JP2013234791A - Feed water warming system - Google Patents

Feed water warming system Download PDF

Info

Publication number
JP2013234791A
JP2013234791A JP2012107192A JP2012107192A JP2013234791A JP 2013234791 A JP2013234791 A JP 2013234791A JP 2012107192 A JP2012107192 A JP 2012107192A JP 2012107192 A JP2012107192 A JP 2012107192A JP 2013234791 A JP2013234791 A JP 2013234791A
Authority
JP
Japan
Prior art keywords
water
water supply
heat pump
boiler
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012107192A
Other languages
Japanese (ja)
Other versions
JP5962971B2 (en
Inventor
Tatsuki Sugiura
立樹 杉浦
Kazuyuki Otani
和之 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2012107192A priority Critical patent/JP5962971B2/en
Publication of JP2013234791A publication Critical patent/JP2013234791A/en
Application granted granted Critical
Publication of JP5962971B2 publication Critical patent/JP5962971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a feed water warming system using a heat pump, in which the heat pump is efficiently operated.SOLUTION: To a feed water tank 3 of a boiler 2, water can be fed through a water feed path 8 via a condenser 14 of a heat pump 4 and, at the same time, water can be fed through a water replenishment path 9 not through the condenser 14. On the basis of the operation state of the boiler 2 or a water feed state from the feed water tank 3 to the boiler 2, water feed to the feed water tank 3 via the water feed path 8 and an output of the heat pump 4 are controlled. The flowing volume of water to the condenser 14 is preferably adjusted such that an output side water temperature of the condenser 14 of the heat pump 4 is maintained at the set temperature during the water feed to the feed water tank 3 via the water feed path 8.

Description

本発明は、ヒートポンプを用いた給水加温システムに関するものである。   The present invention relates to a feed water heating system using a heat pump.

従来、下記特許文献1に開示されるように、ボイラ(24)の給水タンク(23)への給水を、ヒートポンプ(12)を用いて加温できるシステムが知られている。このシステムでは、給水タンク(23)は、給水源(21)から給水路を介して給水可能であると共に、給水路から分岐してヒートポンプ給湯器(12)を介しても給水可能である。そして、給水タンク(23)は、第1水位(52L)を下回ると、ヒートポンプ給湯機(12)からの給水が開始され、第1水位より高水位の第2水位(52H)を上回ると、ヒートポンプ給湯機(12)からの給水が停止される。また、第1水位より低水位の第3水位(32L)を下回ると、給水源(21)からの給水が開始され、第3水位より高水位であるが第1水位より低水位の第4水位(32H)を上回ると、給水源(21)からの給水が停止される。   Conventionally, as disclosed in Patent Document 1 below, a system capable of heating water supplied to a water supply tank (23) of a boiler (24) using a heat pump (12) is known. In this system, the water supply tank (23) can supply water from a water supply source (21) via a water supply channel, and can also supply water via a heat pump water heater (12) branched from the water supply channel. When the water supply tank (23) falls below the first water level (52L), water supply from the heat pump water heater (12) is started, and when the water supply tank (23) exceeds the second water level (52H) higher than the first water level, the heat pump Water supply from the water heater (12) is stopped. When the water level is lower than the third water level (32L), which is lower than the first water level, water supply from the water supply source (21) is started, and the fourth water level is higher than the third water level but lower than the first water level. If it exceeds (32H), the water supply from a water supply source (21) will be stopped.

特開2010−25431号公報(請求項4、図2−3)JP 2010-25431 A (Claim 4, FIG. 2-3)

前記特許文献1に記載の発明では、給水タンク内の水位に応じて、ヒートポンプ経由で給水するか、それに加えて直接にも給水するか、あるいはすべての給水を停止するかが切り替えられる。   In the invention described in Patent Document 1, depending on the water level in the water supply tank, whether to supply water via a heat pump, to supply water directly, or to stop all water supply can be switched.

しかしながら、ヒートポンプ経由で給水する場合、ヒートポンプの出力は一定であり、給水タンク内の貯留水の使用負荷に応じて、給水タンクへの給水を迅速に効率よく行うことができない。   However, when water is supplied via the heat pump, the output of the heat pump is constant, and water supply to the water supply tank cannot be performed quickly and efficiently according to the usage load of the stored water in the water supply tank.

そこで、本発明が解決しようとする課題は、ヒートポンプを用いた給水加温システムにおいて、給水タンク内の貯留水の使用負荷に応じて、給水タンクへの給水を迅速に効率よく行うことにある。   Therefore, the problem to be solved by the present invention is to quickly and efficiently supply water to the water supply tank according to the use load of the stored water in the water supply tank in the water supply heating system using the heat pump.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、出力を変更可能なヒートポンプと、このヒートポンプの凝縮器を介して給水路により給水可能であると共に、前記凝縮器を介さずに補給水路により給水可能な給水タンクと、この給水タンクから給水されるボイラとを備え、前記ボイラの運転状態、または前記給水タンクから前記ボイラへの給水状態に基づき、前記給水路を介した前記給水タンクへの給水と、前記ヒートポンプの出力を制御することを特徴とする給水加温システムである。   The present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 is capable of supplying water through a water supply path via a heat pump capable of changing output and a condenser of the heat pump, A water supply tank capable of supplying water through a replenishment water channel without passing through the condenser, and a boiler supplied with water from the water supply tank, and based on the operation state of the boiler or the water supply state from the water supply tank to the boiler, It is a feed water heating system characterized by controlling the feed water to the feed water tank through the feed water channel and the output of the heat pump.

請求項1に記載の発明によれば、ボイラの運転状態またはボイラへの給水状態に基づき、給水路を介した給水タンクへの給水と、ヒートポンプの出力を制御することで、ボイラの負荷に応じた給水タンクへの給水が迅速に行える。   According to the first aspect of the present invention, the water supply to the water supply tank via the water supply channel and the output of the heat pump are controlled based on the operation state of the boiler or the state of water supply to the boiler, and according to the boiler load. Water can be quickly supplied to the water tank.

請求項2に記載の発明は、前記給水路を介した前記給水タンクへの給水中、前記ヒートポンプの凝縮器の出口側水温を設定温度に維持するように、前記凝縮器への通水量を調整することを特徴とする請求項1に記載の給水加温システムである。   According to a second aspect of the present invention, the amount of water flow to the condenser is adjusted so that the water temperature on the outlet side of the condenser of the heat pump is maintained at a set temperature during water supply to the water supply tank via the water supply passage. The feed water warming system according to claim 1, wherein:

請求項2に記載の発明によれば、給水路を介した給水タンクへの給水中、ヒートポンプの凝縮器の出口側水温を設定温度に維持するように、凝縮器への通水量を調整することで、給水路経由の給水温度を所望に維持することができる。   According to the second aspect of the present invention, the amount of water flow to the condenser is adjusted so that the water temperature at the outlet side of the condenser of the heat pump is maintained at the set temperature during the water supply to the water supply tank via the water supply channel. Thus, the water supply temperature via the water supply channel can be maintained as desired.

請求項3に記載の発明は、前記ヒートポンプは、少なくとも高負荷運転、低負荷運転および停止の三位置で制御され、前記ボイラは、少なくとも高燃焼状態、低燃焼状態および停止の三位置で制御され、前記ボイラが高燃焼状態の場合、前記ヒートポンプを高負荷運転し、前記ボイラが低燃焼状態の場合、前記ヒートポンプを低負荷運転し、前記ボイラが停止の場合、前記ヒートポンプを停止することを特徴とする請求項1または請求項2に記載の給水加温システムである。   According to a third aspect of the present invention, the heat pump is controlled at least at three positions of high load operation, low load operation and stop, and the boiler is controlled at least at three positions of high combustion state, low combustion state and stop. When the boiler is in a high combustion state, the heat pump is operated at a high load, when the boiler is in a low combustion state, the heat pump is operated at a low load, and when the boiler is stopped, the heat pump is stopped. The feed water warming system according to claim 1 or 2.

請求項3に記載の発明によれば、ボイラの蒸発量に対応した給水量を、ヒートポンプで加温しつつ給水路を介して給水タンクへ供給することができる。しかも、ボイラの燃焼状態とヒートポンプの作動状態とが対応するので、簡易な制御で実現することができる。   According to invention of Claim 3, the amount of water supply corresponding to the evaporation amount of a boiler can be supplied to a water supply tank via a water supply path, heating with a heat pump. Moreover, since the combustion state of the boiler corresponds to the operation state of the heat pump, it can be realized by simple control.

請求項4に記載の発明は、前記給水タンクから前記ボイラへの給水ポンプの運転状態、または、前記給水タンクから前記ボイラへの給水流量に基づき、前記ヒートポンプの出力を制御することを特徴とする請求項1または請求項2に記載の給水加温システムである。   The invention according to claim 4 is characterized in that the output of the heat pump is controlled based on the operation state of the water supply pump from the water supply tank to the boiler or the water supply flow rate from the water supply tank to the boiler. It is a feed water heating system of Claim 1 or Claim 2.

請求項4に記載の発明によれば、ボイラの蒸発量に対応した給水量を、ヒートポンプで加温しつつ給水路を介して給水タンクへ供給することができる。しかも、ボイラが要求する給水状態とヒートポンプの作動状態とが対応するので、簡易な制御で実現することができる。   According to invention of Claim 4, the amount of water supply corresponding to the evaporation amount of a boiler can be supplied to a water supply tank via a water supply path, heating with a heat pump. Moreover, since the water supply state required by the boiler corresponds to the operating state of the heat pump, it can be realized by simple control.

請求項5に記載の発明は、前記ヒートポンプおよび前記ボイラを複数台備え、前記ボイラの運転台数と各ボイラの燃焼量の増減に伴い、前記ヒートポンプの運転台数と各ヒートポンプの出力を増減することを特徴とする請求項1〜3のいずれか1項に記載の給水加温システムである。   The invention according to claim 5 comprises a plurality of the heat pumps and the boilers, and increases or decreases the number of operating heat pumps and the output of each heat pump as the number of operating boilers and the amount of combustion of each boiler increase or decrease. It is a feed water heating system of any one of Claims 1-3 characterized by the above-mentioned.

請求項5に記載の発明によれば、ヒートポンプやボイラが複数台であっても、ボイラの運転台数と各ボイラの燃焼量の増減に伴い、ヒートポンプの運転台数と各ヒートポンプの出力を増減することで、ボイラの蒸発量に対応した給水量を、ヒートポンプで加温しつつ給水路を介して給水タンクへ供給することができる。   According to the invention described in claim 5, even if there are a plurality of heat pumps and boilers, the number of operating heat pumps and the output of each heat pump are increased or decreased as the number of operating boilers and the combustion amount of each boiler increase or decrease. Thus, the amount of water supply corresponding to the amount of evaporation of the boiler can be supplied to the water supply tank via the water supply channel while being heated by the heat pump.

さらに、請求項6に記載の発明は、前記給水タンクの水位が設定を下回ると、前記補給水路を介しても前記給水タンクへ給水することを特徴とする請求項1〜5のいずれか1項に記載の給水加温システムである。   Further, in the invention described in claim 6, when the water level of the water supply tank falls below a setting, water is supplied to the water supply tank even through the makeup water channel. It is a feed water heating system described in 1.

請求項6に記載の発明によれば、万一、給水路経由の給水だけでは給水タンク内の水位を所望に維持できない場合には、補給水路を介しても給水タンクに給水することができる。   According to the sixth aspect of the present invention, if the water level in the water supply tank cannot be maintained as desired by only water supply via the water supply channel, water can be supplied to the water supply tank also through the makeup water channel.

本発明によれば、ヒートポンプを用いた給水加温システムにおいて、給水タンク内の貯留水の使用負荷に応じて、給水タンクへの給水を迅速に効率よく行うことができる。   ADVANTAGE OF THE INVENTION According to this invention, in the feed water heating system using a heat pump, the water supply to a water supply tank can be rapidly and efficiently performed according to the use load of the stored water in a water supply tank.

本発明の給水加温システムの一実施例を示す概略図である。It is the schematic which shows one Example of the feed water heating system of this invention. 図1の給水加温システムの制御方法の一例を示す図である。It is a figure which shows an example of the control method of the feed water heating system of FIG. 図1の給水加温システムの制御方法の変形例を示す図である。It is a figure which shows the modification of the control method of the feed water heating system of FIG.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の給水加温システム1の一実施例を示す概略図である。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of a feed water warming system 1 of the present invention.

本実施例の給水加温システム1は、ボイラ2の給水タンク3への給水をヒートポンプ4で加温できるシステムであり、ボイラ2への給水を貯留する給水タンク3と、この給水タンク3への給水を貯留する補給水タンク5と、この補給水タンク5から給水タンク3への給水を加温するヒートポンプ4と、このヒートポンプ4の熱源としての熱源水(たとえば廃温水)を貯留する熱源水タンク6とを備える。   The feed water warming system 1 of the present embodiment is a system that can heat the feed water to the feed water tank 3 of the boiler 2 with the heat pump 4. The feed water tank 3 that stores the feed water to the boiler 2, and the feed water tank 3 A replenishment water tank 5 for storing water supply, a heat pump 4 for heating water supplied from the replenishment water tank 5 to the water supply tank 3, and a heat source water tank for storing heat source water (for example, waste hot water) as a heat source of the heat pump 4. 6.

ボイラ2は、蒸気ボイラであり、給水タンク3からの給水を加熱して蒸気にする。ボイラ2からの蒸気は、各種の蒸気使用設備(図示省略)へ送られるが、蒸気使用設備からのドレン(蒸気の凝縮水)を給水タンク3へ戻してもよい。   The boiler 2 is a steam boiler, and heats the feed water from the feed water tank 3 into steam. The steam from the boiler 2 is sent to various steam use facilities (not shown), but drain (condensed water of steam) from the steam use facility may be returned to the water supply tank 3.

ボイラ2は、典型的には、蒸気の圧力を所望に維持するように、燃焼量が制御される。ここでは、高燃焼状態(100%燃焼)、低燃焼状態(50%燃焼)および停止の三位置で制御される。この制御は、ボイラ制御器(図示省略)が、蒸気使用設備への蒸気の圧力に基づき蒸気の使用負荷を把握して、ボイラ2のバーナの燃焼量を調整することで行われる。   The boiler 2 is typically controlled in combustion quantity so as to maintain the steam pressure as desired. Here, control is performed at three positions: a high combustion state (100% combustion), a low combustion state (50% combustion), and a stop. This control is performed by a boiler controller (not shown) grasping the use load of the steam based on the pressure of the steam to the steam using facility and adjusting the combustion amount of the burner of the boiler 2.

ボイラ2は、缶体内の水位を所望に維持するように、ボイラ2への給水が制御される。具体的には、給水タンク3からボイラ2への給水路に設けたポンプ7が、ボイラ制御器により缶体内の水位に基づき制御される。   The boiler 2 is controlled to supply water to the boiler 2 so as to maintain a desired water level in the can. Specifically, the pump 7 provided in the water supply path from the water supply tank 3 to the boiler 2 is controlled by the boiler controller based on the water level in the can.

給水タンク3は、補給水タンク5から、ヒートポンプ4を介して給水路8により給水可能であると共に、ヒートポンプ4を介さずに補給水路9により給水可能である。給水路8に設けた給水ポンプ10と、補給水路9に設けた補給水ポンプ11との作動を制御することで、給水路8と補給水路9との内、いずれか一方または双方を介して、補給水タンク5から給水タンク3へ給水可能である。給水路8には、給水ポンプ10より下流に、廃熱回収熱交換器12とヒートポンプ4とが順に設けられている。   The water supply tank 3 can be supplied with water from the make-up water tank 5 via the heat pump 4 through the water supply path 8 and can be supplied through the make-up water path 9 without going through the heat pump 4. By controlling the operation of the water supply pump 10 provided in the water supply path 8 and the makeup water pump 11 provided in the makeup water path 9, via either one or both of the water supply path 8 and the makeup water path 9, Water can be supplied from the makeup water tank 5 to the water supply tank 3. In the water supply passage 8, a waste heat recovery heat exchanger 12 and a heat pump 4 are sequentially provided downstream from the water supply pump 10.

給水ポンプ10は、本実施例では、インバータにより回転数を制御可能とされる。給水ポンプ10の回転数を変更することで、給水路8を介した給水タンク3への給水量を調整することができる。一方、補給水ポンプ11は、本実施例では、オンオフ制御される。   In the present embodiment, the feed water pump 10 can control the rotation speed by an inverter. By changing the rotation speed of the water supply pump 10, the amount of water supplied to the water supply tank 3 via the water supply path 8 can be adjusted. On the other hand, the makeup water pump 11 is on / off controlled in this embodiment.

補給水タンク5は、給水タンク3への給水を貯留する。補給水タンク5への給水として、本実施例では軟水が用いられる。すなわち、軟水器(図示省略)にて水中の硬度分を除去された軟水は、補給水タンク5に供給され貯留される。補給水タンク5の水位に基づき軟水器からの給水を制御することで、補給水タンク5の水位は所望に維持される。   The makeup water tank 5 stores water supplied to the water supply tank 3. In this embodiment, soft water is used as the water supply to the makeup water tank 5. That is, the soft water from which the water hardness has been removed by the water softener (not shown) is supplied to the makeup water tank 5 and stored. By controlling the water supply from the water softener based on the water level of the makeup water tank 5, the water level of the makeup water tank 5 is maintained as desired.

ヒートポンプ4は、蒸気圧縮式のヒートポンプであり、圧縮機13、凝縮器14、膨張弁15および蒸発器16が順次環状に接続されて構成される。そして、圧縮機13は、ガス冷媒を圧縮して高温高圧にする。また、凝縮器14は、圧縮機13からのガス冷媒を凝縮液化する。さらに、膨張弁15は、凝縮器14からの液冷媒を通過させることで、冷媒の圧力と温度とを低下させる。そして、蒸発器16は、膨張弁15からの冷媒の蒸発を図る。   The heat pump 4 is a vapor compression heat pump, and is configured by sequentially connecting a compressor 13, a condenser 14, an expansion valve 15, and an evaporator 16 in an annular shape. The compressor 13 compresses the gas refrigerant to a high temperature and a high pressure. The condenser 14 condenses and liquefies the gas refrigerant from the compressor 13. Further, the expansion valve 15 allows the liquid refrigerant from the condenser 14 to pass through, thereby reducing the pressure and temperature of the refrigerant. The evaporator 16 then evaporates the refrigerant from the expansion valve 15.

従って、ヒートポンプ4は、蒸発器16において、冷媒が外部から熱を奪って気化する一方、凝縮器14において、冷媒が外部へ放熱して凝縮することになる。これを利用して、本実施例では、ヒートポンプ4は、蒸発器16において、熱源としての熱源水から熱をくみ上げ、凝縮器14において、給水路8の水を加温する。   Therefore, in the heat pump 4, in the evaporator 16, the refrigerant takes heat from the outside and vaporizes, while in the condenser 14, the refrigerant dissipates heat to the outside and condenses. In this embodiment, the heat pump 4 draws heat from the heat source water as a heat source in the evaporator 16 and heats the water in the water supply channel 8 in the condenser 14.

ヒートポンプ4は、凝縮器14と膨張弁15との間に、所望により過冷却器17を設けてもよい。過冷却器17は、凝縮器14から膨張弁15への冷媒と、凝縮器14への給水との間接熱交換器である。過冷却器17により、凝縮器14への給水で、凝縮器14から膨張弁15への冷媒を過冷却することができると共に、凝縮器14から膨張弁15への冷媒で、凝縮器14への給水を加温することができる。ヒートポンプ4の冷媒は、凝縮器14において潜熱を放出し、過冷却器17において顕熱を放出する。   The heat pump 4 may be provided with a supercooler 17 between the condenser 14 and the expansion valve 15 as desired. The supercooler 17 is an indirect heat exchanger between the refrigerant from the condenser 14 to the expansion valve 15 and the feed water to the condenser 14. The subcooler 17 can supercool the refrigerant from the condenser 14 to the expansion valve 15 by supplying water to the condenser 14, and can supply the refrigerant to the condenser 14 by the refrigerant from the condenser 14 to the expansion valve 15. The water supply can be heated. The refrigerant of the heat pump 4 releases latent heat in the condenser 14 and releases sensible heat in the subcooler 17.

その他、ヒートポンプ4には、圧縮機13の入口側にアキュムレータを設置したり、圧縮機13の出口側に油分離器を設置したり、凝縮器14の出口側(凝縮器14と過冷却器17との間)に受液器を設置したりしてもよい。   In addition, in the heat pump 4, an accumulator is installed on the inlet side of the compressor 13, an oil separator is installed on the outlet side of the compressor 13, or the outlet side of the condenser 14 (the condenser 14 and the subcooler 17 A receiver may be installed between the two).

ところで、ヒートポンプ4は、その出力(圧縮機13の容量)を段階的に変更可能とされている。本実施例では、圧縮機13のモータの回転数をインバータで変更することで、ヒートポンプ4は、低負荷運転とこれより高出力の高負荷運転とを切り替え可能とされている。たとえば、高負荷運転では全負荷運転(100%出力)され、低負荷運転では高負荷運転よりも低負荷運転(たとえば50%出力)される。   By the way, the heat pump 4 can change the output (the capacity | capacitance of the compressor 13) in steps. In the present embodiment, the heat pump 4 can be switched between a low load operation and a high load operation with a higher output by changing the rotation speed of the motor of the compressor 13 with an inverter. For example, full load operation (100% output) is performed in a high load operation, and low load operation (for example, 50% output) is performed in a low load operation rather than a high load operation.

熱源水タンク6は、ヒートポンプ4の熱源としての熱源水を貯留する。熱源水とは、たとえば廃温水(工場などから排出される温水)である。なお、熱源水タンク6には、熱源水の供給路18が設けられると共に、所定以上の水をあふれさせるオーバーフロー路19が設けられている。   The heat source water tank 6 stores heat source water as a heat source of the heat pump 4. The heat source water is, for example, waste hot water (hot water discharged from a factory or the like). The heat source water tank 6 is provided with a heat source water supply path 18 and an overflow path 19 for overflowing a predetermined amount or more of water.

熱源水タンク6の水は、熱源供給路20を介して、ヒートポンプ4の蒸発器16を通された後、廃熱回収熱交換器12を通される。熱源供給路20には、蒸発器16より上流側に熱源供給ポンプ21が設けられており、この熱源供給ポンプ21を作動させることで、熱源水タンク6からの熱源水を、蒸発器16と廃熱回収熱交換器12とに順に通すことができる。   The water in the heat source water tank 6 passes through the evaporator 16 of the heat pump 4 through the heat source supply path 20 and then passes through the waste heat recovery heat exchanger 12. The heat source supply path 20 is provided with a heat source supply pump 21 on the upstream side of the evaporator 16. By operating the heat source supply pump 21, the heat source water from the heat source water tank 6 is discarded with the evaporator 16. The heat recovery heat exchanger 12 can be passed through in order.

なお、廃熱回収熱交換器12は、補給水タンク5から過冷却器17への給水と、蒸発器16からの熱源水との間接熱交換器である。本実施例の場合、補給水タンク5から給水路8を介した給水タンク3への給水は、補給水タンク5から、廃熱回収熱交換器12、過冷却器17および凝縮器14を順に通された後、給水タンク3へ供給される。   The waste heat recovery heat exchanger 12 is an indirect heat exchanger for supplying water from the makeup water tank 5 to the supercooler 17 and heat source water from the evaporator 16. In the case of the present embodiment, the water supply from the makeup water tank 5 to the water supply tank 3 through the water supply channel 8 is sequentially passed from the makeup water tank 5 through the waste heat recovery heat exchanger 12, the supercooler 17 and the condenser 14. Then, the water is supplied to the water supply tank 3.

給水路8には、凝縮器14の出口側に、水温センサ22が設けられる。この水温センサ22は、凝縮器14を通過後の水温を検出する。水温センサ22の検出温度に基づき、給水ポンプ10が制御される。ここでは、給水ポンプ10は、水温センサ22の検出温度を設定温度T1(たとえば75℃)に維持するようにインバータ制御される。つまり、給水路8を介した給水タンク3への給水は、水温センサ22の検出温度を設定温度T1に維持するように、流量が調整される。但し、場合により、このような水温センサ22による流量調整制御を省略することもできる。   In the water supply path 8, a water temperature sensor 22 is provided on the outlet side of the condenser 14. The water temperature sensor 22 detects the water temperature after passing through the condenser 14. Based on the temperature detected by the water temperature sensor 22, the water supply pump 10 is controlled. Here, the feed water pump 10 is inverter-controlled so as to maintain the temperature detected by the water temperature sensor 22 at a set temperature T1 (for example, 75 ° C.). That is, the flow rate of water supplied to the water supply tank 3 through the water supply path 8 is adjusted so that the temperature detected by the water temperature sensor 22 is maintained at the set temperature T1. However, in some cases, such flow rate adjustment control by the water temperature sensor 22 can be omitted.

給水タンク3には、設定以上水位が下がったことを検知する水位検出器23が設けられている。水位検出器23の構成は特に問わないが、本実施例では電極式水位検出器とされる。つまり、給水タンク3には、低水位検出電極棒24が差し込まれており、給水タンク3内の水位が設定を下回っていないかを監視する。   The water supply tank 3 is provided with a water level detector 23 that detects that the water level has dropped below a set level. The configuration of the water level detector 23 is not particularly limited. In the present embodiment, an electrode type water level detector is used. That is, the low water level detection electrode rod 24 is inserted into the water supply tank 3, and it is monitored whether the water level in the water supply tank 3 is lower than the setting.

熱源水タンク6には、設定以上水位が下がったことを検知する水位検出器25が設けられている。水位検出器25の構成は特に問わないが、本実施例では電極式水位検出器とされる。つまり、熱源水タンク6には、低水位検出電極棒26が差し込まれており、熱源水タンク6内の水位が設定を下回っていないかを監視する。   The heat source water tank 6 is provided with a water level detector 25 that detects that the water level has dropped below a set level. The configuration of the water level detector 25 is not particularly limited, but in the present embodiment, an electrode type water level detector is used. That is, the low water level detection electrode rod 26 is inserted into the heat source water tank 6, and it is monitored whether the water level in the heat source water tank 6 is lower than the setting.

次に、本実施例の給水加温システム1の制御(運転方法)について説明する。以下に説明する一連の制御は、図示しない制御器を用いて自動でなされる。   Next, control (operation method) of the feed water heating system 1 of the present embodiment will be described. A series of control described below is automatically performed using a controller (not shown).

図2は、本実施例の給水加温システム1の制御方法の一例を示す図である。本実施例では、ボイラ2の運転状態に基づき、給水路8を介した給水タンク3への給水と、ヒートポンプ4の出力が制御される。すなわち、ボイラ制御器のボイラ運転信号に基づき、給水ポンプ10と、ヒートポンプ4(特にその圧縮機13)が制御される。   FIG. 2 is a diagram illustrating an example of a control method of the feed water heating system 1 according to the present embodiment. In this embodiment, water supply to the water supply tank 3 via the water supply path 8 and the output of the heat pump 4 are controlled based on the operating state of the boiler 2. That is, the feed water pump 10 and the heat pump 4 (particularly, the compressor 13) are controlled based on the boiler operation signal of the boiler controller.

前述したように、本実施例では、ボイラ2は、蒸気使用設備における蒸気の使用負荷に応じて、高燃焼状態(100%燃焼)、低燃焼状態(たとえば50%燃焼)および停止の三位置で燃料量が調整される。また、ヒートポンプ4は、その圧縮機13の作動の有無により運転と停止が切り替えられ、高負荷運転(全負荷運転=100%出力)、低負荷運転(たとえば50%出力)および停止(0%出力)の三位置で制御される。   As described above, in this embodiment, the boiler 2 is in three positions: a high combustion state (100% combustion), a low combustion state (for example, 50% combustion), and a stop depending on the use load of steam in the steam using facility. The amount of fuel is adjusted. Further, the heat pump 4 is switched between operation and stop depending on whether or not the compressor 13 is operated, so that high load operation (full load operation = 100% output), low load operation (for example, 50% output), and stop (0% output). ) Controlled in three positions.

一方、給水ポンプ10は、ヒートポンプ4の作動に連動し、ヒートポンプ4の作動中は給水ポンプ10も作動し、ヒートポンプ4の停止中は給水ポンプ10も停止する。但し、厳密には、ヒートポンプ4の圧縮機13の始動時、給水ポンプ10を先に作動させている。また、前述したように、給水ポンプ10は、作動中、水温センサ22の検出温度を所望に維持するように、回転数をインバータ制御される。その結果、ヒートポンプ4の高負荷運転時は低負荷運転時よりも多い流量で、給水路8を介して給水タンク3へ給水可能となる。   On the other hand, the water supply pump 10 is interlocked with the operation of the heat pump 4, the water supply pump 10 is also operated while the heat pump 4 is being operated, and the water supply pump 10 is also stopped while the heat pump 4 is being stopped. However, strictly speaking, when the compressor 13 of the heat pump 4 is started, the water supply pump 10 is operated first. Further, as described above, the rotation speed of the feed water pump 10 is inverter-controlled so that the detected temperature of the water temperature sensor 22 is maintained as desired during operation. As a result, it is possible to supply water to the water supply tank 3 through the water supply path 8 at a higher flow rate during high load operation of the heat pump 4 than during low load operation.

本実施例では、1台のボイラ2の蒸発量に対応する給水量を、1台のヒートポンプ4経由の給水でまかなうことができる。具体的には、ボイラ2の高燃焼状態における蒸発量に対応する給水量は、ヒートポンプ4を高負荷運転しつつ給水路8を介して給水することでまかなうことができ、ボイラ2の低燃焼状態における蒸発量に対応する給水量は、ヒートポンプ4を低負荷運転しつつ給水路8を介して給水することでまかなうことができる。   In the present embodiment, the amount of water supply corresponding to the evaporation amount of one boiler 2 can be covered by the water supply via one heat pump 4. Specifically, the amount of water supply corresponding to the amount of evaporation in the high combustion state of the boiler 2 can be covered by supplying water through the water supply path 8 while operating the heat pump 4 at a high load, and the low combustion state of the boiler 2. The amount of water supply corresponding to the amount of evaporation can be covered by supplying water via the water supply path 8 while operating the heat pump 4 at a low load.

従って、本実施例では、図2に示すように、ボイラ2が停止している場合には、それに応じてヒートポンプ4も停止して、給水路8を介しての給水タンク3への給水を停止すればよい。また、ボイラ2が低燃焼状態の場合には、それに応じてヒートポンプ4を低負荷運転しつつ、給水路8を介して給水タンク3へ給水すればよい。さらに、ボイラ2が高燃焼状態の場合には、それに応じてヒートポンプ4を高負荷運転しつつ、給水路8を介して給水タンク3へ給水すればよい。   Therefore, in this embodiment, as shown in FIG. 2, when the boiler 2 is stopped, the heat pump 4 is also stopped accordingly, and the water supply to the water supply tank 3 through the water supply path 8 is stopped. do it. Further, when the boiler 2 is in a low combustion state, the heat pump 4 may be supplied to the water supply tank 3 through the water supply path 8 while operating the heat pump 4 at a low load. Furthermore, when the boiler 2 is in a high combustion state, water may be supplied to the water supply tank 3 via the water supply path 8 while operating the heat pump 4 at a high load accordingly.

このようにして、ボイラ2の蒸発量に対応して給水タンク3からボイラ2へ供給される給水量をまかなうように、ボイラ2の運転信号(ボイラ制御器の高燃焼、低燃焼または停止の信号)に基づきヒートポンプ4を制御しつつ、補給水タンク5からヒートポンプ4を介して給水路8により給水タンク3へ給水することができる。   Thus, the operation signal of the boiler 2 (high combustion, low combustion or stop signal of the boiler controller) is provided so as to cover the amount of water supplied from the water supply tank 3 to the boiler 2 in accordance with the amount of evaporation of the boiler 2. ), Water can be supplied from the replenishing water tank 5 to the water supply tank 3 through the water supply path 8 via the heat pump 4 while controlling the heat pump 4.

ヒートポンプ4を運転して、補給水タンク5から給水路8を介して給水タンク3へ給水する際、補給水タンク5からの給水は、廃熱回収熱交換器12、過冷却器17および凝縮器14により徐々に加温されて、所定温度で給水タンク3へ供給される。給水タンク3とヒートポンプ4との間で水を循環させる場合と比較して、補給水タンク5から給水タンク3への一回の通過(ワンススルー)で給水を加温するので、ヒートポンプ4を通過する前後の給水の温度差を確保して、ヒートポンプ4の成績係数(COP)の向上を図ることができる。さらに、ヒートポンプ4と廃熱回収熱交換器12とにより、給水加温システム1のシステム効率の向上を図ることができる。   When the heat pump 4 is operated to supply water from the make-up water tank 5 to the water supply tank 3 through the water supply path 8, the water supplied from the make-up water tank 5 is used as the waste heat recovery heat exchanger 12, the supercooler 17, and the condenser. 14 is gradually heated and supplied to the water supply tank 3 at a predetermined temperature. Compared with the case where water is circulated between the water supply tank 3 and the heat pump 4, the water supply is heated by a single pass (once through) from the makeup water tank 5 to the water supply tank 3, so that it passes through the heat pump 4. It is possible to secure a temperature difference between before and after the water supply and improve the coefficient of performance (COP) of the heat pump 4. Furthermore, the system efficiency of the feed water heating system 1 can be improved by the heat pump 4 and the waste heat recovery heat exchanger 12.

ところで、万一、給水タンク3内の水位が下限水位を下回ると、補給水ポンプ11を作動させるのがよい。具体的には、給水タンク3内の水位が下がり、低水位検出電極棒24が水位を検知しなくなると、所定水位に戻るまで、または所定時間経過するまで、補給水ポンプ11を作動させて、給水タンク3内の水位の回復を図るのが好ましい。   By the way, if the water level in the water supply tank 3 falls below the lower limit water level, the makeup water pump 11 should be operated. Specifically, when the water level in the water supply tank 3 falls and the low water level detection electrode rod 24 does not detect the water level, the makeup water pump 11 is operated until the water level returns to a predetermined water level or a predetermined time elapses. It is preferable to recover the water level in the water supply tank 3.

また、万一、熱源水タンク6内の水位が下限水位を下回ると、ヒートポンプ4を停止すると共に、熱源供給ポンプ21を停止するのがよい。具体的には、熱源水タンク6内の水位が下がり、低水位検出電極棒26が水位を検知しなくなると、ヒートポンプ4の運転を停止すると共に、熱源供給ポンプ21を停止して蒸発器16への熱源水の供給を停止するのがよい。   If the water level in the heat source water tank 6 falls below the lower limit water level, the heat pump 4 and the heat source supply pump 21 should be stopped. Specifically, when the water level in the heat source water tank 6 falls and the low water level detection electrode rod 26 no longer detects the water level, the operation of the heat pump 4 is stopped and the heat source supply pump 21 is stopped to the evaporator 16. It is better to stop the supply of heat source water.

さらに、ヒートポンプ4の運転中、つまり給水路8を介した給水タンク3への給水中、熱源水タンク6内の水温を熱源温度センサ(図示省略)で監視して、その温度に基づきヒートポンプ4の出力を調整(補正)してもよい。つまり、ヒートポンプ4の出力%を熱源温度センサの検出温度に応じて変更してもよい。ヒートポンプ4の熱源としての熱源水の温度が高温なほど、ヒートポンプ4の運転時の出力%を下げることができる。熱源水の温度を考慮してヒートポンプ4の運転時の出力を調整することで、熱源水の温度変化に拘わらず、給水路8を介した給水タンク3への給水流量を安定させることができる。   Further, during operation of the heat pump 4, that is, during water supply to the water supply tank 3 through the water supply path 8, the water temperature in the heat source water tank 6 is monitored by a heat source temperature sensor (not shown), and the heat pump 4 The output may be adjusted (corrected). That is, the output% of the heat pump 4 may be changed according to the detected temperature of the heat source temperature sensor. The higher the temperature of the heat source water as the heat source of the heat pump 4, the lower the output% during operation of the heat pump 4. By adjusting the output during operation of the heat pump 4 in consideration of the temperature of the heat source water, the water supply flow rate to the water supply tank 3 through the water supply path 8 can be stabilized regardless of the temperature change of the heat source water.

図3は、本実施例の給水加温システム1の制御方法の変形例を示す図である。前記実施例では、ボイラ2およびヒートポンプ4はそれぞれ1台としたが、ボイラ2およびヒートポンプ4の内、一方または双方を複数台としてもよい。ボイラ2が複数台の場合、給水タンク3からの給水が各ボイラ2に分配され、ヒートポンプ4が複数台の場合、補給水タンク5と給水タンク3との間に給水路8が並列に設置され、その各給水路8の中途にそれぞれ別のヒートポンプ4の凝縮器14などが配置される。   FIG. 3 is a diagram illustrating a modification of the control method of the feed water warming system 1 of the present embodiment. In the said Example, although the boiler 2 and the heat pump 4 were each set as 1 unit | set, it is good also considering one or both among the boiler 2 and the heat pump 4 as multiple units | sets. When there are a plurality of boilers 2, the water supply from the water supply tank 3 is distributed to each boiler 2, and when there are a plurality of heat pumps 4, a water supply path 8 is installed in parallel between the makeup water tank 5 and the water supply tank 3. In the middle of each water supply channel 8, a condenser 14 of another heat pump 4 is arranged.

この場合、ボイラ2の運転台数と各ボイラ2の燃焼量の増減に伴い、ヒートポンプ4の運転台数と各ヒートポンプ4の出力を増減すればよい。たとえば、すべてのボイラ2が停止している場合、それに応じてすべてのヒートポンプ4も停止して、給水路8を介しての給水タンク3への給水を停止すればよい。また、1台のボイラ2が低燃焼状態の場合、それに応じて1台のヒートポンプ4を低負荷運転しつつ、給水路8を介して給水タンク3へ給水すればよい。さらに、1台のボイラ2が高燃焼状態か、2台のボイラ2が低燃焼状態の場合、それに応じて1台のヒートポンプ4を高負荷運転しつつ、給水路8を介して給水タンク3へ給水すればよい。以降も同様に、ボイラ2の運転台数や燃焼量の増加に伴い、ヒートポンプ4の稼働台数や出力を増加させればよい。逆に、ボイラ2の運転台数や燃焼量が減少する場合には、その減少に応じて、ヒートポンプ4の稼働台数や出力を減少させればよい。   In this case, the number of operating heat pumps 4 and the output of each heat pump 4 may be increased or decreased as the number of operating boilers 2 and the combustion amount of each boiler 2 increase or decrease. For example, when all the boilers 2 are stopped, all the heat pumps 4 are also stopped accordingly, and water supply to the water supply tank 3 via the water supply path 8 may be stopped. Further, when one boiler 2 is in a low combustion state, water may be supplied to the water supply tank 3 via the water supply passage 8 while operating one heat pump 4 at a low load accordingly. Further, when one boiler 2 is in a high combustion state or two boilers 2 are in a low combustion state, one heat pump 4 is operated at a high load in response to the supply water tank 3 via the water supply path 8. You only need to supply water. Similarly, the number of operating pumps and the output of the heat pumps 4 may be increased as the number of operating boilers 2 and the amount of combustion increase. Conversely, when the number of operating boilers 2 and the amount of combustion decrease, the number of operating heat pumps 4 and the output may be decreased according to the decrease.

但し、ヒートポンプ4を複数台同時に運転する場合、低負荷運転の稼働台数を最大1台とするのが好ましい。たとえば、1台のボイラ2が高燃焼状態か、2台のボイラ2が低燃焼状態の場合、2台のヒートポンプ4を低負荷運転するのではなく、1台のヒートポンプ4を高負荷運転するのがよい。ヒートポンプ4をできるだけ高出力で運転することで、給水加温システム1の熱効率を向上することができる。   However, when operating a plurality of heat pumps 4 at the same time, it is preferable to set the number of low-load operation to a maximum of one. For example, when one boiler 2 is in a high combustion state or two boilers 2 are in a low combustion state, two heat pumps 4 are not operated at a low load, but one heat pump 4 is operated at a high load. Is good. By operating the heat pump 4 with as high an output as possible, the thermal efficiency of the feed water heating system 1 can be improved.

ところで、前記実施例および変形例では、ボイラ2の運転状態に基づき、給水路8を介した給水タンク3への給水とヒートポンプ4の出力を制御したが、給水タンク3からボイラ2への給水状態に基づき、給水路8を介した給水タンク3への給水とヒートポンプ4の出力を制御してもよい。具体的には、給水タンク3からボイラ2への給水ポンプ7の運転状態、または、給水タンク3からボイラ2への給水流量に基づき、ヒートポンプ4の出力を制御してもよい。たとえば、給水タンク3からボイラ2への給水路に設けた給水ポンプ7の運転信号に基づき、ヒートポンプ4を制御すればよい。あるいは、図1において二点鎖線で示すように、給水タンク3からボイラ2への給水路にフロースイッチや流量センサ27などを設け、それに基づきヒートポンプ4を制御すればよい。   By the way, in the said Example and modification, although the water supply to the water supply tank 3 via the water supply path 8 and the output of the heat pump 4 were controlled based on the operation state of the boiler 2, the water supply state from the water supply tank 3 to the boiler 2 is controlled. Based on the above, the water supply to the water supply tank 3 via the water supply path 8 and the output of the heat pump 4 may be controlled. Specifically, the output of the heat pump 4 may be controlled based on the operation state of the feed water pump 7 from the feed water tank 3 to the boiler 2 or the feed water flow rate from the feed water tank 3 to the boiler 2. For example, the heat pump 4 may be controlled based on the operation signal of the water supply pump 7 provided in the water supply path from the water supply tank 3 to the boiler 2. Alternatively, as shown by a two-dot chain line in FIG. 1, a flow switch, a flow sensor 27, and the like may be provided in a water supply path from the water supply tank 3 to the boiler 2, and the heat pump 4 may be controlled based on the flow switch.

本発明の給水加温システム1は、前記実施例の構成に限らず、適宜変更可能である。特に、ボイラ2の運転状態、または給水タンク3からボイラ2への給水状態に基づき、給水路8を介した給水タンク3への給水と、ヒートポンプ4の出力を制御できれば、その他の構成は適宜に変更可能である。要は、ボイラ2への給水要求を把握して、それに応じてヒートポンプ4で加温しつつ給水タンク3へ給水できればよい。   The feed water warming system 1 of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate. In particular, if the water supply to the water supply tank 3 via the water supply path 8 and the output of the heat pump 4 can be controlled based on the operation state of the boiler 2 or the water supply state from the water supply tank 3 to the boiler 2, the other configurations are appropriately set. It can be changed. In short, it is only necessary to grasp the water supply request to the boiler 2 and to supply water to the water supply tank 3 while heating with the heat pump 4 accordingly.

また、前記実施例では、ボイラ2を三位置で制御することに伴い、ヒートポンプ4も高負荷運転、低負荷運転および停止の三位置で制御した例を示したが、ボイラ2を、高燃焼状態(100%燃焼)、中燃焼状態(たとえば80%燃焼)、低燃焼状態(たとえば50%燃焼)および停止の四位置で制御する場合、ヒートポンプ4も高負荷運転(典型的には全負荷運転=100%出力)、中負荷運転(たとえば80%出力)、低負荷運転(たとえば50%出力)および停止の四位置で制御するなど、ヒートポンプ4をボイラ2の制御に合わせて四位置以上で制御してもよい。そして、ボイラ2の各燃焼量での蒸発量に対応した給水をヒートポンプ4で加温しつつ実行できるように構成しておけばよい。   Moreover, in the said Example, the example which controlled the heat pump 4 in three positions, a high load driving | operation, a low load driving | operation, and a stop was shown in connection with controlling the boiler 2 in three positions. When controlling at four positions (100% combustion), medium combustion state (for example, 80% combustion), low combustion state (for example, 50% combustion) and stop, the heat pump 4 is also operated at high load (typically full load operation = 100% output), medium load operation (for example, 80% output), low load operation (for example, 50% output), and control at four positions such as stop, etc. May be. And what is necessary is just to comprise so that the water supply corresponding to the evaporation amount in each combustion amount of the boiler 2 can be performed, heating with the heat pump 4. FIG.

また、ボイラ2の蒸発量と、ヒートポンプ4経由の給水量とは、1台のボイラ2と1台のヒートポンプ4とが対応する場合に限らず、1台のボイラ2と2台のヒートポンプ4、2台のボイラ2と1台のヒートポンプ4など、適宜に変更可能である。   Moreover, the amount of evaporation of the boiler 2 and the amount of water supplied via the heat pump 4 are not limited to the case where one boiler 2 and one heat pump 4 correspond, and one boiler 2 and two heat pumps 4, Two boilers 2 and one heat pump 4 can be appropriately changed.

また、前記実施例では、ボイラ2は段階的に燃焼量を調整されが、連続的に燃焼量を調整される比例制御ボイラであってもよく、その場合、燃焼量に応じた蒸発量をまかなうように、ヒートポンプ4の出力を比例制御しつつ、給水路8を介して給水タンク3へ給水すればよい。さらに、前記実施例では、ボイラ2は、燃料焚きボイラとしたが、電気ボイラにも同様に適用可能である。   Moreover, in the said Example, although the combustion amount is adjusted in steps in the boiler 2, the proportional control boiler which adjusts a combustion amount continuously may be sufficient, and the evaporation amount according to the combustion amount is covered in that case. As described above, water may be supplied to the water supply tank 3 through the water supply path 8 while proportionally controlling the output of the heat pump 4. Furthermore, in the said Example, although the boiler 2 was a fuel-fired boiler, it is applicable similarly to an electric boiler.

また、ヒートポンプ4は、単段に限らず複数段とすることもできる。ヒートポンプ4を複数段にする場合、隣接する段のヒートポンプ同士は、間接熱交換器を用いて接続されてもよいし、直接熱交換器(中間冷却器)を用いて接続されてもよい。後者の場合、下段ヒートポンプの圧縮機からの冷媒と上段ヒートポンプの膨張弁からの冷媒とを受けて、両冷媒を直接に接触させて熱交換する中間冷却器を備え、この中間冷却器が下段ヒートポンプの凝縮器であると共に上段ヒートポンプの蒸発器とされる。このように、複数段(多段)のヒートポンプ4には、一元多段のヒートポンプの他、複数元(多元)のヒートポンプ、あるいはそれらの組合せのヒートポンプが含まれる。   Further, the heat pump 4 is not limited to a single stage, and may be a plurality of stages. When the heat pump 4 has a plurality of stages, adjacent stage heat pumps may be connected using an indirect heat exchanger, or may be connected using a direct heat exchanger (intercooler). In the latter case, an intermediate cooler that receives the refrigerant from the compressor of the lower heat pump and the refrigerant from the expansion valve of the upper heat pump and directly exchanges heat between the two refrigerants is provided. And the evaporator of the upper heat pump. As described above, the multi-stage (multi-stage) heat pump 4 includes a single-stage multi-stage heat pump, a multi-element (multi-element) heat pump, or a combination of them.

また、給水タンク3に、凝縮器14を介して給水路8により給水可能であると共に、凝縮器14を介さずに補給水路9により給水可能であれば、給水路8や補給水路9の具体的構成は、前記実施例の構成に限らず適宜変更可能である。たとえば、前記実施例では、給水路8と補給水路9とは、それぞれ補給水タンク5と給水タンク3とを接続するように並列に設けたが、給水路8と補給水路9との一端部(補給水タンク5側の端部)と他端部(給水タンク3側の端部)の一方または双方は、共通の管路としてもよい。言い換えれば、補給水路9の一端部は、補給水タンク5に接続するのではなく、給水路8から分岐するように設けてもよいし、補給水路9の他端部は、給水タンク3に接続するのではなく、給水タンク3の手前において給水路8に合流するように設けてもよい。補給水路9の一端部を、補給水タンク5に接続するのではなく、給水路8から分岐するように設ける場合、その分岐部より下流において、給水路8に給水ポンプ10を設ける一方、補給水路9に補給水ポンプ11を設ければよいが、分岐部よりも上流側の共通管路にのみポンプを設けて、分岐部より下流の給水路8および/または補給水路9に設けたバルブの開度を調整することで、給水路8や補給水路9を通る流量を調整してもよい。   Further, if water can be supplied to the water supply tank 3 through the water supply channel 8 via the condenser 14 and water can be supplied through the replenishment water channel 9 without going through the condenser 14, the specifics of the water supply channel 8 and the water supply channel 9 are specified. The configuration is not limited to the configuration of the above embodiment and can be changed as appropriate. For example, in the above-described embodiment, the water supply channel 8 and the supply water channel 9 are provided in parallel so as to connect the supply water tank 5 and the water supply tank 3, respectively, but one end portion of the water supply channel 8 and the supply water channel 9 ( One or both of the end portion on the make-up water tank 5 side and the other end portion (the end portion on the water supply tank 3 side) may be a common conduit. In other words, one end of the makeup water channel 9 may be provided so as to branch from the water supply channel 8 instead of being connected to the makeup water tank 5, and the other end of the makeup water channel 9 is connected to the water supply tank 3. Instead, it may be provided so as to join the water supply path 8 before the water supply tank 3. When one end portion of the replenishment water channel 9 is provided so as to branch from the water supply channel 8 instead of being connected to the replenishment water tank 5, the water supply pump 10 is provided in the water supply channel 8 downstream from the branching unit, while the replenishment water channel 9 may be provided with a supplementary water pump 11, but a pump is provided only in the common pipe upstream of the branching portion, and the valves provided in the water supply passage 8 and / or the supplementary waterway 9 downstream of the branching portion are opened. By adjusting the degree, the flow rate through the water supply channel 8 and the replenishment channel 9 may be adjusted.

また、前記実施例では、給水タンク3への給水を貯留するために補給水タンク5を設置したが、場合により補給水タンク5の設置を省略して、給水源から直接に給水路8および補給水路9に水を通してもよい。   Moreover, in the said Example, although the supplementary water tank 5 was installed in order to store the water supply to the water supply tank 3, installation of the supplementary water tank 5 may be abbreviate | omitted by the case, and the water supply path 8 and the supplement may be directly from a water supply source. Water may be passed through the water channel 9.

また、前記実施例では、給水路8を介した給水タンク3への給水流量を調整するために、給水ポンプ10をインバータ制御したが、給水ポンプ10をオンオフ制御しつつ、給水路8に設けたバルブの開度を調整してもよい。つまり、水温センサ22の検出温度に基づき給水路8を介した給水の流量を調整可能であれば、その流量調整方法は適宜に変更可能である。   Moreover, in the said Example, in order to adjust the water supply flow volume to the water supply tank 3 via the water supply path 8, the water supply pump 10 was inverter-controlled, However, The water supply pump 10 was provided in the water supply path 8 while performing on-off control. The opening degree of the valve may be adjusted. That is, if the flow rate of the water supply through the water supply path 8 can be adjusted based on the temperature detected by the water temperature sensor 22, the flow rate adjustment method can be changed as appropriate.

また、前記実施例では、給水路8および/または補給水路9を介して、補給水タンク5から給水タンク3へ給水可能としたが、これら給水は、軟水器から直接に行ってもよい。たとえば、図1において、給水路8および補給水路9の基端部をまとめて軟水器に接続し、給水ポンプ10の設置を省略する代わりに給水路8に設けた電動弁(モータバルブ)の開度を調整し、補給水ポンプ11の設置を省略する代わりに補給水路9に設けた電磁弁の開閉を制御すればよい。   Moreover, in the said Example, although it was made possible to supply water from the makeup water tank 5 to the water supply tank 3 via the water supply channel 8 and / or the makeup water channel 9, these water supply may be performed directly from a water softener. For example, in FIG. 1, instead of omitting the installation of the water supply pump 10 by connecting the base ends of the water supply channel 8 and the makeup water channel 9 together to the water softener, the opening of an electric valve (motor valve) provided in the water supply channel 8 Instead of adjusting the degree and omitting the installation of the makeup water pump 11, the opening and closing of the electromagnetic valve provided in the makeup water channel 9 may be controlled.

さらに、前記実施例では、ヒートポンプ4の熱源として熱源水を用いた例について説明したが、ヒートポンプ4の熱源流体として、熱源水に限らず、空気や排ガスなど各種の流体を用いることができる。   Furthermore, although the said Example demonstrated the example which used heat-source water as a heat source of the heat pump 4, as a heat-source fluid of the heat pump 4, not only heat-source water but various fluids, such as air and waste gas, can be used.

1給水加温システム
2 ボイラ
3 給水タンク
4 ヒートポンプ
5 補給水タンク
6 熱源水タンク
7 ポンプ(給水タンクからボイラへの給水ポンプ)
8 給水路
9 補給水路
10 給水ポンプ
11 補給水ポンプ
12 廃熱回収熱交換器
13 圧縮機
14 凝縮器
15 膨張弁
16 蒸発器
17 過冷却器
18 供給路
19 オーバーフロー路
20 熱源供給路
21 熱源供給ポンプ
22 水温センサ
23 (給水タンクの)水位検出器
24 (給水タンクの)低水位検出電極棒
25 (熱源水タンクの)水位検出器
26 (熱源水タンクの)低水位検出電極棒
27 流量センサ
1 Water supply heating system 2 Boiler 3 Water supply tank 4 Heat pump 5 Supply water tank 6 Heat source water tank 7 Pump (water supply pump from water supply tank to boiler)
DESCRIPTION OF SYMBOLS 8 Water supply path 9 Supply water path 10 Supply water pump 11 Supply water pump 12 Waste heat recovery heat exchanger 13 Compressor 14 Condenser 15 Expansion valve 16 Evaporator 17 Subcooler 18 Supply path 19 Overflow path 20 Heat source supply path 21 Heat source supply pump 22 Water temperature sensor 23 Water level detector (for water supply tank) 24 Low water level detection electrode rod (for water supply tank) 25 Water level detector (for heat source water tank) 26 Low water level detection electrode rod (for heat source water tank) 27 Flow rate sensor

Claims (6)

出力を変更可能なヒートポンプと、
このヒートポンプの凝縮器を介して給水路により給水可能であると共に、前記凝縮器を介さずに補給水路により給水可能な給水タンクと、
この給水タンクから給水されるボイラとを備え、
前記ボイラの運転状態、または前記給水タンクから前記ボイラへの給水状態に基づき、前記給水路を介した前記給水タンクへの給水と、前記ヒートポンプの出力を制御する
ことを特徴とする給水加温システム。
A heat pump whose output can be changed,
A water supply tank capable of supplying water by a water supply channel via a condenser of the heat pump, and capable of supplying water by a replenishment water channel without using the condenser,
A boiler that is supplied with water from this water supply tank,
Water supply heating system characterized by controlling water supply to the water supply tank via the water supply path and output of the heat pump based on an operation state of the boiler or a water supply state from the water supply tank to the boiler. .
前記給水路を介した前記給水タンクへの給水中、前記ヒートポンプの凝縮器の出口側水温を設定温度に維持するように、前記凝縮器への通水量を調整する
ことを特徴とする請求項1に記載の給水加温システム。
The amount of water flow to the condenser is adjusted so that the outlet water temperature of the condenser of the heat pump is maintained at a set temperature during water supply to the water supply tank via the water supply path. Water supply heating system described in 1.
前記ヒートポンプは、少なくとも高負荷運転、低負荷運転および停止の三位置で制御され、
前記ボイラは、少なくとも高燃焼状態、低燃焼状態および停止の三位置で制御され、
前記ボイラが高燃焼状態の場合、前記ヒートポンプを高負荷運転し、
前記ボイラが低燃焼状態の場合、前記ヒートポンプを低負荷運転し、
前記ボイラが停止の場合、前記ヒートポンプを停止する
ことを特徴とする請求項1または請求項2に記載の給水加温システム。
The heat pump is controlled at least at three positions of high load operation, low load operation and stop,
The boiler is controlled at least in three positions, a high combustion state, a low combustion state, and a stop,
When the boiler is in a high combustion state, the heat pump is operated at a high load,
When the boiler is in a low combustion state, the heat pump is operated at a low load,
The feed water warming system according to claim 1 or 2, wherein the heat pump is stopped when the boiler is stopped.
前記給水タンクから前記ボイラへの給水ポンプの運転状態、または、前記給水タンクから前記ボイラへの給水流量に基づき、前記ヒートポンプの出力を制御する
ことを特徴とする請求項1または請求項2に記載の給水加温システム。
The output of the heat pump is controlled based on the operation state of the water supply pump from the water supply tank to the boiler or the flow rate of water supply from the water supply tank to the boiler. Water heating system.
前記ヒートポンプおよび前記ボイラを複数台備え、
前記ボイラの運転台数と各ボイラの燃焼量の増減に伴い、前記ヒートポンプの運転台数と各ヒートポンプの出力を増減する
ことを特徴とする請求項1〜3のいずれか1項に記載の給水加温システム。
A plurality of the heat pump and the boiler are provided,
The supply water heating according to any one of claims 1 to 3, wherein the number of operating heat pumps and the output of each heat pump are increased or decreased as the number of operating boilers and the amount of combustion in each boiler increase or decrease. system.
前記給水タンクの水位が設定を下回ると、前記補給水路を介しても前記給水タンクへ給水する
ことを特徴とする請求項1〜5のいずれか1項に記載の給水加温システム。
The feed water heating system according to any one of claims 1 to 5, wherein when the water level of the feed water tank falls below a setting, water is supplied to the feed water tank even through the makeup water channel.
JP2012107192A 2012-05-09 2012-05-09 Water heating system Active JP5962971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012107192A JP5962971B2 (en) 2012-05-09 2012-05-09 Water heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012107192A JP5962971B2 (en) 2012-05-09 2012-05-09 Water heating system

Publications (2)

Publication Number Publication Date
JP2013234791A true JP2013234791A (en) 2013-11-21
JP5962971B2 JP5962971B2 (en) 2016-08-03

Family

ID=49761051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012107192A Active JP5962971B2 (en) 2012-05-09 2012-05-09 Water heating system

Country Status (1)

Country Link
JP (1) JP5962971B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103939885A (en) * 2014-03-28 2014-07-23 上海发电设备成套设计研究院 Feedwater replacement type economizer system for whole commissioning of denitration device
JP2014169845A (en) * 2013-03-05 2014-09-18 Miura Co Ltd Water supply warming system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7224273B2 (en) 2019-11-01 2023-02-17 サントリーホールディングス株式会社 fastening jig

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122152A (en) * 1988-10-31 1990-05-09 Yanmar Diesel Engine Co Ltd Heat pump apparatus for hot-water supply
JP2001041574A (en) * 1999-08-03 2001-02-16 Matsushita Electric Ind Co Ltd Hot-water supplier
JP2008096064A (en) * 2006-10-13 2008-04-24 Matsushita Electric Works Ltd Heat pump system for hot water supply
JP2009236379A (en) * 2008-03-26 2009-10-15 Toshiba Carrier Corp Heat pump type hot water supply system
JP2010025431A (en) * 2008-07-18 2010-02-04 Nippon Thermoener Co Ltd Steam generating system
JP2010164223A (en) * 2009-01-14 2010-07-29 Kobe Steel Ltd Steam generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122152A (en) * 1988-10-31 1990-05-09 Yanmar Diesel Engine Co Ltd Heat pump apparatus for hot-water supply
JP2001041574A (en) * 1999-08-03 2001-02-16 Matsushita Electric Ind Co Ltd Hot-water supplier
JP2008096064A (en) * 2006-10-13 2008-04-24 Matsushita Electric Works Ltd Heat pump system for hot water supply
JP2009236379A (en) * 2008-03-26 2009-10-15 Toshiba Carrier Corp Heat pump type hot water supply system
JP2010025431A (en) * 2008-07-18 2010-02-04 Nippon Thermoener Co Ltd Steam generating system
JP2010164223A (en) * 2009-01-14 2010-07-29 Kobe Steel Ltd Steam generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169845A (en) * 2013-03-05 2014-09-18 Miura Co Ltd Water supply warming system
CN103939885A (en) * 2014-03-28 2014-07-23 上海发电设备成套设计研究院 Feedwater replacement type economizer system for whole commissioning of denitration device
CN103939885B (en) * 2014-03-28 2016-03-09 上海发电设备成套设计研究院 A kind of feedwater displaced type economizer system put into operation for denitration device whole process

Also Published As

Publication number Publication date
JP5962971B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP5263421B1 (en) Water heating system
JP6694582B2 (en) Water supply heating system
JP2014194315A (en) Water supply and heating system
JP6132188B2 (en) Water heating system
JP5962972B2 (en) Water heating system
JP6065213B2 (en) Water heating system
JP6164565B2 (en) Water heating system
JP6090568B2 (en) Water heating system
JP5962971B2 (en) Water heating system
JP6066072B2 (en) Water heating system
JP6237109B2 (en) Water heating system
JP2015081708A (en) Water supply heating system
JP6066071B2 (en) Water heating system
JP6341465B2 (en) Water heating system
JP2013238336A (en) Water supply heating system
JP6065212B2 (en) Water heating system
JP6083509B2 (en) Water heating system
JP6210204B2 (en) Water heating system
JP5892371B2 (en) Water heating system
JP5880266B2 (en) Water heating system
JP2013238335A (en) Water supply heating system
JP2017146034A (en) Feedwater heating system
JP2013234790A (en) Water supply heating system
JP2014169822A (en) Feedwater heating system
JP6083508B2 (en) Water heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160615

R150 Certificate of patent or registration of utility model

Ref document number: 5962971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250