface of the oil supply passage to form a helical pump passage. A hermetic compressor.
請求項2に記載の密閉型圧縮機において、
前記螺旋状に巻かれたばね部材は圧縮されて線材が密着した状態の捩じりコイルばねであり、前記捩じりコイルばねは前記給油通路の壁面に密着して螺旋状のポンプ通路を形成することを特徴とする密閉型圧縮機。
The hermetic compressor according to claim 2, wherein
The helically wound spring member is a torsion coil spring that is compressed and in close contact with the wire, and the torsion coil spring is in close contact with the wall surface of the oil supply passage to form a helical pump passage. A hermetic compressor characterized by that.
請求項3乃至請求項4のいずれかに記載の密閉型圧縮機において、
前記接続開口付近の前記圧縮コイルばね、或いは捩じりコイルばねの線材の間はすき間(線間すき間)が設けられていることを特徴とする密閉型圧縮機。
The hermetic compressor according to any one of claims 3 to 4,
A hermetic compressor, wherein a gap (a gap between lines) is provided between the wire rods of the compression coil spring or the torsion coil spring near the connection opening.
請求項3乃至請求項4のいずれかに記載の密閉型圧縮機において、
前記圧縮コイルばね、或いは捩じりコイルばねと接する給油ピースの端面には前記圧縮コイルばね、或いは捩じりコイルばねの端面と接する回り止め部が設けられていることを特徴とする密閉型圧縮機。
The hermetic compressor according to any one of claims 3 to 4,
A hermetic compression, wherein an end face of an oil supply piece in contact with the compression coil spring or torsion coil spring is provided with a detent portion in contact with the end face of the compression coil spring or torsion coil spring. Machine.
請求項3乃至請求項4のいずれかに記載の密閉型圧縮機において、
前記接続開口付近の前記給油通路の壁面には内側に突出した係止部を設け、前,記係止部と前記給油ピースの間に前記圧縮コイルばね、或いは捩じりコイルばねの線材が密着するように圧縮して設けられていることを特徴とする密閉型圧縮機。
The hermetic compressor according to any one of claims 3 to 4,
A locking portion protruding inward is provided on the wall surface of the oil supply passage in the vicinity of the connection opening, and the wire rod of the compression coil spring or torsion coil spring is in close contact between the front locking portion and the oil supply piece. A hermetic compressor, wherein the compressor is provided to be compressed.
JP2012115219A 2012-05-21 2012-05-21 Hermetic compressor Pending JP2013241874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012115219A JP2013241874A (en) 2012-05-21 2012-05-21 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012115219A JP2013241874A (en) 2012-05-21 2012-05-21 Hermetic compressor

Publications (1)

Publication Number Publication Date
JP2013241874A true JP2013241874A (en) 2013-12-05

Family

ID=49842984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012115219A Pending JP2013241874A (en) 2012-05-21 2012-05-21 Hermetic compressor

Country Status (1)

Country Link
JP (1) JP2013241874A (en)

Similar Documents

Publication Publication Date Title
JP5655850B2 (en) Scroll compressor
EP2657524B1 (en) Hermetic reciprocating compressor
JP2018040261A (en) Refrigerant compressor
JP5716161B2 (en) Hermetic compressor
JP2009162078A (en) Scroll type compressor
JP5370425B2 (en) Compressor
JP2012219654A (en) Rotary fluid machine
JP6220639B2 (en) Hermetic compressor and refrigerator using the same
JP6134903B2 (en) Positive displacement compressor
JP6190698B2 (en) Hermetic compressor and refrigerator using the same
EP2905469A1 (en) Hermetic scroll compressor
JP5612628B2 (en) Hermetic compressor
JP2013241874A (en) Hermetic compressor
JP2017025789A (en) Rotary compressor
KR101646044B1 (en) Hermetic compressor and refrigerator using the same
JP2015096699A (en) Enclosed compressor and device including enclosed compressor
JP6101613B2 (en) Hermetic compressor and refrigerator
EP3462023B1 (en) Lubricating oil supply apparatus and compressor using lubricating oil supply apparatus
JP7096633B2 (en) Compressor
JP2018141448A (en) Compressor
JP2008215220A (en) Compressor
JP2012097576A (en) Rotary compressor
JP6075283B2 (en) Scroll compressor
JP5361682B2 (en) Compressor
JP2015010490A (en) Sealed type compressor