JP2013240867A - Surface polishing plate - Google Patents

Surface polishing plate Download PDF

Info

Publication number
JP2013240867A
JP2013240867A JP2012116236A JP2012116236A JP2013240867A JP 2013240867 A JP2013240867 A JP 2013240867A JP 2012116236 A JP2012116236 A JP 2012116236A JP 2012116236 A JP2012116236 A JP 2012116236A JP 2013240867 A JP2013240867 A JP 2013240867A
Authority
JP
Japan
Prior art keywords
polished
abrasive grains
polishing
porous plate
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012116236A
Other languages
Japanese (ja)
Inventor
Tetsuji Yamashita
哲二 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEZOTEKU DIA KK
Original Assignee
MEZOTEKU DIA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEZOTEKU DIA KK filed Critical MEZOTEKU DIA KK
Priority to JP2012116236A priority Critical patent/JP2013240867A/en
Publication of JP2013240867A publication Critical patent/JP2013240867A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface polishing plate that performs high speed polishing with diamond abrasive grains with sharp outer shapes, and performs mirror surface processing by automatically supplying abrasive grains with chemically polishing action at a predetermined timing.SOLUTION: Diamond abrasive grains 18 or the like are entirely dispersed, embedded and solidified in a porous plate 16 having multiple continuous bubbles 24 communicated from one side surface 20 to the another side surface 22. A liquid 26 with viscosity that does not naturally flow down by the gravity force in the continuous bubbles 24 at a room temperature, in which abrasive grains 28 that mechanically and chemically polish an acting surface 32 of a polished material 30 is mixed, is used to impregnate the continuous bubbles 24. The liquid 26 is softened by heat generated when the polished material 30 is polished or heat supplied from the outside to increase fluidity, and is flowed to the acting surface 32 of the acting abrasive grains 30 along with a chemical abrasive 28. Grain sizes of the abrasive grains 28 with chemical polishing action are not less than grain sizes of the diamond abrasive grains 18.

Description

本発明は、シリコンウエハ等の表面の鏡面加工処理に使用される表面研磨板と表面研磨装置と表面研磨方法に関する。   The present invention relates to a surface polishing plate, a surface polishing apparatus, and a surface polishing method used for mirror processing of a surface of a silicon wafer or the like.

シリコンウエハ等を鏡面研磨する場合には、砥石を被研磨材の表面に押し当てて摺り合わせる。短時間で高い平坦度の研磨処理を実現するために、有効面積の広い表面研磨板が開発された(特許文献1参照)。   When mirror polishing a silicon wafer or the like, a grindstone is pressed against the surface of the material to be polished and rubbed. In order to realize polishing processing with high flatness in a short time, a surface polishing plate having a wide effective area has been developed (see Patent Document 1).

特許4737689号公報Japanese Patent No. 4737689

既知の従来の技術には、次のような解決すべき課題があった。
被研磨材を速く研磨する場合には、鋭利な外形のダイヤモンド砥粒を使用することが好ましい。一方、被研磨材の鏡面研磨には、化学研磨剤を使用することが好ましい。このために、研磨工程の前半と後半で表面研磨板を交換したり、使用する砥粒を入れ替えたりする作業が要求される。このような作業に研磨処理のための時間短縮に限界があり、自動化する場合にも複雑な制御が必要になる。
上記の課題を解決するために、本発明は、鋭利な外形のダイヤモンド砥粒で高速研磨をするとともに、所定のタイミングで化学研磨剤が自動的に供給されて、鏡面処理がされる表面研磨板と表面研磨装置と表面研磨方法を提供することを目的とする。
The known prior art has the following problems to be solved.
When polishing a material to be polished quickly, it is preferable to use diamond grains having a sharp outer shape. On the other hand, it is preferable to use a chemical abrasive for mirror polishing of the material to be polished. For this reason, the operation | work which replaces | exchanges a surface polishing board in the first half and the latter half of a grinding | polishing process, or replaces the abrasive grain to be used is requested | required. There is a limit to shortening the time for the polishing process in such an operation, and complicated control is required even when it is automated.
In order to solve the above-described problems, the present invention provides a surface polishing plate that performs high-speed polishing with sharply shaped diamond abrasive grains and that is automatically supplied with a chemical abrasive at a predetermined timing to perform a mirror surface treatment. Another object is to provide a surface polishing apparatus and a surface polishing method.

以下の構成はそれぞれ上記の課題を解決するための手段である。
〈構成1〉
硬くて機械的に鋭い外面を持つ第1の砥粒を全体に分散させて埋め込んで固化され、一方の面から他方の面に通じる多数の連続気泡を有する多孔質板に、室温で前記多孔質板の前記一方の面から他方の面に向かって重力で自然流下しない程度の粘性を持つ液体であって、被研磨材の作用面を機械的及び化学的に研磨する第2の砥粒を混入したものを、前記連続気泡中に含浸させており、前記液体は、前記被研磨材を研磨するときに発生する熱もしくは外部から供給される熱により軟化して流動性が高まり、前記第2の砥粒とともに、前記被研磨材の作用面に流れ出る液体であって、前記第2の砥粒の粒径は、前記第1の砥粒の粒径以上のものであることを特徴とする表面研磨板。
The following configurations are means for solving the above-described problems.
<Configuration 1>
The first abrasive grains having a hard and mechanically sharp outer surface are dispersed and embedded throughout to be solidified, and a porous plate having a large number of open cells extending from one surface to the other surface is obtained at room temperature. A liquid having a viscosity that does not naturally flow down from one surface of the plate toward the other surface by gravity, and includes second abrasive grains that mechanically and chemically polish the working surface of the material to be polished. And the liquid is softened by heat generated when the material to be polished is polished or heat supplied from the outside to increase fluidity, and the second Surface polishing characterized in that it is a liquid that flows to the work surface of the material to be polished together with abrasive grains, and the particle diameter of the second abrasive grains is greater than or equal to the particle diameter of the first abrasive grains. Board.

〈構成2〉
硬くて機械的に鋭い外面を持つ第1の砥粒を全体に分散させて埋め込んで固化され、一方の面から他方の面に通じる多数の連続気泡を有する多孔質板を被研磨材の作用面に押しつけて、前記被研磨材を前記第1の砥粒で研磨する装置と、室温で前記多孔質板の前記一方の面から他方の面に向かって重力で自然流下しない程度の粘性を持つ液体であって、前記第1の砥粒の粒径以上の粒径を有し被研磨材の作用面を機械的及び化学的に研磨する第2の砥粒を混入したものを、前記連続気泡中に含浸させた状態で、前記被研磨材を研磨するときに発生する熱もしくは外部から供給される熱により前記液体を軟化させて流動性を高め、前記第2の砥粒とともに、前記被研磨材の作用面に流れ出させて、前記被研磨材の作用面を化学的に研磨する装置とを備えたことを特徴とする表面研磨装置。
<Configuration 2>
The first abrasive grains having a hard and mechanically sharp outer surface are dispersed and embedded throughout to form a porous plate having a large number of open cells extending from one surface to the other surface. And a liquid having a viscosity that does not naturally flow down by gravity from the one surface of the porous plate to the other surface at room temperature, and a device that polishes the material to be polished with the first abrasive grains. A mixture of second abrasive grains having a grain size equal to or larger than that of the first abrasive grains and mechanically and chemically polishing the working surface of the material to be polished is contained in the open cell. The liquid is softened by the heat generated when the material to be polished or the heat supplied from the outside is softened in the state of impregnating the material to be polished, and the material to be polished together with the second abrasive grains. For chemically polishing the working surface of the material to be polished Surface polishing apparatus characterized by comprising a.

〈構成3〉
硬くて機械的に鋭い外面を持つ第1の砥粒を全体に分散させて埋め込んで固化され、一方の面から他方の面に通じる多数の連続気泡を有する多孔質板を被研磨材の作用面に押しつけて、前記被研磨材を前記第1の砥粒で研磨するとともに、室温で前記多孔質板の前記一方の面から他方の面に向かって重力で自然流下しない程度の粘性を持つ液体であって、前記第1の砥粒の粒径以上の粒径を有し前記被研磨材の作用面を機械的及び化学的に研磨する第2の砥粒を混入したものを、前記連続気泡中に含浸させ、前記被研磨材を研磨するときに発生する熱もしくは外部から供給される熱により前記液体を軟化させて流動性を高め、前記第2の砥粒とともに、前記被研磨材の作用面に流れ出させて、前記被研磨材の作用面を化学的に研磨することを特徴とする表面研磨方法。
<Configuration 3>
The first abrasive grains having a hard and mechanically sharp outer surface are dispersed and embedded throughout to form a porous plate having a large number of open cells extending from one surface to the other surface. A liquid having a viscosity such that the material to be polished is polished with the first abrasive grains and does not naturally flow down from the one surface of the porous plate toward the other surface at room temperature. A mixture of second abrasive grains having a grain size equal to or larger than that of the first abrasive grains and mechanically and chemically polishing the working surface of the material to be polished. So that the liquid is softened by heat generated when polishing the material to be polished or heat supplied from the outside to improve fluidity, and together with the second abrasive grains, the working surface of the material to be polished To chemically polish the working surface of the material to be polished. Surface polishing method and butterflies.

〈構成4〉
構成3に記載の表面研磨方法であって、前記被研磨材の作用面に流れ出させた前記第2の砥粒により、前記被研磨材の作用面を化学的に研磨するとともに、前記多孔質板の他方の面及びその他方の面に付着した異物と化学的に反応させて、前記多孔質板の他方の面の目詰まりを防止することを特徴とする表面研磨方法。
<Configuration 4>
The surface polishing method according to Configuration 3, wherein the working surface of the material to be polished is chemically polished by the second abrasive particles flowing out to the working surface of the material to be polished, and the porous plate A surface polishing method characterized in that clogging of the other surface of the porous plate is prevented by chemically reacting with a foreign substance adhering to the other surface and the other surface.

ダイヤモンド砥粒で被研磨材の作用面を高速研磨する。この研磨で発生する熱で、液体が化学研磨剤とともに作用面に流れでて、化学研磨が開始される。その後は化学研磨剤が鏡面研磨を開始する。
化学研磨剤は、被研磨材の作用面を鏡面研磨するだけでなく、被研磨材の作用面に対向している多孔質板の他方の面と化学反応をする。これにより、多孔質板の他方の面からダイヤモンド砥粒が分離し易く、さらに、多孔質板の他方の面の目詰まりを防止して、研磨性能を維持する効果がある。
The working surface of the material to be polished is polished at high speed with diamond abrasive grains. With the heat generated in this polishing, the liquid flows to the working surface together with the chemical polishing agent, and chemical polishing is started. Thereafter, the chemical abrasive starts mirror polishing.
The chemical abrasive not only mirrors the working surface of the material to be polished, but also chemically reacts with the other surface of the porous plate facing the working surface of the material to be polished. Thereby, diamond abrasive grains are easily separated from the other surface of the porous plate, and further, there is an effect of preventing clogging of the other surface of the porous plate and maintaining the polishing performance.

本発明の多孔質板16の構造を示す部分拡大横断面図である。It is a partial expanded cross-sectional view which shows the structure of the porous board 16 of this invention. 本発明の多孔質板16の研磨処理開始時の状態を示す部分拡大横断面図である。It is a partial expanded cross-sectional view which shows the state at the time of the grinding | polishing process start of the porous board 16 of this invention. 本発明の多孔質板16の鏡面研磨処理時の状態を示す部分拡大横断面図である。It is a partial expanded cross-sectional view which shows the state at the time of the mirror polishing process of the porous board 16 of this invention. 本発明の多孔質板研磨装置の実施例正面図である。It is an Example front view of the porous board grinding | polishing apparatus of this invention. 比較例のスラリー方式研磨装置の正面図である。It is a front view of the slurry system polishing apparatus of a comparative example. 加工方式の違いによるシリコンウエハチップの強度比較図(1)である。It is a strength comparison figure (1) of the silicon wafer chip by the difference in a processing system. 加工方式の違いによるシリコンウエハチップの強度比較図(2)である。It is intensity | strength comparison figure (2) of the silicon wafer chip | tip by the difference in a processing system. 加工方式の違いによるシリコンウエハチップの表面粗さ比較図である。It is a surface roughness comparison figure of the silicon wafer chip by the difference in a processing system. 本発明の目詰まり完全効果を検証する実験例の説明図である。It is explanatory drawing of the experiment example which verifies the clogging complete effect of this invention.

図1〜図3を参照しながら、まず、本発明の多孔質板16の構造と、その研磨処理の概略を説明する。これらの図は、いずれも、多孔質板16と被研磨材30とが接する部分の断面を拡大したものである。従って、図面に現れているのは、多孔質板16と被研磨材30のごく一部分である。図中のダイヤモンド砥粒18や化学研磨作用のある砥粒28や連続気泡24は必ずしも実物の形状や状態を正確に示すものではなく、説明の便宜上、わかりやすく図示したものである。   First, the structure of the porous plate 16 of the present invention and the outline of the polishing process will be described with reference to FIGS. Each of these drawings is an enlarged view of a cross section of a portion where the porous plate 16 and the material to be polished 30 are in contact with each other. Therefore, only a part of the porous plate 16 and the material to be polished 30 appears in the drawing. The diamond abrasive grains 18, the abrasive grains 28 having a chemical polishing action, and the open cells 24 in the figure do not necessarily accurately indicate the shape and state of the actual object, but are simply illustrated for convenience of explanation.

図1に示すように、多孔質板16は、ダイヤモンド砥粒18を全体に分散させて埋め込んで固化されたものである。多孔質板16は、セラミックを焼結したものでもよい。あるいは、合成樹脂にダイヤモンド砥粒18を練り込んで固化させたものでもよい。セラミック粒とダイヤモンド砥粒18とを混ぜ合わせて接着剤で固化したものでもよい。   As shown in FIG. 1, the porous plate 16 is obtained by dispersing and embedding diamond abrasive grains 18 throughout and solidifying them. The porous plate 16 may be a sintered ceramic. Alternatively, diamond abrasive grains 18 may be kneaded into a synthetic resin and solidified. Ceramic grains and diamond abrasive grains 18 may be mixed and solidified with an adhesive.

ダイヤモンド砥粒18は、被研磨材30を機械的に鋭く速く研磨する、化学的に安定な研磨剤である。被研磨材30の作用面32を速く研磨して平坦化するのに適する。多孔質板16に埋め込む砥粒はこのような硬くて機械的に鋭い外面を持つもの、例えば、ジルコニアや炭化ケイ素(SiC)等を採用することができる。上記の<構成>の説明では、多孔質板16に埋め込む砥粒を、第1の砥粒と表現した。被研磨材30は、例えば、シリコンウエハーである。表面研磨により欠陥を消滅させ、その強度を高めるための加工をする。   The diamond abrasive grains 18 are chemically stable abrasives that mechanically sharply and rapidly polish the workpiece 30. It is suitable for quickly polishing and flattening the working surface 32 of the material 30 to be polished. The abrasive grains embedded in the porous plate 16 may be hard and mechanically sharp, such as zirconia or silicon carbide (SiC). In the above description of <Configuration>, the abrasive grains embedded in the porous plate 16 are expressed as first abrasive grains. The material to be polished 30 is, for example, a silicon wafer. Surface polishing is used to eliminate defects and increase the strength.

多孔質板16は、一方の面20から他方の面22に通じる多数の連続気泡24を有する。ここに、液体26を含浸する。液体26は、室温で多孔質板16の一方の面20から他方の面22に向かって重力で自然流下しない程度の粘性を持つように調整する。例えば、寒天、セルロース、ワセリンやグリス等を使用することができる。さらに、カラギナンやCMC(カルボキシメチルセルローズ)といった、食料用の増粘剤を使用することができる。また、歯磨き粉に使われているポリエチレングリコールを使用することもできる。食料用等の材料は、そのまま下水に廃棄しても安全で環境を汚染しない効果がある。   The porous plate 16 has a large number of open cells 24 extending from one surface 20 to the other surface 22. The liquid 26 is impregnated here. The liquid 26 is adjusted so as to have a viscosity that does not naturally flow down from one surface 20 to the other surface 22 of the porous plate 16 at room temperature. For example, agar, cellulose, petrolatum or grease can be used. Furthermore, food thickeners such as carrageenan and CMC (carboxymethylcellulose) can be used. Moreover, the polyethylene glycol currently used for toothpaste can also be used. Food and other materials are safe and do not pollute the environment even if they are disposed of in sewage.

液体26には、被研磨材30を機械的及び化学的に研磨する化学研磨作用のある砥粒28を混入する。この液体26を、多孔質板16の連続気泡24中に含浸させる。化学研磨作用のある砥粒28は例えば、セリア、雲母、酸化鉄等の砥粒である。化学研磨作用のある砥粒28は、被研磨材30を機械的に削って研磨する機能を持つとともに、被研磨材30の作用面32と化学的に反応をして、鏡面仕上げを行うことができる。被研磨材30の一部を吸着して引き剥がすような反応をするものが好ましい。上記の<構成>の説明では、第2の砥粒と表現した。第1の砥粒は、第2の砥粒と比べて、より、硬くて機械的に鋭い外面を持つものであればよい。なお、液体中に少量のダイヤモンド砥粒のような化学研磨作用の無いものが混在していても構わない。   In the liquid 26, abrasive grains 28 having a chemical polishing action for mechanically and chemically polishing the material to be polished 30 are mixed. The liquid 26 is impregnated in the open cells 24 of the porous plate 16. The abrasive grains 28 having a chemical polishing action are, for example, abrasive grains such as ceria, mica, and iron oxide. The abrasive 28 having a chemical polishing function has a function of mechanically scraping and polishing the material 30 to be polished, and chemically reacting with the working surface 32 of the material 30 to be mirror-finished. it can. What reacts to adsorb | suck and peel off a part of to-be-polished material 30 is preferable. In the description of the above <configuration>, it is expressed as the second abrasive grain. The first abrasive grains only need to be harder and mechanically sharper than the second abrasive grains. In addition, a liquid having no chemical polishing action such as a small amount of diamond abrasive grains may be mixed in the liquid.

液体26は、ダイヤモンド砥粒18が被研磨材30の作用面32に押しつけられて被研磨材30を研磨するときに発生する熱により軟化して流動性が高まり、化学研磨作用のある砥粒28とともに、被研磨材30の作用面32に流れ出る。なお、所定のタイミングで外部から熱を加えて強制的に液体26を軟化させてもよい。   The liquid 26 is softened by the heat generated when the diamond abrasive grains 18 are pressed against the working surface 32 of the material 30 to polish the material 30 to increase the fluidity, and the abrasive particles 28 having a chemical polishing action. At the same time, it flows out to the working surface 32 of the material 30 to be polished. Note that the liquid 26 may be forcibly softened by applying heat from the outside at a predetermined timing.

図2に示すように、研磨開始当初は、多孔質板16の他方の面22に露出したダイヤモンド砥粒18が被研磨材30の作用面32に押しつけられて、被研磨材30の作用面32を一定の平坦度になるまで研磨する。被研磨材30の作用面32が一定の平坦度に達すると、多孔質板16の他方の面22と被研磨材30の作用面32との間に挟まれた多数のダイヤモンド砥粒18と多孔質板16の他方の面22と被研磨材30の作用面32との間の摩擦が大きくなり、液体26を軟化させる温度まで発熱する。   As shown in FIG. 2, at the beginning of polishing, diamond abrasive grains 18 exposed on the other surface 22 of the porous plate 16 are pressed against the working surface 32 of the material to be polished 30, and the working surface 32 of the material to be polished 30. Is polished until a certain flatness is obtained. When the working surface 32 of the material to be polished 30 reaches a certain flatness, a large number of diamond abrasive grains 18 sandwiched between the other surface 22 of the porous plate 16 and the working surface 32 of the material to be polished 30 are porous. Friction between the other surface 22 of the material plate 16 and the working surface 32 of the material to be polished 30 increases, and heat is generated to a temperature at which the liquid 26 is softened.

化学研磨作用のある砥粒28の粒径は、ダイヤモンド砥粒18の粒径以上のものである。なお、一部にダイヤモンド砥粒18の粒径に満たない化学研磨作用のある砥粒28が混入していても構わない。   The grain size of the abrasive grains 28 having a chemical polishing action is greater than or equal to the grain size of the diamond abrasive grains 18. Note that abrasive grains 28 having a chemical polishing action that is less than the grain diameter of the diamond abrasive grains 18 may be mixed in part.

図3に示すように、軟化した液体26と化学研磨作用のある砥粒28が多孔質板16の他方の面22と被研磨材30の作用面32との間に流れ出すと、粒径の大きな化学研磨作用のある砥粒28が被研磨材30の作用面32に強く接触するようになる。その結果、化学研磨作用のある砥粒28の化学反応により被研磨材30の作用面32が鏡面処理される。多孔質板16と化学研磨作用のある砥粒28と被研磨材30の作用面32との間の摩擦熱により温度上昇するから化学反応も促進される。   As shown in FIG. 3, when the softened liquid 26 and the abrasive grains 28 having a chemical polishing action flow between the other face 22 of the porous plate 16 and the action face 32 of the material to be polished 30, the particle size becomes large. The abrasive grains 28 having a chemical polishing action come into strong contact with the working surface 32 of the material 30 to be polished. As a result, the working surface 32 of the workpiece 30 is mirror-finished by the chemical reaction of the abrasive grains 28 having a chemical polishing action. Since the temperature rises due to frictional heat between the porous plate 16, the abrasive grains 28 having a chemical polishing action, and the working surface 32 of the material to be polished 30, the chemical reaction is also promoted.

化学研磨作用のある砥粒28の化学反応は、被研磨材30の作用面32を鏡面処理するだけにとどまらない。化学研磨作用のある砥粒28は、多孔質板16の他方の面22に対しても作用する。化学研磨作用のある砥粒28が多孔質板16の他方の面22に作用すると、ダイヤモンド砥粒18が多孔質板16の他方の面22から脱落し易くなる。   The chemical reaction of the abrasive grains 28 having a chemical polishing action is not limited to the mirror treatment of the working surface 32 of the material 30 to be polished. The abrasive grains 28 having a chemical polishing action also act on the other surface 22 of the porous plate 16. When the abrasive grains 28 having a chemical polishing action act on the other surface 22 of the porous plate 16, the diamond abrasive particles 18 easily fall off from the other surface 22 of the porous plate 16.

即ち、研磨工程で、多孔質板16の他方の面22から次々に新しいダイヤモンド砥粒18が被研磨材30の作用面32上に供給され、ダイヤモンド砥粒18による研磨能力が維持される。   That is, in the polishing process, new diamond abrasive grains 18 are successively supplied from the other surface 22 of the porous plate 16 onto the working surface 32 of the material to be polished 30, and the polishing ability by the diamond abrasive grains 18 is maintained.

さらに、多孔質板16の他方の面22に、用済みの砥粒や被研磨材30の削りカスが付着して目詰まりを起こすことがある。化学研磨作用のある砥粒28はこれらに作用して、多孔質板16の他方の面22への目詰まりを防止する機能がある。   Furthermore, clogging may occur due to adhesion of used abrasive grains or scraps of the material to be polished 30 to the other surface 22 of the porous plate 16. The abrasive grains 28 having a chemical polishing action act on these and have a function of preventing clogging of the other surface 22 of the porous plate 16.

大量にスラリー44を流すことにより目詰まりをある程度防止する方法もあるが、必ずしも有効でない。スラリー44の量が少ない場合や、スラリー44を流さない乾式研磨処理の場合に、特に、目詰まりが生じやすい。化学研磨作用のある砥粒28による目詰まり防止効果は、このような場合に効果を発揮する。以下、本発明の実施の形態を実施例毎に詳細に説明する。   Although there is a method of preventing clogging to some extent by flowing a large amount of slurry 44, it is not always effective. Clogging is particularly likely to occur when the amount of the slurry 44 is small or when dry polishing is performed without flowing the slurry 44. The clogging prevention effect by the abrasive grains 28 having a chemical polishing action is effective in such a case. Hereinafter, embodiments of the present invention will be described in detail for each example.

実施例として、図4に示すような表面研磨装置14を使用する。固定台38の上面に被研磨材30を吸着固定する。厚さ80μm、直径300mmのシリコンウエハーである。この上面に表面研磨板12を押しつけ、表面研磨板12を矢印40の方向に回転駆動して研磨する。表面研磨板12はポーラスセラミック板に平均粒径が0.65〜0.89nmのダイヤモンド砥粒を混入させて焼結したものである。この表面研磨板12に、セリア砥粒を混入した液体を含浸させた。セリア砥粒の平均粒径は2μmである。増粘剤としての液体には寒天を使用した。このゲル化開始温度は摂氏40度である。なお、厚さ50μmのシリコンウエハーについても、同様の実験を行った。   As an example, a surface polishing apparatus 14 as shown in FIG. 4 is used. The material to be polished 30 is adsorbed and fixed to the upper surface of the fixing table 38. It is a silicon wafer having a thickness of 80 μm and a diameter of 300 mm. The surface polishing plate 12 is pressed against the upper surface, and the surface polishing plate 12 is driven to rotate in the direction of the arrow 40 for polishing. The surface polishing plate 12 is a porous ceramic plate which is sintered by mixing diamond abrasive grains having an average particle size of 0.65 to 0.89 nm. The surface polishing plate 12 was impregnated with a liquid mixed with ceria abrasive grains. The average particle size of the ceria abrasive grains is 2 μm. Agar was used as the liquid as a thickener. The gelation start temperature is 40 degrees Celsius. The same experiment was conducted on a 50 μm thick silicon wafer.

比較例1Comparative Example 1

比較例として、図5に示すような装置を使用する。ホルダ42の下面にシリコンウエハー36を吸着固定する。回転台48の上面には、ポリシングクロス46が固定されている。ポリシングクロス46にスラリー44を滴下する。回転台48を矢印50の方向に回転駆動して、シリコンウエハー36を研磨する。シリコンウエハー36は、実施例1で使用したものと同一の形状のシリコンウエハーである。スラリー44には、平均粒径が0.65〜0.89nmのダイヤモンド砥粒を混入させた。研磨時間はいずれも同じ2分間とした。   As a comparative example, an apparatus as shown in FIG. 5 is used. A silicon wafer 36 is fixed to the lower surface of the holder 42 by suction. A polishing cloth 46 is fixed to the upper surface of the turntable 48. The slurry 44 is dropped on the polishing cloth 46. The turntable 48 is rotationally driven in the direction of arrow 50 to polish the silicon wafer 36. The silicon wafer 36 is a silicon wafer having the same shape as that used in the first embodiment. The slurry 44 was mixed with diamond abrasive grains having an average particle diameter of 0.65 to 0.89 nm. The polishing time was the same for 2 minutes.

図6により、厚さ80μmのシリコンウエハーについてみると、実施例1の装置では、シリコンウエハーのどの部分もほぼ同程度の強度に均一に研磨できたことが分かる。一方、比較例の場合には、シリコンウエハーの場所による強度のばらつきが大きく、全面が均一に鏡面研磨されていないように見える。図7により、厚さ50μmのシリコンウエハーについてみると、実施例1の装置では、厚さ80μmのものよりもばらつきが大きいが、強度は同等程度であって、良好に研磨できたことが分かる。一方、比較例の場合には、一部で強度が不十分な部分が生じている。   FIG. 6 shows that when the silicon wafer having a thickness of 80 μm is observed, in the apparatus of Example 1, any part of the silicon wafer can be uniformly polished to substantially the same strength. On the other hand, in the case of the comparative example, the intensity varies greatly depending on the location of the silicon wafer, and it seems that the entire surface is not mirror-polished uniformly. As can be seen from FIG. 7, when the silicon wafer having a thickness of 50 μm is observed, the apparatus of Example 1 has a larger variation than that of the thickness of 80 μm, but has the same strength and can be polished well. On the other hand, in the case of the comparative example, a part with insufficient strength occurs.

図8で、研磨後の表面粗さを比較してみる。これは、厚さ50μmのシリコンウエハーについて検査をした結果である。実施例1のものと比べて、比較例のものは、中心付近の表面粗さが実施例1のものよりも粗いことが分かる。これは、図7の結果と良く整合する。以上の結果、本発明による表面研磨板を使用した装置は、従来よりも短時間で良好な鏡面研磨ができることが実証された。なお、比較例の場合、さらに長時間研磨を続行することにより、目的とする鏡面研磨が実現でき、目的とする強度が得られることはいうまでもない。   FIG. 8 compares the surface roughness after polishing. This is a result of inspection of a silicon wafer having a thickness of 50 μm. It can be seen that the surface roughness in the vicinity of the center of the comparative example is rougher than that of Example 1 compared to that of Example 1. This is in good agreement with the results of FIG. As a result, it was demonstrated that the apparatus using the surface polishing plate according to the present invention can perform better mirror polishing in a shorter time than before. In the case of the comparative example, it goes without saying that the target mirror polishing can be realized and the target strength can be obtained by continuing the polishing for a longer time.

図7を用いて、目詰まり防止効果を説明する。図4に示した装置により、上記の実施例1の表面研磨板を使用して乾式でシリコンウエハ36を2分間研磨したときと、ダイヤモンド砥粒のみを使用して同じ時間研磨したときを比較した。実施例1の表面研磨板を使用したとき、矢印40方向の回転トルクの変化は比較的小さい。目詰まりが防止されて研磨性能が大きく変化しないからである。一方、ダイヤモンド砥粒のみを使用したときは、目詰まりが進んで研磨能力が低下し、だんだん回転トルクが小さくなっている。即ち、本発明の表面研磨板は、目詰まり防止機能がきわめて優れていることが実証された。   The clogging prevention effect will be described with reference to FIG. When the silicon wafer 36 was polished by the dry polishing method using the surface polishing plate of Example 1 above for 2 minutes with the apparatus shown in FIG. 4 was compared with the case where the polishing was performed for the same time using only diamond abrasive grains. . When the surface polishing plate of Example 1 is used, the change in rotational torque in the direction of arrow 40 is relatively small. This is because clogging is prevented and the polishing performance does not change significantly. On the other hand, when only diamond abrasive grains are used, clogging progresses and the polishing ability decreases, and the rotational torque gradually decreases. That is, it was demonstrated that the surface polishing plate of the present invention has an extremely excellent clogging prevention function.

12 表面研磨板
14 表面研磨装置
16 多孔質板
18 ダイヤモンド砥粒
20 一方の面
22 他方の面
24 連続気泡
26 液体
28 化学研磨剤
30 被研磨材
32 作用面
36 シリコンウエハ
38 固定台
40 矢印
42 ホルダ
44 スラリー
46 ポリシングクロス
48 回転台
50 矢印
DESCRIPTION OF SYMBOLS 12 Surface polishing plate 14 Surface polishing apparatus 16 Porous board 18 Diamond abrasive grain 20 One surface 22 The other surface 24 Open-cell 26 Liquid 28 Chemical abrasive | polishing agent 30 To-be-polished material 32 Working surface 36 Silicon wafer 38 Fixing stand 40 Arrow 42 Holder 44 Slurry 46 Polishing cloth 48 Turntable 50 Arrow

Claims (4)

硬くて機械的に鋭い外面を持つ第1の砥粒を全体に分散させて埋め込んで固化され、一方の面から他方の面に通じる多数の連続気泡を有する多孔質板に、
室温で前記多孔質板の前記一方の面から他方の面に向かって重力で自然流下しない程度の粘性を持つ液体であって、被研磨材の作用面を機械的及び化学的に研磨する第2の砥粒を混入したものを、前記連続気泡中に含浸させており、
前記液体は、前記被研磨材を研磨するときに発生する熱もしくは外部から供給される熱により軟化して流動性が高まり、前記第2の砥粒とともに、前記被研磨材の作用面に流れ出る液体であって、
前記第2の砥粒の粒径は、前記第1の砥粒の粒径以上のものであることを特徴とする表面研磨板。
A first abrasive grain having a hard and mechanically sharp outer surface is dispersed and embedded throughout to be solidified, and a porous plate having a large number of open cells from one surface to the other surface,
A liquid having a viscosity that does not naturally flow down from one surface of the porous plate to the other surface of the porous plate at room temperature, and mechanically and chemically polishes the working surface of the material to be polished. Impregnated with the above-mentioned continuous bubbles,
The liquid is softened by heat generated when the material to be polished is polished or heat supplied from the outside to increase fluidity, and the liquid flows out to the work surface of the material to be polished together with the second abrasive grains. Because
The surface polishing plate, wherein the particle size of the second abrasive grains is greater than or equal to the particle size of the first abrasive grains.
硬くて機械的に鋭い外面を持つ第1の砥粒を全体に分散させて埋め込んで固化され、一方の面から他方の面に通じる多数の連続気泡を有する多孔質板を被研磨材の作用面に押しつけて、前記被研磨材を前記第1の砥粒で研磨する装置と、
室温で前記多孔質板の前記一方の面から他方の面に向かって重力で自然流下しない程度の粘性を持つ液体であって、前記第1の砥粒の粒径以上の粒径を有し被研磨材の作用面を機械的及び化学的に研磨する第2の砥粒を混入したものを、前記連続気泡中に含浸させた状態で、前記被研磨材を研磨するときに発生する熱もしくは外部から供給される熱により前記液体を軟化させて流動性を高め、前記第2の砥粒とともに、前記被研磨材の作用面に流れ出させて、前記被研磨材の作用面を化学的に研磨する装置とを備えたことを特徴とする表面研磨装置。
The first abrasive grains having a hard and mechanically sharp outer surface are dispersed and embedded throughout to form a porous plate having a large number of open cells extending from one surface to the other surface. An apparatus for polishing the material to be polished with the first abrasive grains,
A liquid having a viscosity that does not naturally flow down from one surface of the porous plate to the other surface of the porous plate at room temperature, and has a particle size equal to or larger than the particle size of the first abrasive grain. Heat generated when the material to be polished is polished while the continuous bubbles are impregnated with second abrasive grains that mechanically and chemically polish the working surface of the abrasive. The liquid is softened by the heat supplied from the surface to improve the fluidity, and flows together with the second abrasive grains onto the working surface of the material to be polished, thereby chemically polishing the working surface of the material to be polished. A surface polishing apparatus comprising the apparatus.
硬くて機械的に鋭い外面を持つ第1の砥粒を全体に分散させて埋め込んで固化され、一方の面から他方の面に通じる多数の連続気泡を有する多孔質板を被研磨材の作用面に押しつけて、前記被研磨材を前記第1の砥粒で研磨するとともに、
室温で前記多孔質板の前記一方の面から他方の面に向かって重力で自然流下しない程度の粘性を持つ液体であって、前記第1の砥粒の粒径以上の粒径を有し前記被研磨材の作用面を機械的及び化学的に研磨する第2の砥粒を混入したものを、前記連続気泡中に含浸させ、
前記被研磨材を研磨するときに発生する熱もしくは外部から供給される熱により前記液体を軟化させて流動性を高め、前記第2の砥粒とともに、前記被研磨材の作用面に流れ出させて、前記被研磨材の作用面を化学的に研磨することを特徴とする表面研磨方法。
The first abrasive grains having a hard and mechanically sharp outer surface are dispersed and embedded throughout to form a porous plate having a large number of open cells extending from one surface to the other surface. And polishing the material to be polished with the first abrasive grains,
A liquid having a viscosity that does not naturally flow down from one surface of the porous plate to the other surface of the porous plate at room temperature, and has a particle size equal to or larger than the particle size of the first abrasive grain. What is mixed with the second abrasive grains for mechanically and chemically polishing the working surface of the material to be polished is impregnated in the open cell,
The liquid is softened by heat generated when the material to be polished or heat supplied from the outside is softened to increase fluidity, and flowed to the working surface of the material to be polished together with the second abrasive grains. A surface polishing method comprising chemically polishing a working surface of the material to be polished.
請求項3に記載の表面研磨方法であって、
前記被研磨材の作用面に流れ出させた前記第2の砥粒により、前記被研磨材の作用面を化学的に研磨するとともに、前記多孔質板の他方の面及びその他方の面に付着した異物と化学的に反応させて、前記多孔質板の他方の面の目詰まりを防止することを特徴とする表面研磨方法。
The surface polishing method according to claim 3,
The second abrasive grains that have flowed out to the working surface of the material to be polished chemically polish the working surface of the material to be polished and adhere to the other surface and the other surface of the porous plate. A surface polishing method characterized in that clogging of the other surface of the porous plate is prevented by chemically reacting with a foreign substance.
JP2012116236A 2012-05-22 2012-05-22 Surface polishing plate Pending JP2013240867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012116236A JP2013240867A (en) 2012-05-22 2012-05-22 Surface polishing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012116236A JP2013240867A (en) 2012-05-22 2012-05-22 Surface polishing plate

Publications (1)

Publication Number Publication Date
JP2013240867A true JP2013240867A (en) 2013-12-05

Family

ID=49842276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012116236A Pending JP2013240867A (en) 2012-05-22 2012-05-22 Surface polishing plate

Country Status (1)

Country Link
JP (1) JP2013240867A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114025916A (en) * 2019-07-02 2022-02-08 株式会社东京钻石工具制作所 Synthetic grindstone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114025916A (en) * 2019-07-02 2022-02-08 株式会社东京钻石工具制作所 Synthetic grindstone

Similar Documents

Publication Publication Date Title
TWI464796B (en) Method for the double side polishing of a semiconductor wafer
KR101783406B1 (en) An abrasive pad and manufacturing method thereof
JP2001047357A (en) Polishing pad used for chemical-mechanical polishing of board with slurry containing abrasive particles
TW200817136A (en) Compressible abrasive article
TW200740973A (en) Adjuvant for CMP slurry
JP5309692B2 (en) Polishing method of silicon wafer
JP2005007520A (en) Abrasive pad, manufacturing method thereof, and grinding method thereof
TWI659093B (en) Honing processing method of GaN single crystal material
CN204748298U (en) Polishing system and polishing pad assembly
JP5997235B2 (en) Composite abrasive, manufacturing method thereof, polishing method and polishing apparatus
WO2017146006A1 (en) Polishing method and polishing pad
JP2017148920A (en) Polishing method
JP2013240867A (en) Surface polishing plate
TW201805401A (en) Polishing body and manufacturing method therefor
JP4688456B2 (en) Chemical mechanical polishing equipment
JP2015165001A (en) Abrasive grains, manufacturing method thereof, polishing method, polishing device, and slurry
JP6054341B2 (en) Abrasive grains, manufacturing method thereof, polishing method, polishing member and slurry
JP2008013716A (en) Composite particle, method for producing the same and polishing liquid
JP2015207658A (en) Method and device of polishing disc-like semiconductor wafer edge part
JPH1126404A (en) Polishing apparatus
JP2010094806A (en) Surface polishing method, surface polishing device and surface polishing plate
JP5919592B1 (en) Polishing equipment
JPH1148235A (en) Method for processing ceramic base sheet and supporting sheet for processing ceramic base sheet
JP6273139B2 (en) Polishing pad
JP3906165B2 (en) Cutting edge polishing method using electric abrasive grains, and manufacturing method of fine parts having cutting edge