JP2013240224A - Built-in magnetization method of permanent magnet type motor - Google Patents

Built-in magnetization method of permanent magnet type motor Download PDF

Info

Publication number
JP2013240224A
JP2013240224A JP2012112648A JP2012112648A JP2013240224A JP 2013240224 A JP2013240224 A JP 2013240224A JP 2012112648 A JP2012112648 A JP 2012112648A JP 2012112648 A JP2012112648 A JP 2012112648A JP 2013240224 A JP2013240224 A JP 2013240224A
Authority
JP
Japan
Prior art keywords
shaft
rotor
built
hole
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012112648A
Other languages
Japanese (ja)
Other versions
JP5631358B2 (en
Inventor
Naohiro Oketani
直弘 桶谷
Koji Yabe
浩二 矢部
Kazuhiko Baba
和彦 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012112648A priority Critical patent/JP5631358B2/en
Publication of JP2013240224A publication Critical patent/JP2013240224A/en
Application granted granted Critical
Publication of JP5631358B2 publication Critical patent/JP5631358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a built-in magnetization method of a permanent magnet type motor which can reduce damage on an insulating film of a coil surface and facilitate temperature management in built-in magnetization in which a magnetization current is reduced by utilizing a phenomenon in which a saturation magnetization magnetic filed is reduced when a rare earth magnet is at the high temperature.SOLUTION: In a built-in magnetization method of a permanent magnet type motor which includes: a rotor 1 having a shaft 5 which is rotatably supported and a plurality of rare earth magnets 6 on an outer peripheral side; and a stator 2 arranged so as to oppose to the outer side of the rotor 1 with a predetermined gap 20 and having a coil 11, a through hole 12 in a shaft direction is provided in the shaft 5 in advance, the rotor 1 is heated by circulating a heat medium from one end of the through hole 12 to the other end in a motor assembling process and magnetization is made by flowing a current to the coil 11 in the state where the rare earth magnets 6 are at the temperature higher than the room temperature.

Description

本発明は、永久磁石形モータの組込着磁方法に関する。   The present invention relates to a built-in magnetization method for a permanent magnet type motor.

近年、希土類磁石の高性能化が急速に進み、従来よりも高磁力・高保磁力の磁石が次々と開発され登場している。モータの高性能化にはこれらの磁石の採用が不可欠であるが、モータの外で予め着磁した磁石片を界磁鉄心の内部や表面に組み込む時にその高磁力のために取扱性に難があり、生産性を低下させている。この問題を解消する手段として、磁石を未着磁の状態で界磁鉄心に組み込んでおき、ロータとステータを組み立てた時に電機子巻線に大電流(着磁電流)を流すことで磁石を着磁する、いわゆる組込着磁が有効である。   In recent years, the performance of rare earth magnets has advanced rapidly, and magnets with higher magnetic coercive force and higher coercive force have been developed and appeared one after another. Adoption of these magnets is indispensable for improving the performance of motors. However, when a magnet piece pre-magnetized outside the motor is incorporated in or on the surface of the field core, it is difficult to handle due to its high magnetic force. Yes, productivity is reduced. As a means to solve this problem, the magnet is incorporated in the field core in an unmagnetized state, and the magnet is attached by passing a large current (magnetization current) through the armature winding when the rotor and stator are assembled. So-called built-in magnetization that magnetizes is effective.

しかし希土類磁石の高磁力化・高保磁力化が進むのに伴って必要な着磁電流も増大傾向にあり、着磁電源の大型化や、電機子巻線の絶縁皮膜へのダメージ増大といった課題がある。この課題に対して、希土類磁石が高温で飽和着磁磁場が低下することを利用して着磁電流の低減を図る組込着磁方法が開示されている。   However, as the magnetism of rare earth magnets increases and the coercivity increases, the required magnetizing current is also increasing, and there are problems such as increasing the size of the magnetizing power supply and increasing damage to the insulation film of the armature winding. is there. In order to solve this problem, a built-in magnetization method that reduces the magnetization current by utilizing the fact that the saturation magnetization magnetic field of a rare earth magnet decreases at a high temperature is disclosed.

特許文献1では、請求項2にモータ内部(実施例の説明によればフレームの内側と解釈できる)の乾燥工程を利用して永久磁石が高温の状態で組込着磁を行う方法が開示され、請求項3にモータ外周(実施例の説明によればフレームの外側表面と解釈できる)の焼付け塗装工程を利用して永久磁石が高温の状態で組込着磁を行う方法が開示されている。   In Patent Document 1, Claim 2 discloses a method of performing built-in magnetization in a state where the permanent magnet is at a high temperature using a drying process inside the motor (which can be interpreted as the inside of the frame according to the description of the embodiment). In claim 3, a method is disclosed in which built-in magnetization is performed in a state where the permanent magnet is at a high temperature by using a baking coating process on the outer periphery of the motor (which can be interpreted as the outer surface of the frame according to the description of the embodiment). .

特許文献2では、請求項1にロータとシャフトを焼嵌めにより固定する時を利用して高温の状態で組込着磁を行う方法が開示されている。   Patent Document 2 discloses a method for performing built-in magnetization in a high-temperature state using the time when the rotor and the shaft are fixed by shrinkage fitting.

特開平6−178507号公報JP-A-6-178507 特開平6−315252号公報JP-A-6-315252

しかし特許文献1に記載の従来技術では、永久磁石が組み込まれたロータだけでなく、着磁時に高温状態にする必要のないステータまでもが加熱される。ステータ巻線が高温になると巻線抵抗が上昇するため所定の着磁電流を流すのに必要な電圧が高くなり、高温かつ高電圧のために巻線表面の絶縁皮膜に与えるダメージが増大するという問題がある。また、乾燥工程あるいは焼付け塗装工程の直後に製造ラインのトラブル等で一旦モータの温度が低下した場合には、再度モータ全体を別途加熱する必要が生じるといった問題がある。また、そもそも乾燥工程や焼付け塗装工程が無いモータに対しては適用することが困難である。   However, in the prior art described in Patent Document 1, not only a rotor in which a permanent magnet is incorporated, but also a stator that does not need to be brought to a high temperature state during magnetization is heated. When the stator winding becomes hot, the winding resistance rises, so the voltage required to pass a predetermined magnetizing current increases, and the damage to the insulation film on the winding surface increases due to the high temperature and high voltage. There's a problem. Further, when the temperature of the motor once decreases due to a trouble in the production line immediately after the drying process or the baking coating process, there is a problem that the entire motor needs to be separately heated again. In addition, it is difficult to apply to motors that do not have a drying process or baking coating process.

また、特許文献2に記載の従来技術では、温度管理が困難であるという問題がある。ロータは放熱により温度低下する一方であり、その速度は雰囲気の温度・湿度等の環境により左右される。一度適温のタイミングを逃すと同じ温度状態に再現することは困難である。   Further, the conventional technique described in Patent Document 2 has a problem that temperature management is difficult. The temperature of the rotor is decreasing due to heat dissipation, and the speed depends on the environment such as the temperature and humidity of the atmosphere. Once the optimal temperature is missed, it is difficult to reproduce the same temperature state.

この発明は、上記に鑑みてなされたもので、希土類磁石が高温で飽和着磁磁場が低下することを利用して着磁電流の低減を図る組込着磁において、巻線表面の絶縁皮膜に与えるダメージを軽減し、また温度管理を容易にする永久磁石形モータの組込着磁方法を提供することを目的とする。   The present invention has been made in view of the above, and in the built-in magnetization for reducing the magnetizing current by utilizing the fact that the saturation magnetization magnetic field of a rare earth magnet is lowered at a high temperature, the insulating film on the surface of the winding is applied. An object of the present invention is to provide a built-in magnetizing method for a permanent magnet motor that reduces the damage given and makes temperature management easy.

上述した課題を解決し、目的を達成するために、本発明に係る永久磁石形モータの組込着磁方法は、環状のロータ鉄心とこのロータ鉄心の外周側に設けられた複数の磁石挿入穴に装着された複数の希土類磁石と前記ロータ鉄心の中央の穴に嵌合し回転自在に支持されたシャフトとを有するロータと、このロータの外側で空隙を隔てて対向して配置された環状のステータ鉄心とこのステータ鉄心に巻装された巻線とを有するステータと、前記ロータおよび前記ステータを収容するとともに前記シャフトを軸支するフレームとを備えた永久磁石形モータの組込着磁方法であって、前記シャフトに軸方向の貫通穴を予め設けておき、前記フレームの内側に前記ステータを固定し、前記ステータの内側に前記ロータを配置して前記ロータを前記フレームに組付けるステップと、前記貫通穴に熱媒を流通させて前記ロータを加熱するステップと、前記希土類磁石が室温よりも高温の所定の温度に達した状態で、前記巻線に電流を流すことにより前記希土類磁石を着磁するステップと、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, a built-in magnetizing method for a permanent magnet type motor according to the present invention includes an annular rotor core and a plurality of magnet insertion holes provided on the outer peripheral side of the rotor core. A rotor having a plurality of rare earth magnets mounted on the shaft and a shaft that is rotatably supported by being fitted into a central hole of the rotor core, and an annular ring disposed opposite to the outside of the rotor with a gap. An embedded magnetizing method for a permanent magnet type motor comprising a stator having a stator core and a winding wound around the stator core, and a frame for accommodating the rotor and the stator and supporting the shaft. The shaft is provided with an axial through hole in advance, the stator is fixed inside the frame, the rotor is arranged inside the stator, and the rotor is placed in the frame. A step of heating the rotor by circulating a heat medium through the through hole, and passing a current through the windings when the rare earth magnet has reached a predetermined temperature higher than room temperature. And magnetizing the rare earth magnet.

この発明によれば、ロータのみを加熱することにより、巻線表面の絶縁皮膜に与えるダメージを軽減でき、また温度調整は熱媒の加熱冷却および流量を制御することで実施できるので、温度管理も容易になるという効果を有する。   According to the present invention, by heating only the rotor, damage to the insulating film on the surface of the winding can be reduced, and temperature adjustment can be performed by controlling the heating and cooling of the heating medium and the flow rate. It has the effect of becoming easy.

図1は、実施の形態1に係る永久磁石形モータの概略構成を示す断面図である。1 is a cross-sectional view showing a schematic configuration of a permanent magnet motor according to Embodiment 1. FIG. 図2は、実施の形態1に係る永久磁石形モータの組込着磁方法を示すフローチャートである。FIG. 2 is a flowchart showing a built-in magnetization method of the permanent magnet motor according to the first embodiment. 図3は、実施の形態2に係る永久磁石形モータの概略構成を示す断面図である。FIG. 3 is a cross-sectional view showing a schematic configuration of the permanent magnet motor according to the second embodiment. 図4は、実施の形態3におけるロータの横断面構成を示した図である。FIG. 4 is a diagram showing a cross-sectional configuration of the rotor in the third embodiment. 図5は、実施の形態4において、シャフトのロータ鉄心における嵌合部の接触断面を微視的に見たときのイメージを示す図である。FIG. 5 is a diagram showing an image when the contact cross section of the fitting portion in the rotor iron core of the shaft is viewed microscopically in the fourth embodiment.

以下に、本発明に係る永久磁石形モータの組込着磁方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a built-in magnetizing method for a permanent magnet motor according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本実施の形態に係る永久磁石形モータの概略構成を示す断面図である。図1に示すように、本実施の形態に係る永久磁石形モータ(以下、単に「モータ」という。)は、ロータ1とステータ2とフレーム3とを備えている。なお、図1では、着磁時のモータの構成を示しており、モータはロータ1とステータ2とフレーム3で構成される状態に組み立てられている。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing a schematic configuration of a permanent magnet type motor according to the present embodiment. As shown in FIG. 1, the permanent magnet motor according to the present embodiment (hereinafter simply referred to as “motor”) includes a rotor 1, a stator 2, and a frame 3. FIG. 1 shows the configuration of the motor at the time of magnetization, and the motor is assembled in a state constituted by the rotor 1, the stator 2, and the frame 3.

ロータ1は、ロータ鉄心4とシャフト5と希土類磁石6と端板7とを備えて構成される。ロータ鉄心4は、例えば所定の形状に打ち抜かれた複数の電磁鋼板を積層固着して形成される。ロータ鉄心4の形状は、例えば略円環形状である。ロータ鉄心4は、外周側にて周方向に例えば略等間隔で極数分設けられた磁石挿入穴30を有している。各磁石挿入穴30は、それぞれ軸方向に延伸し、内部に希土類磁石6が挿入され装着されている。ロータ鉄心4には、軸方向の両端面に希土類磁石6の軸方向への抜け出しを防止するための端板7がそれぞれ取り付けられている。ロータ鉄心4の中央に設けられたシャフト嵌合穴にはシャフト5が嵌合され、シャフト5はベアリング8を介してフレーム3に回転自在に支持される。ベアリング8の座面には予圧をかけるためのウェーブワッシャ9が敷かれる。シャフト5は例えば断面円形であり、シャフト嵌合穴もこれに応じた円形である。   The rotor 1 includes a rotor iron core 4, a shaft 5, a rare earth magnet 6, and an end plate 7. The rotor core 4 is formed, for example, by laminating and fixing a plurality of electromagnetic steel plates punched into a predetermined shape. The shape of the rotor core 4 is, for example, a substantially annular shape. The rotor core 4 has magnet insertion holes 30 provided on the outer peripheral side in the circumferential direction, for example, by the number of poles at substantially equal intervals. Each magnet insertion hole 30 extends in the axial direction, and the rare earth magnet 6 is inserted and mounted therein. End plates 7 for preventing the rare earth magnet 6 from coming off in the axial direction are attached to the rotor core 4 at both end surfaces in the axial direction. A shaft 5 is fitted into a shaft fitting hole provided in the center of the rotor core 4, and the shaft 5 is rotatably supported by the frame 3 via a bearing 8. A wave washer 9 for preloading is laid on the bearing surface of the bearing 8. The shaft 5 has a circular cross section, for example, and the shaft fitting hole has a corresponding circular shape.

ステータ2は、ステータ鉄心10と巻線11とを備えて構成される。ステータ鉄心10は、例えば所定の形状に打ち抜かれた複数の電磁鋼板を積層固着して形成される。ステータ鉄心10の形状は、例えば略円環形状である。ステータ鉄心10には、内周側にて周方向に例えば略等間隔で複数のティース(図示しない)が設けられており、これらのティースにはインシュレータ(図示しない)を介して巻線11が巻装される。ステータ2は、例えば焼嵌めなどの方法でフレーム3の内側に固定され、ロータ1の外側に所定の空隙20を隔てて対向して設置される。シャフト5には、軸方向の貫通穴12が設けられる。   The stator 2 includes a stator iron core 10 and a winding 11. The stator core 10 is formed, for example, by laminating and fixing a plurality of electromagnetic steel plates punched into a predetermined shape. The shape of the stator core 10 is, for example, a substantially annular shape. The stator core 10 is provided with a plurality of teeth (not shown), for example, at substantially equal intervals in the circumferential direction on the inner peripheral side, and a winding 11 is wound around these teeth via an insulator (not shown). Be dressed. The stator 2 is fixed to the inner side of the frame 3 by a method such as shrink fitting, for example, and is installed facing the outer side of the rotor 1 with a predetermined gap 20 therebetween. The shaft 5 is provided with an axial through hole 12.

フレーム3は、ロータ1およびステータ2を収容する。フレーム3は、例えば略円筒形状であり、その軸方向の一端は開口して鍔状を成し、他端には底が設けられているがこの底にはシャフト5を貫通させる穴22が設けられている。つまり、本実施の形態では、シャフト5はフレーム3を軸方向に貫通する態様でフレーム3に軸支されている。   The frame 3 accommodates the rotor 1 and the stator 2. The frame 3 has, for example, a substantially cylindrical shape, and one end in the axial direction is opened to form a bowl shape, and the other end is provided with a bottom, but the bottom is provided with a hole 22 through which the shaft 5 passes. It has been. That is, in the present embodiment, the shaft 5 is pivotally supported by the frame 3 so as to penetrate the frame 3 in the axial direction.

次に、図1および図2を参照して、本実施の形態に係る永久磁石形モータの組込着磁方法について説明する。図2は、本実施の形態に係る永久磁石形モータの組込着磁方法を示すフローチャートである。   Next, a built-in magnetization method for the permanent magnet motor according to the present embodiment will be described with reference to FIGS. FIG. 2 is a flowchart showing a built-in magnetization method for the permanent magnet motor according to the present embodiment.

ステータ2は、例えば焼嵌めなどの方法でフレーム3の内側に固定される(S1)。続いて、ステータ2の内側にロータ1が配置されてフレーム3に組付けられる(S2)。なお、シャフト5には軸方向の貫通穴12を予め設けておく。この状態で、モータは図1に示す構成となる。   The stator 2 is fixed inside the frame 3 by a method such as shrink fitting (S1). Subsequently, the rotor 1 is arranged inside the stator 2 and assembled to the frame 3 (S2). The shaft 5 is provided with an axial through hole 12 in advance. In this state, the motor has the configuration shown in FIG.

次に、シャフト5に設けられた貫通穴12の両端12a,12bにヒータ等の熱源およびポンプとつながったチューブ(図示しない)が接続され(S3)、貫通穴12に熱媒が流される(S4)。なお、図1では、熱媒の流れを実線矢印で示しており、熱媒は例えば貫通穴12の一端12aから他端12bへ一方向に流れる。貫通穴12の内部を熱媒が流通すると、シャフト5、ロータ鉄心4、希土類磁石6の順に熱が伝わり、希土類磁石6の温度が上昇する。なお、図1では、伝熱方向を点線矢印で示している。希土類磁石6の温度は、端板7に小さなのぞき穴を設けておいて直接測定しても良いし、代わりに端板7の表面の温度を測定しても良い。測定温度を基に熱媒の加熱冷却および流量を制御することで希土類磁石6を所定の温度に到達させる。希土類磁石6の温度は、少なくとも室温よりも高温に設定される。   Next, a tube (not shown) connected to a heat source such as a heater and a pump (not shown) is connected to both ends 12a and 12b of the through hole 12 provided in the shaft 5 (S3), and a heat medium is caused to flow through the through hole 12 (S4). ). In FIG. 1, the flow of the heat medium is indicated by solid arrows, and the heat medium flows in one direction from one end 12 a of the through hole 12 to the other end 12 b, for example. When the heat medium flows through the through hole 12, heat is transmitted in the order of the shaft 5, the rotor core 4, and the rare earth magnet 6, and the temperature of the rare earth magnet 6 rises. In FIG. 1, the heat transfer direction is indicated by a dotted arrow. The temperature of the rare earth magnet 6 may be measured directly by providing a small peephole in the end plate 7, or alternatively, the temperature of the surface of the end plate 7 may be measured. The rare earth magnet 6 is made to reach a predetermined temperature by controlling the heating and cooling of the heat medium and the flow rate based on the measured temperature. The temperature of the rare earth magnet 6 is set to be higher than at least room temperature.

希土類磁石6が所定の温度に到達すれば、ロータ1を所定の角度位置に固定し、巻線11のリード端末を着磁電源に接続して着磁電流を通電する(S5)。モータ仕様により複数回の着磁が必要な場合はこの工程を複数回繰り返す。   When the rare earth magnet 6 reaches a predetermined temperature, the rotor 1 is fixed at a predetermined angular position, the lead terminal of the winding 11 is connected to a magnetizing power source, and a magnetizing current is applied (S5). If multiple times of magnetization are required depending on the motor specifications, this process is repeated multiple times.

着磁が完了すれば、貫通穴12からチューブを取り外し(S6)、モータの残りの組み立てを行う(S7)。   When the magnetization is completed, the tube is removed from the through hole 12 (S6), and the rest of the motor is assembled (S7).

なお、熱媒に利用する物質としては、例えば、水、油、空気、または水蒸気が考えられるが、シャフト5の錆発生の防止および熱の伝導効率を考慮すると油が適し、取扱性を考慮すると空気が適する。   In addition, as a substance utilized for a heat medium, water, oil, air, or water vapor | steam can be considered, for example, but oil is suitable in consideration of prevention of rust generation of the shaft 5 and heat conduction efficiency, and handling property is considered. Air is suitable.

以上の方法により、希土類磁石6が高温で飽和着磁磁場が低下することを利用して着磁電流の低減を図る組込着磁において、ステータ2を加熱することなく、ロータ1だけを加熱できるので、巻線11の表面の絶縁皮膜に与えるダメージを軽減することができる。また、温度調整は熱媒の加熱冷却および流量を制御することで実施できるので温度管理が容易である。   By the above method, only the rotor 1 can be heated without heating the stator 2 in the built-in magnetization for reducing the magnetizing current by utilizing the fact that the saturation magnetization magnetic field of the rare earth magnet 6 is lowered at a high temperature. Therefore, damage to the insulating film on the surface of the winding 11 can be reduced. Moreover, since temperature adjustment can be implemented by controlling the heating and cooling of the heat medium and the flow rate, temperature management is easy.

また、製造ラインのトラブル等で一旦ロータ1の温度が低下した場合でも、何度でも加熱のやり直しができる。   Moreover, even if the temperature of the rotor 1 is once lowered due to a trouble in the production line, the heating can be repeated again and again.

なお、厳密にはロータ1の外周表面から、空隙20、ステータ鉄心10、インシュレータ、巻線11の順に熱が伝わるため、巻線11の温度も上昇していくが、空気から成る空隙20および例えば樹脂や紙から成るインシュレータは伝熱性が悪いため、温度上昇の速度は大変遅く、その温度上昇は着磁工程では実質上問題とならない。   Strictly speaking, since heat is transferred from the outer peripheral surface of the rotor 1 in the order of the air gap 20, the stator core 10, the insulator, and the winding 11, the temperature of the winding 11 also rises. Insulators made of resin or paper have poor heat conductivity, and therefore the rate of temperature rise is very slow, and the temperature rise is not a problem in the magnetization process.

また、本実施の形態では、熱媒を通流させる単一の貫通穴12を設ける構成としたが、これを複数本設ける構成でもよい。   Moreover, in this Embodiment, although it was set as the structure which provides the single through-hole 12 which flows a heat medium, the structure which provides this in multiple numbers may be sufficient.

実施の形態2.
図3は、本実施の形態に係る永久磁石形モータの概略構成を示す断面図である。図3では、図1と同様に、着磁時のモータの構成を示しており、モータはロータ1とステータ2とフレーム3で構成される状態に組み立てられている。
Embodiment 2. FIG.
FIG. 3 is a cross-sectional view showing a schematic configuration of the permanent magnet motor according to the present embodiment. FIG. 3 shows the configuration of the motor at the time of magnetization, as in FIG. 1, and the motor is assembled in a state constituted by the rotor 1, the stator 2, and the frame 3.

図3に示すように、シャフト5には、軸方向の貫通穴13,14が予め設けられている。すなわち、シャフト5には互いに平行で軸方向に貫通する一対の貫通穴13,14が設けられている。シャフト5の一方の端の貫通穴13,14の口同士は、例えばU字状のパイプ15で接続されている。パイプ15の接続は例えばロウ付けなどの方法による。これにより、パイプ15は貫通穴13,14の口同士を密に接続する。   As shown in FIG. 3, the shaft 5 is provided with axial through holes 13 and 14 in advance. That is, the shaft 5 is provided with a pair of through holes 13 and 14 that are parallel to each other and penetrate in the axial direction. The mouths of the through holes 13 and 14 at one end of the shaft 5 are connected by, for example, a U-shaped pipe 15. The pipe 15 is connected by a method such as brazing. Thereby, the pipe 15 connects the mouths of the through holes 13 and 14 closely.

フレーム3は、例えば略円筒形状であり、その軸方向の一端は開口して鍔状を成し、他端には底が設けられている。本実施の形態では、実施の形態1と異なり、シャフト5の一端はフレーム3を貫通しない。すなわち、シャフト5のパイプ15が装着された側の端は、フレーム3の内側に存在し、その底面25と対向している。なお、本実施の形態のその他の構成については図1と同様であるので説明を省略する。   The frame 3 has, for example, a substantially cylindrical shape, and one end in the axial direction is opened to form a bowl shape, and the other end is provided with a bottom. In the present embodiment, unlike the first embodiment, one end of the shaft 5 does not penetrate the frame 3. That is, the end of the shaft 5 on the side where the pipe 15 is mounted is present inside the frame 3 and faces the bottom surface 25 thereof. The other configuration of the present embodiment is the same as that shown in FIG.

次に、本実施の形態に係る永久磁石形モータの組込着磁方法について説明する。この場合のフローチャートも図2と同様であるが、S3,S4の具体的内容が実施の形態1とは異なる。シャフト5には軸方向の貫通穴13,14を予め設けておき、ステータ2の焼嵌め(S1)、ロータ1の組付け(S2)を行う。この状態で、モータは図3に示す構成となる。次に、シャフト5に設けられた貫通穴13,14の一方を入口、他方を出口として、貫通穴13,14にヒータ等の熱源およびポンプとつながったチューブ(図示しない)がそれぞれ接続され、熱媒が流される。図示例では、例えば貫通穴13の一端13aを入口とし、貫通穴14の一端14aを出口としている。そして、貫通穴13の一端13aに接続されたチューブを介して流入した熱媒は、貫通穴13、パイプ15、および貫通穴14を流れた後、貫通穴14の一端14aに接続されたチューブを介して流出する。なお、図3では、熱媒の流れを実線矢印で示している。貫通穴13,14の内部を熱媒が流通すると、シャフト5、ロータ鉄心4、希土類磁石6の順に熱が伝わり、希土類磁石6の温度が上昇する。なお、図3では、伝熱方向を点線矢印で示している。希土類磁石6の温度は、端板7に小さなのぞき穴を設けておいて直接測定しても良いし、代わりに端板7の表面の温度を測定しても良い。測定温度を基に熱媒の加熱冷却および流量を制御することで希土類磁石6を所定の温度に到達させる。希土類磁石6の温度は、少なくとも室温よりも高温に設定される。以降の工程は、実施の形態1で説明した図2のS5〜S7と同様であるので省略する。   Next, a built-in magnetization method for the permanent magnet motor according to the present embodiment will be described. The flowchart in this case is the same as that in FIG. 2, but the specific contents of S3 and S4 are different from those of the first embodiment. The shaft 5 is provided with axial through holes 13 and 14 in advance, and the stator 2 is shrink fitted (S1) and the rotor 1 is assembled (S2). In this state, the motor has the configuration shown in FIG. Next, a tube (not shown) connected to a heat source such as a heater and a pump is connected to the through holes 13 and 14 with one of the through holes 13 and 14 provided in the shaft 5 as an inlet and the other as an outlet, respectively. The medium is washed away. In the illustrated example, for example, one end 13a of the through hole 13 is used as an inlet, and one end 14a of the through hole 14 is used as an outlet. And after the heat medium which flowed in via the tube connected to the one end 13a of the through-hole 13 flows through the through-hole 13, the pipe 15, and the through-hole 14, the tube connected to the one end 14a of the through-hole 14 is used. Spills through. In FIG. 3, the flow of the heat medium is indicated by solid arrows. When the heat medium flows through the through holes 13 and 14, heat is transmitted in the order of the shaft 5, the rotor core 4, and the rare earth magnet 6, and the temperature of the rare earth magnet 6 rises. In FIG. 3, the heat transfer direction is indicated by a dotted arrow. The temperature of the rare earth magnet 6 may be measured directly by providing a small peephole in the end plate 7, or alternatively, the temperature of the surface of the end plate 7 may be measured. The rare earth magnet 6 is made to reach a predetermined temperature by controlling the heating and cooling of the heat medium and the flow rate based on the measured temperature. The temperature of the rare earth magnet 6 is set to be higher than at least room temperature. The subsequent steps are the same as S5 to S7 in FIG.

このように、本実施の形態では、シャフト5に軸方向の貫通穴13,14を設け、貫通穴13の一端とこれと同じ側の貫通穴14の一端とをパイプ15で互いに密に接続し、貫通穴13,14内部に熱媒を通流させてロータ1のみを加熱するようにしたので、巻線11の表面の絶縁皮膜に与えるダメージを軽減することができる。また、温度調整は熱媒の加熱冷却および流量を制御することで実施できるので温度管理が容易である。   As described above, in the present embodiment, the shaft 5 is provided with the axial through holes 13 and 14, and one end of the through hole 13 and one end of the through hole 14 on the same side are closely connected to each other by the pipe 15. Since the heating medium is passed through the through holes 13 and 14 and only the rotor 1 is heated, damage to the insulating film on the surface of the winding 11 can be reduced. Moreover, since temperature adjustment can be implemented by controlling the heating and cooling of the heat medium and the flow rate, temperature management is easy.

さらに、本実施の形態によれば、シャフト5の一方の端がフレーム3の外に出せない場合でも熱媒を流通させることができる。   Further, according to the present embodiment, the heat medium can be circulated even when one end of the shaft 5 cannot be taken out of the frame 3.

なお、貫通穴13,14は複数対設けることもできる。本実施の形態のその他の構成、作用、および効果は実施の形態1と同様である。   A plurality of pairs of through holes 13 and 14 may be provided. Other configurations, operations, and effects of the present embodiment are the same as those of the first embodiment.

実施の形態3.
図4は、本実施の形態におけるロータの横断面構成を示した図である。シャフト5は、実施の形態1と同様に、軸方向の貫通穴12を有している。しかしながら、本実施の形態では、シャフト5の外形は、単純な円形ではなく、周方向に複数の凹凸16がある断面形状とする。また、シャフト嵌合穴の形状もシャフト5の外形と同じ形状である。
Embodiment 3 FIG.
FIG. 4 is a diagram showing a cross-sectional configuration of the rotor in the present embodiment. The shaft 5 has an axial through hole 12 as in the first embodiment. However, in the present embodiment, the outer shape of the shaft 5 is not a simple circle but a cross-sectional shape having a plurality of irregularities 16 in the circumferential direction. The shape of the shaft fitting hole is also the same shape as the outer shape of the shaft 5.

このような構成により、シャフト5とロータ鉄心4との接触面積が増えて伝熱性が向上することにより、希土類磁石6の昇温時間が短くなる。   With such a configuration, the contact area between the shaft 5 and the rotor core 4 is increased and the heat transfer is improved, so that the heating time of the rare earth magnet 6 is shortened.

なお、本実施の形態のその他の構成、作用、および効果は実施の形態1と同様である。また、実施の形態2に本実施の形態を適用することもできる。   Other configurations, operations, and effects of the present embodiment are the same as those of the first embodiment. Further, the present embodiment can be applied to the second embodiment.

実施の形態4.
図5は、シャフト5のロータ鉄心4における嵌合部の接触断面を微視的に見たときのイメージを示す図である。図5に示すように、シャフト5とロータ鉄心4のシャフト嵌合穴との嵌合部に熱伝導グリス17を塗布するとさらに良い。シャフト5とロータ鉄心4の表面には微視的には多くの凹凸18があるため、真の接触面積は見かけの接触面積に比べて大変小さい。熱伝導グリス17を塗布することで凹凸18同士の隙間19を埋めることができる。
Embodiment 4 FIG.
FIG. 5 is a diagram showing an image when the contact cross section of the fitting portion in the rotor core 4 of the shaft 5 is viewed microscopically. As shown in FIG. 5, it is better to apply thermal conductive grease 17 to the fitting portion between the shaft 5 and the shaft fitting hole of the rotor iron core 4. Since the surface of the shaft 5 and the rotor iron core 4 has many irregularities 18 microscopically, the true contact area is very small compared to the apparent contact area. By applying the heat conductive grease 17, the gap 19 between the irregularities 18 can be filled.

このような構成により、微視的に見たときのシャフト5とロータ鉄心4との凹凸18同士の隙間19が熱伝導グリス17で埋められて伝熱性が向上することにより、希土類磁石6の昇温時間がさらに短くなる。   With such a configuration, the gap 19 between the projections and recesses 18 of the shaft 5 and the rotor iron core 4 when viewed microscopically is filled with the heat conductive grease 17 to improve the heat transfer, thereby increasing the rare earth magnet 6. Warm time is even shorter.

なお、本実施の形態のその他の構成、作用、および効果は実施の形態1〜3と同様である。   In addition, the other structure of this Embodiment, an effect | action, and an effect are the same as that of Embodiment 1-3.

本発明は、永久磁石形モータの組込着磁方法、特に、組込着磁方法として好適である。   The present invention is suitable as a built-in magnetizing method for a permanent magnet motor, particularly as a built-in magnetizing method.

1 ロータ
2 ステータ
3 フレーム
4 ロータ鉄心
5 シャフト
6 希土類磁石
7 端板
8 ベアリング
9 ウェーブワッシャ
10 ステータ鉄心
11 巻線
12,13,14 貫通穴
15 パイプ
16,18 凹凸
17 熱伝導グリス
19 隙間
20 空隙
22 穴
25 底面
30 磁石挿入穴
DESCRIPTION OF SYMBOLS 1 Rotor 2 Stator 3 Frame 4 Rotor core 5 Shaft 6 Rare earth magnet 7 End plate 8 Bearing 9 Wave washer 10 Stator core 11 Winding 12, 13, 14 Through hole 15 Pipe 16, 18 Concavity and convexity 17 Heat conduction grease 19 Gap 20 Gap 22 Hole 25 Bottom 30 Magnet insertion hole

Claims (7)

環状のロータ鉄心とこのロータ鉄心の外周側に設けられた複数の磁石挿入穴に装着された複数の希土類磁石と前記ロータ鉄心のシャフト嵌合穴に嵌合し回転自在に支持されたシャフトとを有するロータと、このロータの外側で空隙を隔てて対向して配置された環状のステータ鉄心とこのステータ鉄心に巻装された巻線とを有するステータと、前記ロータおよび前記ステータを収容するとともに前記シャフトを軸支するフレームとを備えた永久磁石形モータの組込着磁方法であって、
前記シャフトに軸方向の貫通穴を予め設けておき、前記フレームの内側に前記ステータを固定し、前記ステータの内側に前記ロータを配置して前記ロータを前記フレームに組付けるステップと、
前記貫通穴に熱媒を流通させて前記ロータを加熱するステップと、
前記希土類磁石が室温よりも高温の所定の温度に達した状態で、前記巻線に電流を流すことにより前記希土類磁石を着磁するステップと、
を含むことを特徴とする永久磁石形モータの組込着磁方法。
An annular rotor core, a plurality of rare earth magnets mounted in a plurality of magnet insertion holes provided on the outer peripheral side of the rotor core, and a shaft that is rotatably supported by being fitted into the shaft fitting hole of the rotor core And a stator having an annular stator iron core disposed opposite to the outside of the rotor with a gap and a winding wound around the stator iron core; A built-in magnetization method of a permanent magnet type motor including a frame for supporting a shaft,
An axial through hole is provided in advance in the shaft, the stator is fixed inside the frame, the rotor is arranged inside the stator, and the rotor is assembled to the frame;
Circulating a heating medium through the through hole to heat the rotor;
Magnetizing the rare earth magnet by passing a current through the winding while the rare earth magnet has reached a predetermined temperature higher than room temperature;
A built-in magnetizing method for a permanent magnet motor.
前記貫通穴は前記シャフトを軸方向に貫通する単一の穴であり、
前記熱媒は、前記貫通穴の一端から他端へ一方向に流れることを特徴とする請求項1に記載の永久磁石形モータの組込着磁方法。
The through hole is a single hole that penetrates the shaft in the axial direction;
2. The built-in magnetizing method for a permanent magnet motor according to claim 1, wherein the heat medium flows in one direction from one end to the other end of the through hole.
前記シャフトは、前記フレームを貫通していることを特徴とする請求項2に記載の永久磁石形モータの組込着磁方法。   The permanent magnet motor built-in magnetization method according to claim 2, wherein the shaft passes through the frame. 前記貫通穴は前記シャフトを軸方向に貫通する一対の穴から成り、
前記シャフトの一端における前記一対の穴の口同士がパイプで接続され、
前記シャフトの他端における前記一対の穴の一方の口から流入した熱媒が、前記一対の穴の一方、前記パイプ、および前記一対の穴の他方を流れて、前記シャフトの他端における前記一対の穴の他方の口から流出することを特徴とする請求項1に記載の永久磁石形モータの組込着磁方法。
The through hole is composed of a pair of holes penetrating the shaft in the axial direction,
The mouths of the pair of holes at one end of the shaft are connected by a pipe,
The heat medium flowing in from one of the pair of holes at the other end of the shaft flows through one of the pair of holes, the pipe, and the other of the pair of holes, and the pair at the other end of the shaft. 2. The built-in magnetizing method for a permanent magnet motor according to claim 1, wherein the second magnet flows out from the other opening of the hole.
前記シャフトは、前記パイプが接続された側のその一端が前記フレーム内に配置されることを特徴とする請求項4に記載の永久磁石形モータの組込着磁方法。   5. The built-in magnetization method for a permanent magnet motor according to claim 4, wherein one end of the shaft on the side to which the pipe is connected is disposed in the frame. 前記シャフトの外形は、周方向に複数の凹凸を有する形状であることを特徴とする請求項1〜5のいずれか1項に記載の永久磁石形モータの組込着磁方法。   The built-in magnetization method for a permanent magnet motor according to any one of claims 1 to 5, wherein the outer shape of the shaft is a shape having a plurality of irregularities in the circumferential direction. 前記シャフトと前記ロータ鉄心のシャフト嵌合穴との嵌合部に熱伝導グリスが塗布されていることを特徴とする請求項1〜6のいずれか1項に記載の永久磁石形モータの組込着磁方法。   The permanent magnet motor according to any one of claims 1 to 6, wherein thermally conductive grease is applied to a fitting portion between the shaft and a shaft fitting hole of the rotor iron core. Magnetization method.
JP2012112648A 2012-05-16 2012-05-16 Built-in magnetizing method for permanent magnet motor Active JP5631358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012112648A JP5631358B2 (en) 2012-05-16 2012-05-16 Built-in magnetizing method for permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012112648A JP5631358B2 (en) 2012-05-16 2012-05-16 Built-in magnetizing method for permanent magnet motor

Publications (2)

Publication Number Publication Date
JP2013240224A true JP2013240224A (en) 2013-11-28
JP5631358B2 JP5631358B2 (en) 2014-11-26

Family

ID=49764784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012112648A Active JP5631358B2 (en) 2012-05-16 2012-05-16 Built-in magnetizing method for permanent magnet motor

Country Status (1)

Country Link
JP (1) JP5631358B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021083278A (en) * 2019-11-22 2021-05-27 大同特殊鋼株式会社 Permanent magnet temperature distribution measurement method for permanent magnet rotor
JP2022514074A (en) * 2018-12-20 2022-02-09 サフラン・ヘリコプター・エンジンズ An electric machine containing a device for forcibly degaussing a permanent magnet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06178507A (en) * 1992-12-10 1994-06-24 Seiko Epson Corp Magnetizing method for permanent magnet rotor
JPH11196545A (en) * 1997-12-26 1999-07-21 Asmo Co Ltd Rotor in dc machine and manufacturing method
JP2006042506A (en) * 2004-07-28 2006-02-09 Kayaba Ind Co Ltd Motor
JP2009118712A (en) * 2007-11-09 2009-05-28 Toyota Motor Corp Dynamo-electric machine
JP2011041406A (en) * 2009-08-12 2011-02-24 Hitachi Automotive Systems Ltd Dynamo-electric machine for use in vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06178507A (en) * 1992-12-10 1994-06-24 Seiko Epson Corp Magnetizing method for permanent magnet rotor
JPH11196545A (en) * 1997-12-26 1999-07-21 Asmo Co Ltd Rotor in dc machine and manufacturing method
JP2006042506A (en) * 2004-07-28 2006-02-09 Kayaba Ind Co Ltd Motor
JP2009118712A (en) * 2007-11-09 2009-05-28 Toyota Motor Corp Dynamo-electric machine
JP2011041406A (en) * 2009-08-12 2011-02-24 Hitachi Automotive Systems Ltd Dynamo-electric machine for use in vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022514074A (en) * 2018-12-20 2022-02-09 サフラン・ヘリコプター・エンジンズ An electric machine containing a device for forcibly degaussing a permanent magnet
JP2021083278A (en) * 2019-11-22 2021-05-27 大同特殊鋼株式会社 Permanent magnet temperature distribution measurement method for permanent magnet rotor
JP7327108B2 (en) 2019-11-22 2023-08-16 大同特殊鋼株式会社 Method for measuring temperature distribution of magnet in permanent magnet rotor

Also Published As

Publication number Publication date
JP5631358B2 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
US10965174B2 (en) Power generator
WO2015166772A1 (en) Dynamo-electric machine
WO2013132935A1 (en) Rotating electric machine
KR20160023314A (en) Motor having housing with contact type cooling channel structure and Method for manufacturing the same
US7750515B1 (en) Industrial air core motor-generator
KR101263350B1 (en) axial flux permanent magnet generator
CN204089357U (en) Motor armature
JP5387121B2 (en) Rotating electric machine
CN105978270A (en) Stator partition type dual salient pole permanent magnetic brushless motor
KR101098841B1 (en) Electric motor having complex cooling casing
JP5631358B2 (en) Built-in magnetizing method for permanent magnet motor
WO2011014994A1 (en) Permanent magnet synchronous motor
JP2015208172A (en) Permanent magnet type rotary electric machine
JP2015012620A (en) Permanent magnet type rotary electric machine
JPWO2017158642A1 (en) Permanent magnet type rotating electrical machine and manufacturing method thereof
KR20090038113A (en) Motor
JP2010183792A (en) Motor
RU2008142928A (en) HYSTERESIS MAGNETIC COUPLING, IN PARTICULAR, FOR REWINDING / REWINDING DEVICES
JP2019004533A (en) Manufacturing method of permanent magnet fixing body
JP2017050913A (en) Rotary electric machine
JP2011523344A (en) Rotor with salient poles for multi-pole synchronous electric machine
Lindner et al. Simulation of a toroidal wound flux-switching permanent magnet machine
KR101518977B1 (en) Apparatus of cooling for stator coils of superconduting motor or generator
KR101243291B1 (en) Apparatus of air cooling for stator coils of superconduting motor or generator
Tikadar et al. Comparison between Direct Winding Heat Exchanger and Slot-liner Confined Evaporative Cooling of Electric Motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R150 Certificate of patent or registration of utility model

Ref document number: 5631358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250