JP2013233541A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas Download PDF

Info

Publication number
JP2013233541A
JP2013233541A JP2012220739A JP2012220739A JP2013233541A JP 2013233541 A JP2013233541 A JP 2013233541A JP 2012220739 A JP2012220739 A JP 2012220739A JP 2012220739 A JP2012220739 A JP 2012220739A JP 2013233541 A JP2013233541 A JP 2013233541A
Authority
JP
Japan
Prior art keywords
exhaust gas
compound
catalyst
site
examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012220739A
Other languages
Japanese (ja)
Other versions
JP5805603B2 (en
Inventor
Hiromitsu Takagi
啓充 高木
Susumu Takahashi
進 高橋
Hiromu Watanabe
彦睦 渡邉
Akiko Sugioka
晶子 杉岡
Akira Abe
晃 阿部
Takahiro Furukawa
孝裕 古川
Keita Ishizaki
啓太 石崎
Naoki Oya
直樹 大矢
Takahiro Naka
貴弘 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Mitsui Mining and Smelting Co Ltd
Original Assignee
Honda Motor Co Ltd
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Mitsui Mining and Smelting Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012220739A priority Critical patent/JP5805603B2/en
Priority to CN201380019292.7A priority patent/CN104203402B/en
Priority to DE201311002020 priority patent/DE112013002020T5/en
Priority to IN2259MUN2014 priority patent/IN2014MN02259A/en
Priority to PCT/JP2013/057475 priority patent/WO2013153915A1/en
Publication of JP2013233541A publication Critical patent/JP2013233541A/en
Application granted granted Critical
Publication of JP5805603B2 publication Critical patent/JP5805603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/688Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2061Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/065Surface coverings for exhaust purification, e.g. catalytic reaction for reducing soot ignition temperature

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas purifying catalyst having excellent gas purification performance as well as burning purifying particulates in exhaust gas discharged from an internal combustion engine of an automobile or the like.SOLUTION: The present invention contains a complex oxide comprising a crystal having a DyMnOstructure, in which an A site contains Y and a B site contains Mn, the composition ratio between the B site and the A site (B/A) being greater than 2.

Description

本発明は自動車等の内燃機関から排出される排気ガスを浄化するために使用される排気ガス浄化用触媒に関する。   The present invention relates to an exhaust gas purifying catalyst used for purifying exhaust gas discharged from an internal combustion engine such as an automobile.

自動車等の内燃機関から排出される排ガス中には、炭化水素、一酸化炭素、窒素酸化物等の有害成分が含まれている。   The exhaust gas discharged from an internal combustion engine such as an automobile contains harmful components such as hydrocarbons, carbon monoxide, and nitrogen oxides.

また、ディーゼルエンジンから排出される排気ガスはパティキュレート(PM;粒子状物質)を含んでおり、これらの物質がそのまま大気中に放出されると大気汚染の原因になる。パティキュレートを取り除くための有効な手段として、ススを捕集するためのディーゼル・パティキュレート・フィルター(DPF)を用いたディーゼル排ガストラップシステムがある。   Further, exhaust gas discharged from a diesel engine contains particulates (PM; particulate matter), and if these materials are released into the atmosphere as they are, they cause air pollution. As an effective means for removing particulates, there is a diesel exhaust gas trap system using a diesel particulate filter (DPF) for collecting soot.

一方、ディーゼル排ガスの効率的な浄化のために、ディーゼル酸化触媒(DOC)をエンジンのできるだけ近傍に設置し、エンジンの熱を利用してガス浄化反応を促進することが試みられている。しかしながら、エンジン室内のスペースには限度があるため、DOCは小型化する必要があり、温度による効率向上と小型化することによる絶対的反応面積減少とのトレードオフが生じるという問題がある。   On the other hand, in order to efficiently purify diesel exhaust gas, attempts have been made to install a diesel oxidation catalyst (DOC) as close as possible to the engine and promote the gas purification reaction using the heat of the engine. However, since the space in the engine room is limited, it is necessary to reduce the size of the DOC, and there is a problem that a trade-off occurs between the efficiency improvement due to temperature and the reduction in the absolute reaction area due to the size reduction.

この解決策の一つとして、DPFにPM燃焼のみならず、ガス浄化性能の機能をも付加し、排ガス浄化システム全体でのパフォーマンスを向上することが考えられている。例えば、パティキュレートを燃焼浄化し、同時にNOxを還元浄化するパティキュレート酸化剤が提案されている(特許文献1参照)が、さらなる性能向上が求められている。   As one of the solutions, it is considered that not only PM combustion but also a function of gas purification performance is added to the DPF to improve the performance of the entire exhaust gas purification system. For example, a particulate oxidant that combusts and purifies particulates and simultaneously reduces and purifies NOx has been proposed (see Patent Document 1), but further performance improvement is required.

特開2003−334443号公報JP 2003-334443 A

本発明は自動車等の内燃機関から排出される排気ガスのパティキュレートを燃焼浄化すると共にガス浄化性能にも優れた排気ガス浄化用触媒を提供することを目的としている。   An object of the present invention is to provide an exhaust gas purifying catalyst that combusts and purifies particulates of exhaust gas discharged from an internal combustion engine such as an automobile and has excellent gas purification performance.

本発明者らは上記の目的を達成するために種々の物質を用いて種々の実験を行った結果、AサイトがYを含み、BサイトがMnを含む、DyMn構造をとる結晶からなり、BサイトとAサイトの組成比B/Aが2より大きい複酸化物が、パティキュレートを燃焼浄化すると共にガス浄化性能にも優れていることを見出し、本発明を完成した。 As a result of various experiments using various substances in order to achieve the above object, the present inventors have found that from a crystal having a DyMn 2 O 5 structure in which the A site contains Y and the B site contains Mn. Thus, the present inventors have found that a complex oxide having a B / A site composition ratio B / A larger than 2 is excellent in gas purification performance as well as combustion purification of particulates.

即ち、本発明の排気ガス浄化用触媒は、AサイトがYを含み、BサイトがMnを含む、DyMn構造をとる結晶からなり、BサイトとAサイトの組成比B/A>2である複酸化物を含むことを特徴とする。 That is, the exhaust gas purifying catalyst of the present invention comprises a crystal having a DyMn 2 O 5 structure in which the A site contains Y and the B site contains Mn, and the composition ratio B / A> 2 of the B site and the A site. It is characterized by including a double oxide.

ここで、DyMn構造をとる結晶からなり、BサイトとAサイトの組成比B/A>2である複酸化物とは、Bサイトの元素のうち化学量論比であるB/A=2を超えた部分である過剰分のBサイト元素が、少なくとも一部が結晶に固溶しているものをいう。なお、結晶内に固溶していることは、結晶の格子内に含有されるとも解釈され、同義である。 Here, a double oxide consisting of a crystal having a DyMn 2 O 5 structure and having a composition ratio B / A> 2 of the B site and the A site is B / A which is a stoichiometric ratio among the elements of the B site. = Excess B-site element that is a portion exceeding = 2 means that at least a part is in solid solution in the crystal. In addition, being dissolved in the crystal | crystallization is interpreted as containing in the crystal | crystallization lattice, and is synonymous.

また、本発明の排気ガス浄化用触媒は、Agを含有しているのが好ましく、また、Agの少なくとも一部が前記複酸化物の結晶に固溶しているのが好ましい。   Further, the exhaust gas purifying catalyst of the present invention preferably contains Ag, and at least a part of Ag is preferably dissolved in the double oxide crystal.

また、触媒支持体上に担持されている触媒層が前記複酸化物を含み、当該触媒層に、Agが担持されているのが好ましい。   Moreover, it is preferable that the catalyst layer supported on the catalyst support contains the double oxide, and Ag is supported on the catalyst layer.

さらに、触媒支持体上に担持されている触媒層が前記複酸化物を含み、当該触媒層に、Pt、Au、Pd及びRhから選択される少なくとも一種の元素が担持されているのが好ましい。   Furthermore, it is preferable that the catalyst layer supported on the catalyst support contains the double oxide, and at least one element selected from Pt, Au, Pd and Rh is supported on the catalyst layer.

本発明の排気ガス浄化用触媒はパティキュレートを燃焼浄化すると共にガス浄化性能にも優れているので、自動車等の内燃機関から排出される排気ガスを浄化するのに有効である。   The exhaust gas purifying catalyst of the present invention is effective in purifying exhaust gas discharged from an internal combustion engine such as an automobile, because the exhaust gas purifying catalyst of the present invention combusts and purifies particulates and is excellent in gas purification performance.

実施例1〜4、7および比較例1の排気ガス浄化用触媒のXRDを示すチャートである。2 is a chart showing XRDs of exhaust gas purifying catalysts of Examples 1 to 4 and 7 and Comparative Example 1; 実施例8〜11および比較例1の排気ガス浄化用触媒のXRDを示すチャートである。7 is a chart showing XRDs of exhaust gas purifying catalysts of Examples 8 to 11 and Comparative Example 1. 実施例12〜16および実施例4の排気ガス浄化用触媒のXRDを示すチャートである。7 is a chart showing XRD of exhaust gas purifying catalysts of Examples 12 to 16 and Example 4. 比較例1〜6の排気ガス浄化用触媒のXRDを示すチャートである。It is a chart which shows XRD of the exhaust gas purification catalyst of Comparative Examples 1-6.

以下に、本発明の排気ガス浄化用触媒について説明する。
本発明の排気ガス浄化用触媒は、AサイトがYを含み、BサイトがMnを含む、DyMn構造をとる結晶からなり、BサイトとAサイトの組成比B/A>2である複酸化物を含む。かかる複酸化物は、Bサイトの元素のうち化学量論比であるB/A=2を超えた部分である過剰分のBサイト元素が前記結晶に固溶しているものである。
The exhaust gas purifying catalyst of the present invention will be described below.
The exhaust gas purifying catalyst of the present invention is composed of a crystal having a DyMn 2 O 5 structure in which the A site contains Y and the B site contains Mn, and the composition ratio B / A> 2 of the B site and the A site. Includes double oxides. Such a double oxide is one in which an excess of B-site elements, which are portions exceeding the stoichiometric ratio B / A = 2, of the B-site elements are dissolved in the crystal.

ここで、DyMn構造をとる結晶からなる複酸化物とは、XRDパターンが、空間群Pbamに含まれる、マンガン酸ジスプロシウム構造(DyMn構造、ICSD(Inorganic crystal structure database)参照)をとる結晶として同定されることをいう。また、DyMn構造をとる結晶からなる複酸化物は、一般式ABとして示される。 Here, the double oxide composed of a crystal having a DyMn 2 O 5 structure is a dysprosium manganate structure whose XRD pattern is included in the space group Pbam (see DyMn 2 O 5 structure, ICSD (Inorganic crystal structure database)). It is identified as a crystal that takes Furthermore, mixed oxide of crystalline taking DyMn 2 O 5 structure is shown as a general formula AB 2 O 5.

そして、本発明の複酸化物は、AサイトがYを含み、BサイトがMnを含み、BサイトとAサイトの組成比B/A>2と化学量論比からずれてBサイトが過剰となったものであり、過剰分のBサイト元素の少なくとも一部が前記結晶に固溶しているものである。   In the double oxide of the present invention, the A site contains Y, the B site contains Mn, the B site and the A site have a composition ratio B / A> 2, and the B site is excessive from the stoichiometric ratio. And at least a part of the excess B-site element is dissolved in the crystal.

ここで、過剰分のBサイト元素が前記結晶に固溶しているものとは、Bサイトの元素が化学量論比からずれて過剰となっているが、XRDパターンでは、DyMn構造のピークが観察され、且つAサイト元素と比較してイオン半径が小さいBサイト元素が固溶していることによって、XRDピークの2θにずれが見られるものをいう。このとき、Bサイトの元素を含み且つDyMnに帰属できないピークが観測された場合も、DyMnに帰属されるXRDピークの2θのずれが見られれば、過剰分のBサイトの元素の少なくとも一部が結晶の格子内に固溶しているとみなされる。 Here, the element in which the excess B-site element is dissolved in the crystal means that the B-site element is excessively shifted from the stoichiometric ratio, but in the XRD pattern, the DyMn 2 O 5 structure And the BRD element having an ionic radius smaller than that of the A-site element is dissolved in a solid solution, so that a shift is observed in 2θ of the XRD peak. In this case, even if the peak can not be attributed to and DyMn 2 O 5 comprises an element in the B site was observed, as long observed deviation of 2θ of XRD peak attributed to DyMn 2 O 5, of excess B-site It is considered that at least a part of the element is dissolved in the crystal lattice.

なお、本発明の排気ガス浄化用触媒は、このようなBサイトが過剰となった複酸化物と共に、Bサイトを構成する元素の酸化物、例えば、酸化マンガンが共存していてもよく、これも本発明に包含される。   The exhaust gas purifying catalyst of the present invention may coexist with an oxide of an element constituting the B site, for example, manganese oxide, together with the double oxide in which the B site is excessive. Are also encompassed by the present invention.

また、本発明の排気ガス浄化用触媒は、Agを含有してもよい。Agを含有するとは、前記複酸化物と共にAgが共存していることをいうが、Agの少なくとも一部が前記複酸化物の結晶に固溶していてもよい。   Further, the exhaust gas purifying catalyst of the present invention may contain Ag. “Containing Ag” means that Ag coexists with the double oxide, but at least a part of Ag may be dissolved in the crystal of the double oxide.

ここで、Agの少なくとも一部が前記結晶に固溶しているとは、XRDパターンにおける金属Agのピーク強度が、含有量の絶対値から推定される強度よりも明らかに小さいことを示す。   Here, the fact that at least a part of Ag is dissolved in the crystal means that the peak intensity of metal Ag in the XRD pattern is clearly smaller than the intensity estimated from the absolute value of the content.

このような本発明の複酸化物は、例えば、以下のようにして製造することができる。   Such a double oxide of the present invention can be produced, for example, as follows.

製造方法の一例を、AサイトがY、BサイトがMnである複酸化物の製造を例にとって説明する。   An example of the production method will be described by taking as an example the production of a complex oxide in which the A site is Y and the B site is Mn.

製造方法の一例としては、YとMnとを含む溶液に沈殿剤を添加して、YとMnとが原子比Mn/Y>2で含有される沈殿物を得て、これを乾燥、焼成することにより複酸化物YMOを得る方法を挙げることができる。ここで、化学量論比のYMnの他、化学量論比からずれた組成のものも総称してYMOと表記するものとする。 As an example of the manufacturing method, a precipitant is added to a solution containing Y and Mn to obtain a precipitate containing Y and Mn at an atomic ratio Mn / Y> 2, and this is dried and fired. Thus, a method of obtaining a double oxide YMO can be mentioned. Here, in addition to the stoichiometric ratio YMn 2 O 5 , those having a composition deviating from the stoichiometric ratio are also collectively referred to as YMO.

また、複酸化物の製造をMn/Yの比を化学量論比で行い、その後に過剰分のMnを担持処理してもよい。   Alternatively, the composite oxide may be produced by performing the Mn / Y ratio in a stoichiometric ratio, and thereafter, an excess amount of Mn may be supported.

Agの担持は、硝酸銀塩などを用いた蒸発乾固か金属Agを用いた乾式混合などの方法で実施してもよい。   The support of Ag may be performed by a method such as evaporation to dryness using silver nitrate or dry mixing using metal Ag.

上記それぞれの製造方法で用いたY化合物を、La化合物、Sr化合物、Ce化合物、Ba化合物、Ca化合物、Sc化合物、Ho化合物、Er化合物、Tm化合物、Yb化合物、Lu化合物及びBi化合物からなる群から選ばれた化合物の1種以上で、Y化合物のY原子を置き換えて上記の製造方法を実施することにより複酸化物(Y1−x)Mn2+y(式中、AはLa、Sr、Ce、Ba、Ca、Sc、Ho、Er、Tm、Yb、Lu又はBiであり、1>x>0、y>0である)を製造することができる。 Y compound used in each of the above production methods is a group consisting of La compound, Sr compound, Ce compound, Ba compound, Ca compound, Sc compound, Ho compound, Er compound, Tm compound, Yb compound, Lu compound and Bi compound. The compound (Y 1-x A x ) Mn 2 + y O 5 (wherein A is La) is carried out by replacing the Y atom of the Y compound with one or more compounds selected from , Sr, Ce, Ba, Ca, Sc, Ho, Er, Tm, Yb, Lu, or Bi, and 1>x> 0, y> 0).

上記それぞれの製造方法で用いたMn化合物を、Co化合物、Fe化合物、Ni化合物、Cr化合物、Mg化合物、Ti化合物、Nb化合物、Ta化合物、Ru化合物及びCu化合物からなる群から選ばれた化合物の1種以上で、Mn化合物のMn原子の半量以下の原子の量となるように置き換えて上記の製造方法を実施することにより複酸化物Y(Mn1−z2+y(式中、BはCo、Fe、Ni、Cr、Mg、Ti、Nb、Ta、Ru又はCuであり、y>0、0.5≧z>0である)を製造することができる。 The Mn compound used in each of the above production methods is a compound selected from the group consisting of Co compound, Fe compound, Ni compound, Cr compound, Mg compound, Ti compound, Nb compound, Ta compound, Ru compound and Cu compound. By carrying out the above production method by substituting one or more kinds so that the amount of atoms is less than half the amount of Mn atoms of the Mn compound, double oxide Y (Mn 1-z B z ) 2 + y O 5 (wherein , B is Co, Fe, Ni, Cr, Mg, Ti, Nb, Ta, Ru, or Cu, and y> 0 and 0.5 ≧ z> 0).

更に、上記の製造方法で用いたY化合物を、La化合物、Sr化合物、Ce化合物、Ba化合物、Ca化合物、Sc化合物、Ho化合物、Er化合物、Tm化合物、Yb化合物、Lu化合物及びBi化合物からなる群から選ばれた化合物の1種以上で、Y化合物のY原子を置き換え、Mn化合物を、Co化合物、Fe化合物、Ni化合物、Cr化合物、Mg化合物、Ti化合物、Nb化合物、Ta化合物、Ru化合物及びCu化合物からなる群から選ばれた化合物の1種以上で、Mn化合物のMn原子の半量以下の原子の量となるように置き換えて上記の製造方法を実施することにより複酸化物(Y1−x)(Mn1−z2+y(式中、AはLa、Sr、Ce、Ba、Ca、Sc、Ho、Er、Tm、Yb、Lu又はBiであり、BはCo、Fe、Ni、Cr、Mg、Ti、Nb、Ta、Cu又はRuであり、1>x>0であり、y>0であり、0.5≧z>0である)を製造することができる。 Further, the Y compound used in the above production method is composed of La compound, Sr compound, Ce compound, Ba compound, Ca compound, Sc compound, Ho compound, Er compound, Tm compound, Yb compound, Lu compound and Bi compound. The Y atom of the Y compound is replaced with one or more compounds selected from the group, and the Mn compound is replaced with a Co compound, Fe compound, Ni compound, Cr compound, Mg compound, Ti compound, Nb compound, Ta compound, Ru compound. and at least one compound selected from the group consisting of Cu compounds, double oxide by replacing such that the amount of half or less of atoms of Mn atoms of Mn compound implementing the above manufacturing method (Y 1 during -x A x) (Mn 1- z B z) 2 + y O 5 ( wherein, A is La, Sr, Ce, Ba, Ca, Sc, Ho, Er, Tm, Yb, Lu or i, B is Co, Fe, Ni, Cr, Mg, Ti, Nb, Ta, Cu or Ru, 1>x> 0, y> 0, 0.5 ≧ z> 0 Can be manufactured).

ここで、AサイトのYを置き換える原子として列挙したLa、Sr、Ce、Ba、Ca、Sc、Ho、Er、Tm、Yb、Lu又はBiは、Yを置き換え得るイオン半径を有したものであるが、この中でも特に、Yのイオン半径に対して±10%以内のイオン半径を有する、La、Ce、Ca、Sc、Ho、Er、Tm、Yb、Lu又はBiが安定的に置換できることから好ましい。   Here, La, Sr, Ce, Ba, Ca, Sc, Ho, Er, Tm, Yb, Lu, or Bi listed as atoms replacing Y at the A site have an ionic radius that can replace Y. However, among these, La, Ce, Ca, Sc, Ho, Er, Tm, Yb, Lu, or Bi having an ionic radius within ± 10% with respect to the ionic radius of Y can be stably substituted. .

また、BサイトのMnを置き換える原子として列挙したCo、Fe、Ni、Cr、Mg、Ti、Nb、Ta、Cu又はRuは、Mnを置き換え得るイオン半径を有しているものであるが、この中でも特に、Mnのイオン半径に対して±10%以内のイオン半径を有する、Co、Fe、Ni、Cr、Mg、Ti又はCuが安定的に置換できることから好ましい。   Further, Co, Fe, Ni, Cr, Mg, Ti, Nb, Ta, Cu or Ru listed as atoms replacing Mn at the B site have an ionic radius that can replace Mn. Among these, Co, Fe, Ni, Cr, Mg, Ti or Cu having an ionic radius within ± 10% with respect to the ionic radius of Mn is particularly preferable because it can be stably replaced.

一般式(Y1−x)(Mn1−z2+y(式中、AはLa、Sr、Ce、Ba、Ca、Sc、Ho、Er、Tm、Yb、Lu又はBiであり、BはCo、Fe、Ni、Cr、Mg、Ti、Nb、Ta、Ru又はCuであり、1>x≧0であり、y>0であり、0.5≧z≧0である)で示される複酸化物は上記の全ての複酸化物を包含する。 In the general formula (Y 1-x A x) (Mn 1-z B z) 2 + y O 5 ( wherein, A is La, Sr, Ce, Ba, Ca, Sc, Ho, Er, Tm, Yb, Lu , or Bi And B is Co, Fe, Ni, Cr, Mg, Ti, Nb, Ta, Ru or Cu, 1> x ≧ 0, y> 0, and 0.5 ≧ z ≧ 0. ) Includes all the above-mentioned double oxides.

本発明の複酸化物は、触媒支持体上に担持されている触媒層として用いるのが好ましい。   The double oxide of the present invention is preferably used as a catalyst layer supported on a catalyst support.

ここで、触媒支持体は、例えば、セラミックス又は金属材料からなる。また、触媒支持体の形状は、特に限定されるものではないが、一般的にはハニカム形状、板、ペレット、DPF等の形状であり、好ましくはハニカム又はDPFである。また、このような触媒支持体の材質としては、例えば、アルミナ(Al)、ムライト(3Al−2SiO)、コージェライト(2MgO−2Al−5SiO)、チタン酸アルミニウム(AlTiO)、炭化ケイ素(SiC)等のセラミックスや、ステンレス等の金属材料を挙げることができる。 Here, the catalyst support is made of, for example, ceramics or a metal material. The shape of the catalyst support is not particularly limited, but is generally a honeycomb shape, a plate, a pellet, a DPF or the like, and preferably a honeycomb or a DPF. The material of such a catalyst support, e.g., alumina (Al 2 O 3), mullite (3Al 2 O 3 -2SiO 2) , cordierite (2MgO-2Al 2 O 3 -5SiO 2), titanate Examples thereof include ceramics such as aluminum (Al 2 TiO 5 ) and silicon carbide (SiC), and metal materials such as stainless steel.

また、Ag、Pt、Au、Pd、Rh、Cu及びMnからなる群から選択される少なくとも一種の元素を触媒層に担持することにより、パティキュレートの燃焼浄化性能とガス浄化性能がより向上する。また、担持された金属元素の量が金属元素+担体の合計質量基準で0.01〜20%好ましくは0.1〜10%とすることにより、排気ガス浄化性能が向上する。   Further, by supporting at least one element selected from the group consisting of Ag, Pt, Au, Pd, Rh, Cu, and Mn on the catalyst layer, the combustion purification performance and gas purification performance of the particulates are further improved. Further, the amount of the supported metal element is 0.01 to 20%, preferably 0.1 to 10%, based on the total mass of the metal element and the support, so that the exhaust gas purification performance is improved.

また、Ag、Pt、Au、Pd、Rh、Cu及びMnからなる群から選択される少なくとも一種の元素を担持した触媒層を上記の触媒支持体の表面に設けることもできる。即ち、セラミックス又は金属材料からなる触媒支持体と、該触媒支持体上に担持されている複酸化物と、該複酸化物に担持されているAg、Pt、Au、Pd、Rh、Cu及びMnからなる群から選択される少なくとも一種の元素とを有する構成のパティキュレートの燃焼浄化性能とガス浄化性能に優れた排気ガス浄化用触媒とすることもできる。   Further, a catalyst layer carrying at least one element selected from the group consisting of Ag, Pt, Au, Pd, Rh, Cu and Mn can be provided on the surface of the catalyst support. That is, a catalyst support made of a ceramic or metal material, a double oxide supported on the catalyst support, and Ag, Pt, Au, Pd, Rh, Cu and Mn supported on the double oxide An exhaust gas purifying catalyst excellent in combustion purification performance and gas purification performance of particulates having a structure having at least one element selected from the group consisting of

以下に、実施例及び比較例に基づいて本発明を具体的に説明する。   Hereinafter, the present invention will be described in detail based on examples and comparative examples.

実施例1〜7および比較例1
金属濃度が既知の、硝酸イットリウム溶液と、硝酸マンガン溶液をYとMnとがMn/Y=2となるようにそれぞれ混合し、最終的に得られるYMOが50g/Lとなるようにイオン交換水で濃度調整したものを原料液とした。2.5%NH水溶液26.59mLと、30%過酸化水素水11.33mLとを混合した水溶液にイオン交換水を加えて265.9mLに調整し沈殿剤とした。その後原料液に沈殿剤を滴下し沈殿を生成し、得られた沈殿物をろ過し、洗浄した後、加熱して粉末を得た。
Examples 1-7 and Comparative Example 1
An yttrium nitrate solution with a known metal concentration and a manganese nitrate solution are mixed so that Y and Mn are Mn / Y = 2, respectively, and ion-exchanged water is obtained so that the final YMO is 50 g / L. The solution whose concentration was adjusted in step 1 was used as a raw material solution. Ion-exchanged water was added to an aqueous solution obtained by mixing 26.59 mL of 2.5% NH 3 aqueous solution and 11.33 mL of 30% hydrogen peroxide solution to prepare a precipitant. Thereafter, a precipitant was added dropwise to the raw material liquid to form a precipitate. The obtained precipitate was filtered, washed, and then heated to obtain a powder.

硝酸銀0.124gに水37.5gを加え、攪拌して硝酸銀水溶液とし、さらに表1に示す過剰分Mnが含有されるように硝酸マンガンを添加して水溶液とし、各水溶液に上記で得られた粉末を1.5gずつ投入し、加熱して、実施例1〜7および、比較例1の排気ガス浄化用触媒を得た。得られた排気ガス浄化用触媒のAg担持量は金属Ag+担体の合計質量基準で5.57質量%であった。   37.5 g of water was added to 0.124 g of silver nitrate and stirred to obtain an aqueous silver nitrate solution. Further, manganese nitrate was added so as to contain the excess Mn shown in Table 1 to obtain an aqueous solution. The powder was added in an amount of 1.5 g and heated to obtain exhaust gas purifying catalysts of Examples 1 to 7 and Comparative Example 1. The amount of Ag supported on the obtained exhaust gas purification catalyst was 5.57% by mass based on the total mass of metal Ag + carrier.

ここで、過剰分のMn(at%)は、Y:Mn=1:2の場合のマンガン量に対して過剰に含有されるマンガン量であり、例えば、Y:Mn=1:2.2の場合、Mn過剰量は、10at%となる。   Here, the excess amount of Mn (at%) is the amount of manganese contained excessively with respect to the amount of manganese in the case of Y: Mn = 1: 2, for example, Y: Mn = 1: 2.2 In this case, the excess amount of Mn is 10 at%.

実施例8〜11
金属濃度が既知の、硝酸イットリウム溶液と、硝酸マンガン溶液とをそれぞれ調製し、YとMnとが表1に示すMn過剰の割合となるようにそれぞれ混合し、最終的に得られるYMOが50g/Lとなるようにイオン交換水で濃度調整したものを原料液とした。一方、2.5%NH水溶液26.59mLと、30%過酸化水素水11.33mLとを混合した水溶液にイオン交換水を加えて265.9mLに調製し、沈殿剤とした。
Examples 8-11
An yttrium nitrate solution and a manganese nitrate solution with known metal concentrations are prepared and mixed so that Y and Mn are in a proportion of excess Mn as shown in Table 1, and the final YMO obtained is 50 g / A solution whose concentration was adjusted with ion-exchanged water so as to be L was used as a raw material liquid. On the other hand, ion-exchanged water was added to an aqueous solution in which 26.59 mL of 2.5% NH 3 aqueous solution and 11.33 mL of 30% hydrogen peroxide solution were mixed to prepare 265.9 mL, which was used as a precipitant.

その後、原料溶液に沈殿剤を滴下し、沈殿を生成し、沈殿物をろ過し、洗浄した後、加熱して粉末を得た。   Thereafter, a precipitant was added dropwise to the raw material solution to form a precipitate, the precipitate was filtered, washed, and then heated to obtain a powder.

硝酸銀0.124gにイオン交換水37.5gを加え、攪拌して硝酸銀水溶液としたものに、上記各粉末を1.5g投入し、加熱して実施例8〜11の排気ガス浄化用触媒を得た。得られた排気ガス浄化用触媒のAg担持量は金属Ag+担体の合計質量基準で5.57質量%であった。   Add 37.5 g of ion-exchanged water to 0.124 g of silver nitrate, stir into a silver nitrate aqueous solution, add 1.5 g of each of the above powders, and heat to obtain exhaust gas purifying catalysts of Examples 8-11. It was. The amount of Ag supported on the obtained exhaust gas purification catalyst was 5.57% by mass based on the total mass of metal Ag + carrier.

<XRD測定1>
実施例1〜4、7および比較例1の排気ガス浄化用触媒について大気中、700℃で30時間の耐久処理を行った後のXRDパターンを図1に示す。また、各実施例1〜11および比較例1のAg(220)面ピーク強度と、YMO(211)面ピーク強度との比を表1に併せて示す。
<XRD measurement 1>
FIG. 1 shows XRD patterns after the exhaust gas purifying catalysts of Examples 1 to 4 and 7 and Comparative Example 1 were subjected to an endurance treatment at 700 ° C. for 30 hours in the atmosphere. Table 1 also shows the ratio of the Ag (220) plane peak intensity and the YMO (211) plane peak intensity of each of Examples 1 to 11 and Comparative Example 1.

この結果、実施例1〜4、7および比較例1の排気ガス浄化用触媒は、DyMn構造をとる複酸化物であると同定された。実施例5、6についてのXRDは省略するが、同様にDyMn構造をとる複酸化物であると同定された。 As a result, the exhaust gas purifying catalysts of Examples 1 to 4 and 7 and Comparative Example 1 were identified as double oxides having a DyMn 2 O 5 structure. Omitted XRD for Example 5 and 6, was identified as a mixed oxide taking Similarly DyMn 2 O 5 structure.

また、実施例1〜4では、過剰分のMnに起因するピークが観察されず、且つDyMn構造に起因するピークが高角度側にシフトしていることから、過剰分のMnはすべて結晶に固溶していることが確認された。組成比Mn/Y=3.2、Mn/Y=3.6の実施例5、6および、組成比Mn/Y=3.7の実施例7では、酸化マンガン(Mn)のピークが観察され、過剰分のMnの一部が酸化マンガンとして複酸化物と共存することが確認されたが、DyMn構造に起因するピークの高角度側へのシフトが残存していることから、少なくとも過剰分の一部のMnは複酸化物の結晶に固溶していると考えられる。よって、この場合、複酸化物においてMn/Yは配合割合より多少小さくなっている。 Moreover, in Examples 1-4, since the peak resulting from excess Mn was not observed and the peak resulting from the DyMn 2 O 5 structure was shifted to the high angle side, all excess Mn It was confirmed that it was dissolved in the crystal. In Examples 5 and 6 where the composition ratio Mn / Y = 3.2 and Mn / Y = 3.6 and Example 7 where the composition ratio Mn / Y = 3.7, the peak of manganese oxide (Mn 2 O 3 ) It was confirmed that a part of the excess Mn coexisted with the double oxide as manganese oxide, but the shift to the high angle side of the peak due to the DyMn 2 O 5 structure remains. Therefore, it is considered that at least a part of the excess Mn is dissolved in the double oxide crystal. Therefore, in this case, Mn / Y in the double oxide is slightly smaller than the blending ratio.

さらに、実施例1〜7では、Agに帰属されるピークが同一量のAg量である比較例1のピークに比較して小さくなっており、これから、Agの少なくとも一部が結晶に固溶していると判断される。   Further, in Examples 1 to 7, the peak attributed to Ag is smaller than the peak of Comparative Example 1 having the same amount of Ag. From this, at least a part of Ag is dissolved in the crystal. It is judged that

また、実施例8〜11と比較例1の排気ガス浄化用触媒について大気中、700℃で30時間の耐久処理を行った後のXRDパターンを図2に示す。また、各実施例および比較例のAg(220)面ピーク強度と、YMO(211)面ピーク強度との比を表1に併せて示す。   Moreover, the XRD pattern after performing the endurance process for 30 hours at 700 degreeC in air | atmosphere about the exhaust gas purification catalyst of Examples 8-11 and the comparative example 1 is shown in FIG. Table 1 also shows the ratio of the Ag (220) plane peak intensity and the YMO (211) plane peak intensity of each Example and Comparative Example.

この結果、実施例8〜11の排気ガス浄化用触媒は、Y/Mn>2であるが、DyMn構造をとる複酸化物であると同定された。 As a result, the exhaust gas purifying catalysts of Examples 8 to 11 were identified as Y / Mn> 2, but a double oxide having a DyMn 2 O 5 structure.

また、実施例8〜11でも、過剰分のMnに起因するピークが観察されず、且つDyMn構造に起因するピークが高角度側にシフトしていることから、過剰分のMnは結晶に固溶していることが確認された。 Also, in Examples 8 to 11, no peak due to excess Mn was observed, and the peak due to DyMn 2 O 5 structure was shifted to the high angle side. It was confirmed that the solid solution was dissolved.

さらに、実施例8〜11でも、Agに帰属されるピークが同一量のAg量である比較例1のピークに比較して小さくなっており、これから、Agの少なくとも一部が複酸化物の結晶に固溶していると判断される。   Furthermore, also in Examples 8 to 11, the peak attributed to Ag is smaller than the peak of Comparative Example 1 having the same amount of Ag. From this, at least a part of Ag is a crystal of a double oxide. It is judged that it is in solid solution.

実施例12〜20
硝酸イットリウム溶液と硝酸マンガン溶液と硝酸ランタン溶液を用いて、YとLaとが表2のa欄に示す比となると共に(Y+La)とMnとが表2のb欄に示す比となるようにそれぞれ混合した以外は、実施例1と同様にして、(Y1−xLa)Mn2+yの複酸化物からなる実施例12〜20の排気ガス浄化用触媒を得た。得られた排気ガス浄化用触媒のAg担持量は金属Ag+担体の合計質量基準で5.57質量%であった。
Examples 12-20
Using an yttrium nitrate solution, a manganese nitrate solution, and a lanthanum nitrate solution, Y and La have the ratio shown in column a of Table 2, and (Y + La) and Mn have the ratio shown in column b of Table 2. except that mixed respectively, in the same manner as in example 1 to give the (Y 1-x La x) Mn 2 + y O 5 exhaust gas purifying catalyst of example 12 to 20 comprising a mixed oxide of. The amount of Ag supported on the obtained exhaust gas purification catalyst was 5.57% by mass based on the total mass of metal Ag + carrier.

比較例2〜6
硝酸イットリウム溶液と硝酸マンガン溶液と硝酸ランタン溶液を用いて、YとLaとが実施例12〜16と同様になると共に(Y+La)とMnとがMn/(Y+La)=2となるようにそれぞれ混合し、硝酸銀水溶液を添加する工程では過剰分のMnを添加しない以外は、実施例12〜16と同様にして、(Y1−xLa)Mnの複酸化物からなる比較例2〜6の排気ガス浄化用触媒を得た。得られた排気ガス浄化用触媒のAg担持量は金属Ag+担体の合計質量基準で5.57質量%であった。
Comparative Examples 2-6
Using an yttrium nitrate solution, a manganese nitrate solution, and a lanthanum nitrate solution, Y and La are the same as in Examples 12 to 16, and (Y + La) and Mn are mixed so that Mn / (Y + La) = 2. In the step of adding the aqueous silver nitrate solution, Comparative Example 2 comprising a double oxide of (Y 1-x La x ) Mn 2 O 5 was carried out in the same manner as in Examples 12 to 16, except that excess Mn was not added. ~ 6 exhaust gas purifying catalysts were obtained. The amount of Ag supported on the obtained exhaust gas purification catalyst was 5.57% by mass based on the total mass of metal Ag + carrier.

<XRD測定2>
実施例12〜16および実施例4の排気ガス浄化用触媒について大気中、700℃で30時間の耐久処理を行った後のXRDパターンを図3に示す。また、比較例1〜6の排気ガス浄化用触媒について同様に測定したXRDパターンを図4に示す。
<XRD measurement 2>
FIG. 3 shows XRD patterns after endurance treatment at 700 ° C. for 30 hours in the atmosphere for the exhaust gas purifying catalysts of Examples 12 to 16 and Example 4. Moreover, the XRD pattern measured similarly about the exhaust gas purification catalyst of Comparative Examples 1-6 is shown in FIG.

この結果、Mn過剰の実施例12〜16についてDyMn構造に起因するピークが確認された。実施例17〜20についても同様な結果が確認された。 As a result, a peak attributable to the DyMn 2 O 5 structure was confirmed for Examples 12 to 16 in which Mn was excessive. Similar results were confirmed for Examples 17-20.

また、Mnが過剰ではない比較例2〜6については、DyMn構造に起因するピークが同一La置換量の実施例12〜16と比較して小さくなることが確認され、アモルファス成分が増加することがわかった。これは、Mn過剰でないと、DyMn構造の結晶に成長し難くなることを示している。 As for Comparative Examples 2 to 6 Mn is not excessive, DyMn 2 O 5 peaks due to the structure is confirmed that smaller compared with Example 12 to 16 of the same La substitution amount, increased amorphous component I found out that This indicates that it is difficult to grow into a crystal having a DyMn 2 O 5 structure unless Mn is excessive.

さらに、実施例12〜16のDyMn構造に起因するピークは、高角度側へのシフトが残存していることが確認された。このことから、少なくとも過剰分の一部のMnは複酸化物の結晶に固溶していると考えられる。よって、この場合、複酸化物においてMn/(Y+La)は表2の配合割合の表記より多少小さくなっている。また、実施例17〜20についても同様な結果が確認された。 Furthermore, it was confirmed that the peaks due to the DyMn 2 O 5 structures of Examples 12 to 16 remained shifted to the high angle side. From this, it is considered that at least a part of the excess Mn is dissolved in the double oxide crystal. Therefore, in this case, Mn / (Y + La) in the double oxide is somewhat smaller than the notation of the blending ratio in Table 2. Moreover, the same result was confirmed also about Examples 17-20.

さらに、実施例12〜20では、Agに帰属されるピークが同一のAg担持量であり、かつ同一のLa置換量である比較例2〜6のピークと比較して小さくなっており、これから、Agの少なくとも一部が結晶に固溶していると判断される。   Furthermore, in Examples 12 to 20, the peak attributed to Ag is the same Ag loading, and is smaller than the peaks of Comparative Examples 2 to 6 having the same La substitution amount. It is judged that at least a part of Ag is dissolved in the crystal.

<固定床模擬ガス浄化性能評価試験1>
実施例1〜20および比較例1、5、6の排気ガス浄化用触媒について大気中、700℃で30時間の耐久処理を行った後の排気ガス浄化用触媒の触媒活性を以下のようにして評価した。
<Fixed bed simulation gas purification performance evaluation test 1>
Regarding the exhaust gas purifying catalysts of Examples 1 to 20 and Comparative Examples 1, 5, and 6, the catalytic activity of the exhaust gas purifying catalyst after the endurance treatment at 700 ° C. for 30 hours in the atmosphere is as follows. evaluated.

まず、固定床流通型反応装置を用い、反応管に触媒粉を0.1gセットし、下記表3の組成から成る模擬排気ガスを1L/minで流通させ、500℃まで昇温後10分間保持し、前処理を行った。その後、一旦冷却後、100℃〜500℃まで10℃/minで昇温し、100〜500℃における出口ガス成分をCO/HC/NO分析計を用いて測定した。得られた浄化性能評価結果より、CO及びHCの50%浄化率に到達する温度(T50)及び400℃におけるNOの浄化率を求めた。その結果は表1および表2に示す通りであった。なお、浄化されたNOのほとんどはNOに転化していることがわかった。 First, using a fixed bed flow type reactor, 0.1 g of catalyst powder was set in a reaction tube, simulated exhaust gas having the composition shown in Table 3 below was passed at 1 L / min, heated to 500 ° C. and held for 10 minutes. Then, pretreatment was performed. Then, after cooling, the temperature was raised from 100 ° C. to 500 ° C. at 10 ° C./min, and the outlet gas component at 100 to 500 ° C. was measured using a CO / HC / NO analyzer. From the obtained purification performance evaluation results, the temperature at which the CO and HC 50% purification rate (T50) and the NO purification rate at 400 ° C. were obtained. The results were as shown in Tables 1 and 2. Incidentally, most of the clarified NO was found to be converted to NO 2.

表1および表2には、700℃で30時間の耐久処理後の比表面積(BET法で測定)をあわせて示す。   Tables 1 and 2 also show specific surface areas (measured by the BET method) after endurance treatment at 700 ° C. for 30 hours.

この結果、Mnが過剰となっている実施例1〜11の排気ガス浄化用触媒は、比較例1と比較して触媒活性が向上していることがわかった。また、Mnが50at%過剰までは過剰量が大きいほど触媒活性が向上するが、60at%、80at%、85at%過剰の実施例5、6、7では、実施例4より触媒活性が低下しており、Mnの過剰量は、2〜85at%、好ましくは、5〜50at%がよいことがわかった。   As a result, it was found that the exhaust gas purifying catalysts of Examples 1 to 11 in which Mn was excessive had improved catalytic activity as compared with Comparative Example 1. Further, the catalyst activity improves as the excess amount increases until Mn exceeds 50 at%. However, in Examples 5, 6, and 7 in which 60 at%, 80 at%, and 85 at% excess, the catalyst activity is lower than that in Example 4. The excess amount of Mn was found to be 2 to 85 at%, preferably 5 to 50 at%.

また、AサイトのYの一部をLaで置換した実施例12〜20に関しても、同一La置換量である比較例2〜比較例6と比較して触媒活性が向上していることがわかった。代表例として実施例15、16と比較例5、6の値を表2に示す。   Moreover, also about Examples 12-20 which substituted a part of Y of A site with La, it turned out that the catalyst activity is improving compared with the comparative example 2-comparative example 6 which is the same La substitution amount. . Table 2 shows values of Examples 15 and 16 and Comparative Examples 5 and 6 as representative examples.

<スス燃焼性評価試験>
実施例1〜20の排気ガス浄化用触媒のパティキュレート燃焼性は従来使われているPt担持アルミナよりも優れていた。
<Soot flammability evaluation test>
The particulate flammability of the exhaust gas purifying catalysts of Examples 1 to 20 was superior to that of conventionally used Pt-supported alumina.

Figure 2013233541
Figure 2013233541

Figure 2013233541
Figure 2013233541

Figure 2013233541
Figure 2013233541

実施例21、22
Agの担持量をAg+担体の合計質量基準で0質量%、2質量%とした以外は、実施例4と同様にして実施例21、22の排気ガス浄化用触媒を得た。
Examples 21 and 22
Exhaust gas purifying catalysts of Examples 21 and 22 were obtained in the same manner as in Example 4 except that the amount of Ag supported was 0% by mass and 2% by mass based on the total mass of Ag + carrier.

<固定床模擬ガス浄化性能評価試験2>
実施例21、22の排気ガス浄化用触媒について大気中、700℃で30時間の耐久処理を行った後、排気ガス浄化用触媒の触媒活性を固定床模擬ガス浄化性能評価試験で評価した。結果を表4に示す。この結果から、Agの担持により、排ガス浄化性能が向上することがわかった。また、Agの担持量は、Ag+担体の合計質量基準で1〜20質量%、好ましくは1〜10質量%とするのがよいこともわかっている。
<Fixed bed simulation gas purification performance evaluation test 2>
The exhaust gas purification catalysts of Examples 21 and 22 were subjected to an endurance treatment at 700 ° C. for 30 hours in the atmosphere, and then the catalytic activity of the exhaust gas purification catalyst was evaluated by a fixed bed simulated gas purification performance evaluation test. The results are shown in Table 4. From this result, it was found that the exhaust gas purification performance is improved by the support of Ag. It has also been found that the supported amount of Ag is 1 to 20% by mass, preferably 1 to 10% by mass, based on the total mass of Ag + carrier.

Figure 2013233541
Figure 2013233541

Claims (5)

AサイトがYを含み、BサイトがMnを含む、DyMn構造をとる結晶からなり、BサイトとAサイトの組成比B/Aが2より大きい複酸化物を含むことを特徴とする排気ガス浄化用触媒。 The A site includes Y and the B site includes Mn. The crystal has a DyMn 2 O 5 structure, and includes a multiple oxide having a B / A composition ratio B / A larger than 2. Exhaust gas purification catalyst. Agを含有していることを特徴とする請求項1に記載の排気ガス浄用触媒。   The exhaust gas purifying catalyst according to claim 1, comprising Ag. Agの少なくとも一部が前記複酸化物の結晶に固溶している請求項2に記載の排気ガス浄化用触媒。   The exhaust gas purifying catalyst according to claim 2, wherein at least a part of Ag is dissolved in the double oxide crystal. 触媒支持体上に担持されている触媒層が前記複酸化物を含み、当該触媒層に、Agが担持されている請求項1から請求項3の何れか1項に記載の排気ガス浄化用触媒。   The exhaust gas purifying catalyst according to any one of claims 1 to 3, wherein a catalyst layer supported on a catalyst support includes the double oxide, and Ag is supported on the catalyst layer. . 触媒支持体上に担持されている触媒層が前記複酸化物を含み、当該触媒層に、Pt、Au、Pd及びRhから選択される少なくとも一種の元素が担持されている請求項1から請求項4の何れか1項に記載の排気ガス浄化用触媒。   The catalyst layer supported on the catalyst support includes the double oxide, and at least one element selected from Pt, Au, Pd, and Rh is supported on the catalyst layer. 5. The exhaust gas purifying catalyst according to any one of 4 above.
JP2012220739A 2012-04-10 2012-10-02 Exhaust gas purification catalyst Active JP5805603B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012220739A JP5805603B2 (en) 2012-04-10 2012-10-02 Exhaust gas purification catalyst
CN201380019292.7A CN104203402B (en) 2012-04-10 2013-03-15 Exhaust gas purification catalyst
DE201311002020 DE112013002020T5 (en) 2012-04-10 2013-03-15 Catalyst for exhaust gas purification
IN2259MUN2014 IN2014MN02259A (en) 2012-04-10 2013-03-15
PCT/JP2013/057475 WO2013153915A1 (en) 2012-04-10 2013-03-15 Catalyst for purifying exhaust gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012089141 2012-04-10
JP2012089141 2012-04-10
JP2012220739A JP5805603B2 (en) 2012-04-10 2012-10-02 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2013233541A true JP2013233541A (en) 2013-11-21
JP5805603B2 JP5805603B2 (en) 2015-11-04

Family

ID=49327489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012220739A Active JP5805603B2 (en) 2012-04-10 2012-10-02 Exhaust gas purification catalyst

Country Status (5)

Country Link
JP (1) JP5805603B2 (en)
CN (1) CN104203402B (en)
DE (1) DE112013002020T5 (en)
IN (1) IN2014MN02259A (en)
WO (1) WO2013153915A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9993805B2 (en) 2014-04-17 2018-06-12 Mitsui Mining & Smelting Co., Ltd. Catalyst composition for purifying exhaust gas and exhaust gas purifying catalyst
US11633723B2 (en) 2017-11-17 2023-04-25 Mitsui Mining & Smelting Co., Ltd. Exhaust gas purging composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170095794A1 (en) * 2015-10-01 2017-04-06 Clean Diesel Technologies, Inc. NO Oxidation Activity of Pseudo-brookite Compositions as Zero-PGM Catalysts for Diesel Oxidation Applications
CN110433794B (en) * 2019-08-15 2020-10-30 南开大学 General formula AM2O5-xApplication of compound as catalyst for catalyzing VOC combustion
CN115739073A (en) * 2022-11-28 2023-03-07 深圳市蓝美蓝科技有限公司 Catalyst, preparation method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10130338A1 (en) * 2001-06-26 2003-04-24 Forschungszentrum Juelich Gmbh Diesel soot filter with a finely dispersed diesel soot catalyst
JP2004041867A (en) * 2002-07-09 2004-02-12 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
CN1745879A (en) * 2004-09-09 2006-03-15 中国科学院兰州化学物理研究所 Carbon monoxide oxidation and selective oxidation Catalysts and its preparation method
CN201189306Y (en) * 2008-04-22 2009-02-04 北京瑞事达科技发展中心有限责任公司 Stainless steel delivery window
JP5436060B2 (en) * 2009-06-10 2014-03-05 本田技研工業株式会社 Oxidation catalyst equipment for exhaust gas purification
JP2011016684A (en) * 2009-07-08 2011-01-27 Hokkaido Univ Oxygen deficit perovskite-type metal oxide excellent in oxygen storage capability, exhaust gas purifying catalyst and functional ceramic containing the metal oxide, and method and apparatus using the metal oxide
JP5506478B2 (en) * 2010-03-16 2014-05-28 本田技研工業株式会社 Exhaust gas purification catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9993805B2 (en) 2014-04-17 2018-06-12 Mitsui Mining & Smelting Co., Ltd. Catalyst composition for purifying exhaust gas and exhaust gas purifying catalyst
US11633723B2 (en) 2017-11-17 2023-04-25 Mitsui Mining & Smelting Co., Ltd. Exhaust gas purging composition

Also Published As

Publication number Publication date
JP5805603B2 (en) 2015-11-04
IN2014MN02259A (en) 2015-07-24
DE112013002020T5 (en) 2015-04-16
CN104203402A (en) 2014-12-10
CN104203402B (en) 2016-01-06
WO2013153915A1 (en) 2013-10-17

Similar Documents

Publication Publication Date Title
US10766023B2 (en) Zeolite synthesis with alkaline earth metal
JP5864443B2 (en) Exhaust gas purification catalyst
JP5773337B2 (en) Oxidation catalyst and diesel particulate filter
JP5812987B2 (en) Catalyst for lean burn engine
JP5987010B2 (en) Method for treating a gas containing nitric oxide (NOx) using a composition containing zirconium, cerium and niobium as a catalyst
JP5864444B2 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
JP5805603B2 (en) Exhaust gas purification catalyst
JP5168193B2 (en) Particulate combustion catalyst, method for producing the same, and exhaust gas purifying filter
JP5791439B2 (en) Exhaust gas purification catalyst and carrier
JP4416788B2 (en) Exhaust gas purification catalyst
JP5278671B2 (en) PM oxidation catalyst, diesel particulate filter using the same, and method for producing PM oxidation catalyst
JP2012217931A (en) Catalyst for cleaning exhaust gas
JP5925668B2 (en) Exhaust gas purification catalyst
US10512899B2 (en) Noble metal-free catalyst compositions
JP2007144413A (en) Catalyst for cleaning exhaust gas
JP5610319B2 (en) Layered complex oxide, oxidation catalyst and diesel particulate filter
JP5585805B2 (en) PM oxidation catalyst and production method thereof
JP5412788B2 (en) Exhaust gas purification catalyst
JP2012196653A (en) Catalyst carrier, catalyst for purifying exhaust gas using the same, and method of purifying exhaust gas using the catalyst
JP5444755B2 (en) Exhaust gas purification catalyst
JP2004000880A (en) Catalyst for exhaust gas treatment and exhaust gas treatment method
JP2016203159A (en) Catalyst material for exhaust gas purification, method for producing the same, and particulate filter with the catalyst
JP2004330115A (en) Catalyst for cleaning exhaust gas and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140909

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150902

R150 Certificate of patent or registration of utility model

Ref document number: 5805603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250