JP2013234139A - Method of producing olefin - Google Patents

Method of producing olefin Download PDF

Info

Publication number
JP2013234139A
JP2013234139A JP2012106828A JP2012106828A JP2013234139A JP 2013234139 A JP2013234139 A JP 2013234139A JP 2012106828 A JP2012106828 A JP 2012106828A JP 2012106828 A JP2012106828 A JP 2012106828A JP 2013234139 A JP2013234139 A JP 2013234139A
Authority
JP
Japan
Prior art keywords
group
secondary alcohol
olefin
mol
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012106828A
Other languages
Japanese (ja)
Other versions
JP2013234139A5 (en
JP5916506B2 (en
Inventor
Nobuhiko Horiuchi
伸彦 堀内
Yuichi Ikenaga
裕一 池永
Takaomi Hayashi
貴臣 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2012106828A priority Critical patent/JP5916506B2/en
Publication of JP2013234139A publication Critical patent/JP2013234139A/en
Publication of JP2013234139A5 publication Critical patent/JP2013234139A5/ja
Application granted granted Critical
Publication of JP5916506B2 publication Critical patent/JP5916506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing an internal olefin with high selectivity when an olefin is produced by an intramolecular dehydration reaction of a secondary alcohol.SOLUTION: In a method of producing an olefin (B) represented by formula (II) by performing an intramolecular dehydration reaction of a secondary alcohol (A) represented by formula (I) in a gaseous phase condition in the presence of a solid catalyst (C) including an oxide or oxides of one or more elements selected from elements belonging to the periodic table group 1-15, water is supplied along with the secondary alcohol (A) to a reactor. (In the formula, R is a group selected from 1-20C hydrocarbon groups).

Description

本発明は、特定の第二級アルコールを分子内脱水して内部オレフィンを位置選択的に製造する方法に関する。   The present invention relates to a method for regioselectively producing an internal olefin by intramolecular dehydration of a specific secondary alcohol.

メチルアルキルカルビノール(アルキル基は炭素数2以上)の如き第二級アルコールを分子内脱水してオレフィン類を製造する方法として、例えば特許文献1〜3には第二級アルコ−ルを種々の酸化物触媒の存在下で脱水してオレフィン類を製造する方法が開示されている。しかしながら、これら方法は、末端オレフィンの製造を目的としたものであって、内部オレフィンを高い選択率で得る方法はほとんど知られていなかった。例えば、特許文献1にはバナドシリケート触媒を用いた第二級または第三級アルコールの脱水反応時の生成オレフィン多量化に及ぼす酸素分子の影響が開示されているが、位置選択性について開示されている訳ではない。   As a method for producing olefins by intramolecular dehydration of secondary alcohols such as methyl alkyl carbinol (the alkyl group has 2 or more carbon atoms), for example, Patent Documents 1 to 3 disclose various secondary alcohols. A method for producing olefins by dehydration in the presence of an oxide catalyst is disclosed. However, these methods are intended for the production of terminal olefins, and few methods for obtaining internal olefins with high selectivity have been known. For example, Patent Document 1 discloses the influence of oxygen molecules on the amount of olefin produced during the dehydration reaction of a secondary or tertiary alcohol using a vanadosilicate catalyst, but discloses the regioselectivity. I don't mean.

特許文献2には、特定の表面積を満たすアルミナに担持された原子番号21、39、58〜71、90の金属含有触媒存在下で2−アルコールを分子内脱水してα−オレフィン(末端オレフィン)を製造する方法が開示されている。しかし内部オレフィン生成に及ぼす影響については何ら開示されていない。特許文献3には、特定のジルコニウム触媒を用いるメチルハイドロカルビルカルビノール(ここで、ハイドロカルビル基は炭素数2〜20の炭化水素基)を分子内脱水して末端オレフィンを製造する方法が開示されているが特許文献2に同じく内部オレフィン生成に及ぼす影響については何ら言及していない。   Patent Document 2 discloses that α-olefin (terminal olefin) is obtained by intramolecular dehydration of 2-alcohol in the presence of a metal-containing catalyst having atomic number 21, 39, 58 to 71, 90 supported on alumina satisfying a specific surface area. A method of manufacturing is disclosed. However, there is no disclosure about the influence on the production of internal olefins. Patent Document 3 discloses a method for producing a terminal olefin by intramolecular dehydration of methylhydrocarbylcarbinol (wherein the hydrocarbyl group is a hydrocarbon group having 2 to 20 carbon atoms) using a specific zirconium catalyst. Although disclosed, Patent Document 2 similarly does not mention any influence on the production of internal olefins.

以上のように、第二級アルコールの分子内脱水によって内部オレフィンを選択的に生成させる効率的な方法が知られていなかったために、内部オレフィンを得るためには、通常は一旦末端オレフィンを調製した後に、次いで特定触媒存在下で内部オレフィンに異性化する方法が採用されてきた(例えば、特許文献4)。しかし、このような異性化方法ではアルコールから二段階のステップを経由する必要があり経済的でなかった。   As described above, since an efficient method for selectively producing an internal olefin by intramolecular dehydration of a secondary alcohol was not known, in order to obtain an internal olefin, a terminal olefin was usually prepared once. Later, a method of isomerizing to an internal olefin in the presence of a specific catalyst has been adopted (for example, Patent Document 4). However, such an isomerization method is not economical because it requires a two-step process from alcohol.

特開平9-100244号公報Japanese Laid-Open Patent Publication No. Hei9-100244 米国特許4490567号公報US Patent No. 4490567 米国特許5210363号公報US Patent No. 5210363 特開昭8-40944号公報JP-A-8-40944

かかる状況において、本発明が解決しようとする課題は、第二級アルコールを触媒の存在下で、分子内脱水反応してオレフィン類を製造する方法であって、低コストで効率的に内部オレフィン類を高い選択率でもって提供できる製造方法を開発することである。   In such a situation, the problem to be solved by the present invention is a method for producing olefins by intramolecular dehydration reaction of a secondary alcohol in the presence of a catalyst. Is to develop a manufacturing method that can provide high selectivity.

本発明者は上記課題を解決すべく鋭意検討した結果、特定元素の酸化物を含んで成る固体触媒の存在下、特定量の水の共存下で第二級アルコールの分子内脱水反応を実施することにより同技術を工業的なレベルまで向上させることができ、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventor performs an intramolecular dehydration reaction of a secondary alcohol in the presence of a specific amount of water in the presence of a solid catalyst containing an oxide of a specific element. As a result, the technology can be improved to an industrial level, and the present invention has been completed.

すなわち、本発明には以下の事項が含まれる。
〔1〕周期律表第1族〜第15族元素から選ばれる1種以上の元素の酸化物を含む固体触媒(C)の存在下で、下記一般式(I)で表される第二級アルコール(A)を気相条件下で分子内脱水反応を実施して一般式(II)で表されるオレフィン(B)を製造する方法において、第二級アルコール(A)とともに水を反応器に供給することを特徴とする製造方法。
That is, the present invention includes the following matters.
[1] A secondary class represented by the following general formula (I) in the presence of a solid catalyst (C) containing an oxide of one or more elements selected from Group 1 to Group 15 elements of the Periodic Table In the method for producing an olefin (B) represented by the general formula (II) by carrying out an intramolecular dehydration reaction of the alcohol (A) under a gas phase condition, water is added to the reactor together with the secondary alcohol (A). The manufacturing method characterized by supplying.

なお、一般式(I)及び(II)において、Rは炭素数1〜20の炭化水素基から選ばれる基である。
〔2〕周期律表第1族〜第15族元素から選ばれる1種以上の元素の酸化物が、SiO、Al、P、ZrO、Ta、WO、およびCsOからなる群から選ばれることを特徴とする上記〔1〕に記載の製造方法。
〔3〕下記の式1で表される水供給率(R2)が5〜95モル%を維持するようにして分子内脱水反応を進めることを特徴とする上記〔1〕または〔2〕に記載の製造方法。
In general formulas (I) and (II), R is a group selected from hydrocarbon groups having 1 to 20 carbon atoms.
[2] An oxide of one or more elements selected from Group 1 to Group 15 elements of the periodic table is SiO 2 , Al 2 O 3 , P 2 O 5 , ZrO 2 , Ta 2 O 5 , WO 3 And the production method according to [1] above, which is selected from the group consisting of Cs 2 O.
[3] The above-mentioned [1] or [2], wherein the intramolecular dehydration reaction is advanced so that the water supply rate (R2) represented by the following formula 1 is maintained at 5 to 95 mol%. Manufacturing method.

〔式(1)において、Q1は第二級アルコール(A)のフィード量(mol/hr)、Q2は水のフィード量(mol/hr)、Q3は希釈ガスのフィード量(mol/hr)である。〕
〔4〕 固定床流通反応器を用いて分子内脱水反応を実施することを特徴とする上記〔1〕〜〔3〕のいずれかに記載の製造方法。
〔5〕第二級アルコール(A)が、4−メチル−2−ペンタノールまたは2−オクタノールであることを特徴とする上記〔1〕〜〔4〕のいずれかに記載の製造方法。
[In the formula (1), Q1 is the feed amount (mol / hr) of the secondary alcohol (A), Q2 is the feed amount of water (mol / hr), Q3 is the feed amount of dilution gas (mol / hr) is there. ]
[4] The production method according to any one of [1] to [3], wherein the intramolecular dehydration reaction is performed using a fixed bed flow reactor.
[5] The production method according to any one of [1] to [4], wherein the secondary alcohol (A) is 4-methyl-2-pentanol or 2-octanol.

本発明の製造方法によれば、第二級アルコールの分子内脱水反応を行うことによって効率的に内部オレフィン類を得ることができる。   According to the production method of the present invention, internal olefins can be efficiently obtained by performing an intramolecular dehydration reaction of a secondary alcohol.

本願明細書の実施例10における、アルコール転化率、オレフィン(B)選択率およびオレフィン(B‘)選択率の求め方を示す図面である。図面において、横軸は反応温度(℃)、縦軸は転化率と選択率(%)を示し、4MP2[4-methylpentene-2]はオレフィン(B)、4MP1[4-methylpentene-1]はオレフィン(B’)であり、2MP2および2MP1は各々4MP2および4MP1のメチル基転位を伴った異性体である。Othersは4MP1、4MP2、2MP1、2MP2以外の副生物である。It is drawing which shows how to obtain | require alcohol conversion, olefin (B) selectivity, and olefin (B ') selectivity in Example 10 of this-application specification. In the drawing, the horizontal axis represents the reaction temperature (° C.), the vertical axis represents the conversion and selectivity (%), 4MP2 [4-methylpentene-2] is olefin (B), and 4MP1 [4-methylpentene-1] is olefin. (B ′), 2MP2 and 2MP1 are isomers with methyl group rearrangement of 4MP2 and 4MP1, respectively. Others is a by-product other than 4MP1, 4MP2, 2MP1, and 2MP2.

本発明は、周期律表第1族〜第15族元素から選ばれる1種以上の元素の酸化物を含む固体触媒(C)の存在下で、下記一般式(I)で表される第二級アルコール(A)を気相条件下で分子内脱水反応を実施して一般式(II)で表されるオレフィン(B)を製造する方法において、第二級アルコール(A)とともに水を反応器に供給することを特徴とする製造方法である。なお、以下の説明では、一般式(II)で表されるオレフィン(B)を単に「内部オレフィン」と呼ぶことがある。本発明において主要な副生物は下記一般式(III)で表されるオレフィン(B‘)であり、以下の説明では該オレフィン(B’)を「末端オレフィン」と呼ぶことがある。   The present invention is a second compound represented by the following general formula (I) in the presence of a solid catalyst (C) containing an oxide of one or more elements selected from Group 1 to Group 15 elements of the Periodic Table. In a method for producing an olefin (B) represented by the general formula (II) by carrying out an intramolecular dehydration reaction of a secondary alcohol (A) under gas phase conditions, water is reacted with a secondary alcohol (A) in a reactor. It is a manufacturing method characterized by supplying to. In the following description, the olefin (B) represented by the general formula (II) may be simply referred to as “internal olefin”. In the present invention, the main by-product is an olefin (B ′) represented by the following general formula (III). In the following description, the olefin (B ′) may be referred to as a “terminal olefin”.

一般式(I)、(II)および(III)において、Rは炭素数1〜20の炭化水素基から選ばれる基である。炭素数1〜20の炭化水素基としては、具体的にメチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、アミル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、フェニル基、トリル基、ベンジル基、フェネチル基などがあげられる。このようなRを持つ、一般式(I)で表される第二級アルコール(A)の中では、2−ブタノール、2−ペンタノール、3−メチル−2−ブタノール、2−ヘキサノール、3−メチル−2−ペンタノール、4−メチル−2−ペンタノール、2−ヘプタノール、4−メチル−2−ヘキサノール、5−メチル−2−ヘキサノール、2−オクタノール、4−メチル−2−ヘプタノール、5−メチル−2−ヘプタノール、2−ノナノール、4−メチル−2−オクタノール、5−メチル−2−オクタノール、6−メチル−2−オクタノール、2−デカノール、4−メチル−2−ノナノール、5−メチル−2−ノナノール、6−メチル−2−ノナノール、7−メチル−2-ノナノール等の炭素数4以上、10以下のアルコールが活性および選択性の点で好ましく、4−メチル−2−ペンタノールまたは2−オクタノールであることがより好ましい。   In the general formulas (I), (II), and (III), R is a group selected from hydrocarbon groups having 1 to 20 carbon atoms. Specific examples of the hydrocarbon group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, butyl group, amyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, Examples thereof include a phenyl group, a tolyl group, a benzyl group, and a phenethyl group. Among the secondary alcohols (A) represented by the general formula (I) having such R, 2-butanol, 2-pentanol, 3-methyl-2-butanol, 2-hexanol, 3- Methyl-2-pentanol, 4-methyl-2-pentanol, 2-heptanol, 4-methyl-2-hexanol, 5-methyl-2-hexanol, 2-octanol, 4-methyl-2-heptanol, 5- Methyl-2-heptanol, 2-nonanol, 4-methyl-2-octanol, 5-methyl-2-octanol, 6-methyl-2-octanol, 2-decanol, 4-methyl-2-nonanol, 5-methyl- Alcohols having 4 to 10 carbon atoms such as 2-nonanol, 6-methyl-2-nonanol and 7-methyl-2-nonanol are preferred in terms of activity and selectivity. 4-methyl-2-pentanol or 2-octanol is more preferable.

本発明における触媒は、周期律表第1族〜第15族元素から選ばれる1種以上の元素の酸化物を含んでなり、周期律表第1族〜第15族元素の中では、Al、Si、P、Mo、W、Nb、Ti、Ta、Zr、Hf、Csが好ましい。周期律表第1族〜第15族元素の酸化物としては、NaO、KO、RbO、CsO等のアルカリ金属酸化物、Al、SiO、P、MoO、WO、Nb、TiO、Ta、ZrO、HfO等の酸化物、およびMoO−ZrO、WO−Al、WO−SiO、CsO−P−SiO等の複合酸化物を例示することができる。本発明では、SiO、Al、P、ZrO、Ta、WO、およびCsOからなる群から選ばれる酸化物が特に好ましい。 The catalyst in the present invention includes an oxide of one or more elements selected from Group 1 to Group 15 elements of the Periodic Table, and among the elements of Groups 1 to 15 of the Periodic Table, Al, Si, P, Mo, W, Nb, Ti, Ta, Zr, Hf, and Cs are preferable. As oxides of Group 1 to Group 15 elements of the periodic table, alkali metal oxides such as Na 2 O, K 2 O, Rb 2 O, Cs 2 O, Al 2 O 3 , SiO 2 , P 2 O 5 , oxides such as MoO 3 , WO 3 , Nb 2 O 5 , TiO 2 , Ta 2 O 5 , ZrO 2 , HfO 2 , and MoO 3 —ZrO 2 , WO 3 —Al 2 O 3 , WO 3 —SiO 2 , complex oxides such as Cs 2 O—P 2 O 5 —SiO 2 can be exemplified. In the present invention, an oxide selected from the group consisting of SiO 2 , Al 2 O 3 , P 2 O 5 , ZrO 2 , Ta 2 O 5 , WO 3 , and Cs 2 O is particularly preferable.

本発明に係る脱水反応は通常、気相条件下で実施される。しかし必要に応じて加圧下に液相を維持しながら反応を行うこともできる。また、触媒と第二級アルコールとの接触方法や、原料である第二級アルコール投入と生成物オレフィンの回収方法等については化学工学で公知の様々な方式を採用することができる。すなわち、固体触媒の存在下、固定床式あるいは流動床式、または連続式あるいは回分式で行うことができる。大規模な工業的操作の場合には、固体触媒が充填された固定床流通反応器を用いる連続反応を採用することが好ましい。   The dehydration reaction according to the present invention is usually carried out under gas phase conditions. However, if necessary, the reaction can be carried out while maintaining the liquid phase under pressure. Various methods known in chemical engineering can be employed for the contact method between the catalyst and the secondary alcohol, the charging of the secondary alcohol as a raw material, and the recovery method of the product olefin. That is, it can be carried out in the presence of a solid catalyst in a fixed bed type or a fluidized bed type, or a continuous type or a batch type. In the case of large-scale industrial operation, it is preferable to employ a continuous reaction using a fixed bed flow reactor packed with a solid catalyst.

本発明において、触媒の存在下に第二級アルコール類(A)を脱水反応させて内部オレフィン類(B)を得るための反応温度は、100〜500℃、好ましくは200〜450℃。さらに好ましくは250〜400℃である。反応温度が低い場合、第二級アルコールの転化率を十分に高められず、また反応温度が高い場合、生成オレフィンの多量化やアルキル基の転位を伴う異性化反応が起きやすくなる場合があるので望ましくない。反応圧力は、常圧〜2MPaの範囲で反応することができる。   In the present invention, the reaction temperature for obtaining the internal olefins (B) by dehydrating the secondary alcohols (A) in the presence of a catalyst is 100 to 500 ° C, preferably 200 to 450 ° C. More preferably, it is 250-400 degreeC. If the reaction temperature is low, the conversion rate of the secondary alcohol cannot be sufficiently increased, and if the reaction temperature is high, an isomerization reaction accompanied by a large amount of the generated olefin or rearrangement of the alkyl group may easily occur. Not desirable. The reaction pressure can be reacted in the range of normal pressure to 2 MPa.

本発明の製造方法において、第二級アルコール(A)の供給速度は、触媒の使用量、第二級アルコール(A)の種類、反応温度、反応圧力によっても変わるが、通常、触媒重量基準空間速度(WHSV)として0.1〜50hr−1、好ましくは0.5〜15hr−1、さらに好ましくは1〜10hr−1である。WHSVが低い場合、アルキル基の転位を伴う異性化等の逐次反応が起き内部オレフィン(B)の選択率が低くなり、WHSVが高い場合は第二級アルコール(A)の転化率、内部オレフィン(B)の選択率がともに低くなるため好ましくない。 In the production method of the present invention, the supply rate of the secondary alcohol (A) varies depending on the amount of the catalyst used, the type of the secondary alcohol (A), the reaction temperature, and the reaction pressure. The speed (WHSV) is 0.1 to 50 hr −1 , preferably 0.5 to 15 hr −1 , more preferably 1 to 10 hr −1 . When WHSV is low, a sequential reaction such as isomerization accompanied by rearrangement of the alkyl group occurs and the selectivity of the internal olefin (B) is lowered. When WHSV is high, the conversion rate of the secondary alcohol (A), the internal olefin ( Since the selectivity of B) is low, it is not preferable.

本発明に係る分子内脱水反応においては、第二級アルコール(A)とともに水が反応系に共存する。本発明にける水の供給量は、下記式(1)で表される水供給率R2が5〜95モル%、好ましくは15〜93モル%、より好ましくは25〜90モル%、特に好ましくは45〜87モル%を維持するようにして脱水反応が実施される。水供給率が少ない場合、水の共存による内部オレフィン(B)の選択率向上効果が少なく、水供給率が多い場合、第二級アルコール(A)の転化率が低くなるため好ましくない。   In the intramolecular dehydration reaction according to the present invention, water coexists with the secondary alcohol (A) in the reaction system. The water supply rate in the present invention is such that the water supply rate R2 represented by the following formula (1) is 5 to 95 mol%, preferably 15 to 93 mol%, more preferably 25 to 90 mol%, particularly preferably. The dehydration reaction is carried out so as to maintain 45 to 87 mol%. When the water supply rate is low, the effect of improving the selectivity of the internal olefin (B) due to the coexistence of water is small, and when the water supply rate is high, the conversion rate of the secondary alcohol (A) is low, which is not preferable.

〔上記式(1)において、Q1は第二級アルコール(A)のフィード量(mol/hr)、Q2は水のフィード量(mol/hr)、Q3は希釈ガスのフィード量(mol/hr)である。〕 [In the above formula (1), Q1 is the secondary alcohol (A) feed amount (mol / hr), Q2 is the water feed amount (mol / hr), Q3 is the dilution gas feed amount (mol / hr) It is. ]

なお、下記式(2)におけるアルコール(A)の供給率R1は、1〜95モル%の範囲、好ましくは2〜90モル%の範囲、より好ましくは4〜85モル%の範囲である。また、本発明に係る脱水反応では、必要に応じて希釈ガスを併用することもできる。希釈ガスとして窒素、二酸化炭素、ヘリウム、アルゴン等の不活性ガスをあげることができ、式(3)で表される希釈ガスの供給率R3は、0〜88モル%の範囲、好ましくは2〜84モル%の範囲、より好ましくは4〜80%の範囲である。なお、式(2)および式(3)におけるQ1、Q2およびQ3は式1のそれらに同義であり、R1とR2とR3の合計は100モル%である。   In addition, supply rate R1 of alcohol (A) in following formula (2) is the range of 1-95 mol%, Preferably it is the range of 2-90 mol%, More preferably, it is the range of 4-85 mol%. Further, in the dehydration reaction according to the present invention, a diluent gas can be used in combination as necessary. An inert gas such as nitrogen, carbon dioxide, helium, and argon can be used as the diluent gas. The dilution gas supply rate R3 represented by the formula (3) is in the range of 0 to 88 mol%, preferably 2 to 2. It is in the range of 84 mol%, more preferably in the range of 4 to 80%. Q1, Q2 and Q3 in formula (2) and formula (3) have the same meaning as those in formula 1, and the total of R1, R2 and R3 is 100 mol%.

以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.

〔1〕触媒反応試験法
以下の実施例または比較例における触媒活性評価は、特に記述がない限りは、以下の触媒反応試験法の条件にて実施した。
下記で得られた触媒1.0gを3/8インチの反応管に充填後、窒素気流中、反応管を管状電気炉で加熱し、触媒層が所定温度に達した後、窒素、第二級アルコール、および水の所定量を供給し、常圧で反応を行った。詳細な条件を表1および表2に示した。なお、本発明におけるWHSV(触媒重量基準の空間速度)は下式で定義される値である。
WHSV(hr−1)=第二級アルコール流量(g/hr)/触媒(g)
[1] Catalytic Reaction Test Method The catalytic activity evaluation in the following examples or comparative examples was carried out under the conditions of the following catalytic reaction test method unless otherwise specified.
After filling 1.0 / 8 g of the catalyst obtained below into a 3/8 inch reaction tube, the reaction tube was heated in a tubular electric furnace in a nitrogen stream, and after the catalyst layer reached a predetermined temperature, nitrogen, secondary A predetermined amount of alcohol and water was supplied, and the reaction was performed at normal pressure. Detailed conditions are shown in Tables 1 and 2. In the present invention, WHSV (space velocity based on catalyst weight) is a value defined by the following equation.
WHSV (hr −1 ) = secondary alcohol flow rate (g / hr) / catalyst (g)

〔2〕活性評価のための分析方法
FIDガスクロマトグラフを用いて生成物を分析し、アルコール転化率、および生成オレフィンの選択率を炭素原子基準で算出した。各固体触媒種、各WHSV、および各Q1/Q2/Q3(モル比)において、アルコール転化率80%における生成オレフィン(B)の選択率の値で以って活性評価した。アルコール転化率80%における生成オレフィン(B)と(B‘)の選択率の求め方は次の通りである;すなわち、第二級アルコール種、固体触媒種、WHSV、およびQ1/Q2/Q3(モル比)が決められた実験毎に、反応温度とアルコール転化率・オレフィン選択率の関係をプロットし、転化率が80%となる時点でのオレフィン選択率(B)と(B‘)をプロット図から読み取った。図1に本願実施例10を例にとり、アルコール転化率とオレフィン(B)と(B’)の選択率の具体的な求め方を示している。なお本発明の効果を評価する際に、転化率80%におけるオレフィン選択率とした理由は、本発明の製造方法におけるWHSVを含む制御可能な反応条件の全範囲内において、少なくても当該転化率においてはアルキル基の転位を伴った異性化反応等による副生物量が無視できる程度に少ないという実験事実に基づく。
[2] Analytical method for activity evaluation The product was analyzed using a FID gas chromatograph, and the alcohol conversion rate and the selectivity of the produced olefin were calculated on the basis of carbon atoms. In each solid catalyst type, each WHSV, and each Q1 / Q2 / Q3 (molar ratio), the activity was evaluated by the value of selectivity of the produced olefin (B) at an alcohol conversion of 80%. The method for determining the selectivity of the produced olefins (B) and (B ′) at an alcohol conversion of 80% is as follows: secondary alcohol species, solid catalyst species, WHSV, and Q1 / Q2 / Q3 ( For each experiment in which the molar ratio was determined, the relationship between the reaction temperature and the alcohol conversion / olefin selectivity was plotted, and the olefin selectivity (B) and (B ′) at the time when the conversion reached 80% was plotted. I read from the figure. FIG. 1 shows a specific method for obtaining the alcohol conversion rate and the selectivity of olefins (B) and (B ′) by taking Example 10 of the present application as an example. In evaluating the effect of the present invention, the reason why the olefin selectivity at a conversion rate of 80% was selected was that the conversion rate was at least within the entire range of controllable reaction conditions including WHSV in the production method of the present invention. Is based on the experimental fact that the amount of by-products due to isomerization reaction accompanied by rearrangement of alkyl group is negligibly small.

〔3〕活性評価に供した触媒
下記する5種類の触媒1〜触媒5を調製し、活性評価を行った。
(触媒1)市販のAl(住友化学、NKHD−24)を400℃、5h焼成後、破砕し粒径0.25〜0.50mmに揃えたもの。
(触媒2)市販のSiO(富士シリシア化学、Q10、75〜500μm)を400℃、5h電気炉で焼成したもの。
(触媒3)市販の水酸化ジルコニウム(日本軽金属)を400℃、5h焼成後、錠剤成形機で成形後、破砕し粒径0.25〜0.50mmに揃えたZrO触媒。
(触媒4)Ta(和光純薬、特級)を錠剤成形機で成形後、破砕し粒径0.25〜0.50mmに揃えたもの。
(触媒5)イオン交換水15mlにメタタングステン酸アンモニウム(日本無機化学工業株式会社製AMT−72)0.61gを溶解させて水溶液を調製した。この水溶液に活性アルミナ(住友化学株式会社製NKHD−24)5gを含浸させた後、エバポレーターで水分を蒸発させた。得られた触媒前駆体粉末を電気炉で500℃、5時間空気焼成し、錠剤成形機で成形後、破砕し粒径0.25〜0.50mmに揃え、WOが10wt%担持されたWO/Al触媒。
(触媒6)イオン交換水50mlにリン酸(濃度85%、和光純薬工業株式会社製)1.54gを溶解させて水溶液を調製した。この水溶液にシリカ(富士シリシア化学株式会社製CARiACT−G10)10gを含浸させた後、エバポレーターで水分を蒸発させた。得られた触媒前駆体粉末を電気炉で600℃、2時間空気焼成し、P/Si原子比が0.08/1のP/SiOを調製した。イオン交換水30mlに水酸化セシウム(関東化学株式会社製)0.75gを溶解させて水溶液を調製した。この水溶液に上記で調製したP/SiOを3g含浸させた後、エバポレーターで水分を蒸発させた。得られた触媒前駆体粉末を電気炉で600℃、2時間空気焼成し、錠剤成形機で成形後、破砕し粒径0.25〜0.50mmに揃え、Cs/P/Si原子比が0.1/0.08/1であるCsO−P/SiO触媒。
[3] Catalysts used for activity evaluation The following five types of catalysts 1 to 5 were prepared and evaluated for activity.
(Catalyst 1) Commercially available Al 2 O 3 (Sumitomo Chemical Co., Ltd., NKHD-24), baked at 400 ° C. for 5 hours, and then crushed to have a particle diameter of 0.25 to 0.50 mm.
(Catalyst 2) Commercially available SiO 2 (Fuji Silysia Chemical, Q10, 75 to 500 μm) baked in an electric furnace at 400 ° C. for 5 hours.
(Catalyst 3) A ZrO 2 catalyst in which commercially available zirconium hydroxide (Nippon Light Metal) was calcined at 400 ° C. for 5 hours, then molded by a tablet molding machine, and crushed to have a particle diameter of 0.25 to 0.50 mm.
(Catalyst 4) Ta 2 O 5 (Wako Pure Chemicals, special grade) formed by a tablet molding machine and then crushed to have a particle size of 0.25 to 0.50 mm.
(Catalyst 5) An aqueous solution was prepared by dissolving 0.61 g of ammonium metatungstate (AMT-72 manufactured by Nippon Inorganic Chemical Co., Ltd.) in 15 ml of ion-exchanged water. The aqueous solution was impregnated with 5 g of activated alumina (NKHD-24 manufactured by Sumitomo Chemical Co., Ltd.), and then the water was evaporated by an evaporator. The obtained catalyst precursor powder was air calcined in an electric furnace at 500 ° C. for 5 hours, molded by a tablet molding machine, crushed and aligned to a particle size of 0.25 to 0.50 mm, and WO 3 supporting 10 wt% 3 / Al 2 O 3 catalyst.
(Catalyst 6) An aqueous solution was prepared by dissolving 1.54 g of phosphoric acid (concentration 85%, manufactured by Wako Pure Chemical Industries, Ltd.) in 50 ml of ion-exchanged water. The aqueous solution was impregnated with 10 g of silica (CARIACT-G10 manufactured by Fuji Silysia Chemical Ltd.), and then water was evaporated by an evaporator. The obtained catalyst precursor powder was air calcined in an electric furnace at 600 ° C. for 2 hours to prepare P 2 O 5 / SiO 2 having a P / Si atomic ratio of 0.08 / 1. An aqueous solution was prepared by dissolving 0.75 g of cesium hydroxide (manufactured by Kanto Chemical Co., Ltd.) in 30 ml of ion-exchanged water. This aqueous solution was impregnated with 3 g of P 2 O 5 / SiO 2 prepared as described above, and then water was evaporated by an evaporator. The obtained catalyst precursor powder was calcined in an electric furnace at 600 ° C. for 2 hours, molded by a tablet molding machine, crushed and aligned to a particle size of 0.25 to 0.50 mm, and the Cs / P / Si atomic ratio was 0. Cs 2 O—P 2 O 5 / SiO 2 catalyst that is 1 / 0.08 / 1.

〔実施例1〕
第二級アルコール(A)として4−メチル−2−ペンタノール(以下の説明では、MIBCと表記する場合がある。)を用い、固体触媒(C)としてAlを用い、WHSVが5hr−1、反応温度が280℃、アルコール(A):HO:N=50:20:30(モル比)の条件下で触媒1の活性評価を行った。結果を表1に示した。
[Example 1]
4-methyl-2-pentanol (may be referred to as MIBC in the following description) is used as the secondary alcohol (A), Al 2 O 3 is used as the solid catalyst (C), and WHSV is 5 hours. −1 , the activity of the catalyst 1 was evaluated under the conditions of a reaction temperature of 280 ° C. and alcohol (A): H 2 O: N 2 = 50: 20: 30 (molar ratio). The results are shown in Table 1.

〔実施例2〜12、比較例1〜9〕
表1に示された触媒種を用い、表1に示した反応条件下で活性評価を行った。結果を表1にまとめて示した。
[Examples 2 to 12, Comparative Examples 1 to 9]
Using the catalyst species shown in Table 1, the activity was evaluated under the reaction conditions shown in Table 1. The results are summarized in Table 1.

〔実施例13〕
第二級アルコール(A)として2−オクタノールを用い、固体触媒(C)としてAlを用い、WHSVが2.5hr−1、反応温度が265℃、アルコール(A):HO:N=14:52:34(モル比)の条件で触媒1の活性評価を行った。結果を表2に示した。
Example 13
2-octanol is used as the secondary alcohol (A), Al 2 O 3 is used as the solid catalyst (C), WHSV is 2.5 hr −1 , reaction temperature is 265 ° C., alcohol (A): H 2 O: The activity of the catalyst 1 was evaluated under the condition of N 2 = 14: 52: 34 (molar ratio). The results are shown in Table 2.

〔実施例14、比較例10〜11〕
表2に示された触媒種を用い、表2に示された反応条件下で活性評価を行った。結果を表2にまとめて示した。
[Example 14, Comparative Examples 10-11]
Using the catalyst species shown in Table 2, the activity was evaluated under the reaction conditions shown in Table 2. The results are summarized in Table 2.

Claims (5)

周期律表第1族〜第15族元素から選ばれる1種以上の元素の酸化物を含む固体触媒(C)の存在下で、下記一般式(I)で表される第二級アルコール(A)を気相条件下で分子内脱水反応を実施して一般式(II)で表されるオレフィン(B)を製造する方法において、第二級アルコール(A)とともに水を反応器に供給することを特徴とする製造方法。
〔一般式(I)及び(II)において、Rは炭素数1〜20の炭化水素基から選ばれる基である。〕
A secondary alcohol (A) represented by the following general formula (I) in the presence of a solid catalyst (C) containing an oxide of one or more elements selected from Group 1 to Group 15 elements of the Periodic Table In the method for producing an olefin (B) represented by the general formula (II) by carrying out an intramolecular dehydration reaction under gas phase conditions, water is supplied to the reactor together with the secondary alcohol (A). The manufacturing method characterized by this.
[In General Formulas (I) and (II), R is a group selected from hydrocarbon groups having 1 to 20 carbon atoms. ]
周期律表第1族〜第15族元素から選ばれる1種以上の元素の酸化物が、SiO、Al、P、ZrO、Ta、WO、およびCsOからなる群から選ばれることを特徴とする請求項1記載の製造方法。 An oxide of one or more elements selected from Group 1 to Group 15 elements of the periodic table is SiO 2 , Al 2 O 3 , P 2 O 5 , ZrO 2 , Ta 2 O 5 , WO 3 , and Cs. 2. The production method according to claim 1, wherein the production method is selected from the group consisting of 2O. 下記式1で表される水供給率(R2)が5〜95モル%を維持するようにして分子内脱水反応を進めることを特徴とする請求項1または2に記載の製造方法。
〔式(1)において、Q1は第二級アルコール(A)のフィード量(mol/hr)、Q2は水のフィード量(mol/hr)、Q3は希釈ガスのフィード量(mol/hr)である。〕
The production method according to claim 1 or 2, wherein the intramolecular dehydration reaction is advanced such that the water supply rate (R2) represented by the following formula 1 is maintained at 5 to 95 mol%.
[In the formula (1), Q1 is the feed amount (mol / hr) of the secondary alcohol (A), Q2 is the feed amount of water (mol / hr), Q3 is the feed amount of dilution gas (mol / hr) is there. ]
固定床流通反応器を用いて分子内脱水反応を実施することを特徴とする請求項1〜3のいずれかに記載の製造方法。   The production method according to any one of claims 1 to 3, wherein an intramolecular dehydration reaction is carried out using a fixed bed flow reactor. 第二級アルコール(A)が、4−メチル−2−ペンタノールまたは2−オクタノールであることを特徴とする請求項1〜4のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the secondary alcohol (A) is 4-methyl-2-pentanol or 2-octanol.
JP2012106828A 2012-05-08 2012-05-08 Olefin production method Active JP5916506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012106828A JP5916506B2 (en) 2012-05-08 2012-05-08 Olefin production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012106828A JP5916506B2 (en) 2012-05-08 2012-05-08 Olefin production method

Publications (3)

Publication Number Publication Date
JP2013234139A true JP2013234139A (en) 2013-11-21
JP2013234139A5 JP2013234139A5 (en) 2015-06-18
JP5916506B2 JP5916506B2 (en) 2016-05-11

Family

ID=49760542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012106828A Active JP5916506B2 (en) 2012-05-08 2012-05-08 Olefin production method

Country Status (1)

Country Link
JP (1) JP5916506B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103898A1 (en) * 2012-12-26 2014-07-03 花王株式会社 Method for producing olefin
CN111530444A (en) * 2020-06-01 2020-08-14 中国科学院山西煤炭化学研究所 Catalyst for synthesizing long-chain alpha-olefin and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945841B1 (en) * 1968-12-19 1974-12-06
JPH07132225A (en) * 1993-11-10 1995-05-23 Nissan Gaadoraa Shokubai Kk Production of zirconium oxide catalyst for various kinds dehydration reaction
JPH09100244A (en) * 1995-10-03 1997-04-15 Maruzen Petrochem Co Ltd Production of olefin compound and dehydration reaction catalyst therefor
WO2007063282A2 (en) * 2005-11-29 2007-06-07 Bp Chemicals Limited Process for producing olefins
WO2011161045A1 (en) * 2010-06-23 2011-12-29 Total Petrochemicals Research Feluy Dehydration of alcohols on poisoned acidic catalysts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945841B1 (en) * 1968-12-19 1974-12-06
JPH07132225A (en) * 1993-11-10 1995-05-23 Nissan Gaadoraa Shokubai Kk Production of zirconium oxide catalyst for various kinds dehydration reaction
JPH09100244A (en) * 1995-10-03 1997-04-15 Maruzen Petrochem Co Ltd Production of olefin compound and dehydration reaction catalyst therefor
WO2007063282A2 (en) * 2005-11-29 2007-06-07 Bp Chemicals Limited Process for producing olefins
WO2011161045A1 (en) * 2010-06-23 2011-12-29 Total Petrochemicals Research Feluy Dehydration of alcohols on poisoned acidic catalysts

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015038171; Bulletin of the Academy of Sciences of the USSR Division of Chemical Science Vol.28, No.5, 1979, p.965-968 *
JPN6015038171; MAKSIMOV,A.I. et al.: 'Effect of water on the direction of dehydration of 2-methyl-2-butanol and 3-methyl-2-butanol over al' Bulletin of the Academy of Sciences of the USSR, Division of chemical science Vol.28, No.5, 1979, p.965-968 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103898A1 (en) * 2012-12-26 2014-07-03 花王株式会社 Method for producing olefin
JP2014141466A (en) * 2012-12-26 2014-08-07 Kao Corp Method for producing olefin
US9968914B2 (en) 2012-12-26 2018-05-15 Kao Corporation Method for producing olefin
CN111530444A (en) * 2020-06-01 2020-08-14 中国科学院山西煤炭化学研究所 Catalyst for synthesizing long-chain alpha-olefin and preparation method and application thereof
CN111530444B (en) * 2020-06-01 2023-10-27 四川泸天化股份有限公司 Catalyst for synthesizing long-chain alpha-olefin, preparation method and application thereof

Also Published As

Publication number Publication date
JP5916506B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
JP6084963B2 (en) Method for producing 1,3-butadiene
RU2630300C2 (en) Method of obtaining acetic acid and dimethyl ether
RU2630675C2 (en) Catalyst and method of obtaining acetic acid and dimethyl ether
RU2673668C2 (en) Process for co-production of acetic acid and dimethyl ether
JP5914655B2 (en) Improved dehydration method
WO2014199349A2 (en) Metal impregnated amorphous silicates for the selective conversion of ethanol to butadiene
JP6909225B2 (en) Manufacturing method of oligosilane
JP2012502088A (en) Method for alkylating benzene with isopropanol or a mixture of isopropanol and propylene
JP6191696B2 (en) Method for producing isobutylene, method for producing methacrylic acid, and method for producing methyl methacrylate
EP3604260A1 (en) Single-stage method of butadiene production
JP5916506B2 (en) Olefin production method
EP2539304B1 (en) Process for preparing an alkene
JP5895705B2 (en) Propylene production method
JPWO2014129248A1 (en) Method for selectively producing 1,3-butadiene from ethanol
JP6076477B2 (en) Olefin production method and dehydration catalyst used therefor
AU2012220218B2 (en) Method for producing ethylene glycol through fluidized bed catalytic reaction of oxalate
JP2014210755A (en) Method for producing butadiene
US11717807B2 (en) Method for producing conjugated diene
JP4040375B2 (en) Method for producing α-olefin
JP2017530150A (en) Method for synthesizing 2,5-dichlorophenol
JP2017051941A (en) Catalyst for olefination reaction and method for producing olefin
JP2011016759A (en) Method for producing epoxy compound
SG183270A1 (en) Process for preparing an alkene
JP2017014133A (en) Manufacturing method of homoallyl alcohol
JP2020143017A (en) Method of producing terminal double bond-containing compound

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160405

R150 Certificate of patent or registration of utility model

Ref document number: 5916506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250