JP2013235769A - Heating body and image heating device having heating body - Google Patents

Heating body and image heating device having heating body Download PDF

Info

Publication number
JP2013235769A
JP2013235769A JP2012108476A JP2012108476A JP2013235769A JP 2013235769 A JP2013235769 A JP 2013235769A JP 2012108476 A JP2012108476 A JP 2012108476A JP 2012108476 A JP2012108476 A JP 2012108476A JP 2013235769 A JP2013235769 A JP 2013235769A
Authority
JP
Japan
Prior art keywords
substrate
power supply
heater
heating
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012108476A
Other languages
Japanese (ja)
Inventor
Hidetsugu Saito
秀次 齊藤
Hiroyuki Sakakibara
啓之 榊原
Yusuke Nakajima
佑介 中島
Atsuhiko Yamaguchi
敦彦 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012108476A priority Critical patent/JP2013235769A/en
Priority to US13/659,266 priority patent/US9091977B2/en
Publication of JP2013235769A publication Critical patent/JP2013235769A/en
Priority to US14/733,283 priority patent/US20150268608A1/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixing For Electrophotography (AREA)
  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heating body that feeds heating resistors via a plurality of through holes formed in a substrate and that prevents burning of the through holes and a conduction failure associated therewith.SOLUTION: A heating body includes: conductive sections 12o and 12p that are electrically connected to a heating resistor 12c provided along a longitudinal direction of a long thin electrically-insulating substrate 12a; and feed electrodes 12f and 12h that face the respective conductive sections 12o and 12p through the substrate 12a in a thickness direction of the substrate 12a. The substrate 12a is provided with three or more through holes 12i, 12j, 12k, 12l, 12m, and 12n that connect the conductive sections 12o and 12p and the respective feed electrodes 12f and 12h electrically. Feed contacts 16b and 16f that are electrically connected to the respective feed electrodes 12f and 12h are disposed in respective regions surrounded by the three or more through holes 12i, 12j, 12k, 12l, 12m, and 12n.

Description

本発明は、電子写真複写機、電子写真プリンタなどの画像形成装置に搭載される定着装置に用いられるセラミックヒータとして用いれば好適な加熱体および、それを備えた像加熱装置に関する。   The present invention relates to a heating body suitable for use as a ceramic heater used in a fixing device mounted on an image forming apparatus such as an electrophotographic copying machine or an electrophotographic printer, and an image heating apparatus including the same.

電子写真方式を採用した画像形成装置は、高速化、高機能化、及びカラー化が進められており、各種のプリンタ・複写機等が上市されている。   Image forming apparatuses adopting an electrophotographic system have been increased in speed, function, and color, and various printers, copiers, and the like are on the market.

電子写真方式の複写機やプリンタには、記録材上に形成した未定着トナー像を記録材上に加熱定着する定着装置が搭載されている。定着装置における加熱方式の1つとして、フィルム加熱方式がある。フィルム加熱方式とは、筒状の定着フィルムの内面にセラミックヒータを配置し、定着フィルムを挟んでセラミックヒータ対向位置に加圧ローラを配置して加圧する事で定着フィルムと記録材を密着させ、セラミックヒータの熱を記録材へ付与する方式である。定着フィルムは耐熱樹脂や金属をベースにして構成されたものである。   An electrophotographic copying machine or printer is equipped with a fixing device that heats and fixes an unfixed toner image formed on a recording material on the recording material. One of the heating methods in the fixing device is a film heating method. With the film heating method, a ceramic heater is arranged on the inner surface of a cylindrical fixing film, and a fixing roller and a recording material are brought into close contact with each other by placing a pressure roller at a position opposite to the ceramic heater across the fixing film. In this method, heat from the ceramic heater is applied to the recording material. The fixing film is configured based on a heat-resistant resin or metal.

フィルム加熱方式の定着装置に用いられるセラミックヒータには、セラミック製のヒータ基板上に電気抵抗体からなる発熱抵抗体、銀などからなる給電用の電極、発熱抵抗体保護用のガラスなどからなる絶縁層等から構成されることが多い。また、このセラミックヒータへの給電手段としては、給電接点を有するコネクタをヒータ基板上の電極に対して圧接させ、電気的な導通経路を作ることで行われる場合が多い。   The ceramic heater used in the film heating type fixing device includes a heating resistor made of an electric resistor on a ceramic heater substrate, an electrode for power feeding made of silver, an insulation made of glass for protecting the heating resistor, etc. Often composed of layers. In many cases, the power supply means to the ceramic heater is performed by bringing a connector having a power supply contact into pressure contact with an electrode on the heater substrate to form an electrical conduction path.

セラミックヒータにおいては、多くの場合、発熱抵抗体と電極はヒータ基板上の同一面に形成されるが、汎用のコネクタを使用することによるコストダウンや、基板幅の縮小等を目的に、ヒータ基板の反対面上にそれぞれを形成することがある。このような構成のセラミックヒータにおいては、ヒータ基板にスルーホールを形成し、発熱抵抗体と電極間の導通経路を形成する構成が用いられる。   In a ceramic heater, the heating resistor and the electrode are often formed on the same surface of the heater substrate, but the heater substrate is used for the purpose of reducing the cost and reducing the substrate width by using a general-purpose connector. May be formed on opposite sides of each other. In the ceramic heater having such a configuration, a configuration is used in which a through hole is formed in the heater substrate and a conduction path between the heating resistor and the electrode is formed.

特許文献1には、ヒータ基板の両面に発熱領域の異なる抵抗発熱体を形成し、スルーホールを用いて片側の面から給電できるようにしたセラミックヒータが開示されている。   Patent Document 1 discloses a ceramic heater in which resistance heating elements having different heat generation regions are formed on both surfaces of a heater substrate, and power can be supplied from one surface using a through hole.

フィルム加熱方式の定着装置を搭載するプリンタで小サイズの記録材を大サイズの記録材と同じプリント間隔で連続プリントすると、セラミックヒータの記録材が通過しない領域(非通紙領域)が過度に昇温(非通紙部昇温)することが知られている。   When a small-size recording material is continuously printed at the same print interval as a large-size recording material with a printer equipped with a film heating type fixing device, the area where the recording material of the ceramic heater does not pass (non-sheet-passing area) is excessively increased. It is known to increase the temperature (temperature increase of the non-sheet passing portion).

特許文献1のセラミックヒータの構成は、非通紙部昇温と呼ばれる課題の対策として、長さの異なる発熱抵抗体をヒータ基板両面に設け、紙サイズに応じてそれぞれを使い分けるようにしている。また、2本の発熱抵抗体をヒータ基板の同一面に形成すると、各々の発熱抵抗体の幅の分と、2本の発熱抵抗体間の絶縁を確保するための距離の分、ヒータ基板の幅を広げる必要があるが、基板表裏面に振り分けていることで基板幅の拡大を防ぐことができる。   In the configuration of the ceramic heater of Patent Document 1, as a countermeasure against a problem called non-sheet passing portion temperature rise, heating resistors having different lengths are provided on both sides of the heater substrate, and each is used properly according to the paper size. Further, when the two heating resistors are formed on the same surface of the heater substrate, the width of each heating resistor and the distance for securing the insulation between the two heating resistors are increased. Although it is necessary to widen the width, it is possible to prevent the width of the substrate from being increased by allocating to the front and back surfaces of the substrate.

ところで、上述したようなスルーホールを経由してヒータ基板両面の発熱抵抗体に給電を行うセラミックヒータにおいては、一般的な集積回路装置と比べて、大電流を流す必要があるため、スルーホールが異常に発熱して焼け、導通不良を起こすことがある。   By the way, in the ceramic heater that supplies power to the heating resistors on both sides of the heater substrate through the through holes as described above, it is necessary to pass a large current compared to a general integrated circuit device. Abnormal heat generation may cause burning and poor conduction.

特許文献2には、ヒータ基板両面の発熱抵抗体にスルーホールを経由して給電を行う際に、複数のスルーホールを用いることで、スルーホールの焼けによる導通不良を防ぐような構成が開示されている。   Patent Document 2 discloses a configuration in which a plurality of through holes are used when power is supplied to the heating resistors on both sides of the heater substrate via the through holes, thereby preventing conduction failures due to burning of the through holes. ing.

特開2002−299014号公報JP 2002-299014 A 特開平4−185455号公報JP-A-4-185455

上述のように、スルーホールを経由して発熱抵抗体に給電を行うセラミックヒータにおいては、スルーホールの焼け及びそれに伴う導通不良を防ぐことが求められており、複数のスルーホールを経由して給電を行う場合においても、さらなる改善が求められている。   As described above, in ceramic heaters that supply power to heating resistors via through-holes, it is required to prevent through-hole burning and consequent conduction failure, and power is supplied via multiple through-holes. Even in the case of performing the above, further improvement is demanded.

本発明の目的は、基板に形成した複数のスルーホールを経由して発熱抵抗体に給電を行う加熱体において、スルーホールの焼け及びそれに伴う導通不良を防止できるようにした加熱体、及びその加熱体を備える像加熱装置を提供することにある。   An object of the present invention is to provide a heating element that feeds power to a heating resistor through a plurality of through-holes formed in a substrate. An object of the present invention is to provide an image heating apparatus including a body.

上記目的を達成するための本発明に係る加熱体の代表的な構成は、給電接点を接続し通電することで発熱する加熱体において、加熱体は、電気的に絶縁性を有する細長い基板と、前記基板の第1の面で前記基板の長手方向に沿って設けられ通電により発熱する発熱抵抗体と、前記基板の第1の面で前記発熱抵抗体の両端に設けられる導電体と、前記基板の第2の面に形成され前記導電体と対向する領域を持つ給電電極部と、前記導電体と前記給電電極部とを各々電気的に接続する3つ以上のスルーホールと、を有し、前記3つ以上のスルーホールは、前記給電電極部に接続される前記給電接点を、囲むように配設されることを特徴とする。   In order to achieve the above object, a representative configuration of the heating body according to the present invention is a heating body that generates heat by connecting a power supply contact and energizing the heating body. A heating resistor provided along the longitudinal direction of the substrate on the first surface of the substrate and generating heat upon energization; a conductor provided on both ends of the heating resistor on the first surface of the substrate; and the substrate A power supply electrode portion formed on the second surface of the first electrode and having a region facing the conductor, and three or more through holes that electrically connect the conductor and the power supply electrode portion, respectively. The three or more through holes are disposed so as to surround the power supply contact connected to the power supply electrode portion.

また、上記目的を達成するための本発明に係る像加熱装置の代表的な構成は、加熱体と、前記加熱体と接触しつつ移動する円筒状の可撓性部材と、前記可撓性部材を介して前記加熱体とニップ部を形成する加圧部材と、前記加熱体と電気的に接続される給電接点と、を有し、前記ニップ部で画像を担持する記録材を挟持搬送しつつ記録材上の画像を加熱する像加熱装置において、前記加熱体は、電気的に絶縁性を有する細長い基板と、前記基板の第1の面で前記基板の長手方向に沿って設けられ通電により発熱する発熱抵抗体と、前記基板の第1の面で前記発熱抵抗体の両端に設けられる導電体と、前記基板の第2の面で前記導電体と対向する領域を持つ給電電極部と、前記導電体と前記給電電極部とを各々電気的に接続する3つ以上のスルーホールと、を有し、前記給電電極部の前記3つ以上のスルーホールに囲まれる領域内に前記給電接点を配設することを特徴とする。   In order to achieve the above object, a typical configuration of an image heating apparatus according to the present invention includes a heating body, a cylindrical flexible member that moves while being in contact with the heating body, and the flexible member. A pressure member that forms a nip portion with the heating body, and a power supply contact that is electrically connected to the heating body, and sandwiches and conveys a recording material that carries an image at the nip portion. In the image heating apparatus for heating an image on a recording material, the heating body includes an elongated electrically insulating substrate and a first surface of the substrate that is provided along the longitudinal direction of the substrate and generates heat when energized. A heating resistor, a conductor provided on both ends of the heating resistor on the first surface of the substrate, a feeding electrode portion having a region facing the conductor on the second surface of the substrate, Three or more relays that electrically connect the conductor and the feeding electrode portion, respectively. It has a hole, and characterized by disposing the feeding contacts in a region surrounded by the three or more through holes of the feeding electrode portion.

本発明によれば、スルーホールの焼け及びそれに伴う導通不良を防止できるようにした加熱体、及びその加熱体を備える像加熱装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the heating body which can prevent the burning of a through hole and the conduction defect accompanying it, and an image heating apparatus provided with the heating body can be provided.

定着装置の横断面構成模式図Cross-sectional schematic diagram of fixing device 実施例1に係るヒータの構成を表す図The figure showing the structure of the heater which concerns on Example 1. FIG. 実施例1に係るヒータに給電コネクタを接続したときのスルーホールと給電接点の位置関係を表す図The figure showing the positional relationship of a through hole and a feed contact when connecting a feed connector to the heater according to the first embodiment 実施例1に係る評価試験時のターゲット温度を表す図The figure showing the target temperature at the time of the evaluation test which concerns on Example 1 実施例1に係る比較例のヒータの給電電極部上のスルーホール位置を表す図The figure showing the through-hole position on the feed electrode part of the heater of the comparative example which concerns on Example 1 実施例2に係るヒータの構成を表す図The figure showing the structure of the heater which concerns on Example 2. FIG. 実施例3に係るヒータの構成を表す図The figure showing the structure of the heater which concerns on Example 3. 実施例4に係るヒータに給電コネクタを接続したときのスルーホールと給電接点の位置関係を表す図The figure showing the positional relationship of a through hole and a feed contact when a feed connector is connected to the heater according to the fourth embodiment. 実施例4に係る比較例のヒータの給電電極部上のスルーホール位置を表す図The figure showing the through-hole position on the feed electrode part of the heater of the comparative example which concerns on Example 4 実施例5に係るヒータに給電コネクタを接続したときのスルーホールと給電接点の位置関係を表す図The figure showing the positional relationship of a through hole and a feed contact when a feed connector is connected to the heater according to the fifth embodiment. 実施例5に係る比較例のヒータの給電電極部上のスルーホール位置を表す図The figure showing the through-hole position on the feed electrode part of the heater of the comparative example which concerns on Example 5

[実施例1]
(1)定着装置(像加熱装置)
図1を参照して、定着装置の構成を説明する。この定着装置は、電子写真複写機や電子写真プリンターなどの画像形成装置に搭載され、画像形成装置の画像形成部で記録材上に形成された未定着トナー画像を挟持搬送しつつ記録材上に加熱定着するものである。図1は本発明に係る加熱体を備える像加熱装置としての定着装置の横断面構成模式図である。
[Example 1]
(1) Fixing device (image heating device)
The configuration of the fixing device will be described with reference to FIG. The fixing device is mounted on an image forming apparatus such as an electrophotographic copying machine or an electrophotographic printer, and the unfixed toner image formed on the recording material is nipped and conveyed on the recording material by the image forming unit of the image forming apparatus. Heat fixing. FIG. 1 is a cross-sectional schematic diagram of a fixing device as an image heating device provided with a heating body according to the present invention.

以下の説明において、定着装置及び定着装置を構成する部材に関し、長手方向とは記録材の面において記録材搬送方向と直交する方向をいう。短手方向とは記録材の面において記録材搬送方向と平行な方向をいう。長さとは長手方向の寸法をいう。幅とは短手方向の寸法をいう。記録材に関し、幅方向とは記録材の面において記録材搬送方向と直交する方向をいう。幅とは幅方向の寸法をいう。   In the following description, regarding the fixing device and the members constituting the fixing device, the longitudinal direction means a direction orthogonal to the recording material conveyance direction on the surface of the recording material. The short side direction is a direction parallel to the recording material conveyance direction on the surface of the recording material. The length is a dimension in the longitudinal direction. The width is a dimension in the short direction. Regarding the recording material, the width direction means a direction orthogonal to the recording material conveyance direction on the surface of the recording material. The width is a dimension in the width direction.

本実施例に示す定着装置1は、加熱体としてのセラミックヒータ(以下、ヒータと記す)12と、可撓性部材としての筒状の定着フィルム11と、加圧部材としての加圧ローラ13と、ガイド部材としてのフィルムガイド14などを有している。ヒータ12と、定着フィルム11と、加圧ローラ13と、フィルムガイド14は、何れも長手方向に長い部材である。   The fixing device 1 shown in this embodiment includes a ceramic heater (hereinafter referred to as a heater) 12 as a heating body, a cylindrical fixing film 11 as a flexible member, and a pressure roller 13 as a pressure member. And a film guide 14 as a guide member. The heater 12, the fixing film 11, the pressure roller 13, and the film guide 14 are all members that are long in the longitudinal direction.

フィルムガイド14は、例えば、PPS(ポリフェニレンサルファイト)やLCP(液晶ポリマー)等の耐熱性樹脂により横断面形状略樋型に形成されている。このフィルムガイド14は、フィルムガイド14の短手方向外側の弧状面で定着フィルム11の回転をガイドするようになっている。ヒータ12はフィルムガイド14の短手方向下面中央でフィルムガイド14の長手方向に沿って設けられた溝に支持されている。そしてヒータ12を支持させたフィルムガイド14の外周に定着フィルム11をルーズに外嵌させ、そのフィルムガイド14の長手方向両端部を定着装置の装置フレーム1の前後の側板(不図示)に支持させている。   The film guide 14 is formed, for example, in a substantially bowl shape with a heat-resistant resin such as PPS (polyphenylene sulfite) or LCP (liquid crystal polymer). The film guide 14 guides the rotation of the fixing film 11 with an arcuate surface on the outer side in the short direction of the film guide 14. The heater 12 is supported by a groove provided along the longitudinal direction of the film guide 14 at the center of the lower surface of the film guide 14 in the short direction. Then, the fixing film 11 is loosely fitted on the outer periphery of the film guide 14 that supports the heater 12, and both longitudinal ends of the film guide 14 are supported on the front and rear side plates (not shown) of the apparatus frame 1 of the fixing device. ing.

加圧ローラ13は、丸軸状の芯金13aと、芯金13aの長手方向両端部に設けられた軸部間の外周面上に設けられた弾性層13bと、弾性層13bの外周面上に設けられた離型層13cなどを有している。芯金13aの材料は鉄やアルミニウム等の金属材料である。弾性層13bの材料はシリコーンゴムである。離型層13cの材料はPFA等のフッ素樹脂である。   The pressure roller 13 includes a round shaft-shaped cored bar 13a, an elastic layer 13b provided on an outer peripheral surface between shafts provided at both longitudinal ends of the cored bar 13a, and an outer peripheral surface of the elastic layer 13b. And a release layer 13c provided on the substrate. The material of the cored bar 13a is a metal material such as iron or aluminum. The material of the elastic layer 13b is silicone rubber. The material of the release layer 13c is a fluororesin such as PFA.

この加圧ローラ13は、定着フィルム11を介してヒータ12と対向するように配設され、芯金13aの長手方向両端部の軸部を装置フレーム1の前後の側板に軸受(不図示)を介して回転可能に支持させている。そしてその軸受を加圧バネ(不図示)で定着フィルム11の母線方向と直交する方向に付勢して加圧ローラ13を定着フィルム11を介してヒータ12に加圧している。これにより加圧ローラ13の弾性層13bを芯金13a側に弾性変形させて加圧ローラ13の外周面(表面)と定着フィルム11の外周面(表面)とで所定幅の定着ニップ部(以下、ニップ部と記す)Nを形成している。   The pressure roller 13 is disposed so as to face the heater 12 with the fixing film 11 interposed therebetween, and shafts at both ends in the longitudinal direction of the cored bar 13 a are provided with bearings (not shown) on the front and rear side plates of the apparatus frame 1. It is supported so that it can rotate through. The bearing is urged by a pressure spring (not shown) in a direction perpendicular to the generatrix direction of the fixing film 11 to press the pressure roller 13 to the heater 12 via the fixing film 11. As a result, the elastic layer 13b of the pressure roller 13 is elastically deformed toward the metal core 13a, and a fixing nip portion (hereinafter, referred to as a predetermined width) is formed between the outer peripheral surface (surface) of the pressure roller 13 and the outer peripheral surface (surface) of the fixing film 11. N) is formed.

定着フィルム11の厚みは、良好な熱伝導性を確保するために20μm以上1000μm以下程度が好ましい。定着フィルム11としては、PTFE(ポリテトラフルオロエチレン)・PFA(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル)・PPS(ポリフェニレンサルファイド)等の材質の筒状の単層フィルムを用いることが出来る。   The thickness of the fixing film 11 is preferably about 20 μm or more and 1000 μm or less in order to ensure good thermal conductivity. As the fixing film 11, a cylindrical single layer film made of a material such as PTFE (polytetrafluoroethylene), PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether), PPS (polyphenylene sulfide) can be used.

或いは、PI・PAI・PEEK・PES等の材質の筒状のベースフィルムの表面にPTFE・PFA・FEP等のコーティング膜や、チューブを離型層として設けた複合層フィルムを用いることが出来る。ここで、PIはポリイミド、PAIはポリアミドイミド、PEEKはポリエーテルエーテルケトン、PESはポリエーテルスルホン、PTFE・PFA・FEPはテトラフルオロエチレン・ヘキサフルオロプロピレン共重合体である。   Alternatively, a composite film having a tubular base film made of PI, PAI, PEEK, PES or the like on the surface of a tubular base film such as PTFE, PFA, FEP or a tube provided as a release layer can be used. Here, PI is polyimide, PAI is polyamideimide, PEEK is polyetheretherketone, PES is polyethersulfone, and PTFE / PFA / FEP is a tetrafluoroethylene / hexafluoropropylene copolymer.

本実施例では、定着フィルム11として、直径が24mm、長さが240mm、厚さが
60μmのPI上に15μmのPFAコーティング膜を形成した、総厚が75μmのもの
を用いた。また、加圧ローラ13として、直径25mm、長さが260mm、加圧硬度
50°(500g荷重時アスカーC型硬度計測定)のものを用いた。
In this example, a fixing film 11 having a total thickness of 75 μm formed by forming a 15 μm PFA coating film on a PI having a diameter of 24 mm, a length of 240 mm, and a thickness of 60 μm was used. Further, the pressure roller 13 having a diameter of 25 mm, a length of 260 mm, and a pressure hardness of 50 ° (measured by Asker C-type hardness meter when loaded with 500 g) was used.

(2)ヒータ(加熱体)12の構成
図2を参照して、ヒータ12の構成を説明する。図2の(A)はヒータ12をニップ部N側から見たヒータ12の構成模式図、(B)はヒータ12をニップ部N側とは反対側から見たヒータ12の構成模式図である。(C)はヒータ12のスルーホール12jとスルーホール12mを通る長手方向の縦断面構成模式図である。図2(C)に示すヒータ12の厚み方向の縮尺は、説明の都合上拡大して示した。
(2) Configuration of Heater (Heating Body) 12 The configuration of the heater 12 will be described with reference to FIG. 2A is a schematic configuration diagram of the heater 12 when the heater 12 is viewed from the nip portion N side, and FIG. 2B is a schematic configuration diagram of the heater 12 when the heater 12 is viewed from the side opposite to the nip portion N side. . (C) is a longitudinal cross-sectional structure schematic diagram of the longitudinal direction which passes through the through hole 12j and the through hole 12m of the heater 12. FIG. The scale in the thickness direction of the heater 12 shown in FIG. 2C is shown enlarged for convenience of explanation.

ヒータ12は、電気的に絶縁性を有する細長いヒータ基板(以下、基板と記す)12aを有している。   The heater 12 has an elongated heater substrate (hereinafter referred to as a substrate) 12a that is electrically insulating.

基板12aのニップ部N側の表面(第2の面)には、通電により発熱する発熱抵抗体(第2の発熱抵抗体)12bが基板12aの長手方向に沿って設けてある。そして基板12aの長手方向の一端部の内側に発熱抵抗体12bの長手方向の一端部と電気的に接続する第1の給電電極部12fを設け、基板の長手方向の他端部の内側に発熱抵抗体12bの長手方向の他端部とは物理的に接しない給電電極部12hを設けている。更に、基板12aの長手方向の他端部の内側に発熱抵抗体12bと電気的に接続する給電電極部12gを設けている。この給電電極部12gは給電電極部12hよりも基板12aの長手方向内側に配設してある。   On the surface (second surface) on the nip portion N side of the substrate 12a, a heating resistor (second heating resistor) 12b that generates heat when energized is provided along the longitudinal direction of the substrate 12a. A first feeding electrode portion 12f that is electrically connected to one end portion of the heating resistor 12b in the longitudinal direction is provided inside one end portion of the substrate 12a in the longitudinal direction, and heat is generated inside the other end portion in the longitudinal direction of the substrate. A feeding electrode portion 12h that is not physically in contact with the other end portion in the longitudinal direction of the resistor 12b is provided. Furthermore, a feeding electrode portion 12g that is electrically connected to the heating resistor 12b is provided inside the other end portion in the longitudinal direction of the substrate 12a. The feeding electrode portion 12g is disposed on the inner side in the longitudinal direction of the substrate 12a than the feeding electrode portion 12h.

給電電極部12fは後述の導電部12oと対向する領域を持つように配設され、給電電極部12hは後述の導電部12pと対向する領域を持つように配設される。   The feeding electrode portion 12f is disposed so as to have a region facing a conductive portion 12o described later, and the feeding electrode portion 12h is disposed so as to have a region facing a conductive portion 12p described later.

基板12aの表面には、更に、発熱抵抗体12bと、給電電極部12f,12gにおける発熱抵抗体12bとの接続部分を覆う絶縁性の表面保護層12dが設けてある。   Further, an insulating surface protective layer 12d is provided on the surface of the substrate 12a to cover the connecting portion between the heating resistor 12b and the heating resistor 12b in the power supply electrode portions 12f and 12g.

基板12aの定着ニップ部N側とは反対側の裏面(第1の面)には、通電により発熱する発熱抵抗体(第1の発熱抵抗体)12cが基板12aの長手方向に沿って設けてある。発熱抵抗体12cは発熱抵抗体12bよりも短くなるように形成されて基板12aの長手方向略中央に配設されている。そして基板12aの長手方向の一端部の内側に発熱抵抗体12cの長手方向の一端部と電気的に接続する導電体12oを設け、基板の長手方向の他端部の内側に発熱抵抗体12cの長手方向の他端部と電気的に接続する導電体12pを設けている。   A heating resistor (first heating resistor) 12c that generates heat when energized is provided along the longitudinal direction of the substrate 12a on the back surface (first surface) opposite to the fixing nip portion N side of the substrate 12a. is there. The heating resistor 12c is formed so as to be shorter than the heating resistor 12b, and is disposed at the approximate center in the longitudinal direction of the substrate 12a. A conductor 12o that is electrically connected to one end in the longitudinal direction of the heating resistor 12c is provided inside one end in the longitudinal direction of the substrate 12a, and the heating resistor 12c is disposed inside the other end in the longitudinal direction of the substrate. A conductor 12p that is electrically connected to the other end in the longitudinal direction is provided.

発熱抵抗体12cの両端に設けられた導電体12o,12pのうち、導電体12oは基板12aの厚み方向で基板12aを介して給電電極部12fと対向するように配設されている。導電体12pは基板12aの厚み方向で基板12aを介して給電電極部12hと対向するように配設してある。   Of the conductors 12o and 12p provided at both ends of the heating resistor 12c, the conductor 12o is disposed so as to face the feeding electrode portion 12f through the substrate 12a in the thickness direction of the substrate 12a. The conductor 12p is disposed in the thickness direction of the substrate 12a so as to face the power supply electrode portion 12h via the substrate 12a.

更に、基板12aの裏面には、発熱抵抗体12cと、導電体12o,12pにおける発熱抵抗体12cとの接続部分を覆う絶縁性の表面保護層12eが設けてある。   Further, an insulating surface protective layer 12e is provided on the back surface of the substrate 12a to cover the connecting portion between the heating resistor 12c and the heating resistors 12c in the conductors 12o and 12p.

そして、給電電極部12fと導電体12oは、基板12aの厚み方向で基板12aを貫通する3つのスルーホール12i,12j,12kにより電気的に接続されている。また、給電電極部12hと導電体12pは、基板12aの厚み方向で基板12aを貫通する3つのスルーホール12m,12n,12pにより電気的に接続している。従って、給電電極部12fは2つの発熱抵抗体12b,12cの共通電極として用いられ、給電電極部12hは発熱抵抗体12cに対して基板12aの表面から給電する給電電極として用いられる。   The power supply electrode portion 12f and the conductor 12o are electrically connected through three through holes 12i, 12j, and 12k that penetrate the substrate 12a in the thickness direction of the substrate 12a. The power supply electrode portion 12h and the conductor 12p are electrically connected by three through holes 12m, 12n, and 12p that penetrate the substrate 12a in the thickness direction of the substrate 12a. Therefore, the feeding electrode portion 12f is used as a common electrode for the two heating resistors 12b and 12c, and the feeding electrode portion 12h is used as a feeding electrode for feeding power to the heating resistor 12c from the surface of the substrate 12a.

給電電極部12f,12h,12gには、それぞれ、給電部材としての給電コネクタ16a,16e,16c(図3参照)が電気的に接続される。これにより給電コネクタ16a,16e,16cより給電電極部12f,12h,12gに通電されて発熱抵抗体12b,12cが発熱する。   Power supply connectors 16a, 16e, and 16c (see FIG. 3) as power supply members are electrically connected to the power supply electrode portions 12f, 12h, and 12g, respectively. As a result, the power supply electrodes 16f, 12h, and 12g are energized from the power supply connectors 16a, 16e, and 16c, and the heating resistors 12b and 12c generate heat.

基板12aの材質としては、アルミナや窒化アルミニウム等のセラミックスを用いることができる。本実施例では短手方向の幅7mm、長さ280mm、厚さ1mmのアルミナ基板を使用した。   As the material of the substrate 12a, ceramics such as alumina and aluminum nitride can be used. In this example, an alumina substrate having a width of 7 mm in the short side direction, a length of 280 mm, and a thickness of 1 mm was used.

発熱抵抗体12b,12cの材質としては、Ag/Pd、RuO2、Ta2N、グラファイト、SiC、LaCrO3等の電気抵抗材料をスクリーン印刷により、線状若しくは線帯状に塗工することで形成できる。ここで、Ag/Pdは銀パラジウム、RuO2は酸化ルテニウム、Ta2Nは窒化タンタル、SiCは炭化ケイ素、LaCrO3はランタンクロマイトである。 As the material of the heating resistors 12b and 12c, an electric resistance material such as Ag / Pd, RuO 2 , Ta 2 N, graphite, SiC, LaCrO 3 is applied by screen printing in a linear shape or a linear shape. it can. Here, Ag / Pd is silver palladium, RuO 2 is ruthenium oxide, Ta 2 N is tantalum nitride, SiC is silicon carbide, and LaCrO 3 is lanthanum chromite.

本実施例においては、発熱抵抗体12b,12cともにAg/Pd、ガラス粉末、有機結着剤を混練したものをスクリーン印刷により形成、焼成した。発熱抵抗体12cの長さsは115mm、抵抗値は30Ωに設定した。発熱抵抗体12bの長さwは230mm、抵抗値は15Ωに設定した。発熱抵抗体12cは記録材幅の小さい小サイズの記録材(記録紙)に対応した長さにした。発熱抵抗体12bは小サイズの記録材よりも記録材幅の大きい大サイズの記録材(記録紙)に対応した長さにした。   In this example, both the heating resistors 12b and 12c were formed by screen printing and kneaded with Ag / Pd, glass powder, and organic binder. The length s of the heating resistor 12c was set to 115 mm, and the resistance value was set to 30Ω. The length w of the heating resistor 12b was set to 230 mm, and the resistance value was set to 15Ω. The heating resistor 12c has a length corresponding to a small size recording material (recording paper) having a small recording material width. The heating resistor 12b has a length corresponding to a large size recording material (recording paper) having a recording material width larger than that of a small size recording material.

表面保護層12d,12eは、発熱抵抗体12b,12cとヒータ12表面との間の絶縁性を確保する目的で形成されており、本実施例では絶縁性のガラスをスクリーン印刷で80μm形成した。   The surface protective layers 12d and 12e are formed for the purpose of ensuring insulation between the heating resistors 12b and 12c and the surface of the heater 12, and in this embodiment, insulating glass is formed to 80 μm by screen printing.

通電電極部12f,12g,12h、及び導電体12o,12pの材質としては、銀(Ag)、白金(Pt)などを主体とする導電ペーストを用いてスクリーン印刷で形成することが出来る。或いは金(Au)や銀白金(Ag/Pt)合金、銀パラジウム(Ag/Pd)合金などを主体とする導電ペーストを用いてスクリーン印刷で形成することが出来る。本実施例においては、いずれの通電電極部および導電体も銀をスクリーン印刷により形成した。また、通電電極部12f,12g,12h、及び導電体12o,12pは、発熱抵抗体12b,12cに給電する目的で設けられているので、電気抵抗は発熱抵抗体12b,12cに対して十分小さくした。   The conductive electrode portions 12f, 12g, and 12h and the conductors 12o and 12p can be formed by screen printing using a conductive paste mainly composed of silver (Ag), platinum (Pt), or the like. Alternatively, it can be formed by screen printing using a conductive paste mainly composed of gold (Au), silver platinum (Ag / Pt) alloy, silver palladium (Ag / Pd) alloy, or the like. In this example, silver was screen-printed for any energizing electrode portion and conductor. In addition, since the energizing electrode portions 12f, 12g, and 12h and the conductors 12o and 12p are provided for the purpose of supplying power to the heating resistors 12b and 12c, the electric resistance is sufficiently smaller than that of the heating resistors 12b and 12c. did.

スルーホール12i,12j,12k,12l,12m,12nの形成方法としては、通電電極部12f,12hを形成する前に、レーザ加工により基板12aに貫通孔を空ける。そしてその貫通孔の内部に、銀(Ag)、白金(Pt)、金(Au)などを主体とする導電ペーストを設けることで導電路を形成することができる。或いはその貫通孔の内部に、銀白金(Ag/Pt)合金、銀パラジウム(Ag/Pd)合金などを主体とする導電ペーストを設けることで導電路を形成することができる。本実施例では、レーザー加工により直径0.3mmの大きさで貫通孔を空け、内部に銀の導電ペーストを設けることで通電電極部12f,12hと導電体12o,12pとの間に導電路を形成した。   As a method for forming the through holes 12i, 12j, 12k, 12l, 12m, and 12n, through holes are formed in the substrate 12a by laser processing before the energizing electrode portions 12f and 12h are formed. A conductive path can be formed by providing a conductive paste mainly composed of silver (Ag), platinum (Pt), gold (Au) or the like inside the through hole. Alternatively, a conductive path can be formed by providing a conductive paste mainly composed of silver platinum (Ag / Pt) alloy, silver palladium (Ag / Pd) alloy, or the like inside the through hole. In the present embodiment, a through hole having a diameter of 0.3 mm is formed by laser processing, and a conductive path is provided between the conductive electrode portions 12f and 12h and the conductors 12o and 12p by providing a silver conductive paste therein. Formed.

(3)定着装置の加熱定着動作
図1に示されるように、本実施例の定着装置は、加圧ローラ13の芯金13aがモータ(不図示)の回転駆動により回転されることにより加圧ローラ13は矢印bにて示す方向に回転する。加圧ローラ13の回転はニップ部Nで加圧ローラ13表面と定着フィルム11表面との摩擦力により定着フィルム11に伝わる。これにより定着フィルム11は定着フィルム11の内周面(内面)がヒータ12の表面保護層12dと接触しながら加圧ローラ13の回転に追従して矢印aにて示す方向に回転(移動)する。
(3) Heat Fixing Operation of Fixing Device As shown in FIG. 1, the fixing device of the present embodiment is pressed by rotating the cored bar 13a of the pressure roller 13 by the rotation drive of a motor (not shown). The roller 13 rotates in the direction indicated by the arrow b. The rotation of the pressure roller 13 is transmitted to the fixing film 11 at the nip portion N by the frictional force between the surface of the pressure roller 13 and the surface of the fixing film 11. As a result, the fixing film 11 rotates (moves) in the direction indicated by the arrow a following the rotation of the pressure roller 13 while the inner peripheral surface (inner surface) of the fixing film 11 is in contact with the surface protective layer 12 d of the heater 12. .

大サイズの記録材に対して未定着トナー画像の加熱定着を行う場合、通電制御部(不図示)より給電コネクタ16a,16cを介してヒータ12の通電電極部12f,12gに通電され発熱抵抗体12bが発熱する。これによりヒータ12は急速に昇温して定着フィルム11を加熱する。ヒータ12の温度は基板12aの裏面側の表面保護層12e上で所定の位置に設けられたサーミスタなどの温度検知素子(温度検知部材)15により検知される。通電制御部は、温度検知素子15からの出力信号に基づいてヒータ12を所定の定着温度(目標温度)に維持するようにヒータ12への通電量を制御する。   When heat-fixing an unfixed toner image on a large-sized recording material, a current-carrying control unit (not shown) is energized to the energizing electrode portions 12f and 12g of the heater 12 via the power feeding connectors 16a and 16c. 12b generates heat. As a result, the heater 12 is rapidly heated to heat the fixing film 11. The temperature of the heater 12 is detected by a temperature detection element (temperature detection member) 15 such as a thermistor provided at a predetermined position on the surface protective layer 12e on the back side of the substrate 12a. The energization control unit controls the energization amount to the heater 12 so as to maintain the heater 12 at a predetermined fixing temperature (target temperature) based on an output signal from the temperature detection element 15.

モータを回転駆動し、かつヒータ12を所定の定着温度に維持した状態で、未定着トナー画像Tを担持する大サイズの記録材Pがトナー像担持面を上向きにしてニップ部Nに導入される。この記録材Pはニップ部Nにおいて定着フィルム11表面と加圧ローラ13表面とで挟持されその状態に搬送(挟持搬送)される。この搬送過程において記録材P上のトナー画像Tは定着フィルム11を介してヒータ12により加熱されて溶融しニップ部Nで加圧されることにより記録材上に加熱定着される。トナー画像Tが加熱定着された記録材Pは定着フィルム11表面からトナー画像が分離されてニップ部Nより排出される。   In a state where the motor is driven to rotate and the heater 12 is maintained at a predetermined fixing temperature, a large size recording material P carrying an unfixed toner image T is introduced into the nip portion N with the toner image carrying surface facing upward. . The recording material P is nipped between the surface of the fixing film 11 and the surface of the pressure roller 13 in the nip portion N and is conveyed (nipped and conveyed) in that state. In this conveying process, the toner image T on the recording material P is heated and melted by the heater 12 through the fixing film 11 and is heated and fixed on the recording material by being pressurized at the nip portion N. The recording material P on which the toner image T is heat-fixed is separated from the surface of the fixing film 11 and discharged from the nip portion N.

小サイズの記録材に対して未定着トナー画像の加熱定着を行う場合、通電制御部(不図示)より給電コネクタ16a,16eを介してヒータ12の通電電極部12f,12hに通電され発熱抵抗体12cが発熱する。これによりヒータ12は急速に昇温して定着フィルム11を加熱する。ヒータ12の温度は温度検知素子15により検知される。通電制御部は、温度検知素子15からの出力信号に基づいてヒータ12を所定の定着温度に維持するようにヒータ12への通電量を制御する。   When heat-fixing an unfixed toner image on a small-size recording material, a current-carrying control unit (not shown) is energized to the current-carrying electrode portions 12f and 12h of the heater 12 via power-feed connectors 16a and 16e. 12c generates heat. As a result, the heater 12 is rapidly heated to heat the fixing film 11. The temperature of the heater 12 is detected by the temperature detection element 15. The energization control unit controls the energization amount to the heater 12 so as to maintain the heater 12 at a predetermined fixing temperature based on an output signal from the temperature detection element 15.

モータを回転駆動し、かつヒータ12を所定の定着温度に維持した状態で、未定着トナー画像Tを担持する小サイズの記録材Pがトナー像担持面を上向きにしてニップ部Nに導入される。この記録材Pはニップ部Nにおいて定着フィルム11表面と加圧ローラ13表面とで挟持されその状態に搬送(挟持搬送)される。この搬送過程において記録材P上のトナー画像Tは定着フィルム11を介してヒータ12により加熱されて溶融しニップ部Nで加圧されることにより記録材上に加熱定着される。トナー画像Tが加熱定着された記録材Pは定着フィルム11表面からトナー画像が分離されてニップ部Nより排出される。   In a state where the motor is driven to rotate and the heater 12 is maintained at a predetermined fixing temperature, a small size recording material P carrying an unfixed toner image T is introduced into the nip portion N with the toner image carrying surface facing upward. . The recording material P is nipped between the surface of the fixing film 11 and the surface of the pressure roller 13 in the nip portion N and is conveyed (nipped and conveyed) in that state. In this conveying process, the toner image T on the recording material P is heated and melted by the heater 12 through the fixing film 11 and is heated and fixed on the recording material by being pressurized at the nip portion N. The recording material P on which the toner image T is heat-fixed is separated from the surface of the fixing film 11 and discharged from the nip portion N.

(4)ヒータのスルーホールと給電コネクタの給電接点との位置関係
本実施例のヒータ12においては、給電接点を装着した際に、3つのスルーホールの中心点を結んだ領域が、給電接点を取り囲むように、各々のスルーホールを形成した。その狙いは、各々のスルーホールに対して、流れる電流量の偏りを低減させることで、スルーホールの劣化を抑制することである。給電接点をスルーホールで囲まれる領域外に配置した時よりも、本実施例に示す構成のほうが、給電接点とスルーホール間の距離のバラツキを低減させることができ、流れる電流量の偏りの低減につなげられる。
(4) Positional relationship between the heater through-hole and the power supply contact of the power supply connector In the heater 12 of this embodiment, when the power supply contact is mounted, the region connecting the center points of the three through holes is the power supply contact. Each through hole was formed so as to surround it. The aim is to suppress the deterioration of the through holes by reducing the bias of the amount of current flowing to each through hole. The configuration shown in this embodiment can reduce the variation in the distance between the power supply contact and the through-hole and reduce the deviation in the amount of flowing current than when the power supply contact is arranged outside the region surrounded by the through-hole. To be connected.

本実施例におけるスルーホールと給電接点の位置関係を、図3を用いて説明する。図3はヒータ12に給電コネクタ16a,16c,16eを接続した際の、スルーホールと給電接点の位置関係を示した図である。   The positional relationship between the through hole and the power supply contact in this embodiment will be described with reference to FIG. FIG. 3 is a diagram showing the positional relationship between the through hole and the power supply contact when the power supply connectors 16a, 16c, and 16e are connected to the heater 12. FIG.

図3において、(A)は記録材搬送方向下流側から見たときのスルーホール12i,12j,12k,12l,12m,12nと給電接点16b,16d,16fの位置関係を表す図である。(B)は定着ニップ部N側から見たときのスルーホール12i,12j,12k,12l,12m,12nと給電接点16b,16d,16fの位置関係を表す図である。   3A is a diagram showing the positional relationship between the through holes 12i, 12j, 12k, 12l, 12m, and 12n and the power supply contacts 16b, 16d, and 16f when viewed from the downstream side in the recording material conveyance direction. (B) is a diagram showing the positional relationship between the through holes 12i, 12j, 12k, 12l, 12m, and 12n and the power supply contacts 16b, 16d, and 16f when viewed from the fixing nip N side.

同図において、(C)給電電極部12f側から見たときのスルーホール12i,12j,12kと給電接点16bの位置関係を表す図である。(D)はニップ部N側から見たときの給電電極部12fにおけるスルーホール12i,12j,12kと給電接点16bの位置関係を表す図である。(E)はニップ部N側から見たときの給電電極部12hにおけるスルーホール12l,12m,12nと給電接点16fの位置関係を表す図である。図3の(A)(C)に示すヒータ12の厚み方向の縮尺は、説明の都合上拡大して示した。   In the figure, (C) is a diagram showing the positional relationship between the through holes 12i, 12j, 12k and the feed contact 16b when viewed from the feed electrode portion 12f side. (D) is a view showing the positional relationship between the through holes 12i, 12j, 12k and the power supply contact 16b in the power supply electrode portion 12f when viewed from the nip N side. (E) is a diagram showing the positional relationship between the through holes 121, 12m, 12n and the power supply contact 16f in the power supply electrode portion 12h when viewed from the nip N side. The scales in the thickness direction of the heater 12 shown in FIGS. 3A and 3C are enlarged for the sake of explanation.

図3の(A)乃至(E)を参照して、給電接点とスルーホール間の位置関係を述べる。   With reference to FIGS. 3A to 3E, the positional relationship between the power supply contact and the through hole will be described.

給電コネクタ16a,16c,16eには、ヒータ12上の給電電極部12f,12g,12hと圧接して電気的な導通を形成する、給電接点16b,16d,16fをそれぞれ形成してある。本実施例では、給電コネクタ16a,16c,16eをフィルムガイド14に支持されたヒータ12に対して、図3(B)中の右方向、即ち記録材搬送方向の上流方向から挿入し、不図示のフィルムガイド14で位置決め、抜け防止をするようにしている。それによりヒータ12上の給電電極部12f,12g,12hに対する給電接点16b,16d,16fの位置を定めることができる構成にした。そのような構成にすることで、給電接点16b,16fと各々のスルーホール12i,12j,12k,12l,12m,12nの位置関係を定めた。   The power supply connectors 16a, 16c, and 16e are formed with power supply contacts 16b, 16d, and 16f, respectively, which are in electrical contact with the power supply electrode portions 12f, 12g, and 12h on the heater 12 to form electrical continuity. In this embodiment, the power supply connectors 16a, 16c, and 16e are inserted into the heater 12 supported by the film guide 14 from the right direction in FIG. 3B, that is, from the upstream side in the recording material conveyance direction. The film guide 14 is used for positioning and prevention of removal. As a result, the positions of the power supply contacts 16b, 16d, and 16f with respect to the power supply electrode portions 12f, 12g, and 12h on the heater 12 can be determined. With such a configuration, the positional relationship between the power supply contacts 16b and 16f and the respective through holes 12i, 12j, 12k, 12l, 12m, and 12n was determined.

図3(D)に示すように、スルーホール12i,12j,12kの中心点を結ぶことで形作られる領域をt1と定義すると、給電接点16bはt1の領域内に含まれるように配置した。同様に、図3(E)に示すように、スルーホール12l,12m,12nの中心点を結ぶことで形作られる領域をt2と定義すると、給電接点16fはt2の領域内に含まれるように配置した。   As shown in FIG. 3D, when a region formed by connecting the center points of the through holes 12i, 12j, and 12k is defined as t1, the power supply contact 16b is arranged so as to be included in the region of t1. Similarly, as shown in FIG. 3E, when a region formed by connecting the center points of the through holes 12l, 12m, and 12n is defined as t2, the power supply contact 16f is arranged so as to be included in the region of t2. did.

次に上記の構成を用いたことによる効果を確認するため、ヒータ12の通電の信頼性を試験した。試験方法としては、ヒータ12を定着装置1に組み込んだ状態で、100Vの電源および通電制御部に接続した。そして、温度検知素子15の検知結果をもとに、図4に示すような温度のターゲットを60秒の1サイクルとして温調し、非通電を繰り返すような条件で試験を実施した。スルーホールの抵抗が大きくなり、導通が悪化する際の試験サイクルの回数で信頼性を評価した。   Next, in order to confirm the effect of using the above configuration, the reliability of energization of the heater 12 was tested. As a test method, the heater 12 was incorporated in the fixing device 1 and connected to a 100 V power source and an energization control unit. Then, based on the detection result of the temperature detection element 15, the temperature was adjusted as shown in FIG. 4 for one cycle of 60 seconds, and the test was performed under the condition that repeated de-energization. Reliability was evaluated by the number of test cycles when the resistance of the through hole was increased and conduction was deteriorated.

また、比較例としてスルーホール12i,12j,12kと給電接点16b、及びスルーホール12l,12m,12nと給電接点16fの位置関係を図5(A)、(B)に示すような構成としたヒータについても、同様に試験を行った。比較例のヒータは、スルーホール12i,12j,12k,12l,12m,12nの形状、スルーホールの各々の間隔は同一のまま、給電接点16b,16fとの位置関係をずらして給電接点16b,16fが領域t1,t2に含まれないような構成とした。   In addition, as a comparative example, a heater in which the positional relationship between the through holes 12i, 12j, and 12k and the power supply contact 16b, and the through holes 12l, 12m, and 12n and the power supply contact 16f is configured as shown in FIGS. The same test was conducted for. In the heater of the comparative example, the shape of the through holes 12i, 12j, 12k, 12l, 12m, and 12n and the distance between the through holes remain the same, and the positional relationship with the power supply contacts 16b and 16f is shifted to be the power supply contacts 16b and 16f. Is not included in the regions t1 and t2.

本実施例のヒータ12において、給電接点16bと通電電極部12f内の各々のスルーホールの中心との距離が最短になるものと、最長になるものの距離差は、0.3mm、比較例のヒータにおいては、1.1mmになるようにした。また、給電接点16fと通電電極部12h内の各々のスルーホールの中心との距離が最短になるものと、最長になるものの距離差は、0.3mm、比較例のヒータにおいては、1.1mmになるようにした。   In the heater 12 of this embodiment, the distance difference between the shortest and the longest distance between the power supply contact 16b and the center of each through hole in the energizing electrode portion 12f is 0.3 mm, and the heater of the comparative example In, it was set to 1.1 mm. In addition, the difference between the distance between the shortest and the longest distance between the feeding contact 16f and the center of each through hole in the energizing electrode portion 12h is 0.3 mm, and 1.1 mm in the heater of the comparative example. I tried to become.

それぞれの評価結果を表1に示した。   The respective evaluation results are shown in Table 1.

表1に示したように、本実施例の構成である給電接点16bが領域t1に含まれ、給電接点16fが領域t2に含まれる構成により、それぞれが含まれない構成に比べて、1.9倍の延命ができている。したがって、本実施例のスルーホールを用いたヒータの通電の信頼性を高めることが出来た。 As shown in Table 1, the power supply contact 16b according to the configuration of the present embodiment is included in the region t1, and the power supply contact 16f is included in the region t2. The life is doubled. Therefore, the reliability of energization of the heater using the through hole of this example could be improved.

この評価において、比較例に示した給電接点16b,16fがともに領域t1,t2に含まれない構成においては、距離の近いスルーホールが先に劣化して抵抗が上昇した後すぐに、距離の遠いスルーホールも電流が集中して劣化する傾向が見られた。それに対して、本実施例の構成である給電接点16bが領域t1に含まれ、給電接点16fが領域t2に含まれる構成ではバランス良く電流が流れたために劣化に至る回数を伸ばすことが出来ており、狙いの効果が得られていることを確認できた。よって、本実施例のヒータ12は、スルーホール12i,12j,12k,12l,12m,12nの焼け及びそれに伴う導通不良を防止することができる。   In this evaluation, in the configuration in which both of the power supply contacts 16b and 16f shown in the comparative example are not included in the regions t1 and t2, the distance is long immediately after the through-hole having a short distance deteriorates first and the resistance increases. There was also a tendency for through holes to deteriorate due to current concentration. In contrast, in the configuration in which the power supply contact 16b, which is the configuration of the present embodiment, is included in the region t1, and the power supply contact 16f is included in the region t2, the current flows in a well-balanced manner, so that the number of times of deterioration can be increased. It was confirmed that the target effect was obtained. Therefore, the heater 12 of the present embodiment can prevent the through holes 12i, 12j, 12k, 12l, 12m, and 12n from being burned and the conduction failure associated therewith.

本試験はヒータの信頼性を加速的に評価するモードであり、本実施例のヒータ12においても、導通が低下する傾向が見られた。しかし、本実施例のヒータ12を画像形成装置の定着装置に用いた場合には、同一回数においてスルーホール12i,12j,12k,12l,12m,12nの劣化に伴う抵抗の上昇は見られず、実使用上の問題は確認されなかった。   This test is a mode in which the reliability of the heater is evaluated in an accelerated manner, and the continuity tends to decrease in the heater 12 of this embodiment. However, when the heater 12 of this embodiment is used in the fixing device of the image forming apparatus, the resistance is not increased due to the deterioration of the through holes 12i, 12j, 12k, 12l, 12m, and 12n in the same number of times. No problems in actual use were confirmed.

[実施例2]
ヒータの他の例を説明する。実施例1の図2、図3に示したヒータ12は、小サイズ紙の非通紙部昇温対策を目的に、基板12aの両面(表面と裏面)に発熱抵抗体12b,12cを設ける構成を採用した。この構成に対して、基板12aの片面(表面又は裏面)のみに発熱抵抗体12sを設ける構成であっても、実施例1と同様な作用効果が得られることを次に説明する。
[Example 2]
Another example of the heater will be described. The heater 12 shown in FIGS. 2 and 3 of the first embodiment has a configuration in which heating resistors 12b and 12c are provided on both surfaces (front and back surfaces) of the substrate 12a for the purpose of preventing the temperature increase of the non-sheet passing portion of the small size paper. It was adopted. In contrast to this configuration, it will be described next that the same effects as those of the first embodiment can be obtained even when the heating resistor 12s is provided only on one surface (front surface or back surface) of the substrate 12a.

基板12aの片面のみに発熱抵抗体12sを設けた場合のヒータ12の構成、スルーホール12i,12j,12k,12l,12m,12nと給電接点16b,16fとの位置関係を図6に示す。図6において、(A)は基板12aの表面側から見たヒータの構成模式図、(B)は基板12aの裏面側から見たヒータの構成模式図である。(C)は(A)の給電電極部12f部分を拡大して示した図であり、(D)は(A)の給電電極部12h部分を拡大して示した図である。   FIG. 6 shows the configuration of the heater 12 when the heating resistor 12s is provided only on one surface of the substrate 12a, and the positional relationship between the through holes 12i, 12j, 12k, 12l, 12m, and 12n and the power supply contacts 16b and 16f. 6A is a schematic configuration diagram of the heater viewed from the front surface side of the substrate 12a, and FIG. 6B is a schematic configuration diagram of the heater viewed from the back surface side of the substrate 12a. (C) is the figure which expanded and showed the power feeding electrode part 12f part of (A), (D) is the figure which expanded and showed the power feeding electrode part 12h part of (A).

この構成のヒータ12場合、給電電極部12fは共通電極として用いず、発熱抵抗体12sに対して基板12aの表面側から給電する給電電極として用いる。また、発熱抵抗体12sの長さxは、小サイズの記録材よりも記録材幅の大きい大サイズの記録材(記録紙)に対応した長さである230mm、抵抗値は15Ωに設定した。   In the case of the heater 12 having this configuration, the power supply electrode portion 12f is not used as a common electrode but is used as a power supply electrode that supplies power to the heating resistor 12s from the surface side of the substrate 12a. Further, the length x of the heating resistor 12s was set to 230 mm, which is a length corresponding to a large size recording material (recording paper) having a recording material width larger than that of the small size recording material, and the resistance value was set to 15Ω.

この場合のヒータ12の構成は、基板12aと、給電電極部12f,12hと、発熱抵抗体12sと、導電体12o,12pと、スルーホール12i,12j,12k,12l,12m,12nと、表面保護層12eと、を有している。   The configuration of the heater 12 in this case includes a substrate 12a, power supply electrode portions 12f and 12h, a heating resistor 12s, conductors 12o and 12p, through holes 12i, 12j, 12k, 12l, 12m, and 12n, And a protective layer 12e.

発熱抵抗体12sは、基板12aの裏面で基板12aの長手方向に沿って設けられている。導電体12o,12pは、基板12aの裏面で発熱抵抗体12sの両端に設けられている。表面保護層12eは、基板12aの裏面に設けられ、発熱抵抗体12sと、導電体12o,12pにおける発熱抵抗体12sとの接続部分を覆っている。そして、給電接点16bが領域t1に含まれ、給電接点16fが領域t2に含まれる構成とする。これにより、スルーホール12i,12j,12k,12l,12m,12nの焼け及びそれに伴う導通不良を防止することができる。   The heating resistor 12s is provided along the longitudinal direction of the substrate 12a on the back surface of the substrate 12a. The conductors 12o and 12p are provided at both ends of the heating resistor 12s on the back surface of the substrate 12a. The surface protective layer 12e is provided on the back surface of the substrate 12a, and covers the connecting portion between the heating resistor 12s and the heating resistors 12s in the conductors 12o and 12p. The power supply contact 16b is included in the region t1, and the power supply contact 16f is included in the region t2. As a result, it is possible to prevent the through holes 12i, 12j, 12k, 12l, 12m, and 12n from being burned and the conduction failure associated therewith.

また、給電コネクタ16a,16e接続時のスペースの都合等で給電接点16b,16fを基板12aの裏面に設けるような構成であっても、本実施例と同様な作用効果が得られる。即ち、基板12aの表面に発熱抵抗体12sと導電体12o,12pを設け、基板12aの裏面に給電電極部12f,12hを設け、発熱抵抗体12sに対して基板12aをはさんで基板12aの裏面側から給電するような構成とする。この構成のヒータ12の場合、基板12aの表面を第1の面とする。   Further, even in a configuration in which the power supply contacts 16b and 16f are provided on the back surface of the substrate 12a due to the space at the time of connecting the power supply connectors 16a and 16e, the same operational effects as in the present embodiment can be obtained. That is, the heating resistor 12s and the conductors 12o and 12p are provided on the surface of the substrate 12a, the feeding electrode portions 12f and 12h are provided on the back surface of the substrate 12a, and the substrate 12a is sandwiched between the heating resistor 12s and the substrate 12a. The power is supplied from the back side. In the case of the heater 12 having this configuration, the surface of the substrate 12a is the first surface.

この場合のヒータ12においても、給電接点16bが領域t1に含まれ、給電接点16fが領域t2に含まれる構成とすることで、スルーホール12i,12j,12k,12l,12m,12nの焼け及びそれに伴う導通不良を防止することができる。   In the heater 12 in this case as well, the feed contact 16b is included in the region t1 and the feed contact 16f is included in the region t2, so that the through holes 12i, 12j, 12k, 12l, 12m, and 12n are burned. The accompanying conduction failure can be prevented.

[実施例3]
ヒータの他の例を説明する。図2、図3に示したヒータ12においては、3つのスルーホールを持つ給電電極部12f,12hを基板12aの両端部内側に設ける構成とした。この構成に対して、給電電極部12f,12hの位置を変更した場合であっても、同様の作用効果を得ることが出来ることを次に説明する。
[Example 3]
Another example of the heater will be described. The heater 12 shown in FIGS. 2 and 3 has a configuration in which power supply electrode portions 12f and 12h having three through holes are provided inside both ends of the substrate 12a. Next, it will be described that similar effects can be obtained even when the positions of the power supply electrode portions 12f and 12h are changed.

給電接点16b,16fを基板12aの片端に集約した場合のヒータ12の構成、スルーホール12i,12j,12k,12l,12m,12nと給電接点16b,16fとの位置関係を図7に示す。図7において、(A)は基板12aの表面側から見たヒータの構成模式図、(B)は基板12aの裏面側から見たヒータの構成模式図である。(C)は(A)の給電電極部12f部分を拡大して示した図であり、(D)は(A)の給電電極部12h部分を拡大して示した図である。   FIG. 7 shows the configuration of the heater 12 and the positional relationship between the through holes 12i, 12j, 12k, 12l, 12m, and 12n and the power supply contacts 16b and 16f when the power supply contacts 16b and 16f are collected on one end of the substrate 12a. 7A is a schematic configuration diagram of the heater viewed from the front surface side of the substrate 12a, and FIG. 7B is a schematic configuration diagram of the heater viewed from the back surface side of the substrate 12a. (C) is the figure which expanded and showed the power feeding electrode part 12f part of (A), (D) is the figure which expanded and showed the power feeding electrode part 12h part of (A).

本実施例のヒータ12の場合、給電電極部12f、及び導電体12oは図3で示した構成とは基板12aの長手方向で逆側の端部に設けてある。この場合においても、給電接点16bが領域t1に含まれ、給電接点16fが領域t2に含まれる構成とすることにより、スルーホール12i,12j,12k,12l,12m,12nの焼け及びそれに伴う導通不良を防止することができる。即ち、本実施例のヒータ12の作用効果は、給電接点16b,16fの位置により制限されるものではない。   In the case of the heater 12 of the present embodiment, the feeding electrode portion 12f and the conductor 12o are provided at the end on the opposite side in the longitudinal direction of the substrate 12a from the configuration shown in FIG. Even in this case, the through-holes 12i, 12j, 12k, 12l, 12m, and 12n are burnt and the conduction failure is accompanied by the configuration in which the feeding contact 16b is included in the region t1 and the feeding contact 16f is included in the region t2. Can be prevented. That is, the effect of the heater 12 of this embodiment is not limited by the positions of the power supply contacts 16b and 16f.

[実施例4]
ヒータの他の例を説明する。本実施例のヒータは、1つの給電電極部あたりのスルーホール個数を増加させることで、通電の信頼性を高めることを目的にしている。図8の(A)、(B)に示されるように、給電電極部12fと導電体12oを基板12aの厚み方向で基板12aを貫通する4つのスルーホール12i,12j,12k,12qにより電気的に接続している。同様に、給電電極部12hと導電体12pを基板12aの厚み方向で基板12aを貫通する4つのスルーホール12l,12m,12n,12rにより電気的に接続している。この点を除いて、実施例1のヒータ12と同じ構成としてある。
[Example 4]
Another example of the heater will be described. The heater of the present embodiment aims to increase the reliability of energization by increasing the number of through holes per one feeding electrode portion. As shown in FIGS. 8A and 8B, the feeding electrode portion 12f and the conductor 12o are electrically connected by four through holes 12i, 12j, 12k, and 12q that penetrate the substrate 12a in the thickness direction of the substrate 12a. Connected to. Similarly, the feeding electrode portion 12h and the conductor 12p are electrically connected by four through holes 12l, 12m, 12n, and 12r that penetrate the substrate 12a in the thickness direction of the substrate 12a. Except for this point, the configuration is the same as the heater 12 of the first embodiment.

本実施例のヒータの構成、及びスルーホールと給電接点との位置関係を図8に示した。図8において、(A)は記録材搬送方向下流側から見たときのスルーホール12i,12j,12k,12q,12l,12m,12n,12rと給電接点16b,16d,16fの位置関係を表す図である。(B)はニップ部N側から見たときのスルーホール12i,12j,12k,12q,12l,12m,12n,12rと給電接点16b,16d,16fの位置関係を表す図である。   FIG. 8 shows the configuration of the heater of this example and the positional relationship between the through hole and the power supply contact. 8A shows a positional relationship between the through holes 12i, 12j, 12k, 12q, 12l, 12m, 12n, and 12r and the power supply contacts 16b, 16d, and 16f when viewed from the downstream side in the recording material conveyance direction. It is. (B) is a diagram showing the positional relationship between the through holes 12i, 12j, 12k, 12q, 12l, 12m, 12n, and 12r and the power supply contacts 16b, 16d, and 16f when viewed from the nip N side.

同図において、(C)は給電電極部12f側から見たときのスルーホール12i,12j,12k,12qと給電接点16bの位置関係を表す図である。(D)はニップ部N側から見たときの給電電極部12fにおけるスルーホール12i,12j,12k,12qと給電接点16bの位置関係を表す図である。(E)はニップ部N側から見たときの給電電極部12hにおけるスルーホール12l,12m,12n,12rと給電接点16fの位置関係を表す図である。(A)と(C)に示すヒータ12の厚み方向の縮尺は、説明の都合上拡大して示した。   In the same figure, (C) is a diagram showing the positional relationship between the through holes 12i, 12j, 12k, 12q and the power supply contact 16b when viewed from the power supply electrode portion 12f side. (D) is a diagram showing the positional relationship between the through holes 12i, 12j, 12k, 12q and the power supply contact 16b in the power supply electrode portion 12f when viewed from the nip N side. (E) is a diagram showing the positional relationship between the through holes 121, 12m, 12n, and 12r and the power supply contact 16f in the power supply electrode portion 12h when viewed from the nip N side. The scale in the thickness direction of the heater 12 shown in (A) and (C) is enlarged for the sake of explanation.

本実施例においては、実施例1のヒータに対して、スルーホール12q,12rを追加している。図8(D)に示すように、スルーホール12i,12j,12k,12qの中心点を結ぶことで形作られる領域をt3と定義すると、給電接点16bはt3の領域内に含まれるように配置した。同様に、図8(E)に示すように、スルーホール12l,12m,12n,12rの中心点を結ぶことで形作られる領域をt4と定義すると、給電接点16fはt4の領域内に含まれるように配置した。   In the present embodiment, through holes 12q and 12r are added to the heater of the first embodiment. As shown in FIG. 8D, when a region formed by connecting the center points of the through holes 12i, 12j, 12k, and 12q is defined as t3, the power supply contact 16b is disposed so as to be included in the region of t3. . Similarly, as shown in FIG. 8E, if a region formed by connecting the center points of the through holes 12l, 12m, 12n, and 12r is defined as t4, the power supply contact 16f is included in the region of t4. Arranged.

上記の構成を用いたことによる効果を確認するため、実施例1と同様な条件で、ヒータ12の通電の信頼性を試験した。また、比較例として図9(A)、(B)に示すような、スルーホールの形状、各々の間隔は同一のまま、給電接点16b,16fとの位置関係をずらして給電接点16b,16fが領域t3,t4に含まれないような構成のヒータも同様に試験を行った。   In order to confirm the effect of using the above configuration, the reliability of energization of the heater 12 was tested under the same conditions as in Example 1. Further, as a comparative example, as shown in FIGS. 9 (A) and 9 (B), the shape of the through holes and the distances between them remain the same, and the positional relationship with the power supply contacts 16b and 16f is shifted so that the power supply contacts 16b and 16f A heater having a configuration not included in the regions t3 and t4 was similarly tested.

本実施例のヒータ12において、給電接点16bと給電電極部12f内の各々のスルーホールの中心との距離が最短になるものと、最長になるものの距離差は、0.2mmになるようにした。比較例のヒータにおいては、1.3mmになるようにした。また、給電接点16fと電極12h内の各々のスルーホールの中心との距離が最短になるものと、最長になるものの距離差は、0.2mm、比較例のヒータにおいては、1.3mmになるようにした。   In the heater 12 of the present embodiment, the distance difference between the shortest and the longest distance between the power supply contact 16b and the center of each through hole in the power supply electrode portion 12f is 0.2 mm. . In the heater of the comparative example, it was set to 1.3 mm. Further, the distance between the shortest and the longest distance between the feed contact 16f and the center of each through hole in the electrode 12h is 0.2 mm, and 1.3 mm in the heater of the comparative example. I did it.

それぞれの評価結果を表2に示した。   The respective evaluation results are shown in Table 2.

表2に示したように、本実施例の構成である給電接点16bが領域t3に含まれ、給電接点16fが領域t4に含まれる構成により、それぞれが含まれない構成に比べて、1.6倍の延命ができている。したがって、本実施例のスルーホールを用いたヒータの通電の信頼性を高めることが出来た。 As shown in Table 2, the configuration in which the power supply contact 16b according to the present embodiment is included in the region t3 and the power supply contact 16f is included in the region t4. The life is doubled. Therefore, the reliability of energization of the heater using the through hole of this example could be improved.

この評価において、比較例に示した給電接点16b,16fがともに領域t3,t4に含まれない構成においては、距離の近いスルーホールが先に劣化して抵抗が上昇した後すぐに、距離の遠いスルーホールも電流が集中して劣化する傾向が見られた。それに対して、本実施例の構成である給電接点16bが領域t3に含まれ、給電接点16fが領域t4に含まれる構成ではバランス良く電流が流れたために劣化に至る回数を伸ばすことが出来ており、狙いの効果が得られていることを確認できた。よって、本実施例のヒータ12は、スルーホール12i,12j,12k,12q,12l,12m,12n,12rの焼け及びそれに伴う導通不良を防止することができる。   In this evaluation, in the configuration in which the power supply contacts 16b and 16f shown in the comparative example are not included in the regions t3 and t4, the distance is long immediately after the through-hole having a short distance deteriorates first and the resistance increases. There was also a tendency for through holes to deteriorate due to current concentration. On the other hand, in the configuration in which the power supply contact 16b, which is the configuration of the present embodiment, is included in the region t3 and the power supply contact 16f is included in the region t4, the number of times of deterioration can be increased because the current flows in a well-balanced manner. It was confirmed that the target effect was obtained. Therefore, the heater 12 according to the present embodiment can prevent the through holes 12i, 12j, 12k, 12q, 12l, 12m, 12n, and 12r from being burned and the conduction failure associated therewith.

本試験はヒータの信頼性を加速的に評価するモードであり、本実施例のヒータ12においても、導通が低下する傾向が見られた。しかし、本実施例のヒータ12を画像形成装置の定着装置に用いた場合には、同一回数においてスルーホール12i,12j,12k,12q,12l,12m,12n,12rの劣化に伴う抵抗の上昇は見られず、実使用上の問題は確認されなかった。   This test is a mode in which the reliability of the heater is evaluated in an accelerated manner, and the continuity tends to decrease in the heater 12 of this embodiment. However, when the heater 12 of the present embodiment is used in the fixing device of the image forming apparatus, the increase in resistance due to the deterioration of the through holes 12i, 12j, 12k, 12q, 12l, 12m, 12n, 12r is the same number of times. It was not seen and the problem in practical use was not confirmed.

また、実施例1のヒータ12に比べて、本実施例のヒータ12では試験回数を400回延命することができており、スルーホールの個数を増やすことで、信頼性を上げる効果を確認できた。即ち、実施例1ではスルーホール個数を3個とし、本実施例ではスルーホール個数を4個としたが、スルーホール個数をより増加させた構成においても、ヒータの通電の信頼性を上げられることは容易に想像できる。   In addition, compared with the heater 12 of Example 1, the heater 12 of this example can extend the number of tests by 400 times, and the effect of increasing the reliability by increasing the number of through holes was confirmed. . That is, in the first embodiment, the number of through holes is three, and in the present embodiment, the number of through holes is four. However, even in a configuration in which the number of through holes is further increased, the reliability of heater energization can be improved. Is easy to imagine.

本実施例のヒータ12においても実施例2と同様に、発熱抵抗体12bを基板12aの片面のみ形成する、即ち、発熱抵抗体12bと給電電極部12gを設けていない場合であっても、同様の作用効果を得ることができる。   In the heater 12 of the present embodiment, similarly to the second embodiment, the heating resistor 12b is formed only on one surface of the substrate 12a, that is, even when the heating resistor 12b and the feeding electrode portion 12g are not provided. The effect of this can be obtained.

この場合のヒータ12の構成は、基板12aと、給電電極部12f,12hと、発熱抵抗体12cと、導電体12o,12pと、スルーホール12i,12j,12k,12l,12m,12n,12q,12rと、を有している。そして、給電接点16bが領域t3に含まれ、給電接点16fが領域t4に含まれる構成とする。これにより、スルーホール12i,12j,12k,12l,12m,12n,12q,12rの焼け及びそれに伴う導通不良を防止することができる。   The configuration of the heater 12 in this case includes a substrate 12a, power supply electrode portions 12f and 12h, a heating resistor 12c, conductors 12o and 12p, and through holes 12i, 12j, 12k, 12l, 12m, 12n, 12q, 12r. The power supply contact 16b is included in the region t3, and the power supply contact 16f is included in the region t4. Accordingly, it is possible to prevent the through holes 12i, 12j, 12k, 12l, 12m, 12n, 12q, and 12r from being burned and the accompanying conduction failure.

本実施例のヒータ12においても実施例3と同様に、給電電極部12f,12hの位置を変更した場合であっても、同様の作用効果を得ることが出来る。この場合においても、給電接点16bが領域t3に含まれ、給電接点16fが領域t4に含まれる構成とすることにより、スルーホール12i,12j,12k,12l,12m,12n,12q,12rの焼け及びそれに伴う導通不良を防止することができる。   In the heater 12 of the present embodiment, similar to the third embodiment, similar effects can be obtained even when the positions of the feeding electrode portions 12f and 12h are changed. Also in this case, the feed contact 16b is included in the region t3, and the feed contact 16f is included in the region t4, so that the through holes 12i, 12j, 12k, 12l, 12m, 12n, 12q, and 12r are burned. It is possible to prevent a conduction failure associated therewith.

[実施例5]
ヒータの他の例を説明する。本実施例のヒータは、電極12f,12g,12hに接する給電接点が、各々2つ存在する構成としてある。この点を除いて、実施例1のヒータ12と同じ構成としてある。
[Example 5]
Another example of the heater will be described. The heater of the present embodiment has a configuration in which there are two power supply contacts each in contact with the electrodes 12f, 12g, and 12h. Except for this point, the configuration is the same as the heater 12 of the first embodiment.

本実施例のヒータの構成、及びスルーホールと給電接点との位置関係を図10に示した。図10において、(A)は記録材搬送方向下流側から見たときのスルーホール12i,12j,12k,12l,12m,12nと給電接点16b,16g,16d,16h,16f,16iの位置関係を表す図である。(B)はニップ部N側から見たときのスルーホール12i,12j,12k,12l,12m,12nと給電接点16b,16g,16d,16h,16f,16iの位置関係を表す図である。   The configuration of the heater of this example and the positional relationship between the through hole and the power supply contact are shown in FIG. 10A shows the positional relationship between the through holes 12i, 12j, 12k, 12l, 12m, and 12n and the power supply contacts 16b, 16g, 16d, 16h, 16f, and 16i when viewed from the downstream side in the recording material conveyance direction. FIG. (B) is a diagram showing the positional relationship between the through holes 12i, 12j, 12k, 12l, 12m, and 12n and the power supply contacts 16b, 16g, 16d, 16h, 16f, and 16i when viewed from the nip N side.

同図において、(C)は給電電極部12f側から見たときのスルーホール12i,12j,12kと給電接点16b,16gの位置関係を表す図である。(D)はニップ部N側から見たときの給電電極部12fにおけるスルーホール12i,12j,12kと給電接点16b,16gの位置関係を表す図である。(E)はニップ部N側から見たときの電極12hにおけるスルーホール12l,12m,12nと給電接点16f,16iの位置関係を表す図である。図10(A)、(C)に示すヒータ12の厚み方向の縮尺は、説明の都合上拡大して示した。   In the same figure, (C) is a diagram showing the positional relationship between the through holes 12i, 12j, 12k and the power supply contacts 16b, 16g when viewed from the power supply electrode portion 12f side. (D) is a diagram showing the positional relationship between the through holes 12i, 12j, 12k and the power supply contacts 16b, 16g in the power supply electrode portion 12f when viewed from the nip portion N side. (E) is a diagram showing the positional relationship between the through holes 121, 12m, and 12n and the power supply contacts 16f and 16i in the electrode 12h when viewed from the nip N side. The scales in the thickness direction of the heater 12 shown in FIGS. 10A and 10C are enlarged for the sake of explanation.

本実施例のヒータ12においては、実施例1のヒータ12の構成に対して、給電コネクタ16a,16c,16eに対して、給電接点16g,16h,16iを追加した。   In the heater 12 of the present embodiment, power supply contacts 16g, 16h, and 16i are added to the power supply connectors 16a, 16c, and 16e with respect to the configuration of the heater 12 of the first embodiment.

これにより、給電電極部12fには、給電電極部12fの領域内で給電コネクタ16aの2つの給電接点(複数の給電接点)16b,16gが電気的に接続される。一方、給電電極部12gには、給電電極部12gの領域内で給電コネクタ16cの2つの給電接点(複数の給電接点)16d,16hが電気的に接続される。同様に、給電電極部12hには、給電電極部12hの領域内で給電コネクタ16eの2つの給電接点(複数の給電接点)16f,16iが電気的に接続される。この構成は、1つの給電電極部中に存在する給電接点数を増加させることで、給電接点毎の給電電極部との当接具合のバラツキ、給電性能のバラツキに対する導通性能の信頼性を向上させることを目的としている。   As a result, the two feeding contacts (a plurality of feeding contacts) 16b and 16g of the feeding connector 16a are electrically connected to the feeding electrode portion 12f within the region of the feeding electrode portion 12f. On the other hand, the two feeding contacts (a plurality of feeding contacts) 16d and 16h of the feeding connector 16c are electrically connected to the feeding electrode portion 12g in the region of the feeding electrode portion 12g. Similarly, two power supply contacts (a plurality of power supply contacts) 16f and 16i of the power supply connector 16e are electrically connected to the power supply electrode portion 12h in the region of the power supply electrode portion 12h. This configuration increases the number of power supply contact points existing in one power supply electrode part, thereby improving the reliability of the conduction performance against variations in the contact state with the power supply electrode part for each power supply contact and the power supply performance. The purpose is that.

スルーホールの存在する2つの給電電極部12f,12hにおいてスルーホールと給電接点の位置関係は、2つの給電接点がスルーホールの中心点を結ぶことで形作られる領域に含まれるようにした。図10(D)に示すように、スルーホール12i,12j,12kの中心点を結ぶことで形作られる領域をt1と定義すると、給電接点16b,16gはt1の領域内に含まれるように配置した。同様に、図10(E)に示すように、スルーホール12l,12m,12nの中心点を結ぶことで形作られる領域をt2と定義すると、給電接点16f,iはt2の領域内に含まれるように配置した。   In the two power supply electrode portions 12f and 12h where the through hole exists, the positional relationship between the through hole and the power supply contact is included in an area formed by connecting the two power supply contacts to the center point of the through hole. As shown in FIG. 10D, when a region formed by connecting the center points of the through holes 12i, 12j, and 12k is defined as t1, the power supply contacts 16b and 16g are arranged so as to be included in the region of t1. . Similarly, as shown in FIG. 10E, if a region formed by connecting the center points of the through holes 12l, 12m, and 12n is defined as t2, the power supply contacts 16f and i are included in the region of t2. Arranged.

上記の構成を用いたことによる効果を確認するため、実施例1と同様な条件で、ヒータ12の通電の信頼性を試験した。また、比較例としてスルーホール12i,12j,12kと給電接点16b、及びスルーホール12l,12m,12nと給電接点16fの位置関係を図11(A)、(B)に示すような構成としたヒータについても、同様に試験を行った。   In order to confirm the effect of using the above configuration, the reliability of energization of the heater 12 was tested under the same conditions as in Example 1. In addition, as a comparative example, a heater in which the positional relationship between the through holes 12i, 12j, and 12k and the power supply contact 16b, and the through holes 12l, 12m, and 12n and the power supply contact 16f is configured as shown in FIGS. The same test was conducted for.

比較例のヒータは、スルーホール12i,12j,12k,12l,12m,12nの形状、スルーホールの各々の間隔は同一のままとしている。そして、図11(A)に示すように、スルーホール12i,12j,12kと給電接点16b,16gとの位置関係をずらして給電接点16b,16gが領域t1に含まれないような構成とした。また、図11(B)に示すように、スルーホール12l,12m,12nと給電接点16f,16iとの位置関係をずらして給電接点16f,16iが領域t2に含まれないような構成とした。   In the heater of the comparative example, the shapes of the through holes 12i, 12j, 12k, 12l, 12m, and 12n and the intervals between the through holes remain the same. As shown in FIG. 11A, the positional relationship between the through holes 12i, 12j, and 12k and the power supply contacts 16b and 16g is shifted so that the power supply contacts 16b and 16g are not included in the region t1. Further, as shown in FIG. 11B, the positional relationship between the through holes 121, 12m, and 12n and the power supply contacts 16f and 16i is shifted so that the power supply contacts 16f and 16i are not included in the region t2.

それぞれの評価結果を表3に示した。   The respective evaluation results are shown in Table 3.

表3に示したように、本実施例の構成である給電接点16b,16gが領域t1に含まれ、給電接点16f,16iが領域t2に含まれる構成により、それぞれが含まれない構成に比べて、1.9倍の延命ができている。したがって、本実施例のスルーホールを用いたヒータの通電の信頼性を高めることが出来た。 As shown in Table 3, the power supply contacts 16b and 16g according to the configuration of the present embodiment are included in the region t1, and the power supply contacts 16f and 16i are included in the region t2. 1.9 times longer life. Therefore, the reliability of energization of the heater using the through hole of this example could be improved.

この評価において、比較例に示した給電接点16b,16gおよび16f,16iがともに領域t1およびt2に含まれない構成においては、次のような傾向が見られた。即ち、距離の近いスルーホールが先に劣化して抵抗が上昇した後すぐに、距離の遠いスルーホールも電流が集中して劣化する傾向が見られた。それに対して、本実施例の構成である給電接点16b,16gが領域t1に含まれ、給電接点16f,16iが領域t2に含まれる構成ではバランス良く電流が流れたために劣化に至る回数を伸ばすことが出来ており、狙いの効果が得られていることを確認できた。よって、本実施例のヒータ12は、スルーホール12i,12j,12k,12l,12m,12nの焼け及びそれに伴う導通不良を防止することができる。   In this evaluation, the following tendency was observed in the configuration in which the power supply contacts 16b, 16g and 16f, 16i shown in the comparative example are not included in the regions t1 and t2. That is, immediately after the through hole with a short distance deteriorated and the resistance increased, the through hole with a long distance tended to deteriorate due to current concentration. On the other hand, in the configuration in which the power supply contacts 16b and 16g, which are the configuration of the present embodiment, are included in the region t1, and the power supply contacts 16f and 16i are included in the region t2, the number of times of deterioration is increased because current flows in a balanced manner. It was confirmed that the target effect was obtained. Therefore, the heater 12 according to the present embodiment can prevent the through holes 12i, 12j, 12k, 12l, 12m, and 12n from being burned and conduction failure associated therewith.

本試験はヒータの信頼性を加速的に評価するモードであり、本実施例のヒータ12においても、導通が低下する傾向が見られた。しかし、本実施例のヒータ12を画像形成装置の定着装置に用いた場合には、同一回数においてスルーホール12i,12j,12k,12l,12m,12nの劣化に伴う抵抗の上昇は見られず、実使用上の問題は確認されなかった。   This test is a mode in which the reliability of the heater is evaluated in an accelerated manner, and the continuity tends to decrease in the heater 12 of this embodiment. However, when the heater 12 of the present embodiment is used in the fixing device of the image forming apparatus, the increase in resistance due to the deterioration of the through holes 12i, 12j, 12k, 12l, 12m, and 12n is not observed in the same number of times. No problems in actual use were confirmed.

また、実施例1のヒータ12に比べて、本実施例のヒータ12では試験回数を150回延命することができており、給電接点の個数を増やすことで、信頼性を上げる効果を確認できた。即ち、実施例1では1給電電極部当たりの給電接点数を1個とし、本実施例では2個としたが、給電接点数をより増加させた構成においても、ヒータの通電の信頼性を上げられることは容易に想像できる。   In addition, compared with the heater 12 of Example 1, the heater 12 of this example can extend the number of tests by 150 times, and the effect of increasing the reliability can be confirmed by increasing the number of power supply contacts. . That is, in the first embodiment, the number of power supply contacts per one power supply electrode portion is one, and in this embodiment, the number of power supply contacts is two. However, even in a configuration in which the number of power supply contacts is increased, the reliability of energization of the heater is increased. You can easily imagine being done.

また、本実施例では1給電電極部当たりのスルーホール個数を3個かつ給電接点数を2個とした。しかしながら、スルーホール個数をより増加させた構成においても、1給電電極部当たりの給電接点数を複数設けることで、ヒータの通電の信頼性を上げられることは容易に想像できる。   In this embodiment, the number of through holes per power supply electrode portion is three and the number of power supply contacts is two. However, even in a configuration in which the number of through holes is further increased, it can be easily imagined that the reliability of energization of the heater can be improved by providing a plurality of power supply contact points per power supply electrode portion.

また、本実施例では、1給電電極部中の2つの給電接点が、スルーホールで形作られる領域に全て含まれる場合と、全て含まれない場合を比較した。しかしながら、2つの給電接点の内の1つ以上がスルーホールで形作られる領域内に含まれていれば、実施例1と同様な構成となり、同様の効果を得ることが出来る。よって、スルーホールを3つ以上、給電接点を3つ以上設ける構成において、スルーホールで形作られる領域内に給電接点を1つ以上設けることで、ヒータの通電の信頼性を上げられることは容易に想像できる。   Further, in this embodiment, the case where the two power supply contacts in one power supply electrode portion are all included in the region formed by the through hole and the case where all the power supply contacts are not included are compared. However, if one or more of the two power supply contacts are included in a region formed by a through hole, the configuration is the same as that of the first embodiment, and the same effect can be obtained. Therefore, in a configuration in which three or more through holes and three or more power supply contacts are provided, it is easy to improve the reliability of heater energization by providing one or more power supply contacts in the region formed by the through holes. I can imagine.

本実施例のヒータ12においても実施例2と同様に、発熱抵抗体12bを基板12aの片面のみ形成する、即ち、発熱抵抗体12bと給電電極部12gを設けていない場合であっても、同様の作用効果を得ることができる。   In the heater 12 of the present embodiment, similarly to the second embodiment, the heating resistor 12b is formed only on one surface of the substrate 12a, that is, even when the heating resistor 12b and the feeding electrode portion 12g are not provided. The effect of this can be obtained.

この場合のヒータ12の構成は、基板12aと、給電電極部12f,12hと、発熱抵抗体12cと、導電体12o,12pと、スルーホール12i,12j,12k,12l,12m,12nと、を有している。そして、給電接点16b,16gが領域t1に含まれ、給電接点16f,16iが領域t2に含まれる構成とする。これにより、スルーホール12i,12j,12k,12l,12m,12nの焼け及びそれに伴う導通不良を防止することができる。   In this case, the heater 12 includes a substrate 12a, power supply electrode portions 12f and 12h, a heating resistor 12c, conductors 12o and 12p, and through holes 12i, 12j, 12k, 12l, 12m, and 12n. Have. The power supply contacts 16b and 16g are included in the region t1, and the power supply contacts 16f and 16i are included in the region t2. Thereby, it is possible to prevent the through holes 12i, 12j, 12k, 12l, 12m, and 12n from being burned and the conduction failure associated therewith.

本実施例のヒータ12においても実施例3と同様に、給電電極部12f,12hの位置を変更した場合であっても、同様の作用効果を得ることが出来る。この場合においても、給電接点16b,16gが領域t1に含まれ、給電接点16f,16iが領域t2に含まれる構成とすることにより、スルーホール12i,12j,12k,12l,12m,12nの焼け及びそれに伴う導通不良を防止することができる。   In the heater 12 of the present embodiment, similar to the third embodiment, similar effects can be obtained even when the positions of the feeding electrode portions 12f and 12h are changed. Even in this case, the feed contacts 16b and 16g are included in the region t1, and the feed contacts 16f and 16i are included in the region t2, so that the through holes 12i, 12j, 12k, 12l, 12m, and 12n are burned. It is possible to prevent a conduction failure associated therewith.

[他の実施例]
実施例1乃至実施例4の定着装置は記録材Pが担持する未定着トナー画像tを記録材に加熱定着する装置としての使用に限られない。例えば未定着トナー画像を加熱して記録材に仮定着する像加熱装置、或いは記録材上に加熱定着されたトナー画像を加熱してトナー画像表面に光沢を付与する像加熱装置としても使用できる。
[Other embodiments]
The fixing devices according to the first to fourth embodiments are not limited to use as a device that heat-fixes an unfixed toner image t carried by the recording material P on the recording material. For example, it can also be used as an image heating apparatus that heats an unfixed toner image to be applied to a recording material, or an image heating apparatus that heats a toner image heated and fixed on a recording material to give glossiness to the surface of the toner image.

1‥‥定着装置、11‥‥定着フィルム、12‥‥ヒータ、12a‥‥ヒータ基板、12b,12c,12s‥‥発熱抵抗体、12f,12g,12h‥‥給電電極部、12i,12j,12k,12l,12m,12n,12q,12r‥‥スルーホール、12o,12p‥‥導電体、13‥‥加圧ローラ、16b,16d,16f,16g,16h,16i‥‥給電接点、N‥‥定着ニップ、P‥‥記録材、T‥‥未定着トナー画像、t1,t3‥‥給電電極部12f内のスルーホールで囲まれる領域、t2,t4‥‥給電電極部12h内のスルーホールで囲まれる領域 DESCRIPTION OF SYMBOLS 1 ... Fixing device, 11 ... Fixing film, 12 ... Heater, 12a ... Heater substrate, 12b, 12c, 12s ... Heating resistor, 12f, 12g, 12h ... Feed electrode part, 12i, 12j, 12k , 12l, 12m, 12n, 12q, 12r ... through hole, 12o, 12p ... conductor, 13 ... pressure roller, 16b, 16d, 16f, 16g, 16h, 16i ... feed contact, N ... fixing Nip, P ... Recording material, T ... Unfixed toner image, t1, t3 ... Area surrounded by through hole in power supply electrode part 12f, t2, t4 ... Surrounded by through hole in power supply electrode part 12h region

Claims (6)

給電接点を接続し通電することで発熱する加熱体において、
加熱体は、
電気的に絶縁性を有する細長い基板と、
前記基板の第1の面で前記基板の長手方向に沿って設けられ通電により発熱する発熱抵抗体と、
前記基板の第1の面で前記発熱抵抗体の両端に設けられる導電体と、
前記基板の第2の面に形成され前記導電体と対向する領域を持つ給電電極部と、
前記導電体と前記給電電極部とを各々電気的に接続する3つ以上のスルーホールと、を有し、
前記3つ以上のスルーホールは、前記給電電極部に接続される前記給電接点を、囲むように配設されることを特徴とする加熱体。
In a heating element that generates heat by connecting a power supply contact and energizing it,
The heating body is
An elongated substrate having electrical insulation;
A heating resistor provided along the longitudinal direction of the substrate on the first surface of the substrate and generating heat by energization;
A conductor provided at both ends of the heating resistor on the first surface of the substrate;
A feeding electrode portion formed on the second surface of the substrate and having a region facing the conductor;
Three or more through-holes that electrically connect the conductor and the feeding electrode part, respectively,
The three or more through holes are disposed so as to surround the power supply contact connected to the power supply electrode portion.
給電接点を接続し通電することで発熱する加熱体において、
加熱体は、
電気的に絶縁性を有する細長い基板と、
前記基板の第1の面で前記基板の長手方向に沿って設けられ通電により発熱する第1の発熱抵抗体と、
前記基板の第1の面で前記第1の発熱抵抗体の両端に設けられる導電体と、
前記基板の第2の面で前記基板の長手方向に沿って設けられ通電により発熱する第2の発熱抵抗体と、
前記基板の第1の面で前記導電体と対向する領域を持つ給電電極部と、
前記導電体と前記給電電極部とを各々電気的に接続する3つ以上のスルーホールと、を有し、
前記3つ以上のスルーホールは、前記給電電極部に接続される給電接点を、囲むように配設されることを特徴とする加熱体。
In a heating element that generates heat by connecting a power supply contact and energizing it,
The heating body is
An elongated substrate having electrical insulation;
A first heating resistor provided along the longitudinal direction of the substrate on the first surface of the substrate and generating heat by energization;
A conductor provided on both ends of the first heating resistor on the first surface of the substrate;
A second heating resistor provided along the longitudinal direction of the substrate on the second surface of the substrate and generating heat by energization;
A feeding electrode portion having a region facing the conductor on the first surface of the substrate;
Three or more through-holes that electrically connect the conductor and the feeding electrode part, respectively,
The three or more through holes are disposed so as to surround a power supply contact connected to the power supply electrode portion.
加熱体と、
前記加熱体と接触しつつ移動する筒状の可撓性部材と、
前記可撓性部材を介して前記加熱体とニップ部を形成する加圧部材と、
前記加熱体と電気的に接続される給電接点と、
を有し、前記ニップ部で画像を担持する記録材を挟持搬送しつつ記録材上の画像を加熱する像加熱装置において、
前記加熱体は、
電気的に絶縁性を有する細長い基板と、
前記基板の第1の面で前記基板の長手方向に沿って設けられ通電により発熱する発熱抵抗体と、
前記基板の第1の面で前記発熱抵抗体の両端に設けられる導電体と、
前記基板の第2の面で前記導電体と対向する領域を持つ給電電極部と、
前記導電体と前記給電電極部とを各々電気的に接続する3つ以上のスルーホールと、を有し、
前記給電電極部の前記3つ以上のスルーホールに囲まれる領域内に前記給電接点を配設することを特徴とする像加熱装置。
A heating element;
A cylindrical flexible member that moves while in contact with the heating body;
A pressure member that forms a nip portion with the heating body via the flexible member;
A feeding contact electrically connected to the heating body;
An image heating apparatus that heats an image on a recording material while nipping and conveying a recording material carrying an image at the nip portion,
The heating body is
An elongated substrate having electrical insulation;
A heating resistor provided along the longitudinal direction of the substrate on the first surface of the substrate and generating heat by energization;
A conductor provided at both ends of the heating resistor on the first surface of the substrate;
A feeding electrode portion having a region facing the conductor on the second surface of the substrate;
Three or more through-holes that electrically connect the conductor and the feeding electrode part, respectively,
An image heating apparatus, wherein the power supply contact is disposed in a region surrounded by the three or more through holes of the power supply electrode portion.
加熱体と、
前記加熱体と接触しつつ移動する筒状の可撓性部材と、
前記可撓性部材を介して前記加熱体とニップ部を形成する加圧部材と、
前記加熱体と電気的に接続される給電接点と、
を有し、前記ニップ部で画像を担持する記録材を挟持搬送しつつ記録材上の画像を加熱する像加熱装置において、
前記加熱体は、
電気的に絶縁性を有する細長い基板と、
前記基板の第1の面で前記基板の長手方向に沿って設けられ通電により発熱する第1の発熱抵抗体と、
前記基板の第1の面で前記第1の発熱抵抗体の両端に設けられる導電体と、
前記基板の第2の面で前記基板の長手方向に沿って設けられ通電により発熱する第2の発熱抵抗体と、
前記基板の第2の面で前記導電体と対向する領域を持つ給電電極部と、
前記導電体と前記給電電極部とを各々電気的に接続する3つ以上のスルーホールと、を有し、
前記給電電極部の前記3つ以上のスルーホールに囲まれる領域内に前記給電接点を配設することを特徴とする像加熱装置。
A heating element;
A cylindrical flexible member that moves while in contact with the heating body;
A pressure member that forms a nip portion with the heating body via the flexible member;
A feeding contact electrically connected to the heating body;
An image heating apparatus that heats an image on a recording material while nipping and conveying a recording material carrying an image at the nip portion,
The heating body is
An elongated substrate having electrical insulation;
A first heating resistor provided along the longitudinal direction of the substrate on the first surface of the substrate and generating heat by energization;
A conductor provided on both ends of the first heating resistor on the first surface of the substrate;
A second heating resistor provided along the longitudinal direction of the substrate on the second surface of the substrate and generating heat by energization;
A feeding electrode portion having a region facing the conductor on the second surface of the substrate;
Three or more through-holes that electrically connect the conductor and the feeding electrode part, respectively,
An image heating apparatus, wherein the power supply contact is disposed in a region surrounded by the three or more through holes of the power supply electrode portion.
前記給電電極部の1つと接する給電接点が複数あることを特徴とする請求項1又は請求項2に記載の加熱体。   The heating body according to claim 1, wherein there are a plurality of power supply contacts in contact with one of the power supply electrode portions. 前記給電電極部の1つと接する給電接点が複数あることを特徴とする請求項3又は請求項4に記載の像加熱装置。   5. The image heating apparatus according to claim 3, wherein there are a plurality of power supply contact points in contact with one of the power supply electrode portions.
JP2012108476A 2011-11-01 2012-05-10 Heating body and image heating device having heating body Pending JP2013235769A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012108476A JP2013235769A (en) 2012-05-10 2012-05-10 Heating body and image heating device having heating body
US13/659,266 US9091977B2 (en) 2011-11-01 2012-10-24 Heater with insulated substrate having through holes and image heating apparatus including the heater
US14/733,283 US20150268608A1 (en) 2011-11-01 2015-06-08 Heater and image heating apparatus including the heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012108476A JP2013235769A (en) 2012-05-10 2012-05-10 Heating body and image heating device having heating body

Publications (1)

Publication Number Publication Date
JP2013235769A true JP2013235769A (en) 2013-11-21

Family

ID=49761728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012108476A Pending JP2013235769A (en) 2011-11-01 2012-05-10 Heating body and image heating device having heating body

Country Status (1)

Country Link
JP (1) JP2013235769A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020145016A (en) * 2019-03-05 2020-09-10 東芝ライテック株式会社 Heater and image forming device
US11662679B2 (en) 2020-04-28 2023-05-30 Canon Kabushiki Kaisha Image heating apparatus and image forming apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04185455A (en) * 1990-11-20 1992-07-02 Toshiba Lighting & Technol Corp Heater
JPH10302868A (en) * 1997-04-21 1998-11-13 Canon Inc Electric connector
JP2002299014A (en) * 2001-04-02 2002-10-11 Canon Inc Heat source, heating device and imaging device
JP2011029087A (en) * 2009-07-28 2011-02-10 Harison Toshiba Lighting Corp Ceramic heater, heating device, image forming device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04185455A (en) * 1990-11-20 1992-07-02 Toshiba Lighting & Technol Corp Heater
JPH10302868A (en) * 1997-04-21 1998-11-13 Canon Inc Electric connector
JP2002299014A (en) * 2001-04-02 2002-10-11 Canon Inc Heat source, heating device and imaging device
JP2011029087A (en) * 2009-07-28 2011-02-10 Harison Toshiba Lighting Corp Ceramic heater, heating device, image forming device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020145016A (en) * 2019-03-05 2020-09-10 東芝ライテック株式会社 Heater and image forming device
JP7167775B2 (en) 2019-03-05 2022-11-09 東芝ライテック株式会社 Heaters and image forming devices
US11662679B2 (en) 2020-04-28 2023-05-30 Canon Kabushiki Kaisha Image heating apparatus and image forming apparatus

Similar Documents

Publication Publication Date Title
US9091977B2 (en) Heater with insulated substrate having through holes and image heating apparatus including the heater
US11269274B2 (en) Heating device with a non-conveyance span temperature detector
JP6173414B2 (en) Image heating device
CN108717253B (en) Fixing device
US11435682B2 (en) Heater, fixing device, and image forming apparatus
US10747154B2 (en) Fixing device and image forming apparatus
JP4640775B2 (en) Heat fixing device and image forming apparatus
US11143996B2 (en) Heating device, fixing device and image forming apparatus
CN107683437B (en) Heating rotary member and heating apparatus
US10884366B2 (en) Heater, fixing device, and image forming apparatus
CN115079526A (en) Fixing device and image forming apparatus
US11378904B2 (en) Image forming apparatus and heating device comprising plural pressing devices configured to generate different pressing forces
JP2006091449A (en) Image heating device and heating element used for the device
JP2013235769A (en) Heating body and image heating device having heating body
US11687020B2 (en) Heating device, fixing device, and image forming apparatus
JP2017174644A (en) Heater and image heating device including the same
JP2013097186A (en) Heating body and image heating device with the same
JP2010218893A (en) Heating device
JP6851742B2 (en) Image heating device
JP2019215473A (en) Fixing device and image forming apparatus having the fixing device
CN109561527A (en) Heater and image forming apparatus
US10852677B2 (en) Film used for fixing device and fixing device including the film
JP2011145455A (en) Image heating device
JP2019028188A (en) Image heating device
JP2017173580A (en) Heater and image heating device including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161011