JP2013234557A - Excavation head of excavation rod and excavating equipment for constructing hydraulic solidification material liquid substitution column - Google Patents

Excavation head of excavation rod and excavating equipment for constructing hydraulic solidification material liquid substitution column Download PDF

Info

Publication number
JP2013234557A
JP2013234557A JP2012182803A JP2012182803A JP2013234557A JP 2013234557 A JP2013234557 A JP 2013234557A JP 2012182803 A JP2012182803 A JP 2012182803A JP 2012182803 A JP2012182803 A JP 2012182803A JP 2013234557 A JP2013234557 A JP 2013234557A
Authority
JP
Japan
Prior art keywords
excavation
rod
head
material liquid
conical head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012182803A
Other languages
Japanese (ja)
Other versions
JP6149236B2 (en
Inventor
Shigeru Yoshida
茂 吉田
Shinichi Yamato
真一 大和
Yuji Yanagida
雄治 柳田
Shigeki Yoshida
茂樹 吉田
Toshinori Fujihashi
俊則 藤橋
Atsushi Murayama
篤史 村山
Keizo Tanaka
啓三 田中
Kazuyoshi Ota
和善 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tenox Corp
Japan Inspection Organization Corp JIO
Original Assignee
Tenox Corp
Japan Inspection Organization Corp JIO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49760875&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2013234557(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tenox Corp, Japan Inspection Organization Corp JIO filed Critical Tenox Corp
Priority to JP2012182803A priority Critical patent/JP6149236B2/en
Publication of JP2013234557A publication Critical patent/JP2013234557A/en
Application granted granted Critical
Publication of JP6149236B2 publication Critical patent/JP6149236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enable avoidance of continuity of construction depth at a high level and a decrease in vertical bearing capacity caused by cohesive soil remaining in a substitution column, and also improve excavatability.SOLUTION: An excavation head detachably connected to a lower end of an excavation rod 1 having a channel for a hydraulic solidification material liquid is a conical head 21 which is conically protruded downward. A peripheral surface of the conical head 21 is provided with a discharge opening 22a for the hydraulic solidification material liquid, and a spiral blade 25 is provided in the direction of pushing excavated sediment upward during the normal rotation of the excavation rod 1.

Description

本発明は、水硬性固化材液置換による小径の杭状補強材の築造に使用する水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッド及び該掘削ヘッドを接続した掘削ロッドを備える掘削装置に関する。   The present invention relates to a drilling head of a hydraulic solidification material liquid replacement column construction drill rod used for construction of a small-diameter pile-shaped reinforcing material by hydraulic solidification liquid replacement, and a drilling device including a drilling rod connected to the drilling head. .

戸建住宅や土間スラブの基礎工法として、一般的に深層混合処理工法によるコラム工法が採用されている。このコラム工法は原位置の地盤とセメントスラリーを攪拌混合するため、粘着力の高い粘性土を対象とする場合に共回り現象が発生して混合不良による品質不良が発生したり、有機質土などの地盤の種別によっては固化不良を発生したりするという問題があった。この問題を解決するために、出願人らは先に水硬性固化材液置換コラムの築造方法及び水硬性固化材液置換コラムの施工装置を提案している(特許文献1参照)。   As a basic construction method for detached houses and soil slabs, a column construction method using a deep mixing method is generally adopted. This column method stirs and mixes the in-situ ground and cement slurry, so when cohesive soil with high adhesive strength is targeted, a co-rotation phenomenon occurs, resulting in poor quality due to poor mixing, organic soil, etc. Depending on the type of ground, there was a problem that solidification failure occurred. In order to solve this problem, the applicants have previously proposed a construction method for a hydraulic solidifying material liquid replacement column and a construction apparatus for a hydraulic solidifying material liquid replacement column (see Patent Document 1).

この先行技術は、図26に示すように、先端部に掘削ヘッド8を装着した掘削ロッド(掘削オーガともいう)1を、正逆方向への回転が可能なオーガモータ12に取り付け、このオーガモータ12をリーダ11に沿って上下方向に給進可能(進退可能)な施工装置10を用いて行うものである。リーダ11にはスライド板13がリーダ11に沿ってスライド可能に設けられ、オーガモータ12はスライド板13に固着されている。オーガモータ12に取り付けた掘削ロッド1には、オーガモータ12により回転力が付与され、さらにスライド板13をリーダ11に沿って進退(スライド)させることで、オーガモータ12を介し給進力が付与される。   In this prior art, as shown in FIG. 26, a drilling rod (also referred to as a drilling auger) 1 with a drilling head 8 attached to the tip is attached to an auger motor 12 capable of rotating in the forward and reverse directions. This is performed by using a construction apparatus 10 that can be fed up and down along the reader 11 (movable back and forth). A slide plate 13 is provided on the reader 11 so as to be slidable along the reader 11, and the auger motor 12 is fixed to the slide plate 13. The excavating rod 1 attached to the auger motor 12 is given a rotational force by the auger motor 12, and further advancing and retreating (sliding) the slide plate 13 along the reader 11, thereby giving a feeding force via the auger motor 12.

図27(a)、(b)、(c)は前記掘削ロッド1の例である。施工装置10のオーガモータ12に挿通可能な小径の取付け用ロッド1bは、図27(a)に示すように、掘削ロッド本体1aに対しアダプター2を介して連結されている。掘削ロッド1は、全長に亘って、標準的に使用される周面が滑らかな円筒体であり、掘削ロッド本体1aの下端部に着脱自在に掘削ヘッド8が装着されている。図27(b)は掘削ロッド本体1aの下方に、スパイラルスクリュー3を有する比較的短尺の径小ロッド1cを設けたものを示す。図27(c)は、掘削ロッド本体1a周面の略全長に亘ってスパイラルスクリュー3が固着された掘削ロッド1を示している。スパイラルスクリュー3は排土機能があれば、連続するものに限らず断続するものでもよい。なお、図27(a)、(b)、(c)に示す掘削ヘッド8は掘削爪18を有する。   27A, 27B, and 27C are examples of the excavation rod 1. FIG. The small-diameter mounting rod 1b that can be inserted into the auger motor 12 of the construction apparatus 10 is connected to the excavation rod main body 1a via an adapter 2 as shown in FIG. The excavation rod 1 is a cylindrical body having a smooth circumferential surface that is normally used over the entire length, and an excavation head 8 is detachably attached to a lower end portion of the excavation rod main body 1a. FIG. 27B shows a structure in which a comparatively short rod 1c having a small diameter having a spiral screw 3 is provided below the excavation rod body 1a. FIG. 27 (c) shows the excavation rod 1 to which the spiral screw 3 is fixed over substantially the entire length of the excavation rod main body 1a. As long as the spiral screw 3 has a soil discharging function, the spiral screw 3 is not limited to a continuous one but may be intermittent. The excavation head 8 shown in FIGS. 27A, 27B, and 27C has an excavation claw 18.

次に、この先行技術における水硬性固化材液置換コラム築造の具体的な施工手順を、図28について説明する。この施工手順は、図26に示す施工装置10を使用して実施される。
(1)杭心位置合わせ
施工装置10のオーガモータ12に取り付けた掘削ロッド1先端の中心を杭心位置に合わせてセットする(図28(a))。
(2)掘進
掘削ロッド1を回転させながら給進させ、所定深さまで掘削圧入する(図28(b))。
(3)保持または練り返し
掘削ロッド1の先端(掘削ヘッド)が所定深度に達したら、セメントミルク(水硬性固化材液)を掘削ロッド1の掘削ヘッド8の先端部から吐出しながら、一定時間保持若しくは練り返しを行なう(図28(c))。
(4)引き上げ
セメントミルクを吐出しながら掘削ロッド1を引き上げる(図28(d))。
(5)杭頭レベル合わせ
掘削ロッド1を引き上げ、セメントミルク補充等によりコラム天端レベル(杭頭レベル)を所定の位置に合わせる(図28(e))。なお、セメントミルクの補完は、施工終了後に行う場合もある。
(6)終了(図28(f))。
Next, a specific construction procedure for building a hydraulic solidifying material liquid replacement column in this prior art will be described with reference to FIG. This construction procedure is performed using the construction apparatus 10 shown in FIG.
(1) Pile core alignment The center of the excavation rod 1 tip attached to the auger motor 12 of the construction apparatus 10 is set according to the pile core position (FIG. 28 (a)).
(2) Excavation The excavation rod 1 is rotated while being advanced, and excavation press-fitting is performed to a predetermined depth (FIG. 28 (b)).
(3) Holding or kneading When the tip of the excavation rod 1 (excavation head) reaches a predetermined depth, the cement milk (hydraulic solidified material liquid) is discharged from the tip of the excavation head 8 of the excavation rod 1 for a certain period of time. Holding or kneading is performed (FIG. 28 (c)).
(4) Lifting The drilling rod 1 is lifted while discharging cement milk (FIG. 28 (d)).
(5) Pile head level adjustment The excavating rod 1 is pulled up, and the column top end level (pile head level) is adjusted to a predetermined position by supplementing cement milk or the like (FIG. 28 (e)). In some cases, supplementation of cement milk may be performed after completion of construction.
(6) End (FIG. 28 (f)).

この先行技術により築造した水硬性固化材液置換コラムは、従来の深層混合処理による地盤改良コラムに比較して、コラム固化体が地盤の影響を全く受けないため、高強度の品質を安定して得ることができる。また、原位置地盤と攪拌混合しないので、施工管理、品質管理が極めて簡便である等のメリットがある。さらに、図27(a)に示すような表面が滑らかな円筒状の掘削ロッド1を使用すれば、排土機能が全くないため、発生残土が殆ど出ないような施工が行なえる。
近年は環境保護意識の高まりから、杭基礎施工時に発生残土量の少ない施工法が要求されるようになっている。従って、この先行技術についても発生残土量が最も少ない、図27(a)、(b)に示すような周面が滑らかな円筒状の掘削ロッド1を使用する施工が望ましいが、地盤条件や施工条件等を総合的に勘案して掘削ロッドタイプを選択する必要がある。
Compared with the conventional ground improvement column by deep mixing treatment, the hydraulic solidification material liquid replacement column built by this prior art is not affected by the ground at all, so the high strength quality is stable. Can be obtained. Moreover, since it is not agitated and mixed with the in-situ ground, there are merits such as extremely simple construction management and quality control. Furthermore, if the cylindrical excavation rod 1 having a smooth surface as shown in FIG. 27 (a) is used, since there is no soil discharging function, it is possible to perform construction such that almost no generated residual soil is produced.
In recent years, due to the growing awareness of environmental protection, construction methods that require a small amount of residual soil during pile foundation construction have been required. Therefore, it is desirable to use the cylindrical excavation rod 1 having a smooth peripheral surface as shown in FIGS. 27 (a) and 27 (b) with the least amount of residual soil generated in this prior art. It is necessary to select the excavation rod type in consideration of the overall conditions.

掘削ロッド1の先端部に接続する掘削ヘッド8の例を図29に示す。先行技術における掘削ロッド1先端部に接続する掘削ヘッド8は、鋼板を角状や剣状に加工して下端面に突設した掘削爪18で形成されている。図29(a)に示す掘削ヘッド8の掘削爪18は、掘削ロッド1先端部の回転時形状の底部が平坦である掘削爪を、図29(b)は掘削ロッド1先端部の回転時形状が円錐状である掘削爪18を、図29(c)は掘削ロッド1先端部の回転時形状の底部が略平坦であり、かつ施工時にコラム心位置合わせが容易になるように、掘削爪18先端の掘削ロッド1軸心位置に切り込みを入れた掘削爪18を示している。   An example of the excavation head 8 connected to the tip of the excavation rod 1 is shown in FIG. The excavation head 8 connected to the tip of the excavation rod 1 in the prior art is formed by excavation claws 18 that are formed by projecting a steel plate into a square shape or a sword shape and projecting from the lower end surface. The excavation claw 18 of the excavation head 8 shown in FIG. 29A is an excavation claw having a flat bottom at the tip of the excavation rod 1, and FIG. The excavation claw 18 has a conical shape, and FIG. 29C shows the excavation claw 18 so that the bottom of the excavation rod 1 at the time of rotation is substantially flat and the column center can be easily aligned during construction. The excavation nail | claw 18 which cut | notched in the excavation rod 1 axial center position of the front-end | tip is shown.

掘削ロッド1は、中空で、図29(a)に示すように中空内をセメントミルクの供給通路4としている。掘削ロッド1の外径が比較的小さい場合は、その中空内を直接供給通路4としてもよいが、掘削ロッド1の外径が比較的大きい場合には、図29(b)、(c)に示すように供給通路専用の内管5が設けられる。そして、掘削ロッド1の先端は、逆止弁7が設けられた吐出口6となっており、供給通路4または内管5を介して供給された水硬性固化材液(例えば、セメントミルク)は、吐出口6より吐出される。   The excavation rod 1 is hollow, and the inside of the hollow is used as a cement milk supply passage 4 as shown in FIG. When the outer diameter of the excavation rod 1 is relatively small, the hollow inside may be used as the direct supply passage 4. However, when the outer diameter of the excavation rod 1 is relatively large, as shown in FIGS. As shown, an inner pipe 5 dedicated to the supply passage is provided. The tip of the excavating rod 1 is a discharge port 6 provided with a check valve 7, and the hydraulic solidifying material liquid (for example, cement milk) supplied through the supply passage 4 or the inner pipe 5 is And discharged from the discharge port 6.

また、前記水硬性固化材液置換コラムの築造方法では、セメントミルクの吐出口6が掘削ロッド1の下端面にあるため、セメントミルクの重量を直接受けることになり、吐出口6の逆止弁7から掘削ロッド1の供給通路4内または内管5内に残存するセメントミルクが漏れ出て垂れ落ち、施工装置10の移動時等に地表面を汚してしまう課題、及び置換コラムの施工が終了して、掘削ロッド1の先端に固設されている掘削ヘッド8の掘削爪18に、粘性の掘削土砂が付着したまま地上に引き上げられ、掘削ロッド1が未だ掘削孔上にあるとき、その掘削土砂が落下して未だ固化していない置換コラム中に混入することがあり、その掘削土砂を除去しないままセメントミルクが固化すると、置換コラムの品質劣化をきたす課題がある。本出願人は、この課題を解決するセメントミルクの垂れ受け装置を既に提案している(例えば、特許文献2参照)。   Further, in the construction method of the hydraulic solidifying material liquid replacement column, since the cement milk discharge port 6 is located at the lower end surface of the excavation rod 1, the weight of the cement milk is directly received. The cement milk remaining in the supply passage 4 or the inner pipe 5 of the excavation rod 1 leaks from the pipe 7 and hangs down, causing the ground surface to become dirty when the construction device 10 is moved, and the construction of the replacement column is completed. Then, when the excavation rod 1 is still on the excavation hole when the excavation rod 1 is still on the excavation hole, the excavation claw 18 of the excavation head 8 fixed at the tip of the excavation rod 1 is pulled up to the ground. There is a problem that the sediment is dropped and mixed in the replacement column that has not yet solidified, and when the cement milk is solidified without removing the excavated sediment, there is a problem that the quality of the replacement column is deteriorated. The present applicant has already proposed a drooping device for cement milk that solves this problem (see, for example, Patent Document 2).

特開2011−106253号公報JP 2011-106253 A 特願2010−191723号Japanese Patent Application No. 2010-191723

上述した従来の水硬性固化材液置換コラムの築造に使用する掘削ロッド1の掘削ヘッド8にあっては、図29(a)、(b)、(c)に示すように鋼板を角状や剣状に加工した掘削爪18としているため、次のような課題があることが判明した。
(1)図27(a)に示すような排土機構のない掘削ロッド1を用いて施工するとき、図30に示すように掘削対象地盤Jが砂質土の場合は、掘削爪18位置の掘削土砂を上方へ排除することができない状態で、矢印S方向の押込み力が作用すれば、掘削土砂の矢印R方向へのせん断抵抗力が増大するため、掘削ヘッド8の下方への掘進性が低下するか若しくは掘進不能に陥ることがある。このような事態に陥れば施工は所定深度まで実施することができず、いわゆる高止まりという施工トラブルとなる。
In the excavation head 8 of the excavation rod 1 used for the construction of the above-described conventional hydraulic solidifying material liquid replacement column, as shown in FIGS. 29 (a), (b), (c), Since the digging claw 18 is processed into a sword shape, it has been found that there are the following problems.
(1) When construction is performed using the excavation rod 1 having no soil removal mechanism as shown in FIG. 27A, when the excavation target ground J is sandy soil as shown in FIG. If the pushing force in the direction of the arrow S is applied in a state where the excavated earth and sand cannot be removed upward, the shear resistance force of the excavated earth and sand in the direction of the arrow R increases. May fall or become unable to dig. If it falls into such a situation, construction cannot be carried out to a predetermined depth, resulting in a construction trouble of so-called high stopping.

(2)水硬性固化材液置換コラムの地盤Jにおける築造深度中に粘性土(層)がある場合は、粘性土が掘削爪18に付着し、図31(a)に示す矢印T方向への掘削ロッド1の引き上げ時に、先端に付着した粘性土Dは置換した水硬性固化材液M中を掘削爪18と一緒に引き上げられる。しかし、掘削ロッド1に施工装置10から衝撃や振動等が加わると、付着した粘性土Dが掘削爪18から剥離して、水硬性固化材液M中に落下して、図31(b)に示すように置換コラムとなる水硬性固化材液M中に残存することがある。このように置換コラム内に粘性土塊Dが残存すると、置換コラムの鉛直支持力が低下することが考えられる。図32は、前記掘削爪18の回転体積に相当する粘性土塊Dを置換コラム底部に故意に堆積させたものと、そうでないものを築造して、押込み載荷試験を実施した結果を示している。置換コラムの仕様は設計外径200mm、長さ6mである。杭頭沈下量が20mmに達したときの載荷重(第2限界抵抗力)は粘性土塊Dなしで193kNであり、底部に粘性土塊Dありで126kNとなり、底部に粘性土塊Dがあると第2限界抵抗力が略3分の2に低下した。 (2) When there is a viscous soil (layer) during the construction depth in the ground J of the hydraulic solidifying material liquid replacement column, the viscous soil adheres to the excavation claw 18 and moves in the direction of arrow T shown in FIG. 31 (a). When the excavating rod 1 is pulled up, the viscous soil D adhering to the tip is pulled up together with the excavating claw 18 in the replaced hydraulic solidifying material liquid M. However, when impact, vibration, or the like is applied to the excavation rod 1 from the construction device 10, the attached viscous soil D peels from the excavation claw 18, falls into the hydraulic solidifying material liquid M, and is shown in FIG. 31 (b). As shown, it may remain in the hydraulic solidifying material liquid M to be a replacement column. When the viscous soil mass D remains in the replacement column in this way, it is considered that the vertical supporting force of the replacement column is reduced. FIG. 32 shows the result of the indentation loading test in which the viscous soil mass D corresponding to the rotating volume of the excavation claw 18 was intentionally deposited on the bottom of the replacement column and the other was not built. The specifications of the replacement column are a design outer diameter of 200 mm and a length of 6 m. When the pile head settlement amount reaches 20 mm, the loading load (second limit resistance) is 193 kN without the viscous soil mass D, becomes 126 kN with the viscous soil mass D, and the second when the viscous soil mass D exists at the bottom. The limit resistance decreased to about two-thirds.

本発明は、このような従来の施工深度の高止まりや粘性土の置換コラム底部への堆積による鉛直支持力の低下という課題を解決した水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッド及び該掘削ヘッドを設けた掘削ロッドを備える掘削装置の提供を第1の目的とする。
また、掘削ロッド下端から漏れる水硬性固化材液の垂れ受けを可能にする水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッド及び該掘削ヘッドを設けた掘削ロッドを備える掘削装置の提供を第2の目的とする。
The present invention provides an excavation head for a hydraulic solidification material liquid displacement column construction drill rod that solves the problems of the conventional high depth of construction and the decrease in vertical bearing force due to the accumulation of viscous soil on the bottom of the displacement column, and A first object is to provide a drilling device including a drilling rod provided with the drilling head.
Further, the present invention provides a drilling head for a hydraulic solidifying material liquid replacement column construction drill that enables dripping of the hydraulic solidifying material liquid leaking from the lower end of the drilling rod, and a drilling device including the drilling rod provided with the drilling head. The purpose of 2.

本発明は、従来技術が有する上記欠点を解消するためになされたものであり、請求項1の発明は、水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドであって、水硬性固化材液の流路を有する前記掘削ロッド下端部に設けられる、下方に向かって円錐状に突出する円錐ヘッドであり、その円錐ヘッドの周面には、前記流路に通じる水硬性固化材液の吐出口を設けるとともに、掘削ロッド正転時に掘削土砂を上方に押し上げる方向にスパイラル翼を設けたことを特徴とする水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドを提供するものである。
請求項2の発明は、請求項1において、前記掘削ヘッドの回転時の最大外径が掘削ロッドの回転径を超えないことを特徴とする水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドを提供するものである。
請求項3の発明は、請求項1または2において、前記円錐ヘッドの上部周面には、溶接により肉盛された肉盛部が形成されていることを特徴とする水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドを提供するものである。
請求項4の発明は、請求項1乃至3のいずれか1項において、前記円錐ヘッドの上端部の外径が掘削ロッドの外径と略同一であることを特徴とする水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドを提供するものである。
請求項5の発明は、請求項1乃至4のいずれか1項において、
前記円錐ヘッドの周面に設けられた前記スパイラル翼は、前記円錐ヘッドの上端部位置に至らない領域に設けたことを特徴とする水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドを提供するものである。
請求項6の発明は、請求項5において、前記円錐ヘッドの上端部位置から前記スパイラル翼の上端までの周面が、溶接により肉盛された肉盛部であることを特徴とする水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドを提供するものである。
請求項7の発明は、請求項1乃至6のいずれか1項において、前記掘削ロッドと円錐ヘッドとは溶接によって連結されていることを特徴とする水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドを提供するものである。
請求項8の発明は、請求項1乃至7のいずれか1項において、前記水硬性固化材液の吐出口には逆止弁を設けていることを特徴とする水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドを提供するものである。
請求項9の発明は、請求項1乃至8のいずれか1項において、前記水硬性固化材液の吐出口は、その中心位置から掘削ロッドの掘削回転時の回転方向後方側が切削されて円錐ヘッドの円錐面より低い高さに加工されていることを特徴とする水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドを提供するものである。
請求項10の発明は、請求項1乃至9のいずれか1項において、円錐ヘッドの最先端に、水硬性固化材液受け具を吊り下げる突起または孔部を有することを特徴とする水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドを提供するものである。
The present invention has been made to eliminate the above-mentioned drawbacks of the prior art, and the invention of claim 1 is a drilling head of a drill rod for building a hydraulic solidifying material liquid replacement column, comprising a hydraulic solidifying material. A conical head provided in a lower end portion of the excavation rod having a liquid flow path and projecting downward in a conical shape, and the circumferential surface of the conical head discharges hydraulic solidifying material liquid that leads to the flow path. The present invention provides a drilling head for a drill rod for building a hydraulic solidifying material liquid replacement column, characterized in that a spiral blade is provided in a direction in which an outlet is provided and a drilling soil is pushed upward during forward rotation of the drilling rod.
According to a second aspect of the present invention, in the first aspect, the excavation head of the excavation rod for building a hydraulic solidifying material liquid replacement column according to the first aspect, wherein the maximum outer diameter of the excavation head during rotation does not exceed the rotation diameter of the excavation rod. Is to provide.
The invention according to claim 3 is the hydraulic solidifying material liquid replacement column according to claim 1 or 2, wherein a built-up portion formed by welding is formed on an upper peripheral surface of the conical head. A drilling head for a construction drilling rod is provided.
According to a fourth aspect of the present invention, there is provided the hydraulic solidifying material liquid replacement according to any one of the first to third aspects, wherein the outer diameter of the upper end portion of the conical head is substantially the same as the outer diameter of the excavating rod. The drilling head of the drill rod for column construction is provided.
A fifth aspect of the present invention relates to any one of the first to fourth aspects,
The spiral blade provided on the peripheral surface of the conical head is provided in a region that does not reach the position of the upper end of the conical head. To do.
A sixth aspect of the present invention is the hydraulic solidification according to the fifth aspect, wherein the circumferential surface from the upper end position of the conical head to the upper end of the spiral blade is a built-up portion built up by welding. An excavation head for an excavation rod for constructing a material / liquid replacement column is provided.
According to a seventh aspect of the present invention, there is provided a drill rod for building a hydraulic solidifying material liquid replacement column according to any one of the first to sixth aspects, wherein the drill rod and the conical head are connected by welding. A drilling head is provided.
The invention according to claim 8 is the hydraulic solidification material liquid replacement column construction according to any one of claims 1 to 7, wherein a check valve is provided at a discharge port of the hydraulic solidification material liquid. An excavation head for an excavation rod is provided.
According to a ninth aspect of the present invention, in any one of the first to eighth aspects, the hydraulic solidifying material liquid discharge port has a conical head cut off from a central position thereof at a rear side in a rotation direction during excavation rotation of the excavation rod. An excavation head for an excavation rod for building a hydraulic solidifying material liquid displacement column, characterized in that it is processed to a height lower than the conical surface of the present invention.
A tenth aspect of the present invention is the hydraulic solidification according to any one of the first to ninth aspects, further comprising a protrusion or a hole for hanging the hydraulic solidifying material liquid receiver at the forefront of the conical head. An excavation head for an excavation rod for constructing a material / liquid replacement column is provided.

請求項11の発明は、掘削ロッドの下端部に、前記請求項1乃至10のいずれか1項に記載する掘削ヘッドを接続したことを特徴とする水硬性固化材液置換コラム築造用の掘削装置を提供するものである。ここでの接続とは、着脱自在も固設も含む意味である。
請求項12の発明は、掘削ロッドが下端から少なくとも0.5mの範囲で肉厚の大きい不等厚管であり、該掘削ロッドの下端部に、前記請求項1乃至10のいずれか1項に記載する掘削ヘッドを有する掘削ロッドを備えることを特徴とする水硬性固化材液置換コラム築造用の掘削装置を提供するものである。
請求項13の発明は、掘削ロッド下部周面の摩耗部が、溶接により肉盛された肉盛部に形成されており、該掘削ロッドの下端部に、前記請求項1乃至10のいずれか1項に記載する掘削ヘッドを有する掘削ロッドを備えることを特徴とする水硬性固化材液置換コラム築造用の掘削装置を提供するものである。
According to an eleventh aspect of the present invention, there is provided a drilling apparatus for building a hydraulic solidifying material liquid replacement column, wherein the drilling head according to any one of the first to tenth aspects is connected to a lower end portion of a drilling rod. Is to provide. The term “connection” here includes both detachable and fixed.
According to a twelfth aspect of the present invention, the excavation rod is an unequal thickness pipe having a large wall thickness within a range of at least 0.5 m from the lower end. Provided is a drilling device for building a hydraulic solidifying material liquid displacement column comprising a drilling rod having a drilling head to be described.
According to a thirteenth aspect of the present invention, the wear portion of the lower peripheral surface of the excavation rod is formed in a built-up portion that is built up by welding, and the lower end portion of the excavation rod has any one of the first to tenth aspects. A drilling apparatus for building a hydraulic solidifying material liquid replacement column, comprising a drilling rod having the drilling head described in the above section.

請求項14の発明は、排土機構のない周面が円滑な掘削ロッド本体の下方部に、外径が該掘削ロッド本体と同一径か少し径小であり、かつ正転時に掘削土砂を上方に押し上げる方向のスパイラルスクリューを有する比較的短尺のスパイラルロッドを連結し、該スパイラルロッドの下端に、請求項1乃至10のいずれか1項に記載する掘削ヘッドを設けた掘削ロッドを備えることを特徴とする水硬性固化材液置換コラム築造用の掘削装置を提供するものである。
請求項15の発明は、請求項14において、前記スパイラルロッドの長さが大きくとも2mを超えないことを特徴とする水硬性固化材液置換コラム築造用の掘削装置を提供するものである。
また、請求項16の発明は、周面の略全長に亘って正転時に掘削土砂を上方に押し上げる方向のスパイラルスクリューが設けられた掘削ロッド本体の下端に、請求項1乃至10のいずれか1項に記載する掘削ヘッドを設けた掘削ロッドを備えることを特徴とする水硬性固化材液置換コラム築造用の掘削装置を提供するものである。
The invention according to claim 14 is the lower part of the excavation rod body having a smooth peripheral surface without a soil removal mechanism, the outer diameter of which is the same as or slightly smaller than the excavation rod body, and the excavation soil is moved upward during normal rotation. A relatively short spiral rod having a spiral screw in a pushing direction is connected, and a drilling rod provided with the drilling head according to any one of claims 1 to 10 is provided at a lower end of the spiral rod. An excavating apparatus for building a hydraulic solidifying material liquid replacement column is provided.
A fifteenth aspect of the present invention provides a drilling apparatus for building a hydraulic solidifying material liquid replacement column according to the fourteenth aspect, wherein the length of the spiral rod does not exceed 2 m at most.
According to a sixteenth aspect of the present invention, in the lower end of the excavation rod body provided with a spiral screw in a direction for pushing up the excavated earth and sand during normal rotation over the substantially entire length of the peripheral surface, A drilling device for building a hydraulic solidifying material liquid replacement column, comprising a drilling rod provided with the drilling head described in the above section.

本発明による水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッド及び該掘削ヘッドを設けた掘削ロッドを備える掘削装置によって水硬性固化材液置換コラムを築造すれば、次のような効果を奏する。
(1)請求項1の発明による水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドによれば、ヘッド本体が下向きに円錐状に突設された円錐ヘッドとされ、その円錐ヘッドの周面にスパイラル翼が突設されているため、掘進施工時においてヘッド先端の掘削土砂はスパイラル翼によって掘削され、かつそのスパイラル翼に沿って上方へスムースに押し上げられる。このため、地盤の掘削土砂が砂質土であっても円錐ヘッドの円錐形状とスパイラル翼の相乗効果で良好な掘進性を確保できる。従って、掘削ロッドが排土機構の全くない周面が円滑な掘削ロッドであっても、比較的良好な掘進性を発揮する。掘削ロッド自体の周面にスパイラルスクリューを突設したものを使用すれば、さらに掘進性が向上する。
If the hydraulic solidification material liquid replacement column is constructed by the excavation head having the excavation head of the hydraulic solidification material liquid replacement column construction drill according to the present invention and the excavation rod provided with the excavation head, the following effects can be obtained. .
(1) According to the excavation head of the excavation rod for constructing the hydraulic solidifying material liquid replacement column according to the first aspect of the present invention, the head main body is a conical head projecting downward in a conical shape, and the peripheral surface of the conical head Since the spiral wing is projected, the excavated sediment at the tip of the head is excavated by the spiral wing and smoothly pushed upward along the spiral wing at the time of excavation. For this reason, even if the ground excavated soil is sandy soil, good excavation performance can be secured by the synergistic effect of the conical shape of the conical head and the spiral blade. Therefore, even if the excavation rod is an excavation rod having a smooth peripheral surface without any soil removal mechanism, relatively good excavation performance is exhibited. If one having a spiral screw protruding on the peripheral surface of the excavation rod itself is used, the excavation performance is further improved.

(2)掘削ヘッドの主要部が円錐ヘッドであるため、粘性地盤掘進時に掘削ヘッドに付着する粘性土はスパイラル翼が形成する比較的薄い回転体部のみである。このため、掘削爪(鋼板爪)を使用する従来技術による掘削ヘッドとは異なり、構造的に土塊を形成することはない。また、スパイラル翼の高さと略同じ厚さの土塊が付着したとしても、スパイラル翼がこれを下方から支えるため、粘性土の付着力と相俟って該付着した土塊が掘削ヘッドから剥落することは少ない。この結果、前記砂地盤での掘進性の高止まりトラブルの解消、掘進時の水硬性固化材液中への土塊の落下にもとづく置換コラムの支持力不足を回避できるという効果を奏する。 (2) Since the main part of the excavation head is a conical head, the viscous soil that adheres to the excavation head during the excavation of the viscous ground is only the relatively thin rotor part formed by the spiral blade. For this reason, unlike a conventional excavation head that uses excavation claws (steel plate claws), it does not structurally form a clot. In addition, even if a clot with the same thickness as the height of the spiral blade is attached, the spiral blade supports this from below, so that the attached clot will peel off from the excavation head due to the adhesive force of the viscous soil. There are few. As a result, it is possible to solve the problem that the digging performance remains high in the sand ground, and to avoid the lack of support force of the replacement column based on the fall of the soil mass in the hydraulic solidifying material liquid during the digging.

(3)請求項2の発明による水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドによれば、置換コラムの外径を規定する孔壁が掘削ロッドの外径の回転摺り付け効果により形成される。掘削ヘッドの回転時の最大外径が掘削ロッドの回転径を超えると、掘削ヘッドは掘削ロッドの最下端にあるため、掘削ロッドの引き上げ工程で形成されている孔壁を削り取ってしまう。この場合には、削り取られた孔壁土が置換された水硬性固化材液中に残存することとなる。そのため、水硬性固化材液の硬化後は削りかすである小土塊が含まれることになり、その量が許容値を越えるほどに多量になれば置換コラムの品質不良になる。請求項2の発明によれば、このような品質不良を生じさせることはないという効果がある。 (3) According to the excavation head of the hydraulic solidifying material liquid replacement column construction drilling rod according to the invention of claim 2, the hole wall that defines the outer diameter of the replacement column is formed by the rotational sliding effect of the outer diameter of the drilling rod. Is done. If the maximum outer diameter during rotation of the excavation head exceeds the rotation diameter of the excavation rod, the excavation head is at the lowermost end of the excavation rod, and therefore the hole wall formed in the excavation rod lifting process is scraped off. In this case, the scraped hole wall soil remains in the replaced hydraulic solidifying material liquid. Therefore, after hardening of the hydraulic solidifying material liquid, a small earth lump that is shavings is contained, and if the amount exceeds the allowable value, the quality of the replacement column becomes poor. According to the invention of claim 2, there is an effect that such a quality defect is not caused.

掘削ヘッドとして周面にスパイラル翼を有する円錐ヘッドを装着した掘削ロッドを使用して、砂質地盤中に水硬性固化材液置換コラムを築造することを繰り返すと、掘削ヘッドや掘削ロッドは砂質地盤の掘削抵抗により摩耗する。例えば、
a.砂質地盤中の施工を繰り返すことにより、掘削ロッド下端面の、円錐ヘッド上端部よりはみ出した部分が激しく摩耗し円錐ヘッドの稜線に近づこうとする。
b.掘削土砂は、円錐ヘッドのスパイラル翼に沿って相対的に上方に案内されるため、円錐ヘッドのスパイラル翼上端近傍の周面は、この案内されて上方に移動する土砂の通路となり、この部分が移動する土砂により激しく摩耗する。
c.掘削ロッドの下方部周側面の下端から0.5〜1m区間の摩耗が激しい。
このような摩耗が進行すると、円錐ヘッドの破損や掘削ロッドの破損が生じ、水硬性固化材液置換コラムの施工そのものが不能に陥る恐れがある。
(4)請求項3乃至6の発明による水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドによれば、このような摩耗の進行を遅延させ、円錐ヘッドや掘削ロッドの寿命を延ばすことができる。
Using a drilling rod fitted with a conical head with spiral wings as a drilling head and repeatedly building a hydraulic solidification liquid replacement column in sandy ground, the drilling head and drilling rod are sandy. Wear due to excavation resistance of the ground. For example,
a. By repeating the construction in the sandy ground, the portion of the lower end surface of the excavation rod that protrudes from the upper end portion of the conical head is worn violently and tends to approach the ridgeline of the conical head.
b. Since the excavated earth and sand is guided relatively upward along the spiral blade of the conical head, the peripheral surface near the upper end of the spiral blade of the conical head becomes a passage for the guided and moved earth and sand, and this portion is Abrasion due to moving earth and sand.
c. Wear in the section of 0.5 to 1 m from the lower end of the lower peripheral surface of the excavation rod is severe.
When such wear progresses, the conical head and the excavation rod may be damaged, and the construction of the hydraulic solidifying material liquid replacement column itself may become impossible.
(4) According to the excavation head of the excavation rod for building a hydraulic solidifying material liquid replacement column according to the inventions of claims 3 to 6, the progress of such wear can be delayed and the life of the conical head and the excavation rod can be extended. it can.

(5)請求項3および6の発明による水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドによれば、円錐ヘッドの上部周面または円錐ヘッドの上端部位置からスパイラル翼の上端までの領域は、砂質地盤等から掘削抵抗を最も大きく受けるため、この領域(部位)で磨耗が最も進み易いが、この摩耗領域に予め溶接による肉盛を設けることで寿命が延びると共に、この磨耗が進んだ磨耗領域に溶接による肉盛を施すことで、その円錐ヘッドの再利用が可能になり、結果としてこの円錐ヘッドの長寿命化を図ることができる。 (5) According to the excavation head of the excavation rod for building the hydraulic solidifying material liquid replacement column according to the inventions of claims 3 and 6, the region from the upper peripheral surface of the conical head or the upper end position of the conical head to the upper end of the spiral blade However, wear is most likely to proceed in this region (part) because it receives the greatest excavation resistance from sandy ground or the like. However, by providing a weld overlay in this wear region in advance, the life is extended and this wear proceeds. By applying welding to the worn area, the conical head can be reused, and as a result, the life of the conical head can be extended.

(6)請求項7の発明による水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドによれば、掘削ロッドと円錐ヘッドとを母材として、溶接(例えば、開先溶接)で連結することで、即ち、これらの間に形成したV形、U形などの凹溝に溶接によって肉盛することで、これらの掘削ロッドと円錐ヘッドとを迅速かつ容易に、しかも十分な強度を維持した状態で連結することができる。 (6) According to the excavation head of the hydraulic solidification material liquid replacement column construction excavation rod according to the invention of claim 7, the excavation rod and the conical head are connected to each other by welding (for example, groove welding). In other words, the excavation rod and the conical head can be quickly and easily maintained with sufficient strength by being welded to a concave groove such as a V shape or U shape formed between them. Can be connected.

(7)請求項8の発明による水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドによれば、掘進時に吐出口から掘削土砂が逆流すると、水硬性固化材液の吐出が不能になるおそれがあるため、逆止弁の設置はそれを防止する。逆止弁そのものは掘進施工時の地盤抵抗を受けるため、それに耐えるだけの剛性と耐久性が要求され、ばね力で水硬性固化材液の漏出を防ぎ、吐出圧が作用すると開いて水硬性固化材液を吐出する。また、弾性ゴム板や弾性樹脂板を使用した逆止弁の使用も可能である。いずれの例も円錐ヘッドの周面を座繰り加工して逆止弁を取り付けている。これは掘進時回転中の地盤抵抗を直接逆止弁に作用させないための工夫であり、このことにより逆止弁の耐久性が向上する。また、流路の内径は略同一径とした方が水硬性固化材液の詰まりが生じ難いので好ましい。 (7) According to the excavation head of the hydraulic solidification material liquid replacement column construction drill rod according to the invention of claim 8, if the excavation earth and sand flows backward from the discharge port during excavation, the hydraulic solidification material liquid may not be discharged. Therefore, the installation of a check valve prevents it. Since the check valve itself is subjected to ground resistance during excavation work, it must be rigid and durable enough to withstand it. The spring force prevents leakage of hydraulic solidified liquid and opens when the discharge pressure is applied to solidify hydraulically. Discharge the material liquid. Also, a check valve using an elastic rubber plate or an elastic resin plate can be used. In either example, the check valve is attached by countersinking the peripheral surface of the conical head. This is a contrivance to prevent ground resistance during rotation during excavation from acting directly on the check valve, which improves the durability of the check valve. Further, it is preferable that the inner diameters of the flow paths are substantially the same because clogging of the hydraulic solidifying material liquid is less likely to occur.

(8)請求項9の発明による水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドによれば、掘削ロッドの回転掘進時に、掘削された土砂が吐出口座繰り加工部のエッジの作用により吐出口の逆止弁上に溜まり、逆止弁の開放動作を阻み、水硬性固化材液の吐出を困難にする現象を防ぐ。掘進施工時の掘削ロッドは円錐ヘッド周面に突設されたスパイラル翼が掘削土を上方へ移動させる方向に回転する。そうすると、吐出口の中心位置より前記回転方向後方の座繰り部エッジが地盤を削る作用をするため、切削土が座繰り部に臨む逆止弁上に溜まる。こうして溜まった切削土砂が掘進作用によって座繰り部を埋め、それが締め固められると逆止弁が開閉しなくなり、ひいては水硬性固化材液が吐出不可能となり、施工不能に陥ることとなる。そこで、吐出口周辺の座繰り部の中心位置より後方の座繰り部エッジを削り取ることによって、エッジによる前記地盤切削作用が生じないようにすれば、上記トラブルの発生を防ぐことができる。なお、エッジの地盤切削作用を減じる形状であれば、このほかのあらゆる切削形状を任意に採用できる。 (8) According to the excavation head of the excavating rod for constructing the hydraulic solidifying material liquid replacement column according to the invention of claim 9, the excavated earth and sand are discharged by the action of the edge of the discharge account turning portion when the excavating rod is rotated. It collects on the check valve at the outlet, prevents the check valve from opening, and prevents a phenomenon that makes it difficult to discharge the hydraulic solidifying material liquid. The excavation rod at the time of excavation rotates in a direction in which spiral wings protruding from the circumferential surface of the conical head move the excavated soil upward. If it does so, since the countersink part edge behind the said rotation direction from the center position of a discharge port will carry out the effect | action which scrapes the ground, cutting soil accumulates on the check valve which faces a countersink part. When the cut sediment accumulated in this way fills the countersink portion by the excavating action and it is compacted, the check valve does not open and close, and the hydraulic solidifying material liquid cannot be discharged and the construction cannot be performed. Therefore, the occurrence of the above-described trouble can be prevented by scraping off the countersink part edge behind the center position of the countersink part around the discharge port so as not to cause the ground cutting action by the edge. Any other cutting shape can be arbitrarily adopted as long as it reduces the ground cutting action of the edge.

(9)請求項10の発明による水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドによれば、水硬性固化材液置換コラムの施工装置が移動中に、吐出口から水硬性固化材液が漏れて、地上を汚すことを防止するために、逆止弁が臨む掘削ヘッド下端部にバケツやパン等を吊り下げるための突起や挿通孔を設けている。挿通孔は、円錐ヘッドの円錐部に直接挿通孔を設けたり、円錐ヘッドの掘削爪としても機能する鋼板を突設し、その鋼板に挿通孔を設けたり、円錐ヘッド下端に掘削爪を兼ねる挿通孔を鋼棒で形成したりする。施工時の使用方法は、バケツやパンの吊り紐を吊持するフックを前記突起に吊り下げたり、挿通孔のいずれかに通したりすることで、そのバケツやパン等を掘削ヘッドの下端部に吊り下げることができる。これにより、施工装置の移動中に前記吐出口から漏れ出た水硬性固化材液がこのバケツやパン等に回収され、施工現場を汚すことを回避できる。なお、前記挿通孔はいずれもバケツやパン等を吊り下げることができる形状、サイズであればよい。
また、円錐ヘッドの先端部に突起を設け、この突起の先端に突起本体の軸径よりも大きな径の円板を固設してある。前記突起は円錐部先端の掘削ヘッドに対して左右対称位置に設けてもよい。さらに、円錐部先端にフック状の突起を設けてもよい。なお、前記突起は前記挿通孔と同様にバケツやパン等を吊り下げることができる形状であればよい。
(9) According to the excavation head of the excavation rod for building the hydraulic solidification material liquid replacement column according to the invention of claim 10, the hydraulic solidification material liquid is discharged from the discharge port while the construction device of the hydraulic solidification liquid replacement column is moving. In order to prevent the ground from leaking and soiling the ground, a projection or insertion hole for suspending a bucket, a pan, or the like is provided at the lower end of the excavation head where the check valve faces. The insertion hole has a direct insertion hole in the conical part of the conical head, a steel plate that also functions as a conical head excavation claw, and a steel plate that also functions as an excavation claw. The hole is formed with a steel rod. The method of use at the time of construction is to suspend the bucket or pan etc. at the lower end of the excavation head by suspending the hook that holds the bucket or bread hanging string from the projection or passing it through one of the insertion holes. Can be hung. Thereby, it is possible to avoid the hydraulic solidifying material liquid leaking from the discharge port during the movement of the construction apparatus being collected in the bucket, the bread, or the like and soiling the construction site. In addition, all the said insertion holes should just be a shape and size which can suspend a bucket, a bread | pan, etc.
Further, a protrusion is provided at the tip of the conical head, and a disk having a diameter larger than the shaft diameter of the protrusion main body is fixed to the tip of the protrusion. The projection may be provided at a symmetrical position with respect to the excavation head at the tip of the cone. Furthermore, a hook-shaped protrusion may be provided at the tip of the conical portion. In addition, the said protrusion should just be a shape which can suspend a bucket, a bread | pan, etc. similarly to the said insertion hole.

(10)請求項11の発明による水硬性固化材液置換コラム築造用の掘削装置によれば、掘削ロッドはスパイラル翼を備える円錐ヘッドを、先端に有するので、良好な掘進性を備え、砂質土であっても掘進施工が可能となる。なお、円錐ヘッドと掘削ロッドの接続方法は、着脱自在でも、溶接による固着でもよい。
(11)請求項12の発明による水硬性固化材液置換コラム築造用の掘削装置によれば、前記請求項1乃至9の効果に加え、掘削ロッドの下端から少なくとも0.5mの範囲が肉厚の大きい不等厚管であるので、ロッドの摩耗の激しい部分が肉厚となっているので、寿命を延ばすことができる。
(10) According to the excavating apparatus for building a hydraulic solidifying material liquid replacement column according to the invention of claim 11, since the excavating rod has a conical head provided with a spiral blade at the tip, the excavating rod has good excavation performance and is sandy. Digging work is possible even on soil. In addition, the connection method of a conical head and an excavation rod may be detachable or fixed by welding.
(11) According to the excavator for building a hydraulic solidifying material liquid replacement column according to the invention of claim 12, in addition to the effects of claims 1 to 9, a thickness of at least 0.5 m from the lower end of the excavation rod is thick. Since the unequal-thickness tube has a large thickness, the portion where the rod is heavily worn is thick, so the life can be extended.

(12)また、請求項13の発明による水硬性固化材液置換コラム築造用の掘削装置によれば、前記請求項1乃至11の効果に加え、掘削ロッドの摩耗が激しい下部周面の摩耗部が溶接により肉盛された肉盛部に形成されているので、寿命が延びると共に、摩耗が進んだ場合でもこの摩耗領域に溶接による肉盛を設けることで、再利用を可能とし経済性の向上を図ることができる。 (12) According to the excavator for building a hydraulic solidifying material liquid replacement column according to the invention of claim 13, in addition to the effects of claims 1 to 11, the worn portion of the lower peripheral surface where the wear of the excavating rod is severe. Since it is formed in the built-up part that is built up by welding, the life is extended, and even if the wear progresses, it is possible to reuse it by providing the built-up by welding in this wear area, and improve the economic efficiency. Can be achieved.

(13)請求項14の発明による水硬性固化材液置換コラム築造用の掘削装置によれば、前記請求項1乃至13の効果に加え、掘削土砂の排土量をほとんど無いか少なく抑えることができ、しかも掘進性能が向上し、施工時間を短縮することができる。 (13) According to the excavating apparatus for building a hydraulic solidifying material liquid replacement column according to the invention of claim 14, in addition to the effects of the first to thirteenth aspects, the amount of excavated soil can be suppressed little or little. In addition, the excavation performance is improved and the construction time can be shortened.

(14)また、請求項15において、スパイラルロッドの長さを2m以下とすることで、掘削ロッドとのバランスがよく、排土量が生じないか少なく抑えられると共に孔壁の練り付け効果を向上できる。 (14) Further, in claim 15, by setting the length of the spiral rod to 2 m or less, the balance with the excavation rod is good, the amount of soil removal is not generated or reduced, and the effect of kneading the hole wall is improved. it can.

(15)請求項16の発明による水硬性固化材液置換コラム築造用の掘削装置によれば、前記請求項1乃至13の効果に加え、掘進性能が高く、施工時間は最も短く施工効率の向上が図れる。しかし、請求項14の発明に比較して排土が生ずる難点はある。 (15) According to the excavator for building a hydraulic solidifying material liquid replacement column according to the invention of claim 16, in addition to the effects of claims 1 to 13, the excavation performance is high, the construction time is the shortest, and the construction efficiency is improved. Can be planned. However, as compared with the invention of the fourteenth aspect, there is a difficulty in causing soil discharge.

以上、本発明について簡潔に説明した。更に、本発明を実施するための最良の形態を添付の図面を参照して、以下に詳細に説明する。   The present invention has been briefly described above. Further, the best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings.

本発明の実施形態による水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドの要部を示し、(a)は正面図、(b)は背面図である。The principal part of the excavation head of the excavation rod for hydraulic solidification material liquid substitution column construction by an embodiment of the present invention is shown, (a) is a front view and (b) is a back view. 図1に示す水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドの断面図である。It is sectional drawing of the excavation head of the excavation rod for hydraulic solidification material liquid substitution column construction shown in FIG. 図1における水硬性固化材液置換コラム築造用掘削ロッドの他の掘削ヘッドを示す断面図である。It is sectional drawing which shows the other excavation head of the excavation rod for hydraulic solidification material liquid substitution column construction in FIG. 他例を示す円錐ヘッドの正面図である。It is a front view of the conical head which shows another example. 図4における円錐ヘッドのA‐A線断面図である。It is the sectional view on the AA line of the conical head in FIG. 図1(a)における円錐ヘッドのB‐B線断面図である。It is a BB line sectional view of the conical head in Drawing 1 (a). 図1における円錐ヘッドの他の形態を示す正面図である。It is a front view which shows the other form of the conical head in FIG. 図1における円錐ヘッドの他の形態を示す正面図である。It is a front view which shows the other form of the conical head in FIG. 図1における円錐ヘッドの他の形態を示す正面図である。It is a front view which shows the other form of the conical head in FIG. 水硬性固化材液受け具の吊持状態を示す正面図である。It is a front view which shows the suspended state of a hydraulic solidification material liquid holder. 図1における円錐ヘッドの他の形態を示す正面図である。It is a front view which shows the other form of the conical head in FIG. 図1における円錐ヘッドの他の形態を示す正面図である。It is a front view which shows the other form of the conical head in FIG. 図1における円錐ヘッドの他の形態を示す正面図である。It is a front view which shows the other form of the conical head in FIG. 円錐ヘッドの円錐角の違いによる掘進性能を説明するための説明図(a)(b)である。It is explanatory drawing (a) (b) for demonstrating the excavation performance by the difference in the cone angle of a cone head. 本発明の掘削装置が備える掘削ロッドを示す正面図(a)(b)(c)である。It is a front view (a) (b) (c) which shows the excavation rod with which the excavation equipment of the present invention is provided. 比較例の掘削装置が備える掘削ロッドを示す正面図である。It is a front view which shows the excavation rod with which the excavation apparatus of a comparative example is provided. 施工試験を実施した地盤の土質柱状図(a)及びスウェーデン式サウンディング試験結果(b)である。It is the soil columnar figure (a) of the ground which implemented the construction test, and a Swedish sounding test result (b). 各実施例及び比較例の掘削深度と掘削時間との関係を示す図である。It is a figure which shows the relationship between the excavation depth and excavation time of each Example and a comparative example. 円錐ヘッドの他の形態を示す断面図で、掘削ロッドと円錐ヘッドとの固定的な連結構造を示す。It is sectional drawing which shows the other form of a conical head, and shows the fixed connection structure of a drilling rod and a conical head. 円錐ヘッドの他の形態を示す正面図で、円錐ヘッドの上部周面に肉盛部を施した場合を示す。It is a front view which shows the other form of a cone head, and shows the case where a build-up part is given to the upper peripheral surface of a cone head. 円錐ヘッドの他の形態を示す正面図で、スパイラル翼が円錐ヘッドの上端部位置に至らない領域に設けた場合を示す。It is a front view which shows the other form of a cone head, and shows the case where a spiral blade is provided in the area | region which does not reach the upper end part position of a cone head. 円錐ヘッドの他の形態を示す正面図で、円錐ヘッドの上端部位置からスパイラル翼の上端までの領域に肉盛部を施した場合を示す。It is a front view which shows the other form of a cone head, and shows the case where a build-up part is given to the area | region from the upper end part position of a cone head to the upper end of a spiral blade. 本発明の他の実施の形態を示す正面図で、掘削ロッド下部周面の摩耗領域に肉盛部を施した場合を示す。It is a front view which shows other embodiment of this invention, and shows the case where a build-up part is given to the abrasion area | region of the excavation rod lower peripheral surface. 本発明の他の実施の形態を示す正面図で、円錐ヘッドの上端部位置からスパイラル翼の上端までの摩耗領域と掘削ロッド下部周面の摩耗領域とに肉盛部を施した場合を示す。It is a front view which shows other embodiment of this invention, and shows the case where a built-up part is given to the wear area | region from the upper end part position of a cone head to the upper end of a spiral blade, and the wear area | region of a drilling rod lower peripheral surface. 円錐ヘッドと掘削ロッドの摩耗状況を説明する要部正面図で、(a)が摩耗前、(b)が摩耗後を示す。It is a principal part front view explaining the wear condition of a cone head and a drilling rod, (a) shows before wear, (b) shows after wear. 従来の一般的な施工装置を示す正面図である。It is a front view which shows the conventional general construction apparatus. 従来の掘削ロッドを例示(a)(b)(c)する正面図である。It is a front view which illustrates the conventional excavation rod (a) (b) (c). 水硬性固化材液置換コラム築造の施工手順を工程順(a)(b)(c)(d)(e)(f)に示す説明図である。It is explanatory drawing which shows the construction procedure of hydraulic solidification material liquid substitution column construction in process order (a) (b) (c) (d) (e) (f). 従来の掘削ロッド先端の掘削ヘッドを示す要部の斜視図(a)(b)(c)である。It is a perspective view (a) (b) (c) of the principal part showing the excavation head of the conventional excavation rod tip. 砂質土に対する掘削ヘッドの掘進状態を示す説明図である。It is explanatory drawing which shows the excavation state of the excavation head with respect to sandy soil. 粘性土に対する掘削ヘッドの作用状態を示す説明図(a)(b)である。It is explanatory drawing (a) (b) which shows the action state of the excavation head with respect to cohesive soil. 掘削ヘッドの回転体積に相当する粘性土塊を置換コラム底部に堆積させたものと堆積させないものとについて行なった載荷試験結果を示すグラフ図である。It is a graph which shows the loading test result performed about what deposited the viscous earth lump equivalent to the rotation volume of an excavation head, and the thing which is not deposited on the bottom of a substitution column.

以下、本発明の実施形態を、図1乃至図25を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 25.

図1及び図2は、本実施形態による水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドを示す。この水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドは、図15に示したものと略同様の掘削ロッド1の掘削ロッド本体1a端に、円錐ヘッド21を連設したものからなる。具体的には、この円錐ヘッド21は、水硬性固化材液の流路22を有し掘削ロッド1の下端部に着脱自在に、または固定的に連結され、下方に向かって突出する円錐部21bの周面に水硬性固化材液の吐出口22aが設けられ、さらに掘削ロッド1の正転時(掘削回転時)に掘削土砂を押し上げるスパイラル翼25を有する構成である。   1 and 2 show a drill head of a drill rod for building a hydraulic solidifying material liquid replacement column according to the present embodiment. The excavation head of the excavation rod for building the hydraulic solidifying material liquid replacement column is formed by connecting a conical head 21 to the end of the excavation rod body 1a of the excavation rod 1 that is substantially the same as that shown in FIG. Specifically, the conical head 21 has a hydraulic solidifying material liquid flow path 22 detachably or fixedly connected to the lower end of the excavating rod 1 and protrudes downward from the conical part 21b. The hydraulic solidification material liquid discharge port 22a is provided on the peripheral surface of the drill rod, and the spiral blade 25 pushes up the excavated earth and sand when the excavation rod 1 rotates forward (during excavation rotation).

この構成では、掘進施工時において、円錐ヘッド21先端の掘削土砂はスパイラル翼25によって掘削され、かつそのスパイラル翼25に沿って上方へスムースに押し上げられるので、砂質の掘削土砂に対して円錐ヘッド21の良好な掘進性を確保できる。従って、掘削ロッド1は排土機構が全くない周面が円滑な掘削ロッド1であっても比較的良好な掘進性を発揮する。そして前記のように掘削ロッド1自体の周面に図15(b)(c)に示すようなスパイラルスクリュー3を突設したものを使用すれば、さらに掘進性が向上する。   In this configuration, during excavation work, the excavated sediment at the tip of the conical head 21 is excavated by the spiral blade 25 and is smoothly pushed upward along the spiral blade 25, so that the conical head is against the sandy excavated sediment. 21 good excavation performance can be secured. Therefore, even if the excavation rod 1 is the excavation rod 1 having a smooth peripheral surface without any soil removal mechanism, it exhibits a relatively good excavation performance. And if the thing which protruded the spiral screw 3 as shown in FIG.15 (b) (c) to the surrounding surface of the excavation rod 1 itself as mentioned above is used, excavation property will improve further.

また、円錐ヘッド21の主要部が円錐状である。このため、粘性地盤掘進時に円錐ヘッド21に付着する粘性土はスパイラル翼25部分のみであるので、鋼板の掘削爪を使用する従来技術の掘削ヘッドとは異なり、構造的に土塊を形成することはない。また、スパイラル翼25の高さと略同じ厚さの付着土層が形成されたとしても、スパイラル翼25がこれを下方から支えるため、粘性土の付着力と相俟って、その付着土の塊が掘削ヘッド21から剥落することは少ない。この結果、前記砂質地盤での掘進性の高止まりトラブルの解消と、水硬性固化材液中への土塊の落下に伴う置換コラムの支持力不足等を回避できるとともに、掘削土砂での作業現場の汚損、土塊混入によるコラム品質の低下を回避することができる。   The main part of the conical head 21 is conical. For this reason, the viscous soil that adheres to the conical head 21 during the excavation of the viscous ground is only the spiral blade 25 portion. Therefore, unlike the conventional excavation head that uses the excavation claw of the steel plate, Absent. Further, even if an adhered soil layer having a thickness substantially the same as the height of the spiral blade 25 is formed, the spiral blade 25 supports this from the lower side, and therefore, in combination with the adhesive force of the viscous soil, Does not peel off from the excavation head 21. As a result, it is possible to eliminate the high digging trouble in the sandy ground and to avoid the lack of support capacity of the replacement column due to the fall of the soil mass into the hydraulic solidification material liquid, and to work on the excavated soil Column deterioration due to soil contamination and dirt mixing can be avoided.

円錐ヘッド21は基部21aと円錐部21bとを、例えば溶接によって一体化したものからなり、必要に応じて一体成形品(例えば、鋳造品)として得ることもできる。基部21aは、例えば整備、点検等のためあるいは部品交換のために、円筒状の掘削ロッド1端に着脱自在に取り付けられるものであり、その着脱は掘削ロッド1に、例えば図1及び図2に示すように複数箇所でピン等の締結具Pを用い行なわれる。本例では、掘削ロッド1(掘削ロッド本体1a)の下端に継手40が固設され、円錐ヘッド21は、この継手40に締結具Pで着脱自在に取付けられている(図2、図3参照)。
なお、ここでは円錐ヘッド21が掘削ロッド1端に着脱自在に取り付ける場合を示しているが、円錐ヘッド21は掘削ロッド1端に固着(例えば、溶接)して設けてもよい。
The conical head 21 is formed by integrating the base portion 21a and the conical portion 21b by welding, for example, and can be obtained as an integrally molded product (for example, a cast product) as necessary. The base portion 21a is detachably attached to the end of the cylindrical excavation rod 1 for maintenance, inspection, etc. or for parts replacement, for example. As shown, fasteners P such as pins are used at a plurality of locations. In this example, a joint 40 is fixed to the lower end of the excavation rod 1 (excavation rod body 1a), and the conical head 21 is detachably attached to the joint 40 with a fastener P (see FIGS. 2 and 3). ).
Although the conical head 21 is detachably attached to the end of the excavation rod 1 here, the conical head 21 may be fixed (for example, welded) to the end of the excavation rod 1.

また、円錐ヘッド21はその中心部に基部21aの全長と円錐部21bの一部とに連続する流路(連通孔)22を有する。この流路22の下端は、その円錐部21bの外周面に開口するように臨み、この開口端は後述の水硬性固化材液の吐出口22aとなっている。この吐出口22aには、ばね構造の逆止弁23が設けられ、流路22への水硬性固化材液の圧送時には、その圧送時の圧力を受けて、ばね力に抗して自動的に開かれる。一方、前記水硬性固化材液の圧送が止むと前記ばね力によって逆止弁23は吐出口22aを自動的に閉じ、地盤内の土砂が流路22へ逆流するのを阻止する。掘進時に吐出口22aから掘削土砂が逆流すると、水硬性固化材液の吐出が不能になる惧れがあるため、逆止弁23の設置はそれを防止する。逆止弁23そのものは掘進施工時の地盤抵抗を受けるため、それに耐えるだけの剛性と耐久性が要求され、ばね力で水硬性固化材液の漏出を防ぎ、吐出圧が作用すると開いて水硬性固化材液を吐出する。   Further, the conical head 21 has a flow path (communication hole) 22 that is continuous with the entire length of the base portion 21a and a part of the conical portion 21b at the center thereof. The lower end of the channel 22 faces the outer peripheral surface of the conical portion 21b, and the opening end serves as a hydraulic solidifying material liquid discharge port 22a described later. The discharge port 22a is provided with a check valve 23 having a spring structure. When the hydraulic solidifying material liquid is fed to the flow path 22, the pressure is automatically received against the spring force. be opened. On the other hand, when the pumping of the hydraulic solidifying material liquid stops, the check valve 23 automatically closes the discharge port 22a by the spring force to prevent the earth and sand in the ground from flowing back to the flow path 22. If the excavated earth and sand flows backward from the discharge port 22a during excavation, the hydraulic solidifying material liquid may not be discharged, so the check valve 23 is prevented from being installed. Since the check valve 23 itself is subjected to ground resistance during excavation work, it must be rigid and durable enough to withstand it. The spring force prevents leakage of the hydraulic solidified liquid and opens when the discharge pressure acts. Discharge the solidified material liquid.

前記ばね構造の逆止弁23に代えて、図3に示すように、吐出口22aに一部が固定された弾性ゴム乃至弾性樹脂からなる逆止弁24を用いることもできる。前記いずれの逆止弁23、24も円錐部周面を座繰り加工して逆止弁23、24を取り付けている。これは掘進時回転中の地盤抵抗を直接逆止弁23、24に作用させないための工夫であり、このことにより逆止弁23、24の耐久性が向上する。また、円錐ヘッド21内の流路(連通路)22は吐出口付近で方向を変えている。流路の内径は略同一径とした方が水硬性固化材液の詰まりが生じ難いので好ましい。逆止弁24は構成が簡単で、弾性ゴム材乃至弾性樹脂材の取り付けが容易であるため、ばね構造の逆止弁23に比べて円錐ヘッド21に対する交換作業が容易で、大幅にコストダウンでき、実用性が高い。   Instead of the check valve 23 having the spring structure, as shown in FIG. 3, a check valve 24 made of elastic rubber or elastic resin partially fixed to the discharge port 22a may be used. In any of the check valves 23 and 24, the check valve 23 and 24 are attached by countersinking the circumferential surface of the conical portion. This is a device for preventing the ground resistance during rotation during excavation from directly acting on the check valves 23 and 24, thereby improving the durability of the check valves 23 and 24. Further, the flow path (communication path) 22 in the conical head 21 changes its direction near the discharge port. It is preferable that the inner diameters of the flow paths be approximately the same because clogging of the hydraulic solidifying material liquid is less likely to occur. Since the check valve 24 has a simple configuration and can be easily attached with an elastic rubber material or an elastic resin material, the replacement work for the conical head 21 is easier than the check valve 23 with a spring structure, and the cost can be greatly reduced. High practicality.

また、前記流路22の上端は水硬性固化材液を掘削ロッド1の外部から供給する供給パイプ5(内管)が連設されている。なお、この供給パイプ5を省いて、掘削ロッド1の中空部内を通して水硬性固化材液を円錐へッド21の流路22に導くようにすることは任意である。さらに、円錐ヘッド21は外周に所定高さの1本のスパイラル翼25が突設されている。このスパイラル翼25は必要に応じて2本以上とすることもあるいは断続的にすることも任意である。このスパイラル翼25は、掘削ロッド1が図15(a)に示すように排土機能がない場合であっても円錐ヘッド21の回転によって、地盤掘削中に円錐面に沿って土砂を上方へ掬い上げ掘削ロッド1の周面で掘削土砂を側方に押し出すため、掘削土が砂質土であっても図30に示すような現象は発生しない。これにより、土砂が砂質土であっても、大きな(過大な)抵抗なく地盤中に推進させることができる。   Further, a supply pipe 5 (inner pipe) for supplying a hydraulic solidifying material liquid from the outside of the excavation rod 1 is connected to the upper end of the flow path 22. It is optional to omit the supply pipe 5 and guide the hydraulic solidified material liquid to the flow path 22 of the conical head 21 through the hollow portion of the excavation rod 1. Further, the conical head 21 has one spiral blade 25 of a predetermined height protruding from the outer periphery. Two or more spiral blades 25 may be optionally provided or intermittently. Even if the excavation rod 1 does not have a soil discharging function as shown in FIG. 15A, the spiral blade 25 scoops up the earth and sand along the conical surface during excavation by the rotation of the conical head 21. Since the excavated soil is pushed to the side by the peripheral surface of the raised excavating rod 1, even if the excavated soil is sandy soil, the phenomenon shown in FIG. 30 does not occur. Thereby, even if earth and sand are sandy soil, it can be propelled into the ground without a large (excessive) resistance.

前記土砂が粘性土である場合には、円錐ヘッド21の推進による地盤の掘進作業後、これを地上に引き上げる際に、上下方向に向かい合うスパイラル翼25間の円錐ヘッド21の外周面に粘性土が付着する。この粘性土はスパイラル翼25に支えられているため、粘性土の付着力と相俟って円錐ヘッド21の外周面から剥離、落下して施工したコラム中に残存することはほとんどない。これにより土砂の混入に伴うコラムの鉛直方向支持力の劣化を回避できる。   When the earth and sand are viscous soil, when the ground is excavated by the promotion of the conical head 21, when it is pulled up to the ground, the viscous soil is formed on the outer peripheral surface of the conical head 21 between the spiral blades 25 facing vertically. Adhere to. Since this viscous soil is supported by the spiral blade 25, coupled with the adhesive force of the viscous soil, it hardly peels off from the outer peripheral surface of the conical head 21 and falls and remains in the constructed column. As a result, it is possible to avoid the deterioration of the vertical supporting force of the column accompanying the mixing of earth and sand.

ところで、円錐ヘッド21の回転時の最大外径は掘削ロッド1の回転径を超えないようにすることが肝要である。置換柱体であるコラムの外径を規定する孔壁は、掘削ロッド1の外径の回転摺り付け効果により形成される。円錐ヘッド21の回転時の最大外径が掘削ロッド1の回転径を超えると、円錐ヘッド21は掘削ロッド1の最下端にあるため、掘削ロッド1の引き上げ工程で形成した孔壁を削り取ることとなる。このため、削り取られた孔壁土が置換された水硬性固化材液中に残存することとなり、水硬性固化材液の硬化後は削りかすである小土塊がコラム中に含まれることになって、その量が許容値を越えるほどに多量になれば、水硬性固化材液置換コラムの品質不良になる。このため、円錐へッド21の回転時の最大外径は掘削ロッド1の回転径を超えないようにしている。また、後述する図19および図21に示すように円錐ヘッド21を掘削ロッド1の下端に溶接等で固着した場合でも、円錐ヘッド21の上端部21cの外径を掘削ロッド1の外径と略同一にすることにより、孔壁の削り取りを防止でき、以って壁土が水硬性固化材液中に残存することを防止できる。   By the way, it is important that the maximum outer diameter at the time of rotation of the conical head 21 does not exceed the rotation diameter of the excavation rod 1. The hole wall that defines the outer diameter of the column that is the replacement column body is formed by the rotational sliding effect of the outer diameter of the excavating rod 1. When the maximum outer diameter of the conical head 21 during rotation exceeds the rotational diameter of the excavating rod 1, the conical head 21 is at the lowermost end of the excavating rod 1, so that the hole wall formed in the lifting process of the excavating rod 1 is scraped off. Become. For this reason, the scraped hole wall soil will remain in the replaced hydraulic solidifying material liquid, and after the hardening of the hydraulic solidifying material liquid, a small soil mass that is shavings will be included in the column, If the amount exceeds the allowable value, the quality of the hydraulic solidifying material liquid replacement column will be poor. For this reason, the maximum outer diameter at the time of rotation of the conical head 21 is made not to exceed the rotation diameter of the excavation rod 1. Further, as shown in FIGS. 19 and 21 described later, even when the conical head 21 is fixed to the lower end of the excavation rod 1 by welding or the like, the outer diameter of the upper end portion 21c of the conical head 21 is substantially equal to the outer diameter of the excavation rod 1. By making it the same, it is possible to prevent the hole wall from being scraped off, so that the wall soil can be prevented from remaining in the hydraulic solidifying material liquid.

前記流路22の吐出口22aは、図4及び図5に示すように、その中心位置から掘削ロッド1の正転時の回転方向後方側が、平らに切削されて(座繰りされて)、円錐ヘッド21の外周面より低め(径小)の座繰り部26とされている。図1(a)及び図6に示すように、吐出口22a周辺に形成された座繰り部26のうち掘削ロッド1の回転方向後方側に臨む鋭角に尖ったエッジEが、掘削ヘッド21による地盤掘進中に孔壁を削り込んで土砂Gを逆止弁24上に溜め、この逆止弁24の開閉作動を妨げて水硬性固化材液の前記吐出を不能にすることがあった。本実施形態の前記座繰り部26の形成によって、地盤掘進中の孔壁の削り込みを抑え、土砂が逆止弁24上に溜まることがないようにし、この逆止弁24の開閉作動及び水硬性固化材液の前記吐出を円滑化することができる。   As shown in FIGS. 4 and 5, the discharge port 22a of the flow path 22 is flatly cut from the center position at the rear side in the rotation direction of the excavating rod 1 during normal rotation (spotted), and has a conical shape. The counterbore 26 is lower (smaller in diameter) than the outer peripheral surface of the head 21. As shown in FIG. 1A and FIG. 6, the sharpened edge E facing the rear side in the rotation direction of the excavation rod 1 in the counterbore 26 formed around the discharge port 22 a is the ground by the excavation head 21. During the excavation, the hole wall was shaved to accumulate the earth and sand G on the check valve 24, and the check valve 24 could be prevented from opening and closing, thereby making it impossible to discharge the hydraulic solidifying material liquid. The formation of the counterbore 26 of the present embodiment suppresses the cutting of the hole wall during ground excavation, prevents sediment from accumulating on the check valve 24, opens / closes the check valve 24, and The discharge of the hard solid material liquid can be facilitated.

本実施形態の座繰り部26は、図5に示すように吐出口22aが設けられる側に、掘削ロッド1の中心線に平行な一つの平担面26aと、この平担面26aに略直交する垂直面26bとからなる。この垂直面26bは掘削ロッド1の回転方向前方側に位置する。一方、前記平担面26aはその垂直面26bの前記回転方向前方側とは反対側に、円錐ヘッド21の外周面(円弧面)より内径方向側に落ち込んだ位置にあってその円弧面に交差し、座繰り部26内に大きな面積を占める。従って、この交差部が鈍角のエッジFとなる。この結果、掘削ロッド1の回転時に、その座繰り部26の前記回転方向後方側の端部(鈍角のエッジF)が掘削中に地盤の孔壁を削るのを抑えることができる。これにより逆止弁24の開閉動作や水硬性固化材液の前記吐出が阻害されることを回避できる。   As shown in FIG. 5, the counterbore part 26 of the present embodiment is provided with one flat surface 26 a parallel to the center line of the excavation rod 1 on the side where the discharge port 22 a is provided, and substantially orthogonal to the flat surface 26 a. And a vertical surface 26b. The vertical surface 26b is located on the front side in the rotational direction of the excavating rod 1. On the other hand, the flat surface 26a is on the opposite side of the vertical surface 26b to the front side in the rotational direction, and is located at a position that falls inward from the outer peripheral surface (arc surface) of the conical head 21 and intersects the arc surface. However, the counterbore 26 occupies a large area. Therefore, this intersection becomes an obtuse edge F. As a result, when the excavation rod 1 is rotated, it is possible to prevent the end portion (obtuse edge F) on the rear side in the rotation direction of the counterbore portion 26 from cutting the hole wall of the ground during excavation. Thereby, it is possible to avoid obstructing the opening / closing operation of the check valve 24 and the discharge of the hydraulic solidifying material liquid.

また、掘削ロッド1の円錐ヘッド21下端(先端)には、掘削ロッド1を地上に引き上げた後に逆止弁24等を介して吐出口22aから漏出する水硬性固化材液を受ける水硬性固化材液受け具の吊り下げ孔が設けられている。この水硬性固化材液受け具の吊り下げ孔として、図7に示すように円錐ヘッド21の円錐部下端に穿設された挿通孔(孔部)27、図8に示すように円錐ヘッド21の掘削爪としても機能する矩形の鋼板28に穿設された挿通孔(孔部)29、図9及び図10に示すように円錐ヘッド21の円錐部下端に溶接等によって取り付けられた、鋼棒30を円弧状に曲げて作られた挿通孔(孔部)31が用いられる。   Further, the lower end (tip) of the conical head 21 of the excavation rod 1 is a hydraulic solidification material that receives the hydraulic solidification material liquid that leaks from the discharge port 22a via the check valve 24 after the excavation rod 1 is pulled up to the ground. A suspension hole for the liquid receiver is provided. As the suspension hole of the hydraulic solidifying material liquid receiver, as shown in FIG. 7, an insertion hole (hole) 27 drilled at the lower end of the conical portion of the conical head 21 and as shown in FIG. An insertion hole (hole) 29 drilled in a rectangular steel plate 28 that also functions as a drilling claw, and a steel rod 30 attached by welding or the like to the lower end of the conical portion of the conical head 21 as shown in FIGS. An insertion hole (hole) 31 is used which is made by bending the wire into an arc shape.

これらの挿通孔(孔部)27、29、31には、例えば図10に示すように、吊り下げバケツ32の吊り紐33を吊持する鋼材のフック34を通して水硬性固化材液受け具であるバケツ32やパン等を掘削ヘッド1の下端部に吊り下げる。これにより、施工機の移動中に前記吐出口22aから漏れ出た水硬性硬化材液が、このバケツやパン等に回収されて、施工現場を汚すことを回避できる。なお、前記挿通孔27、29、31はいずれもバケツ32やパン等を吊り下げることができる形状、サイズである。   These insertion holes (holes) 27, 29, 31 are hydraulic solidifying material liquid receivers through a steel hook 34 that holds a suspension string 33 of a suspension bucket 32, for example, as shown in FIG. 10. A bucket 32 or a pan is suspended from the lower end of the excavation head 1. Thereby, it is possible to prevent the hydraulic curable material liquid leaking from the discharge port 22a during the movement of the construction machine from being collected in the bucket, the pan, etc., and contaminating the construction site. Each of the insertion holes 27, 29, and 31 has a shape and size that can suspend a bucket 32, a pan, or the like.

さらに、円錐ヘッド21下端に突起を設け、この突起に前記吐出口22aから漏れ出た水硬性固化材液を受けるバケツやパン等を吊り下げるような構成を採用することもできる。図11は、円錐ヘッド21の下端に抜け止め用の径大部35aを有する突起35を水平に固着したものを示す。図12はその円錐ヘッド21下端に掘削爪を兼用する鋼板36を突設し、この鋼板36の両面に抜け止め用の径大部37aを有する突起37を水平に固着したものを示す。さらに、図13は円錐ヘッド21の下端部に鋼棒を曲げ加工したフック状の突起38を突設したものを示す。   Furthermore, it is also possible to employ a configuration in which a protrusion is provided at the lower end of the conical head 21 and a bucket, a pan, or the like that receives the hydraulic solidifying material liquid leaking from the discharge port 22a is suspended from this protrusion. FIG. 11 shows a conical head 21 having a protrusion 35 having a large-diameter portion 35a for retaining it horizontally fixed to the lower end of the conical head 21. As shown in FIG. FIG. 12 shows a steel plate 36 that also serves as an excavation claw projecting from the lower end of the conical head 21, and projections 37 having large-diameter portions 37 a for preventing slippage are fixed horizontally on both surfaces of the steel plate 36. Further, FIG. 13 shows a conical head 21 provided with a hook-shaped protrusion 38 formed by bending a steel rod at the lower end.

これらの突起35、37、38は、水硬性固化材液受け具である吊り下げ用のバケツ32の吊り紐33を吊持するフック34を係止することで、その円錐ヘッド21下端にバケツ32を簡単、迅速に吊り下げることができる。この場合にも、施工機の移動中に吐出口22aから漏れ出る水硬性硬化材液を、このバケツやパン等に回収でき、これにより施工現場を汚すことを回避できる。前記突起35、37、38はいずれも前記フック34を係止できる形状、サイズとされる。   These protrusions 35, 37, and 38 lock the hook 32 that holds the suspension string 33 of the suspension bucket 32 that is a hydraulic solidifying material liquid receiver, so that the bucket 32 is attached to the lower end of the conical head 21. Can be suspended easily and quickly. Also in this case, the hydraulic curable material liquid that leaks from the discharge port 22a during the movement of the construction machine can be collected in this bucket, bread, etc., thereby avoiding soiling the construction site. The protrusions 35, 37, and 38 are all shaped and sized to be able to lock the hook 34.

なお、円錐ヘッド21の円錐角の違いによる掘進性の比較を行った。図14(a)は円錐角が約32°の円錐ヘッド21を示し、図14(b)は円錐角が約48°の円錐ヘッド21を示す。掘進性については円錐角の小さい方が大きいものよりも優れている。一方、製作コストについては、円錐部を丸鋼から削り出して製作する方法であれば、円錐角の大きい方が安価である。掘進施工性を重視するのであれば、円錐部の製作方法を鋳鋼とするなどしてコストを下げることが必要になる。施工時には、円錐角は45°を超えると掘進性が低下し、一方、円錐角が30°未満であると製作コストがアップしたり、先端部が細くなるので耐久性の問題が生じたりする惧れがある。従って、前記円錐角は30°〜40°程度であることが好ましい。   In addition, the digging ability by the difference in the cone angle of the cone head 21 was compared. 14A shows the conical head 21 having a cone angle of about 32 °, and FIG. 14B shows the conical head 21 having a cone angle of about 48 °. In terms of digging ability, a smaller cone angle is superior to a larger cone angle. On the other hand, regarding the manufacturing cost, if the method is to manufacture by cutting the conical part out of round steel, the one with the larger cone angle is cheaper. If emphasis is placed on excavation workability, it is necessary to reduce the cost by, for example, making the conical portion a cast steel. During construction, if the cone angle exceeds 45 °, the digging ability decreases, while if the cone angle is less than 30 °, the production cost may increase or the tip may become narrow, which may cause durability problems. There is. Therefore, the cone angle is preferably about 30 ° to 40 °.

以上のように、本実施形態では、水硬性固化材液の流路を有する掘削ロッド1下端部に下方に向かって円錐状に突出する円錐ヘッド21が着脱自在にまたは固定的に連結され、その円錐ヘッド21の周面に水硬性固化材液の吐出口22aを設けるとともに、掘削ロッド1正転時に掘削土砂を上方に押し上げる方向にスパイラル翼25を設けたことで、掘進施工時において掘削土砂はスパイラル翼25によって掘削され、かつそのスパイラル翼25に沿って上方へスムースに押し上げられるので、掘削土砂が砂質土であっても良好な掘進性を確保できる。従って、掘削ロッド1が排土機構が全くない、周面が円滑な掘削ロッド1であっても比較的良好な掘進性を発揮する。掘削ロッド1自体の周面にスパイラルスクリューを突設したものを使用すれば、さらに掘進性が向上する。   As described above, in the present embodiment, the conical head 21 protruding conically downward is detachably or fixedly connected to the lower end portion of the excavating rod 1 having the flow path of the hydraulic solidifying material liquid, The hydraulic solidifying material liquid discharge port 22a is provided on the peripheral surface of the conical head 21, and the spiral blade 25 is provided in the direction of pushing the excavated soil upward when the excavating rod 1 rotates forward. Since it is excavated by the spiral blade 25 and pushed up smoothly along the spiral blade 25, good excavation performance can be ensured even if the excavated soil is sandy soil. Therefore, even if the excavation rod 1 is the excavation rod 1 having no soil removal mechanism and a smooth peripheral surface, relatively good excavation performance is exhibited. If one having a spiral screw projecting from the peripheral surface of the excavation rod 1 itself is used, the excavation performance is further improved.

また、円錐ヘッド21の先端(下端)に、水硬性固化材液受け具の吊り下げ用の突起35、37、38または挿通孔27、29、31を設け、その突起35、37、38または挿通孔27、29、31に前記水硬性固化材液受け具であるバケツ32やパンのフック34を係止するように吊り下げることで、施工装置が移動中に、吐出口22aから水硬性固化材液が漏れ出て地上に落下し、周辺を汚すことを防止できるとともに、施工深度の高止まりや置換コラム内への粘性土の残存による鉛直支持力の低下を回避できる。   In addition, the tip (lower end) of the conical head 21 is provided with projections 35, 37, 38 or insertion holes 27, 29, 31 for suspending the hydraulic solidifying material liquid receiver, and the projections 35, 37, 38 or insertion. The hydraulic solidifying material is suspended from the discharge port 22a while the construction apparatus is moving by suspending the bucket 32 or the pan hook 34, which is the hydraulic solidifying material liquid receiver, in the holes 27, 29, 31. It is possible to prevent the liquid from leaking and falling to the ground and soiling the surroundings, and to prevent the vertical support force from being lowered due to the high depth of construction and the remaining of clay soil in the replacement column.

図15(a)(b)(c)は、掘削ヘッドとして前記したような円錐ヘッド21を接続した掘削ロッド1を示す正面図である。図15(a)に示す掘削ロッド1は、円柱状で側面(周面)が平坦(円滑)な掘削ロッド本体1aの上方部に、掘削装置に取り付ける取付け用ロッド1bがアダプター2を介して取り付けられて形成され、掘削ロッド本体1aの下端に掘削ヘッドとして円錐ヘッド21が接続されたものである。例えば、この円錐ヘッド21は、図2及び図3に示すと同様に継手40を介して掘削ロッド本体1aに接続されている。円錐ヘッド21の回転時の最大外径及び継手40の外径は、掘削ロッド本体1aの外径と等しいか、それ以下である。この掘削ロッド1は、掘削ロッド本体1aが円柱状で側面が平坦(円滑)であり、回転しても排土機構がないため、掘削土砂を排土することができず、側方へ移動させる機能を有するのみである。   FIGS. 15A, 15B, and 15C are front views showing the excavation rod 1 to which the conical head 21 as described above is connected as the excavation head. The excavation rod 1 shown in FIG. 15A is attached to an upper portion of an excavation rod main body 1 a having a cylindrical shape and a flat (smooth) side surface (circumferential surface) via an adapter 2. The conical head 21 is connected to the lower end of the excavation rod body 1a as an excavation head. For example, the conical head 21 is connected to the excavation rod main body 1a via the joint 40 as shown in FIGS. The maximum outer diameter during rotation of the conical head 21 and the outer diameter of the joint 40 are equal to or less than the outer diameter of the excavation rod body 1a. The excavation rod 1 has a cylindrical excavation rod body 1a and has a flat side surface (smooth), and since there is no soil removal mechanism even when rotated, the excavation sediment cannot be excavated and moved sideways. It only has a function.

図15(b)に示す掘削ロッド1は、排土機構のない側面(周面)が平坦(円滑)な掘削ロッド本体1aの下方部に、外径が該掘削ロッド本体1aと同径か少し径小であり、かつ正転時に掘削土砂を上方に押し上げる方向のスパイラルスクリュー3を有する比較的短尺のスパイラルロッド1cが連結され、該スパイラルロッド1cの下端に、掘削ヘッドとしての円錐ヘッド21を着脱自在に接続したものである。スパイラルロッド1cは、継手を介し掘削ロッド本体1aと着脱自在に接続されている。このスパイラルロッド1cは比較的短尺であるため、円錐ヘッド21または掘削ロッド本体1aと一体的に結合し、着脱不可の構造としてもよい。この図15(b)に示す掘削ロッド本体1aも、円柱状で側面が平坦であり、回転しても排土機構がないため掘削土砂を排土することはできず、側方へ移動させる機能を有するのみである。また、スパイラルロッド1cと円錐へッド21とを一体に連結することは任意である。   The excavation rod 1 shown in FIG. 15 (b) has an outer diameter slightly smaller than that of the excavation rod main body 1a at the lower portion of the excavation rod main body 1a having a flat (smooth) side surface (circumferential surface) without a soil removal mechanism. A relatively short spiral rod 1c having a small diameter and having a spiral screw 3 that pushes up excavated earth and sand during forward rotation is connected, and a conical head 21 as an excavating head is attached to and detached from the lower end of the spiral rod 1c. It is connected freely. The spiral rod 1c is detachably connected to the excavation rod body 1a via a joint. Since the spiral rod 1c is relatively short, the spiral rod 1c may be integrally coupled with the conical head 21 or the excavation rod body 1a so as not to be detachable. The excavation rod main body 1a shown in FIG. 15 (b) is also cylindrical and has a flat side surface, and since there is no earth removal mechanism even when rotated, the excavation sediment cannot be excavated and has a function of moving to the side. It has only. Moreover, it is arbitrary to connect the spiral rod 1c and the conical head 21 integrally.

図15(c)に示す掘削ロッド1は、側面の略全長に亘って正転時に掘削土砂を上方に押し上げる方向のスパイラルスクリュー3が設けられた掘削ロッド本体1aの下端に、掘削ヘッドとして円錐ヘッド21を接続したものである。この掘削ロッド1は、掘削ロッド本体1aの略全長に亘りスパイラルスクリュー3が設けられているので、排土機能を有する。   The excavation rod 1 shown in FIG. 15 (c) has a conical head as an excavation head at the lower end of the excavation rod main body 1a provided with a spiral screw 3 in a direction to push up excavation earth and sand during normal rotation over substantially the entire length of the side surface. 21 is connected. This excavation rod 1 has a soil discharging function because the spiral screw 3 is provided over substantially the entire length of the excavation rod main body 1a.

次に、前記図15(a)(b)に示す掘削ロッド1を備える掘削装置を用いて、図17(a)に示す地盤をGL−8mまで掘進し、その掘削状況から掘進性能を評価する施工試験を実施した。なお、この掘進には水硬性固化材液や清水を一切使用しなかった。
この施工試験では、図15(a)に示す掘削ロッド1を備える掘削装置を実施例1とし、図15(b)に示す掘削ロッド1を備える掘削装置を実施例2とした。本例の実施例2での掘削ロッド1のスパイラルロッド1cの長さは、1mであった。図15(b)では、掘削ロッド本体1aと、1mのスパイラルロッド1cと、円錐ヘッド21のそれぞれが、継手を介して着脱自在に接続されているが、掘削ロッド本体1aと、1mのスパイラルロッド1cを固設して、円錐ヘッド21のみを継手を介して着脱自在に接続してもよいし、スパイラルロッド1cと円錐ヘッド21を固設して、継手を介して掘削ロッド本体1aと着脱自在に接続してもよい。これにより製作コストが高い継手部の箇所数を減ずることができるので、掘削装置の製作コストを縮減できる。また、図16に示す掘削ロッド1を備える掘削装置を比較例とした。この図16に示す掘削ロッド1は、従来例で示したものであり、上方にアダプター2を介して連結された取付け用ロッド1bを有する掘削ロッド本体1aは、全長に亘って側面(周面)が滑らかな円筒体であり、該掘削ロッド本体1aの下端に、掘削ヘッド8が装着されたものであり、掘削ヘッド8は掘削爪18で構成されている。
Next, using the excavator provided with the excavation rod 1 shown in FIGS. 15 (a) and 15 (b), the ground shown in FIG. 17 (a) is excavated to GL-8m, and the excavation performance is evaluated from the excavation state. A construction test was conducted. In this excavation, no hydraulic solidifying liquid or fresh water was used.
In this construction test, the excavator provided with the excavating rod 1 shown in FIG. 15A was used as Example 1, and the excavator provided with the excavating rod 1 shown in FIG. The length of the spiral rod 1c of the excavation rod 1 in Example 2 of this example was 1 m. In FIG. 15 (b), the excavation rod main body 1a, the 1m spiral rod 1c, and the conical head 21 are detachably connected via joints. 1c may be fixed and only the conical head 21 may be detachably connected via a joint, or the spiral rod 1c and the conical head 21 may be fixed and detachable from the excavation rod main body 1a via a joint. You may connect to. As a result, the number of joint parts having a high manufacturing cost can be reduced, so that the manufacturing cost of the excavator can be reduced. Moreover, the excavator provided with the excavation rod 1 shown in FIG. 16 was used as a comparative example. The excavation rod 1 shown in FIG. 16 is shown in a conventional example, and an excavation rod main body 1a having an attachment rod 1b connected to the upper side via an adapter 2 has a side surface (circumferential surface) over its entire length. Is a smooth cylindrical body, and the excavation head 8 is attached to the lower end of the excavation rod main body 1 a, and the excavation head 8 includes excavation claws 18.

図17(a)は、施工試験を実施した地盤の土質柱状図と標準貫入試験によるN値を示し、図17(b)は、スウェーデン式サウンディング試験結果を示す。
図17(a)の土質柱状図によれば、施工試験を実施した地盤は、盛土による0.3mの表土の下にGL−1.95mまでN値4のローム層があり、その下方にN値1の凝灰質粘土層が堆積し、さらにその下方には緩い細砂層が続き、GL−5mからはN値が9〜7となり、だらだらと−10mまで続く。地下水位は細砂層の上部付近のGL−3.2m付近である。
図17(b)に示すスウェーデン式サウンディング試験結果では、GL−0.5mまでNswが大きくとも50の砂質土の盛土があり、その下方にNswが0に近い粘性土がGL−4m付近まで続き、それ以降は一部を除きNswが100を超える砂層が続く。
FIG. 17A shows the soil columnar diagram of the ground subjected to the construction test and the N value by the standard penetration test, and FIG. 17B shows the Swedish sounding test result.
According to the soil columnar diagram of FIG. 17 (a), the ground subjected to the construction test has a loam layer having an N value of 4 up to GL-1.95m below the 0.3m topsoil by embankment, and N below A tuff clay layer with a value of 1 is deposited, followed by a loose fine sand layer below it. From GL-5m, the N value is 9-7, and it gradually increases to -10m. The groundwater level is around GL-3.2m near the top of the fine sand layer.
In the Swedish sounding test result shown in FIG. 17 (b), there is an embankment of sandy soil of Nsw of 50 at most up to GL-0.5m, and the viscous soil near Nsw of 0 is below GL-4m. After that, except for a part, a sand layer with Nsw exceeding 100 continues.

前記地盤での前記実施例1、2及び比較例における掘削装置の施工試験の結果は、次の通りであった。各実施例の掘削装置及び比較例の掘削装置ごとの掘削深度と掘進に要した時間との関係を図18に示す。
実施例1の掘削装置は、GL−4.5mのN値6程度の砂層から掘進速度が低下したが、途中で掘削ロッドを一時的に引上げるなどの操作をすることにより、目標のGL−8mまでの掘進ができた。掘進開始からGL−8mに到達するまでに要した時間は8.25分であった。
実施例2の掘削装置は、GL−4.5mのN値6程度の砂層から掘進速度が低下したが、それは一時的なものであり、1分程度で元の掘進速度まで回復し、目標のGL−8mまでスムースに掘進ができた。掘進開始からGL−8mに到達するまでに要した時間は6分弱であった。
図15(c)の掘削ロッド1を備える掘削装置は、施工試験を実施しなかったが、掘削ロッド1が円錐ヘッド21を備え、掘削ロッド本体1aの略全長に亘りスパイラルスクリュー3を具備し排土機能を有するため、実施例2よりさらに掘進性能が高く、所定深度(GL−8m)までに要する時間も更に短くなることが理解できる。
比較例の掘削装置は、GL−4.5mのN値6程度の砂層から掘進速度が低下し、GL−5mで掘進不能に陥りそうだったが、その後掘進が可能となり、途中で掘削ロッド1を一時的に引上げるなどの操作をして掘進を続けながらも、GL−6.3mの細砂層まで掘進できた。しかし、それ以降は全く掘進不能となり、目標のGL−8mまでの掘進ができなかった。
The result of the construction test of the excavator in Examples 1 and 2 and the comparative example on the ground was as follows. FIG. 18 shows the relationship between the excavation depth for each excavator of each example and the excavator of the comparative example and the time required for excavation.
In the excavator of Example 1, the excavation speed decreased from the sand layer having an N value of about 6 of GL-4.5 m, but by performing an operation such as temporarily lifting the excavation rod on the way, the target GL- We were able to dig up to 8m. The time required to reach GL-8m from the start of excavation was 8.25 minutes.
In the excavator of Example 2, the excavation speed decreased from a sand layer of GL-4.5 m with an N value of about 6, but it was temporary, and it recovered to the original excavation speed in about 1 minute, and the target We were able to dig smoothly up to GL-8m. The time required to reach GL-8m from the start of excavation was less than 6 minutes.
The excavator provided with the excavating rod 1 of FIG. 15C did not perform the construction test, but the excavating rod 1 was provided with the conical head 21 and the spiral screw 3 was provided over the entire length of the excavating rod main body 1a. Since it has a soil function, it can be understood that the excavation performance is higher than that in Example 2 and the time required to reach a predetermined depth (GL-8 m) is further shortened.
The excavation device of the comparative example had the digging speed decreased from the sand layer of about GL-4.5 m with an N value of about 6, and seemed to be unable to dig at GL-5 m. The GL-6.3m fine sand layer was able to be excavated while continuing the excavation with operations such as temporarily pulling up. However, after that, it was not possible to dig at all, and it was not possible to dig up to the target GL-8m.

施工試験の結果、比較例(従来技術)の掘削装置は、掘削土砂の排土機構がないため、掘削対象地盤が砂質土になると図30に示したように、掘削装置に作用させる下方への押込み力が砂質土のせん断抵抗力を増大させるように働き、掘削装置の掘進を阻害するようになり、目標深度GL−8mまでの掘進ができなかった。
本願発明である実施例1の掘削装置は、円錐ヘッド21の円錐形状と円錐側面に設けられたスパイラル翼の排土機構が有効に作用したので、掘削対象地盤が砂質土になっても掘進速度が低下するものの、比較例の掘削装置のように掘進不能に陥ることなく、目標深度であるGL−8mまで掘進することができた。これは、円錐ヘッド21が掘削した砂質土砂を相対的に上方へ移動させ、その移動させられた砂質土砂を掘削ロッド1が側方の地盤へ押し込みながら掘進するため、砂質地盤であっても比較例(従来技術)のように掘削土砂が掘進抵抗になることがないためである。
本願発明の実施例2の掘削装置は、円錐ヘッド1のさらに上方1mの区間はスパイラルスクリュー3が設けられたスパイラルロッド1cであるため、掘削土砂の上方への排土力が実施例1の掘削装置よりも強化される。また、相対的に上方へ移動させられた土砂はスパイラルロッド25とその上方の掘削ロッド本体1aの広い範囲で側方に押し込められるため、掘削対象地盤が砂質土であっても掘進抵抗が相対的に小さくなる。したがって、実施例2の掘削装置は目標深度のGL−8mまでの掘進が比較例や実施例1の装置に比べて確実かつスムースであり、目標深度までに要した掘進時間は実施例1の掘削装置より2分以上も短い6分弱であった。これは1本あたりの施工時間を実施例1より約25%以上短縮できることになる。
また、図15(c)に示す掘削ロッド1を備える掘削装置は、施工試験は実施しなかったが、円錐ヘッド21を備え、かつ掘削ロッド本体1aの略全長に亘りスパイラルスクリュー3を具備し排土機能を有するため、実施例2より更に掘進性能が高く、所定深度までに要する時間も更に短縮できることが予測できる。
As a result of the construction test, the excavator of the comparative example (prior art) does not have the excavation mechanism of excavated soil, so that when the ground to be excavated becomes sandy soil, as shown in FIG. The indentation force works to increase the shear resistance of the sandy soil, and the excavation of the excavator is hindered, and the excavation to the target depth GL-8 m was not possible.
In the excavating apparatus according to the first embodiment of the present invention, since the soil removal mechanism of the spiral blade provided on the conical shape of the conical head 21 and the conical side face acts effectively, the excavation can proceed even if the ground to be excavated becomes sandy soil. Although the speed decreased, the digging was able to dig up to the target depth of GL-8 m without falling into the digging ability unlike the excavator of the comparative example. This is a sandy ground because the sandy soil excavated by the conical head 21 moves relatively upward, and the moved sandy soil is dug while the excavation rod 1 pushes it into the side ground. However, it is because excavated earth and sand do not become excavation resistance like a comparative example (prior art).
In the excavation apparatus according to the second embodiment of the present invention, since the section 1 m further above the conical head 1 is the spiral rod 1c provided with the spiral screw 3, the excavation force of the excavated soil is the excavation force of the first embodiment. It is stronger than the device. Moreover, since the earth and sand moved relatively upward is pushed sideways in the wide range of the spiral rod 25 and the excavation rod main body 1a thereabove, the excavation resistance is relative even if the excavation target ground is sandy soil. Become smaller. Therefore, the excavation apparatus of Example 2 is more reliable and smooth in digging to the target depth GL-8 m than the apparatus of the comparative example and Example 1, and the excavation time required to reach the target depth is the excavation time of Example 1. It was a little less than 6 minutes, which is 2 minutes or more shorter than the apparatus. This means that the construction time per one can be shortened by about 25% or more compared to the first embodiment.
The excavator provided with the excavating rod 1 shown in FIG. 15 (c) was not subjected to the construction test, but provided with the conical head 21 and the spiral screw 3 over the substantially entire length of the excavating rod main body 1a. Since it has a soil function, it can be predicted that the excavation performance is higher than that of Example 2 and the time required to reach a predetermined depth can be further shortened.

以上の施工試験結果によれば、掘進性能の点からいえば、図15(c)に示す掘削ロッド1を備える掘削装置が好ましいが、これは掘削土砂が排土されるためその処理が必要となる。掘進性能があり、排土も生じないことを加味すると実施例2の掘削装置が最も好ましいといえる。また、実施例1の掘削装置は、掘削ロッド1の掘削ロッド本体1aが、側面の平坦な排土機能のないものであるが、掘削ヘッドが本願発明にかかる円錐ヘッド21であるため、実施例2より掘進性能は多少劣るが、砂質土でも掘進可能である。   According to the above construction test results, in terms of excavation performance, the excavator provided with the excavating rod 1 shown in FIG. 15 (c) is preferable, but this requires processing because excavated soil is discharged. Become. Considering that there is excavation performance and that no soil is generated, the excavator of Example 2 is most preferable. Further, in the excavator of the first embodiment, the excavation rod body 1a of the excavation rod 1 has a flat side surface and does not have a soil removal function, but the excavation head is the conical head 21 according to the present invention. Excavation performance is slightly inferior to 2, but excavation is possible even in sandy soil.

実施例2の掘削装置のスパイラルロッド1cのスパイラルスクリュー3は円錐ヘッド21のスパイラル翼25と連続するように接続することが排土機構をより有効にせしめる観点から好ましい。
スパイラルロッド1cの長さを長くすれば掘進性は向上するが、発生残土量が増える傾向がある。
本願発明の主たる用途である戸建住宅基礎や土間スラブ基礎では、小型の施工機を使用することが一般的であるため、掘削ロッドの長さは4m程度が最大であり、それよりも深い深度の水硬性固化材液置換コラムの築造は施工機への取付け用ロッド1bを継ぎ足して行うことになる。掘削ロッド4mをスパイラルロッド1cと側面に排土機構のない掘削ロッド本体1aで構成するため、スパイラルロッド1cの長さはバランス上2mを超えない方がよい。さらに、排土量や孔壁の練りつけ効果の観点から1m程度以下が好ましい。
The spiral screw 3 of the spiral rod 1c of the excavator of Example 2 is preferably connected so as to be continuous with the spiral blade 25 of the conical head 21 from the viewpoint of making the soil removal mechanism more effective.
Increasing the length of the spiral rod 1c improves excavation performance, but tends to increase the amount of generated residual soil.
In the detached house foundation and the soil slab foundation, which are the main applications of the present invention, since it is common to use a small construction machine, the length of the excavation rod is about 4 m at the maximum, and a depth deeper than that The construction of the hydraulic solidifying material liquid replacement column is performed by adding the mounting rod 1b to the construction machine. Since the excavation rod 4m is composed of the spiral rod 1c and the excavation rod main body 1a having no earth removal mechanism on the side surface, the length of the spiral rod 1c should not exceed 2 m in terms of balance. Furthermore, about 1 m or less is preferable from the viewpoint of the amount of soil discharged and the kneading effect of the hole wall.

前記実施形態では円錐ヘッド21を掘削ロッド1の下端部に着脱自在に連結したものを中心に説明したが、前述のような整備、点検等のためや部品交換の必要がない場合やこれらの作業を継手40や円錐ヘッド21の外部から容易に実施できる場合には、図1〜図3に示すように、締結具Pを用いて、円錐ヘッド21を継手40に着脱自在としないで、これらを互いに溶接によって固定的に連結(固設)してもよい。図19および図21は円錐ヘッド21を継手40を介さず直接、掘削ロッド1の下端に固定的(例えば、溶接)に連結したものを示す。   In the above embodiment, the conical head 21 is detachably connected to the lower end portion of the excavating rod 1. However, the above-described maintenance, inspection, etc., and the case where no parts need to be replaced or these operations are described. 1 can be easily implemented from the outside of the joint 40 or the conical head 21, as shown in FIGS. 1 to 3, using the fastener P, the conical head 21 is not detachable from the joint 40. They may be fixedly connected (fixed) to each other by welding. 19 and 21 show a conical head 21 that is fixedly connected to the lower end of the excavation rod 1 (for example, by welding) directly without using the joint 40.

図19においては、中空内にセメントミルクの供給路となる内管5を設けた掘削ロッド1下端に、円錐ヘッド21を溶接、例えば開先溶接によって固定的に連結したものを示す。このような開先溶接によって、掘削ロッド1と円錐へッド21とを母材として、これらの間に形成したV形、U形などの溝(開先)に肉盛するように溶接されているので、これらの掘削ロッド1と円錐ヘッド21とを迅速、容易に、しかも十分な強度を得られるように、固定的に連結することができる。ここでは開先がV形であるものを示す。   In FIG. 19, the conical head 21 is fixedly connected to the lower end of the excavating rod 1 provided with the inner pipe 5 serving as a supply path for cement milk in the hollow by welding, for example, groove welding. By such groove welding, the excavation rod 1 and the conical head 21 are used as a base material and welded so as to build up in a groove (groove) such as a V shape or a U shape formed therebetween. Therefore, the excavating rod 1 and the conical head 21 can be fixedly connected so that a sufficient strength can be obtained quickly and easily. Here, the groove has a V shape.

また、掘削ヘッドとして周面にスパイラル翼25を有する円錐ヘッド21を装着(着脱自在または固定)した掘削ロッド1を使用して、砂質地盤中に水硬性固化材液置換コラムを築造することを繰り返すと、掘削ヘッド21や掘削ロッド1は、砂質地盤の掘削抵抗により摩耗する。その摩耗状況は次のようである。図25(a)(b)について説明する。図25(a)(b)は円錐ヘッド(掘削ヘッド)と掘削ロッドの摩耗状況を説明する要部正面図で、図25(a)が摩耗前の状態、(b)が摩耗後の状態を示している。
(a)砂質地盤中の施工を繰り返すことにより、掘削ロッド1の下端面の円錐ヘッド21の上端部21cよりはみ出した部分41が、図25(a)の状態から(b)の状態に示すように激しく摩耗し、円錐ヘッド21の稜線に近づこうとする。特に、円錐ヘッド21のスパイラル翼25の上端(終端)と接する掘削ロッド1の下端部分42は、スパイラル翼25に沿って相対的に上方に案内された掘削土砂が集中して通過する部分となるため、摩耗が激しい。
(b)掘削土砂は、円錐ヘッド21のスパイラル翼25に沿って相対的に上方に案内されるため円錐ヘッド21のスパイラル翼25の上端(終端)近傍の円錐ヘッド21周面43は、この案内されてくる土砂の集中する通路となり、掘削土砂の掘削抵抗が激しく、この部分で激しく摩耗する。
(c)掘削ロッド1の下方部周側面44、特に下端から0.5〜1mの区間は、回転して掘削土砂を側方に押し付け孔壁を形成する部分であり、加えて掘削土砂は、円錐ヘッド21のスパイラル翼25で案内されてきた土砂が集中して存在するため、回転押し付け(摺り付け)時に掘削抵抗を激しく受ける部分となり激しく摩耗する。
このような摩耗が進行すると、機能が低下したり、円錐ヘッド21の破損や掘削ロッド1の破損が生じ、水硬性固化材液置換コラムの施工に支障をきたすし、施工そのものが不能に陥る恐れもある。
In addition, using the excavation rod 1 fitted (detachable or fixed) with the conical head 21 having the spiral blades 25 on the peripheral surface as the excavation head, the hydraulic solidification liquid replacement column is constructed in the sandy ground. If it repeats, excavation head 21 and excavation rod 1 will be worn by excavation resistance of sandy ground. The wear situation is as follows. 25A and 25B will be described. FIGS. 25 (a) and 25 (b) are front views of the main part for explaining the state of wear of the conical head (excavation head) and the excavation rod. FIG. 25 (a) shows a state before wear, and FIG. Show.
(A) By repeating the construction in the sandy ground, the portion 41 protruding from the upper end portion 21c of the conical head 21 on the lower end surface of the excavating rod 1 is shown in the state of FIG. 25 (b) from the state of FIG. As such, it wears intensely and tries to approach the ridgeline of the conical head 21. In particular, the lower end portion 42 of the excavation rod 1 in contact with the upper end (end) of the spiral blade 25 of the conical head 21 is a portion through which the excavated earth and sand guided relatively upward along the spiral blade 25 passes. Therefore, the wear is severe.
(B) Since the excavated earth and sand is guided relatively upward along the spiral blade 25 of the conical head 21, the circumferential surface 43 of the conical head 21 near the upper end (terminal) of the spiral blade 25 of the conical head 21 is guided. It becomes a passage where the earth and sand are concentrated, and the excavation resistance of the excavation earth and sand is intense, and it wears intensely in this part.
(C) A lower peripheral side surface 44 of the excavation rod 1, particularly a section of 0.5 to 1 m from the lower end, is a portion that rotates and presses the excavation earth to the side to form a hole wall. Since the earth and sand guided by the spiral blades 25 of the conical head 21 are concentrated, it becomes a part that receives intense excavation resistance when it is rotationally pressed (slided), and is severely worn.
When such wear progresses, the function deteriorates, the conical head 21 or the excavation rod 1 breaks, and the construction of the hydraulic solidifying material liquid replacement column may be hindered, and the construction itself may become impossible. There is also.

例えば、砂質地盤中に水硬性固化材液置換コラムを築造する作業において、スパイラル翼25が磨耗した部位では、掘進施工時に掘削土砂を迅速かつスムースに押し上げることができなくなり掘進効率が低下する。また、掘削ロッド1の下端が円錐ヘッド21の円錐の稜線に倣うように磨耗することによって、孔壁押し付けによる孔壁形成性が低下するし、掘削ロッド1や円錐ヘッド21の破壊が進んで、遂には水硬性固化材液置換コラムの施工そのものが不能に陥る。   For example, in the work of building the hydraulic solidifying material liquid replacement column in the sandy ground, at the site where the spiral blade 25 is worn, the excavated soil cannot be pushed up quickly and smoothly during the excavation work, and the excavation efficiency is lowered. Further, the lower end of the excavation rod 1 is worn so as to follow the ridge line of the cone of the conical head 21, so that the hole wall forming property due to the hole wall pressing is reduced, and the excavation rod 1 and the conical head 21 are broken. Eventually, the construction of the hydraulic solidifying material liquid replacement column itself becomes impossible.

このような課題を解決するための実施の形態を、図20乃至図24について説明する。
図20は、円錐ヘッドの他の実施の形態を示す正面図で、円錐ヘッド21の上部周面に溶接により肉盛して肉盛部Nを形成した場合を示す。
円錐ヘッド21では上部に向かうほどに径大となり、しかも土砂は、スパイラル翼25に沿って相対的に上方に案内されるため、円錐ヘッド21の上部周面は摩耗が進み易い。本例のように円錐ヘッド21の上部周面に肉盛部Nを設けることによって、長持ちさせることができ長寿命化できる。また、使用により摩耗した場合には、この部分周面に溶接により肉盛部Nを形成し、再使用を可能とすることができる。
An embodiment for solving such a problem will be described with reference to FIGS.
FIG. 20 is a front view showing another embodiment of the conical head, and shows a case where a built-up portion N is formed by welding on the upper peripheral surface of the conical head 21 by welding.
In the conical head 21, the diameter increases toward the upper part, and the earth and sand are guided relatively upward along the spiral blade 25, so that the upper peripheral surface of the conical head 21 is easily worn. By providing the built-up portion N on the upper peripheral surface of the conical head 21 as in this example, it is possible to extend the life and extend the life. Moreover, when it wears down by use, the build-up part N can be formed in this partial peripheral surface by welding, and it can be reused.

図21は、円錐ヘッドの他の形態を示す正面図で、スパイラル翼25を円錐ヘッド21の上端部21c位置に至らない領域に設けた場合であり、図21に示す円錐ヘッド21は、円錐ヘッド21の上端部21c位置における外径と掘削ロッド1の外径とを、同一寸法とし、スパイラル翼25が円錐ヘッド21の上端部21c位置に至らないように形成してある。即ち、スパイラル翼25の上端と円錐ヘッド21の上端部21c位置との間に、スパイラル翼25が円錐ヘッド21の上端部21c位置に至らない距離(間隔)Kを設定して設けられている。
この実施の形態によれば、掘削ロッド1の下端面に、円錐ヘッド21の上端部21cよりはみ出した部分がないので、この部分が摩耗し円錐ヘッド21cの稜線に近づくような摩耗変形は減少する。また、スパイラル翼25は、円錐ヘッド21の上端部21c位置に至っていないので、スパイラル翼25の上端は掘削ロッド1の下端との間に距離がある。従って、スパイラル翼25に沿って案内されて移動する掘削土砂は、該距離の間に分散し掘削ロッド1下端の一部に集中して通過する部分がなくなり、一部だけ激しく摩耗することが減少される。
FIG. 21 is a front view showing another form of the conical head, in which the spiral blade 25 is provided in a region not reaching the position of the upper end portion 21c of the conical head 21, and the conical head 21 shown in FIG. The outer diameter at the position of the upper end portion 21 c of 21 and the outer diameter of the excavation rod 1 are made the same size so that the spiral blade 25 does not reach the position of the upper end portion 21 c of the conical head 21. That is, a distance (interval) K is set between the upper end of the spiral blade 25 and the position of the upper end portion 21 c of the conical head 21 so that the spiral blade 25 does not reach the position of the upper end portion 21 c of the conical head 21.
According to this embodiment, since there is no portion protruding from the upper end portion 21c of the conical head 21 on the lower end surface of the excavating rod 1, wear deformation such that this portion is worn and approaches the ridgeline of the conical head 21c is reduced. . Further, since the spiral blade 25 does not reach the position of the upper end portion 21 c of the conical head 21, there is a distance between the upper end of the spiral blade 25 and the lower end of the excavation rod 1. Accordingly, the excavated earth and sand that is guided and moved along the spiral blade 25 is dispersed during the distance, and there is no portion that passes through the lower end of the excavating rod 1 in a concentrated manner. Is done.

図22は、円錐ヘッドの他の実施の形態を示す正面図で、円錐ヘッド21の上端部21c位置からスパイラル翼25の上端までの領域a(以下、摩耗領域aという)に肉盛部Nを施した場合を示す。
円錐ヘッド21の上端部21c位置からスパイラル翼25の上端までの摩耗領域aは、砂質地盤等における掘削抵抗を最も受け易く、この領域aで摩耗が進み易く、円錐ヘッド21の強度劣化を招き易い。そこで、この領域aに溶接による肉盛部Nを形成し、長寿命化したり、また、使用により領域aが摩耗した場合には肉盛溶接により再生することによって、その円錐ヘッド21の再利用が可能になり、長期使用が可能となる。
即ち、図21に示す円錐ヘッド21のようにスパイラル翼25の上端が円錐ヘッド21の上端部21cに至らず、距離Kが設定してある場合には、スパイラル翼25に沿って案内されてくる掘削土砂は、スパイラル翼25の上端を過ぎると円錐ヘッド21の距離Kの間の周面に分散するため、この周面の摩耗が激しくなる。本実施の形態によれば、この摩耗の激しい円錐ヘッドの距離Kの間の周面(摩耗領域a)には、肉盛部Nが形成してあるので摩耗を遅らせることができ寿命を延ばすことができる。また、摩耗した場合には、この摩耗領域aに図22に示すように溶接により肉盛部Nを形成することによって再利用が可能となる。
FIG. 22 is a front view showing another embodiment of the conical head, and the overlay N is formed in a region a (hereinafter referred to as a wear region a) from the position of the upper end 21c of the conical head 21 to the upper end of the spiral blade 25. The case where it gave is shown.
The wear area a from the position of the upper end portion 21c of the conical head 21 to the upper end of the spiral blade 25 is most susceptible to excavation resistance in sandy ground or the like, and wear is likely to proceed in this area a, leading to strength deterioration of the conical head 21. easy. Therefore, the welded portion N is formed in the region a to extend the life, and when the region a is worn due to use, the cone head 21 can be reused by regenerating by buildup welding. It becomes possible, and long-term use becomes possible.
That is, as in the conical head 21 shown in FIG. 21, when the upper end of the spiral blade 25 does not reach the upper end portion 21c of the conical head 21 and the distance K is set, the spiral blade 25 is guided along the spiral blade 25. Since the excavated earth and sand passes over the upper end of the spiral blade 25 and is dispersed on the peripheral surface between the distances K of the conical head 21, the peripheral surface is heavily worn. According to the present embodiment, since the built-up portion N is formed on the peripheral surface (wear region a) between the distance K of the conical head that is heavily worn, the wear can be delayed and the life can be extended. Can do. Further, when worn out, it is possible to reuse by forming the built-up portion N by welding as shown in FIG.

図23は、本発明の他の実施の形態を示す正面図で、掘削ロッド1下部周面の摩耗領域bに肉盛部Nを施した場合である。
掘削ロッド1の下方部周側面は、掘削土砂を側方に回転して押し付け孔壁を形成する部分であり、円錐ヘッド21のスパイラル翼25で案内されてきた土砂が集中して存在するため、回転押し付け(摺り付け)時に掘削抵抗を激しく受ける部分となり、激しく摩耗する。特に、掘削ロッド1の下方部周側面の下端から0.5〜1mの区間の摩耗が顕著である。この図23に示す実施の形態によれば、掘削ロッド1の下方部周側面(摩耗領域b)、例えば、下端から0.5〜1mの区間の周側面に、溶接による肉盛部Nを形成してあるので、摩耗を遅らせることができ、寿命を延ばすことができる。使用して摩耗した場合には、この摩耗領域bに肉盛部Nを形成して再利用することも可能となる。
なお、溶接による肉盛部Nを形成することで、掘削ロッド1の下方部周側面の摩耗領域bの管厚を厚くするのに替えて、最初から掘削ロッド1の下方部周側面の摩耗領域bの部分の管厚の厚いロッドを使用してもよい。
FIG. 23 is a front view showing another embodiment of the present invention, and shows a case where a built-up portion N is applied to the wear region b of the lower peripheral surface of the excavating rod 1.
The lower peripheral surface of the excavating rod 1 is a portion that rotates the excavated earth to the side to form a pressing hole wall, and because the earth and sand guided by the spiral blades 25 of the conical head 21 are concentrated, It becomes a part that receives severe digging resistance when rotating (sliding) and wears violently. In particular, wear in a section of 0.5 to 1 m from the lower end of the lower peripheral surface of the excavation rod 1 is significant. According to the embodiment shown in FIG. 23, the build-up portion N is formed by welding on the lower peripheral surface (wear region b) of the excavating rod 1, for example, on the peripheral surface of the section 0.5 to 1 m from the lower end. Therefore, wear can be delayed and the life can be extended. When worn and used, the built-up portion N can be formed in the wear region b and reused.
In addition, instead of increasing the tube thickness of the wear region b on the lower peripheral surface of the excavation rod 1 by forming the build-up portion N by welding, the wear region on the lower peripheral surface of the excavation rod 1 from the beginning. You may use the rod with thick pipe | tube thickness of the part of b.

図24は、本発明の他の実施の形態を示す正面図で、円錐ヘッド21の上端部21c位置からスパイラル翼25の上端までの距離Kの間(摩耗領域a)と掘削ロッド1の下部周側面(摩耗領域b)とに肉盛部Nを施した場合である。
前記した通りスパイラル翼25の上端が円錐ヘッド21の上端部21cに至らず、上端部21cとの間に距離Kが存在する場合には、この距離Kの間の周面(摩耗領域a)が激しく摩耗する。また、前記した通り掘削ロッド1の下方部周側面(摩耗領域b)が激しく摩耗する。本実施の形態によれば、円錐ヘッド1の摩耗領域aおよび掘削ロッド1の下方部の摩耗領域bに、溶接による肉盛部Nが形成してあるので、摩耗を遅らせ寿命を延ばすことができる。また、この摩耗領域a、bが使用によって摩耗した場合には、溶接による肉盛部Nを形成することによって再利用を可能とし、経済性が向上する。
FIG. 24 is a front view showing another embodiment of the present invention. The distance K from the position of the upper end 21c of the conical head 21 to the upper end of the spiral blade 25 (wear region a) and the lower circumference of the excavating rod 1 are shown. This is a case where the built-up portion N is applied to the side surface (wear region b).
As described above, when the upper end of the spiral blade 25 does not reach the upper end 21c of the conical head 21 and there is a distance K between the upper end 21c, the peripheral surface (wear region a) between the distances K is present. Wears intensely. In addition, as described above, the lower circumferential surface (wear region b) of the excavating rod 1 is severely worn. According to the present embodiment, since the welded portion N is formed in the wear region a of the conical head 1 and the wear region b below the excavating rod 1, wear can be delayed and the life can be extended. . In addition, when the wear regions a and b are worn by use, they can be reused by forming the build-up portion N by welding, and the economic efficiency is improved.

本発明は施工深度の高止まりや粘性土の置換コラム内への残存による鉛直支持力の低下防止を実現でき、しかも掘進性能が高く砂質土でも掘進できるという効果を有し、水硬性固化材液置換による小径の杭状補強材の築造に使用する水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッド及び該掘削ヘッドを接続した掘削ロッドを備える掘削装置等に有用である。   The present invention can prevent the vertical bearing force from being lowered due to the high depth of construction and the remaining in the replacement column of viscous soil, and has the effect of being able to excavate even in sandy soil with high excavation performance. The present invention is useful for excavating heads for excavating rods for building hydraulic solidified material liquid-displacement columns used for constructing small-diameter pile-shaped reinforcing materials by liquid replacement, and excavating apparatuses equipped with excavating rods connected to the excavating head.

1 掘削ロッド
1a 掘削ロッド本体
5 内管(供給パイプ)
21 円錐ヘッド
21a 基部
21b 円錐部
22 流路(連通孔)
22a 吐出口
23、24 逆止弁
25 スパイラル翼
26 座繰り部
27、29、31 挿通孔
28 鋼板
30 鋼棒
32 バケツ(水硬性固化材液受け具)
33 吊り紐
34 フック
35、37、38 突起
40 継手
N 肉盛部
1 Drilling rod 1a Drilling rod body 5 Inner pipe (supply pipe)
21 Conical head 21a Base 21b Conical part 22 Flow path (communication hole)
22a Discharge port 23, 24 Check valve 25 Spiral blade 26 Countersink 27, 29, 31 Insertion hole 28 Steel plate 30 Steel rod 32 Bucket (hydraulic solidifying material liquid receiver)
33 Suspension string 34 Hook 35, 37, 38 Protrusion 40 Joint N Overlaying part

Claims (16)

水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドであって、水硬性固化材液の流路を有する前記掘削ロッド下端部に設けられる、下方に向かって円錐状に突出する円錐ヘッドであり、その円錐ヘッドの周面には、前記流路に通じる水硬性固化材液の吐出口を設けるとともに、掘削ロッド正転時に掘削土砂を上方に押し上げる方向にスパイラル翼を設けたことを特徴とする水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッド。   A drilling head of a drill rod for building a hydraulic solidifying material liquid replacement column, which is provided at a lower end portion of the drilling rod having a flow path of a hydraulic solidifying material liquid and projecting conically downward. In addition, the peripheral surface of the conical head is provided with a discharge port for hydraulic solidifying material liquid leading to the flow path, and a spiral blade is provided in a direction to push up the excavated earth and sand at the time of normal rotation of the excavating rod. Drilling head for drill rod for building hydraulic solidification liquid replacement column. 前記円錐ヘッドの回転時の最大外径が掘削ロッドの回転径を超えないことを特徴とする請求項1記載の水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッド。   2. The excavation head for a drill rod for building a hydraulic solidifying material liquid replacement column according to claim 1, wherein the maximum outer diameter of the conical head during rotation does not exceed the rotation diameter of the excavation rod. 前記円錐ヘッドの上部周面には、溶接により肉盛された肉盛部が形成されていることを特徴とする請求項1または2記載の水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッド。   The excavation head for an excavation rod for building a hydraulic solidifying material liquid replacement column according to claim 1 or 2, wherein a build-up portion formed by welding is formed on an upper peripheral surface of the conical head. . 前記円錐ヘッドの上端部の外径が掘削ロッドの外径と略同一であることを特徴とする請求項1乃至3のいずれか1項記載の水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッド。   4. The excavation rod for excavating a hydraulic solidifying material liquid replacement column according to claim 1, wherein an outer diameter of an upper end portion of the conical head is substantially the same as an outer diameter of the excavation rod. head. 前記円錐ヘッドの周面に設けられた前記スパイラル翼は、前記円錐ヘッドの上端部位置に至らない領域に設けたことを特徴とする請求項1乃至4のいずれか1項記載の水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッド。   5. The hydraulic solidified material according to claim 1, wherein the spiral blade provided on the peripheral surface of the conical head is provided in a region not reaching an upper end portion position of the conical head. Drilling head for drilling rod for liquid replacement column construction. 前記円錐ヘッドの上端部位置から前記スパイラル翼の上端までの周面が、溶接により肉盛された肉盛部であることを特徴とする請求項5記載の水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッド。   6. The excavation for building a hydraulic solidified material liquid replacement column according to claim 5, wherein a peripheral surface from an upper end position of the conical head to an upper end of the spiral blade is a built-up portion built up by welding. Rod drilling head. 前記掘削ロッドと円錐ヘッドとは溶接によって連結されていることを特徴とする請求項1乃至6のいずれか1項記載の水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッド。   The excavation head of the excavation rod for building a hydraulic solidifying material liquid replacement column according to any one of claims 1 to 6, wherein the excavation rod and the conical head are connected by welding. 前記水硬性固化材液の吐出口には逆止弁を設けたことを特徴とする請求項1乃至7のいずれか1項記載の水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッド。   8. The excavation head for an excavation rod for constructing a hydraulic solidification material liquid replacement column according to claim 1, wherein a check valve is provided at a discharge port of the hydraulic solidification material liquid. 前記水硬性固化材液の吐出口は、その中心位置から掘削ロッドの掘削回転時の回転方向後方側が切削されて円錐ヘッドの円錐面より低い高さに加工されていることを特徴とする請求項1乃至8のいずれか1項記載の水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッド。   The discharge port of the hydraulic solidifying material liquid is machined to a height lower than the conical surface of the conical head by cutting the rear side in the rotational direction during excavation rotation of the excavation rod from the center position. A drilling head for a drilling rod for building a hydraulic solidifying material liquid replacement column according to any one of 1 to 8. 円錐ヘッドの最先端に、水硬性固化材液受け具を吊り下げる突起または孔部を設けたことを特徴とする請求項1乃至9のいずれか1項記載の水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッド。   10. The hydraulic solidifying material liquid replacement column construction according to claim 1, wherein a projection or a hole for hanging the hydraulic solidifying material liquid receiving member is provided at the forefront of the conical head. Drilling head of the drilling rod. 掘削ロッドの下端部に、前記請求項1乃至10のいずれか1項に記載する掘削ヘッドを接続したことを特徴とする水硬性固化材液置換コラム築造用の掘削装置。   11. A drilling apparatus for building a hydraulic solidifying material liquid replacement column, wherein the drilling head according to any one of claims 1 to 10 is connected to a lower end portion of a drilling rod. 前記掘削ロッドは、下端から少なくとも0.5mの範囲が肉厚の大きい不等厚管であることを特徴とする請求項11記載の水硬性固化材液置換コラム築造用の掘削装置。   The excavation apparatus for building a hydraulic solidified material liquid replacement column according to claim 11, wherein the excavation rod is an unequal thickness pipe having a large thickness in a range of at least 0.5 m from the lower end. 前記掘削ロッドは、下部周面の摩耗部が、溶接により肉盛された肉盛部に形成されていることを特徴とする請求項11または12記載の水硬性固化材液置換コラム築造用の掘削装置。   The excavation rod for excavation for building a hydraulic solidified material liquid replacement column according to claim 11 or 12, wherein the excavation rod has a wear portion on a lower peripheral surface formed in a build-up portion formed by welding. apparatus. 排土機構のない周面が円滑な掘削ロッド本体の下方部に、外径が該掘削ロッド本体と同一径か少し径小であり、かつ正転時に掘削土砂を上方に押し上げる方向のスパイラルスクリューを有する比較的短尺のスパイラルロッドを連結し、該スパイラルロッドの下端に、請求項1乃至10のいずれか1項に記載する掘削ヘッドを接続した掘削ロッドを備えることを特徴とする水硬性固化材液置換コラム築造用の掘削装置。   A spiral screw with an outer diameter equal to or slightly smaller than the diameter of the excavating rod body and pushing the excavated earth and sand upward during forward rotation is provided at the lower part of the excavating rod body with a smooth peripheral surface without a soil removal mechanism. A hydraulic solidifying material liquid comprising: a relatively short spiral rod connected to each other; and a drill rod connected to the drill head according to any one of claims 1 to 10 at a lower end of the spiral rod. Drilling rig for building replacement columns. 前記スパイラルロッドの長さが大きくとも2mを超えないことを特徴とする請求項14記載の水硬性固化材液置換コラム築造用の掘削装置。   The excavation apparatus for building a hydraulic solidifying material liquid replacement column according to claim 14, wherein the length of the spiral rod does not exceed 2 m at most. 周面の略全長に亘って正転時に掘削土砂を上方に押し上げる方向のスパイラルスクリューが設けられた掘削ロッド本体の下端に、請求項1乃至10のいずれか1項に記載する掘削ヘッドを連結した掘削ロッドを備えることを特徴とする水硬性固化材液置換コラム築造用の掘削装置。   The excavation head according to any one of claims 1 to 10 is connected to a lower end of a excavation rod main body provided with a spiral screw in a direction of pushing up excavation earth and sand upward during the normal rotation over substantially the entire length of the peripheral surface. A drilling device for constructing a hydraulic solidifying material liquid replacement column, comprising a drilling rod.
JP2012182803A 2011-08-25 2012-08-22 Drilling head and drilling device for drill rod for building hydraulic solidifying liquid replacement column Active JP6149236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012182803A JP6149236B2 (en) 2011-08-25 2012-08-22 Drilling head and drilling device for drill rod for building hydraulic solidifying liquid replacement column

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011183348 2011-08-25
JP2011183348 2011-08-25
JP2012089866 2012-04-11
JP2012089866 2012-04-11
JP2012182803A JP6149236B2 (en) 2011-08-25 2012-08-22 Drilling head and drilling device for drill rod for building hydraulic solidifying liquid replacement column

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016160704A Division JP6264411B2 (en) 2011-08-25 2016-08-18 Construction method of hydraulic solidifying liquid replacement column

Publications (2)

Publication Number Publication Date
JP2013234557A true JP2013234557A (en) 2013-11-21
JP6149236B2 JP6149236B2 (en) 2017-06-21

Family

ID=49760875

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012182803A Active JP6149236B2 (en) 2011-08-25 2012-08-22 Drilling head and drilling device for drill rod for building hydraulic solidifying liquid replacement column
JP2016160704A Active JP6264411B2 (en) 2011-08-25 2016-08-18 Construction method of hydraulic solidifying liquid replacement column

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016160704A Active JP6264411B2 (en) 2011-08-25 2016-08-18 Construction method of hydraulic solidifying liquid replacement column

Country Status (1)

Country Link
JP (2) JP6149236B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140610A (en) * 2014-01-30 2015-08-03 株式会社日本住宅保証検査機構 Construction apparatus for hydraulic solidification material liquid-substituted column, construction method for hydraulic solidification material liquid-substituted column, and hydraulic solidification material liquid-substituted column
JP2016011546A (en) * 2014-06-30 2016-01-21 株式会社テノックス Method for constructing hydraulic solidification material liquid substitution column, and closing body for constructing hydraulic solidification material liquid substitution column
JP2016023402A (en) * 2014-07-16 2016-02-08 株式会社日本住宅保証検査機構 Construction method for column replaced with hydraulic solidifying material liquid
JP2016056650A (en) * 2014-09-12 2016-04-21 株式会社テノックス Device and method for manufacturing hydraulic solidification material liquid-substituted column, and hydraulic solidification material liquid-substituted column
JP2016145457A (en) * 2015-02-06 2016-08-12 株式会社日本住宅保証検査機構 Device for constructing hydraulic solidification material liquid substitution column
JP2016217121A (en) * 2015-05-15 2016-12-22 創伸産業株式会社 Ground reinforcement casing and ground reinforcement method
JP2017082402A (en) * 2015-10-23 2017-05-18 地研テクノ株式会社 Drilling and injection rod for pile construction, and pile construction method using the same
JP2017133270A (en) * 2016-01-29 2017-08-03 株式会社テノックス Excavation head of excavation rod for constructing hydraulic solidification material liquid displacement column
JP2021011687A (en) * 2019-07-04 2021-02-04 株式会社 中部ロックドリルサービス Bit and boring apparatus

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120494A (en) * 1988-10-27 1990-05-08 Teruo Koi Method and apparatus for boring ground
JPH04247117A (en) * 1991-01-31 1992-09-03 Tenotsukusu:Kk Auger for improving foundation
JPH0579267A (en) * 1991-09-17 1993-03-30 Makoto Takahashi Discharged soil free execution device for foundation pile and execution method for foundation pile
JPH0618492U (en) * 1992-04-01 1994-03-11 松尾 政夫 Water droplet splash prevention device
JPH06193061A (en) * 1992-12-28 1994-07-12 Toshikatsu Endo Pile driving method and walling method, and hollow pile and pump used therefor
JPH089788A (en) * 1994-06-28 1996-01-16 Ryoji Tazawa Flowerpot and support bag for flowerpot
JPH08226120A (en) * 1995-02-22 1996-09-03 Tenox Corp Excavation and agitation mixing device
JPH08319617A (en) * 1995-05-23 1996-12-03 Teruo Koi Method and equipment for improvement construction of foundation ground
JPH10159476A (en) * 1996-12-04 1998-06-16 Taisei Corp Slurry flying curing device for excavator
JP2000189333A (en) * 1998-12-25 2000-07-11 Yoshiki Nagase Receiver for cooker
JP2001153509A (en) * 1999-11-25 2001-06-08 Hoshizaki Electric Co Ltd Method of manufacturing auger
JP2002097886A (en) * 2000-09-26 2002-04-05 Daido Concrete Co Ltd Method and device for disposing discharged earth
JP2003103364A (en) * 2001-09-28 2003-04-08 Daido Steel Co Ltd Method for manufacturing spiral rod
JP3093535U (en) * 2002-10-21 2003-05-16 孝子 福田 Drain tube rod for reuse
JP2003176531A (en) * 1999-08-24 2003-06-24 Nippon Sogo Bosui Kk High pressure injection stirring and mixing construction method and high pressure injection stirring and mixing device
JP2004019407A (en) * 2002-06-20 2004-01-22 Hiromi Kuwahata Drilling device for embedding concrete pile
JP2004503386A (en) * 2000-06-14 2004-02-05 エイティティ テクノロジイ,リミテッド Hardfacing alloys, methods and products
JP2008075266A (en) * 2006-09-19 2008-04-03 Hokukon Material Kk Method of constructing pile
JP2011106253A (en) * 2009-10-20 2011-06-02 Tenox Corp Method and device for constructing hydraulic solidification material liquid-substituted column

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220138A (en) * 1999-01-29 2000-08-08 Heiwa Giken Kk Device to be attached to pipe end and pipe pile using the same
US6988856B2 (en) * 2003-04-08 2006-01-24 Schellhorn Verne L Large scale soil processing tool for use with a preformed sacrificial guide

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120494A (en) * 1988-10-27 1990-05-08 Teruo Koi Method and apparatus for boring ground
JPH04247117A (en) * 1991-01-31 1992-09-03 Tenotsukusu:Kk Auger for improving foundation
JPH0579267A (en) * 1991-09-17 1993-03-30 Makoto Takahashi Discharged soil free execution device for foundation pile and execution method for foundation pile
JPH0618492U (en) * 1992-04-01 1994-03-11 松尾 政夫 Water droplet splash prevention device
JPH06193061A (en) * 1992-12-28 1994-07-12 Toshikatsu Endo Pile driving method and walling method, and hollow pile and pump used therefor
JPH089788A (en) * 1994-06-28 1996-01-16 Ryoji Tazawa Flowerpot and support bag for flowerpot
JPH08226120A (en) * 1995-02-22 1996-09-03 Tenox Corp Excavation and agitation mixing device
JPH08319617A (en) * 1995-05-23 1996-12-03 Teruo Koi Method and equipment for improvement construction of foundation ground
JPH10159476A (en) * 1996-12-04 1998-06-16 Taisei Corp Slurry flying curing device for excavator
JP2000189333A (en) * 1998-12-25 2000-07-11 Yoshiki Nagase Receiver for cooker
JP2003176531A (en) * 1999-08-24 2003-06-24 Nippon Sogo Bosui Kk High pressure injection stirring and mixing construction method and high pressure injection stirring and mixing device
JP2001153509A (en) * 1999-11-25 2001-06-08 Hoshizaki Electric Co Ltd Method of manufacturing auger
JP2004503386A (en) * 2000-06-14 2004-02-05 エイティティ テクノロジイ,リミテッド Hardfacing alloys, methods and products
JP2002097886A (en) * 2000-09-26 2002-04-05 Daido Concrete Co Ltd Method and device for disposing discharged earth
JP2003103364A (en) * 2001-09-28 2003-04-08 Daido Steel Co Ltd Method for manufacturing spiral rod
JP2004019407A (en) * 2002-06-20 2004-01-22 Hiromi Kuwahata Drilling device for embedding concrete pile
JP3093535U (en) * 2002-10-21 2003-05-16 孝子 福田 Drain tube rod for reuse
JP2008075266A (en) * 2006-09-19 2008-04-03 Hokukon Material Kk Method of constructing pile
JP2011106253A (en) * 2009-10-20 2011-06-02 Tenox Corp Method and device for constructing hydraulic solidification material liquid-substituted column

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140610A (en) * 2014-01-30 2015-08-03 株式会社日本住宅保証検査機構 Construction apparatus for hydraulic solidification material liquid-substituted column, construction method for hydraulic solidification material liquid-substituted column, and hydraulic solidification material liquid-substituted column
JP2016011546A (en) * 2014-06-30 2016-01-21 株式会社テノックス Method for constructing hydraulic solidification material liquid substitution column, and closing body for constructing hydraulic solidification material liquid substitution column
JP2016023402A (en) * 2014-07-16 2016-02-08 株式会社日本住宅保証検査機構 Construction method for column replaced with hydraulic solidifying material liquid
JP2016056650A (en) * 2014-09-12 2016-04-21 株式会社テノックス Device and method for manufacturing hydraulic solidification material liquid-substituted column, and hydraulic solidification material liquid-substituted column
JP2016145457A (en) * 2015-02-06 2016-08-12 株式会社日本住宅保証検査機構 Device for constructing hydraulic solidification material liquid substitution column
JP2016217121A (en) * 2015-05-15 2016-12-22 創伸産業株式会社 Ground reinforcement casing and ground reinforcement method
JP2017082402A (en) * 2015-10-23 2017-05-18 地研テクノ株式会社 Drilling and injection rod for pile construction, and pile construction method using the same
JP2017133270A (en) * 2016-01-29 2017-08-03 株式会社テノックス Excavation head of excavation rod for constructing hydraulic solidification material liquid displacement column
JP2021011687A (en) * 2019-07-04 2021-02-04 株式会社 中部ロックドリルサービス Bit and boring apparatus
JP7302857B2 (en) 2019-07-04 2023-07-04 株式会社 中部ロックドリルサービス bit and punch

Also Published As

Publication number Publication date
JP6149236B2 (en) 2017-06-21
JP6264411B2 (en) 2018-01-24
JP2016211369A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
JP6264411B2 (en) Construction method of hydraulic solidifying liquid replacement column
JP6159994B2 (en) Synthetic replacement column and its construction equipment and construction method
KR101666141B1 (en) Drill Stirrer For Protecting Auger
JP2021169733A (en) Agitation device
KR100880439B1 (en) Apparatus and method for removing slime in a cast-in place pile construstion
JP5835628B2 (en) Cutter bucket for new pile construction method.
JP2008008077A (en) Expanded root forming method in all casing construction method, and expansion drilling apparatus
JP4778921B2 (en) Foundation pile construction equipment
CN101158269B (en) Method for drilling roadbed small-caliber horizontal jacking pipe and drill bit
CN102041968A (en) Large-diameter drill suitable for forming hole in mud cemented boulder-gravel formation
JP6588797B2 (en) Excavation injection rod for pile construction and pile construction method using the same
CN112144499A (en) Silt normal position curing system
JP5253963B2 (en) Excavation method and pile construction method
JP4242251B2 (en) Open-ended steel pipe pile for rotary press-in and rotary press-in method for open-ended steel pipe pile
JP2017133270A (en) Excavation head of excavation rod for constructing hydraulic solidification material liquid displacement column
JP4636997B2 (en) Horizontal multi-axis excavator for continuous underground wall and underground continuous wall construction method using it
JP5506880B2 (en) Pile construction method
CN108487233B (en) Construction method of underground continuous wall with I-shaped steel joint
JP5864517B2 (en) Column building equipment
JP6216526B2 (en) Steel pipe head attachment
CN215408544U (en) Integrative welded fastening's clear end drilling bucket composite construction
CN213805342U (en) Stirring drill bit with guiding and anti-locking drilling functions
JP6539925B2 (en) Construction method of hydraulic solidifying material liquid displacement column
JP7396708B1 (en) Ground drilling method, drilling control device for ground drilling equipment, and its program
CN213571881U (en) Silt normal position curing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160314

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170131

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170419

R150 Certificate of patent or registration of utility model

Ref document number: 6149236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250