JP2013232295A - Positive electrode for nonaqueous electrolyte secondary battery, manufacturing method therefor, and nonaqueous electrolyte secondary battery using positive electrode for nonaqueous electrolyte secondary battery - Google Patents

Positive electrode for nonaqueous electrolyte secondary battery, manufacturing method therefor, and nonaqueous electrolyte secondary battery using positive electrode for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2013232295A
JP2013232295A JP2012102659A JP2012102659A JP2013232295A JP 2013232295 A JP2013232295 A JP 2013232295A JP 2012102659 A JP2012102659 A JP 2012102659A JP 2012102659 A JP2012102659 A JP 2012102659A JP 2013232295 A JP2013232295 A JP 2013232295A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
electrolyte secondary
aluminum
dimensional porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012102659A
Other languages
Japanese (ja)
Other versions
JP6071241B2 (en
Inventor
Yuichi Tanaka
田中祐一
Yoichi Kojima
兒島洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky KK
Original Assignee
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky KK filed Critical Furukawa Sky KK
Priority to JP2012102659A priority Critical patent/JP6071241B2/en
Publication of JP2013232295A publication Critical patent/JP2013232295A/en
Application granted granted Critical
Publication of JP6071241B2 publication Critical patent/JP6071241B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode for nonaqueous electrolyte secondary battery in which lowering of electrode capacity is prevented by suppressing exfoliation of an active material when repeating charge/discharge cycle, and to provide a manufacturing method of a positive electrode for nonaqueous electrolyte secondary battery, and a nonaqueous electrolyte secondary battery using the positive electrode for nonaqueous electrolyte secondary battery.SOLUTION: In the positive electrode for nonaqueous electrolyte secondary battery having an electrode mixture containing a positive electrode active material capable of absorbing and desorbing lithium, a collector of three-dimensional porous aluminum has holes defined by a metal wall, and the holes are filled with the electrode mixture, and the metal wall is in contact with the electrode mixture via a coating film formed of a conductive additive and a polymeric binder. A manufacturing method of a positive electrode for nonaqueous electrolyte secondary battery, and a nonaqueous electrolyte secondary battery using the positive electrode for nonaqueous electrolyte secondary battery are also provided.

Description

本発明は、リチウムイオン電池やリチウムイオンポリマー二次電池に適した三次元多孔質アルミニウム集電体を用いた非水電解質二次電池の正極、当該非水電解質二次電池用正極の製造方法、ならびに、当該非水電解質二次電池用正極を用いた非水電解質二次電池に関する。   The present invention relates to a positive electrode for a nonaqueous electrolyte secondary battery using a three-dimensional porous aluminum current collector suitable for a lithium ion battery or a lithium ion polymer secondary battery, a method for producing the positive electrode for the nonaqueous electrolyte secondary battery, In addition, the present invention relates to a non-aqueous electrolyte secondary battery using the positive electrode for a non-aqueous electrolyte secondary battery.

近年、高エネルギー密度を有する等の理由から非水電解質二次電池、特にリチウムイオン二次電池やリチウムイオンポリマー二次電池の普及が拡大し、ハイブリッド型自動車や電気自動車にも用いられるようになり、更なる高出力化、高エネルギー密度化が要求されている。このような非水電解質二次電池は、一般に、リチウムを挿入脱離可能な正極と負極、微多孔性のセパレータ及びリチウム塩を含む非水電解質溶液によって構成される。   In recent years, non-aqueous electrolyte secondary batteries, in particular lithium ion secondary batteries and lithium ion polymer secondary batteries, have become widespread for reasons such as having high energy density, and have come to be used in hybrid vehicles and electric vehicles. Further, higher output and higher energy density are required. Such a non-aqueous electrolyte secondary battery is generally constituted by a non-aqueous electrolyte solution containing a positive and negative electrodes capable of inserting and removing lithium, a microporous separator, and a lithium salt.

正極材料や負極材料を担持する集電体(支持体)としては、アルミニウム箔や銅箔のような金属箔が一般的に用いられる。このような金属箔として、電極容量を大きくする目的で多孔質アルミニウム集電体が提案されている(特許文献1〜3)。   A metal foil such as an aluminum foil or a copper foil is generally used as a current collector (support) that supports the positive electrode material or the negative electrode material. As such a metal foil, a porous aluminum current collector has been proposed for the purpose of increasing the electrode capacity (Patent Documents 1 to 3).

特許文献1には、特徴的な金属骨格断面形状を有する多孔質アルミニウムに活物質を充填した高エネルギー密度の電極が記載されている。この多孔質アルミニウムは、アルミニウムと低融点の共晶合金を形成する金属皮膜を発泡樹脂の骨格に形成し、その上にアルミニウム粉末を付着させた後に、発泡樹脂を焼失させると共に金属同士を焼結させることによって得られる。
特許文献2には、高出力化及び高容量化のための電極として、不織布状ニッケルをクロマイジング処理しクロム含有率を25質量%以上とした不織布状ニッケルクロムの多孔質集電体が記載されている。
また、特許文献3には、チタンを焼結助剤とし、スラリー発泡法により作製した多孔質アルミニウムに微細炭素繊維を付着させた高エネルギー密度の集電体が記載されている。
Patent Document 1 describes a high energy density electrode in which porous aluminum having a characteristic metal skeleton cross-sectional shape is filled with an active material. This porous aluminum forms a metal film that forms a low-melting eutectic alloy with aluminum on the skeleton of foamed resin, and after depositing aluminum powder on it, the foamed resin is burned off and the metals are sintered together To obtain.
Patent Document 2 describes a non-woven nickel-chrome porous current collector having a chromium content of 25% by mass or more by chromizing non-woven nickel as an electrode for increasing output and capacity. ing.
Patent Document 3 describes a high energy density current collector in which fine carbon fibers are attached to porous aluminum produced by slurry foaming using titanium as a sintering aid.

しかしながら、従来の多孔質アルミニウムを利用した電極では、活物質の体積変化を伴う充放電サイクルを繰り返した際に活物質が脱落し、電極容量が低下するという問題があった。   However, the conventional electrode using porous aluminum has a problem that the active material falls off when the charge / discharge cycle accompanied by the volume change of the active material is repeated, and the electrode capacity decreases.

特開平8−170126号公報JP-A-8-170126 特開2009−176517号公報JP 2009-176517 A 特開2010−272427号公報JP 2010-272427 A

本発明は、充放電サイクルを繰り返した際における正極活物質の脱落を抑制し、電極容量の低下を防止した非水電解質二次電池用正極、当該非水電解質二次電池用正極の製造方法、ならびに、当該非水電解質二次電池用正極を用いた非水電解質二次電池の提供を目的とする。   The present invention suppresses falling off of the positive electrode active material when the charge / discharge cycle is repeated, and prevents a decrease in electrode capacity, a positive electrode for a nonaqueous electrolyte secondary battery, a method for producing the positive electrode for the nonaqueous electrolyte secondary battery, Another object is to provide a non-aqueous electrolyte secondary battery using the positive electrode for a non-aqueous electrolyte secondary battery.

本発明者等は鋭意検討した結果、上記課題は集電体と活物質との密着力に起因することを突き止めた。そこで、本発明者等は更に検討を重ね、正極活物質を含む電極合材を内包する三次元多孔質アルミニウムの空孔を画成する金属壁表面に、導電助剤と高分子結合剤の混合物からなる塗膜を形成し、この塗膜を介して正極活物質を含む電極合材を空孔内に配置することで、充放電サイクルを重ねても正極活物質が脱落せず、高い電極容量を維持できる電極が得られることを見出した。   As a result of intensive studies, the present inventors have found that the above problem is caused by the adhesion between the current collector and the active material. Therefore, the present inventors have further studied, and a mixture of a conductive additive and a polymer binder on the surface of the metal wall defining the pores of the three-dimensional porous aluminum containing the electrode mixture containing the positive electrode active material. The electrode active material containing the positive electrode active material is disposed in the pores through the coating film, so that the positive electrode active material does not fall off even after repeated charge / discharge cycles, and has a high electrode capacity. It has been found that an electrode capable of maintaining the above can be obtained.

すなわち、本発明は請求項1において、リチウムを吸蔵放出可能な正極活物質を含む電極合材を含有する非水電解質二次電池用正極であって、金属壁によって画成された空孔を有する三次元多孔質アルミニウムを集電体としてその空孔中に前記電極合材が充填されており、前記金属壁と電極合材とが導電助剤と高分子結合剤とから形成される塗膜を介して接触していることを特徴とする非水電解質二次電池用正極とした。   That is, the present invention is the positive electrode for a non-aqueous electrolyte secondary battery containing an electrode mixture containing a positive electrode active material capable of occluding and releasing lithium, and having a void defined by a metal wall. The electrode mixture is filled in the pores of a three-dimensional porous aluminum current collector, and the metal wall and the electrode mixture are formed of a conductive additive and a polymer binder. It was set as the positive electrode for nonaqueous electrolyte secondary batteries characterized by contacting through.

本発明は請求項2では請求項1において、前記三次元多孔質アルミニウムの単位体積当たりの前記塗膜の質量を0.001〜0.07g/cmとした。本発明は請求項3では請求項1又は2、前記塗膜における高分子結合剤に対する導電助剤の固形分としての質量比率を20〜80%とした。 According to a second aspect of the present invention, in the first aspect, the mass of the coating film per unit volume of the three-dimensional porous aluminum is 0.001 to 0.07 g / cm 3 . In the third aspect of the present invention, in the first or second aspect, the mass ratio of the conductive additive to the solid content of the polymer binder in the coating film is 20 to 80%.

本発明は請求項4において、導電助剤、高分子結合剤及び分散媒を含む懸濁液を、金属壁によって画成された空孔を有する三次元多孔質アルミニウムの集電体の内部に含浸させる工程と;前記懸濁液を内部に含浸させた三次元多孔質アルミニウムを乾燥して分散媒を飛散・蒸発させ、前記導電助剤と高分子結合剤とを含む塗膜を金属壁上に形成する工程と;リチウムを吸蔵放出可能な正極活物質を含む電極合材を溶媒に分散したスラリーを、前記塗膜が金属壁上に形成された三次元多孔質アルミニウムの内部に含浸させる工程と;前記スラリーを内部に含浸させた三次元多孔質アルミニウムを乾燥して溶媒を飛散・蒸発させ、前記塗膜を介して金属壁に接触するように電極合材を空孔中に充填する工程と;空孔中に電極合材が充填された三次元多孔質アルミニウムの集電体をプレス処理する工程と;を含むことを特徴とする非水電解質二次電池用正極の製造方法とした。   According to the present invention, in claim 4, a suspension containing a conductive additive, a polymer binder, and a dispersion medium is impregnated inside a three-dimensional porous aluminum current collector having pores defined by metal walls. Drying the three-dimensional porous aluminum impregnated with the suspension to disperse and evaporate the dispersion medium, and forming a coating film containing the conductive additive and the polymer binder on the metal wall. A step of impregnating a slurry in which an electrode mixture containing a positive electrode active material capable of occluding and releasing lithium in a solvent is impregnated in a three-dimensional porous aluminum in which the coating film is formed on a metal wall; Drying the three-dimensional porous aluminum impregnated with the slurry to disperse and evaporate the solvent, and filling the pores with the electrode mixture so as to contact the metal wall through the coating film; ; Tertiary filled with electrode mixture in pores And a positive electrode manufacturing method for a non-aqueous electrolyte secondary battery which comprises a; and a step of pressing the current collector of the porous aluminum.

本発明は請求項5では請求項4において、前記懸濁液において、高分子結合剤の固形分100質量部に対する導電助剤の固形分の比率を20〜80質量部とした。   According to a fifth aspect of the present invention, in the fourth aspect of the present invention, in the suspension, the ratio of the solid content of the conductive assistant to the solid content of 100 mass parts of the polymer binder is 20 to 80 mass parts.

本発明の請求項6に係る発明は、請求項1〜3のいずれか一項に記載の非水電解質二次電池用正極と、リチウムを吸蔵放出可能な負極と、これら正負極間に配置されたセパレータと、非水電解質とを備えたことを特徴とする非水電解質二次電池とした。   An invention according to claim 6 of the present invention is arranged between the positive electrode for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, a negative electrode capable of occluding and releasing lithium, and the positive and negative electrodes. A non-aqueous electrolyte secondary battery comprising a separator and a non-aqueous electrolyte was obtained.

本発明に係る非水電解質二次電池用正極では、三次元多孔質アルミニウム集電体の金属壁によって画成された空孔中に正極活物質を含む電極合材が充填されている。この電極合材は、導電助剤と結着剤とから形成される塗膜を介して金属壁と接触しつつ、この金属壁に包み込まれるように保持される。これによって、三次元多孔質アルミニウム集電体と電極合材との導電性が確保され、高電極容量が達成される。また、当該集電体による正極活物質の保持力が補強されるので正極活物質の脱落が抑制され、良好な充放電サイクル特性が達成される。更に、当該非水電解質二次電池用正極を用いることによって、高エネルギー密度の非水電解質二次電池が得られる。   In the positive electrode for a nonaqueous electrolyte secondary battery according to the present invention, the electrode mixture containing the positive electrode active material is filled in the pores defined by the metal wall of the three-dimensional porous aluminum current collector. The electrode mixture is held so as to be encased in the metal wall while in contact with the metal wall via a coating film formed from the conductive additive and the binder. Thereby, conductivity between the three-dimensional porous aluminum current collector and the electrode mixture is ensured, and a high electrode capacity is achieved. In addition, since the holding power of the positive electrode active material by the current collector is reinforced, dropping of the positive electrode active material is suppressed, and good charge / discharge cycle characteristics are achieved. Furthermore, a high energy density nonaqueous electrolyte secondary battery can be obtained by using the positive electrode for a nonaqueous electrolyte secondary battery.

本発明に用いる三次元多孔質アルミニウムの断面を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the cross section of the three-dimensional porous aluminum used for this invention.

A.非水電解質二次電池用正極
本発明に係る非水電解質二次電池用正極は、金属壁によって画成された空孔を有する三次元多孔質アルミニウムを集電体とする。そして、三次元多孔質アルミニウムの空孔中にリチウムを吸蔵放出可能な正極活物質を含む電極合材が充填されており、金属壁と電極合材とが導電助剤と高分子結合剤とから形成される塗膜を介して接触していることを特徴とする。
A. Positive electrode for non-aqueous electrolyte secondary battery The positive electrode for a non-aqueous electrolyte secondary battery according to the present invention uses, as a current collector, three-dimensional porous aluminum having pores defined by metal walls. An electrode mixture containing a positive electrode active material capable of occluding and releasing lithium is filled in the pores of the three-dimensional porous aluminum, and the metal wall and the electrode mixture are composed of a conductive additive and a polymer binder. It is characterized by contacting through the coating film to be formed.

1.三次元多孔質アルミニウム
図1に示すように、本発明に用いる三次元多孔質アルミニウムは、空孔1の周囲に金属粉末が焼結してできた壁を骨格とする多孔質焼結体である。空孔1同士はアルミニウムで構成される金属壁2(気泡膜面)によって隔てられ、金属壁2に開いた小孔3によって空孔1同士が連通している。空孔1内に充填される正極活物質を含む電極合材は、金属壁2によって包み込まれるように保持される。金属壁2の表面には、導電助剤と高分子結合剤とから成る塗膜が形成され、金属壁2と電極合材はこの塗膜を介して接触する。正極活物質を含む電極合材は、塗膜の密着力によって三次元多孔質アルミニウムに更に強固に保持される。また、塗膜を介して金属壁2と電極合材とが接触することで、塗膜を介した三次元多孔質アルミニウムと電極合材との電子電導に基づく導電性が確保される。
1. Three-dimensional porous aluminum As shown in FIG. 1, the three-dimensional porous aluminum used in the present invention is a porous sintered body having a wall made by sintering metal powder around the pores 1 as a skeleton. . The holes 1 are separated from each other by a metal wall 2 (bubble film surface) made of aluminum, and the holes 1 communicate with each other by a small hole 3 opened in the metal wall 2. The electrode mixture containing the positive electrode active material filled in the holes 1 is held so as to be wrapped by the metal wall 2. A coating film made of a conductive additive and a polymer binder is formed on the surface of the metal wall 2, and the metal wall 2 and the electrode mixture are in contact with each other through this coating film. The electrode mixture containing the positive electrode active material is more firmly held on the three-dimensional porous aluminum by the adhesion of the coating film. Moreover, the electrical conductivity based on the electronic conduction of the three-dimensional porous aluminum and electrode mixture through a coating film is ensured because the metal wall 2 and electrode mixture contact through a coating film.

1−1.形状
三次元多孔質アルミニウムの形状は、電極形状によってシート状や筒状などの任意の形状とすることができる。厚さは200μm〜2mm程度が好ましく、空孔径は10μm〜1mm程度が好ましい。ここで、空孔径とは、三次元多孔質アルミニウムの断面を観察さした際に、断面に現れた空孔の最大径をいうものとする。
1-1. Shape The shape of the three-dimensional porous aluminum can be an arbitrary shape such as a sheet shape or a cylindrical shape depending on the electrode shape. The thickness is preferably about 200 μm to 2 mm, and the pore diameter is preferably about 10 μm to 1 mm. Here, the pore diameter refers to the maximum diameter of pores appearing in the cross section when the cross section of the three-dimensional porous aluminum is observed.

1−2.気孔率
三次元多孔質アルミニウムの気孔率は、80〜95%が好ましい。ここで、三次元多孔質アルミニウムの気孔率p(%)は、下記式(1)によって算出される。
p=[{hv−(hw/2.7)}/hv]×100 (1)
ここで、hv:三次元多孔質アルミニウムの全体積(cm
hw:三次元多孔質アルミニウムの質量(g)
2.7:アルミニウム材の密度(g/cm)である。
1-2. Porosity The porosity of the three-dimensional porous aluminum is preferably 80 to 95%. Here, the porosity p (%) of the three-dimensional porous aluminum is calculated by the following formula (1).
p = [{hv− (hw / 2.7)} / hv] × 100 (1)
Where hv: total volume of three-dimensional porous aluminum (cm 3 )
hw: Mass of three-dimensional porous aluminum (g)
2.7: Density of aluminum material (g / cm 3 ).

2.塗膜
三次元多孔質アルミニウムの金属壁表面に設けられる塗膜は、三次元多孔質アルミニウムと電極合材との間の導電性を付与するための導電助剤と、電極合材の保持力を付与するための高分子結合剤の混合物から形成される。
2. The coating film provided on the surface of the metal wall of the three-dimensional porous aluminum has a conductive auxiliary agent for imparting conductivity between the three-dimensional porous aluminum and the electrode mixture, and the holding power of the electrode mixture. Formed from a mixture of polymeric binders for application.

2−1.塗膜量
塗膜量については、全塗膜量を三次元多孔質アルミニウムの全体積で割った値、すなわち、三次元多孔質アルミニウムの単位体積当たりの塗膜量として0.001〜0.07g/cmであるのが好ましい。この塗膜量により、塗膜を介した三次元多孔質アルミニウム集電体と電極合材との導電性、ならびに、正極活物質を含む電極合材の保持力を向上させることが出来る。塗膜量が、0.001g/cm未満では電極合剤の保持力が不十分となり、電池において充放電サイクルを繰り返した際に電極合剤の脱落が生じて電極容量が低下する場合がある。一方、塗膜量が、0.07g/cmを超えると、三次元多孔質アルミニウムの金属壁の小孔が塗膜によって閉塞する可能性が高くなり、三次元多孔質アルミニウムの空孔に電極合剤を充填することが困難になって電池容量が低下する場合がある。
2-1. The amount of coating film About the coating amount, the value obtained by dividing the total coating amount by the total volume of the three-dimensional porous aluminum, that is, 0.001 to 0.07 g as the coating amount per unit volume of the three-dimensional porous aluminum. / Cm 3 is preferred. The amount of the coating film can improve the conductivity between the three-dimensional porous aluminum current collector and the electrode mixture through the coating film, and the holding power of the electrode mixture containing the positive electrode active material. When the coating amount is less than 0.001 g / cm 3 , the holding power of the electrode mixture becomes insufficient, and when the charge / discharge cycle is repeated in the battery, the electrode mixture may drop out and the electrode capacity may decrease. . On the other hand, if the coating amount exceeds 0.07 g / cm 3 , there is a high possibility that the small holes in the metal wall of the three-dimensional porous aluminum are blocked by the coating film, and the electrodes are formed in the pores of the three-dimensional porous aluminum. It may be difficult to fill the mixture, and the battery capacity may decrease.

2−2.導電助剤
本発明において用いる導電助剤としては、炭素粉末、金属粉末などが用いられるが、その中でも炭素粉末が好適に用いられる。炭素粉末としては、アセチレンブラック、ケッチェンブラック、ファーネスブラック、カーボンナノチューブ等が挙げられる。これらの中でも、高ストラクチャーで、添加量が少量でも導電性を向上させることが可能なアセチレンブラックを用いるのが好ましい。導電助剤の高分子結合剤に対する混合割合は、高分子結合剤の固形分100質量部に対して、20〜80質量部とするのが好ましい。20質量部未満では塗膜の電気抵抗が高くなり、80質量部を超えると塗膜の電極合材に対する密着性が低下し活物質を含む電極合材に対する保持力が低下する。
2-2. Conductive aid As the conductive aid used in the present invention, carbon powder, metal powder and the like are used, and among these, carbon powder is suitably used. Examples of the carbon powder include acetylene black, ketjen black, furnace black, and carbon nanotube. Among these, it is preferable to use acetylene black which has a high structure and can improve the conductivity even when added in a small amount. The mixing ratio of the conductive additive to the polymer binder is preferably 20 to 80 parts by mass with respect to 100 parts by mass of the solid content of the polymer binder. If the amount is less than 20 parts by mass, the electrical resistance of the coating film increases, and if it exceeds 80 parts by mass, the adhesion of the coating film to the electrode mixture decreases, and the holding power to the electrode mixture containing the active material decreases.

2−3.高分子結合剤
本発明において用いる高分子結合剤としては、電極に用いた際に活物質、電解質、電解液などと反応することなく、また、電池動作中の電位のかかった状態において電気化学的に酸化され難い材質であるのが好ましい。具体的には、アクリル酸若しくはメタクリル酸、又はこれらの誘導体を主成分とするアクリル系樹脂;セルロースや硝化綿、キトサン等の高分子多糖類;などを好適に用いることができる。
2-3. Polymer binder The polymer binder used in the present invention does not react with an active material, an electrolyte, an electrolytic solution, or the like when used for an electrode, and is electrochemical in a state where a potential is applied during battery operation. It is preferable that the material is not easily oxidized. Specifically, acrylic resins mainly composed of acrylic acid or methacrylic acid or derivatives thereof; high-molecular polysaccharides such as cellulose, nitrified cotton, and chitosan; and the like can be preferably used.

アクリル系樹脂では、モノマー中のアクリル成分の割合は、例えば50質量%以上であり、好ましくは80質量%以上であるが、上限は特に限定されるものではなく、モノマーが実質的にアクリル成分のみで構成されていてもよい。また、アクリル系樹脂のモノマーは、アクリル成分一種を単独で又は二種以上を含んでいてもよい。アクリル系樹脂の中でも、メタクリル酸又はその誘導体と;極性基含有アクリル系化合物の1種以上のモノマーと;からなるアクリル共重合体が好ましい。このようなアクリル共重合体を用いることにより、ハイレート特性を更に向上させることができる。   In the acrylic resin, the ratio of the acrylic component in the monomer is, for example, 50% by mass or more, and preferably 80% by mass or more, but the upper limit is not particularly limited, and the monomer is substantially only the acrylic component. It may be comprised. Moreover, the monomer of acrylic resin may contain the acrylic component individually by 1 type, or 2 or more types. Among acrylic resins, an acrylic copolymer comprising methacrylic acid or a derivative thereof; and one or more monomers of a polar group-containing acrylic compound is preferable. By using such an acrylic copolymer, the high rate characteristics can be further improved.

メタクリル酸又はその誘導体としては、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル等が挙げられる。極性基含有アクリル系化合物としてはアクリロニトリル、メタアクリロニトリル、アクリルアミド、メタクリルアミド等が挙げられる。極性基含有アクリル系化合物の中でも、アミド基を有するアクリル化合物が好ましい。アミド基を有するアクリル化合物としては、アクリルアミド、N−メチロールアクリルアミド、ジアセトンアクリルアミド等が好適に用いられる。   Examples of methacrylic acid or derivatives thereof include methacrylic acid, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate and the like. Examples of the polar group-containing acrylic compound include acrylonitrile, methacrylonitrile, acrylamide, and methacrylamide. Among the polar group-containing acrylic compounds, an acrylic compound having an amide group is preferable. As the acrylic compound having an amide group, acrylamide, N-methylolacrylamide, diacetoneacrylamide and the like are preferably used.

アクリル系樹脂の重量平均分子量は特に限定されるものではないが、30000以上、200000以下であるのが好ましい。重量平均分子量が30000未満では、塗膜の柔軟性が不十分でクラック発生により電極容量が低下する場合がある。一方、重量平均分子量が200000を超えると、塗膜と電極合材の密着性が低下して塗膜の電極合材に対する保持力が低下し電極合材が脱落し易くなる場合がある。このような重量平均分子量は、アクリル系樹脂を適当な溶媒に分散してGPCを用いることにより測定することができる。   The weight average molecular weight of the acrylic resin is not particularly limited, but is preferably 30000 or more and 200000 or less. When the weight average molecular weight is less than 30000, the flexibility of the coating film is insufficient, and the electrode capacity may decrease due to the occurrence of cracks. On the other hand, when the weight average molecular weight exceeds 200,000, the adhesion between the coating film and the electrode mixture is lowered, the holding power of the coating film with respect to the electrode mixture is lowered, and the electrode mixture may be easily dropped. Such a weight average molecular weight can be measured by dispersing an acrylic resin in a suitable solvent and using GPC.

高分子多糖類については、同種又は異種同士の混合物を用いてもよいが、他の高分子成分と併用することもできる。例えば、高分子多糖類としての硝化綿にメラミン系樹脂を添加することにより、導電性を更に向上させることができる。   About polymeric polysaccharide, although the same kind or a mixture of different types may be used, it can also be used together with another polymeric component. For example, the conductivity can be further improved by adding a melamine resin to nitrified cotton as a polymer polysaccharide.

3.電極合材
本発明に係る非水電解質二次電池用正極は、リチウムを吸蔵放出可能な活物質を含む電極合材を含有する。電極合材は、上記塗膜を介して金属壁に接触しつつ、三次元多孔質アルミニウムの空孔中に充填された状態で担持されている。電極合材は、活物質に加えて導電助剤と結着剤とを含んでいてもよい。
3. Electrode Mixture The positive electrode for a non-aqueous electrolyte secondary battery according to the present invention contains an electrode mixture containing an active material capable of occluding and releasing lithium. The electrode mixture is supported in a state of being filled in the pores of the three-dimensional porous aluminum while being in contact with the metal wall through the coating film. The electrode mixture may contain a conductive additive and a binder in addition to the active material.

3−1.正極活物質
正極活物質としては、非水電解質二次電池に使用できるものであれば特に制限されるものではなく、例えば、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、リン酸鉄リチウム等のリチウム金属酸化物を挙げることができる。
3-1. Positive electrode active material The positive electrode active material is not particularly limited as long as it can be used for a nonaqueous electrolyte secondary battery. For example, lithium cobaltate, lithium manganate, lithium nickelate, lithium iron phosphate, etc. A lithium metal oxide can be mentioned.

3−2.導電助剤
電極合材に導電助剤を加えることにより、電極合材における導電性も向上する。導電助剤としては、上記塗膜に用いるのと同様のものを用いることができる。
3-2. Conductive aid By adding a conductive aid to the electrode mixture, the conductivity of the electrode mixture is also improved. As a conductive support agent, the same thing as that used for the said coating film can be used.

3−3.結着剤
電極合材に結着剤を加えることにより、結着剤を介しての成分の結合、すなわち正極活物質同士、導電助剤同士、正極活物質と導電助剤との結合が強固になって、集電体からの活物質の脱落がより起こり難くなる。用いる結着剤としては特に限定されるものではなく、公知または市販のものを使用することができる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリビニルピロリドン(PVP)、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体、スチレンブタジエンゴム(SBR)、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)等が挙げられる。
3-3. Binder By adding a binder to the electrode mixture, binding of components via the binder, that is, positive electrode active materials, conductive assistants, and positive active material and conductive assistants are strongly bonded. Thus, the active material is less likely to fall off the current collector. It does not specifically limit as a binder to be used, A well-known or commercially available thing can be used. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinylpyrrolidone (PVP), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, styrene butadiene rubber (SBR), polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC) and the like.

通常は、電極合材に導電助剤と結着剤とが加えられるが、この場合には、全電極合材(正極活物質+導電助剤+結着剤)に占める正極活物質の割合は、85〜95重量%とするのが好ましい。この割合が85重量%未満では正極活物質が不足して、高電極容量化が達成できない場合がある。一方、この割合が95重量%を超えると、正極全体としての導電性が低下し、また各成分同士や成分間における十分な結合が得られず、これまた高電極容量化が達成できない。   Usually, a conductive additive and a binder are added to the electrode mixture. In this case, the ratio of the positive electrode active material to the total electrode mixture (positive electrode active material + conductive auxiliary agent + binder) is 85 to 95% by weight is preferable. If this ratio is less than 85% by weight, the positive electrode active material may be insufficient and high electrode capacity may not be achieved. On the other hand, if this ratio exceeds 95% by weight, the conductivity of the positive electrode as a whole is lowered, and sufficient bonding between the components and between components cannot be obtained, and a high electrode capacity cannot be achieved.

B.非水電解質二次電池用正極の製造方法
本発明に係る非水電解質二次電池用正極は、まず、アルミニウム粉末と支持粉末の混合粉末を用いて三次元多孔質アルミニウムを作製する。次いで、導電助剤、高分子結合剤及び分散媒を含む懸濁液を、三次元多孔質アルミニウムの集電体の内部に含浸させ、これを乾燥して分散媒を飛散・蒸発させ、導電助剤と高分子結合剤とを含む塗膜を金属壁上に形成する。更に、電極合材を溶媒に分散したスラリーを、塗膜が形成された三次元多孔質アルミニウムの内部に含浸させ、これを乾燥して溶媒を飛散・蒸発させ、塗膜を介して金属壁に接触するように電極合材を空孔中に充填する。最後に、電極合材を充填した三次元多孔質アルミニウムをプレス処理する。
B. Manufacturing method of positive electrode for nonaqueous electrolyte secondary battery The positive electrode for a nonaqueous electrolyte secondary battery according to the present invention first produces three-dimensional porous aluminum using a mixed powder of an aluminum powder and a support powder. Next, a suspension containing a conductive additive, a polymer binder, and a dispersion medium is impregnated inside the current collector of the three-dimensional porous aluminum, and this is dried to disperse and evaporate the dispersion medium. A coating film containing an agent and a polymer binder is formed on the metal wall. Furthermore, the slurry in which the electrode mixture is dispersed in the solvent is impregnated into the interior of the three-dimensional porous aluminum on which the coating film is formed, and this is dried to scatter and evaporate the solvent. The electrode mixture is filled into the holes so as to come into contact with each other. Finally, the three-dimensional porous aluminum filled with the electrode mixture is pressed.

1.三次元多孔質アルミニウムの製造方法
三次元多孔質アルミニウムは、アルミニウム粉末と支持粉末の混合粉末を所定の圧力で加圧成形した後、この加圧成形体を不活性雰囲気中でアルミニウム粉末の融点以上で、かつ、後述の支持粉末の融点未満の温度域での熱処理により焼結させ、その後、支持粉末を除去して製造する。
1. Method for producing three-dimensional porous aluminum Three-dimensional porous aluminum is formed by pressing a mixed powder of an aluminum powder and a supporting powder at a predetermined pressure, and then pressing the pressure-molded body in an inert atmosphere to a temperature equal to or higher than the melting point of the aluminum powder. And it sinters by the heat processing in the temperature range below melting | fusing point of the support powder mentioned later, and removes support powder after that and manufactures.

1−1.アルミニウム粉末
本発明で用いるアルミニウム粉末には、純アルミニウム粉末、アルミニウム合金粉末又はこれらの混合物が用いられる。使用環境下において合金成分が耐食性劣化の原因となるような場合には、純アルミニウム粉末を用いるのが好ましい。純アルミニウムとは、純度99.0mass%以上のアルミニウムである。
1-1. Aluminum powder Pure aluminum powder, aluminum alloy powder, or a mixture thereof is used for the aluminum powder used in the present invention. In the case where the alloy components cause corrosion resistance deterioration under the usage environment, it is preferable to use pure aluminum powder. Pure aluminum is aluminum having a purity of 99.0 mass% or more.

一方、より高い強度を得たいといった場合には、アルミニウム合金粉末又はこれと純アルミニウム粉末の混合物を用いるのが好ましい。アルミニウム合金としては、1000系、2000系、3000系、4000系、5000系、6000系、7000系のアルミニウム合金が用いられる。   On the other hand, when it is desired to obtain higher strength, it is preferable to use aluminum alloy powder or a mixture of this and pure aluminum powder. As the aluminum alloy, 1000 series, 2000 series, 3000 series, 4000 series, 5000 series, 6000 series, and 7000 series aluminum alloys are used.

アルミニウム粉末の粒径は1〜50μmが好ましい。多孔質アルミニウム集電体の製造において支持粉末の表面を満遍なくアルミニウム粉末で覆うためには、アルミニウム粉末の粒径はより小さい方が好ましく、1〜10μmが更に好ましい。アルミニウム粉末の粒径は、レーザー回折散乱法(マイクロトラック法)で測定したメジアン径で規定する。   The particle size of the aluminum powder is preferably 1 to 50 μm. In order to uniformly cover the surface of the support powder with the aluminum powder in the production of the porous aluminum current collector, the particle size of the aluminum powder is preferably smaller and more preferably 1 to 10 μm. The particle size of the aluminum powder is defined by the median diameter measured by the laser diffraction scattering method (microtrack method).

1−2.添加元素粉末
純アルミニウム粉末に添加元素粉末を加えた混合物を用いてもよい。このような添加元素には、マグネシウム、珪素、チタン、鉄、ニッケル、銅、亜鉛等から選択される単独又は二以上の任意の組み合わせからなる複数の元素が好適に用いられる。このような混合物は、熱処理によりアルミニウムと添加元素との合金を形成する。また、添加元素の種類によっては、アルミニウムと添加元素との金属間化合物が更に形成される。このようなアルミニウムの合金や金属間化合物の含有により、様々な効果が得られる。例えば、珪素や銅などの添加元素とアルミニウムとのアルミニウム合金では、アルミニウム粉末の融点が低下し、熱処理に必要な温度を下げることができるので製造に必要なエネルギーを削減できると共に、合金化によって強度が向上する。また、アルミニウムとニッケルなど添加元素との金属間化合物が形成される際に発熱が起こって焼結が促進されると共に、金属間化合物が分散した組織が形成されることで高強度化が図れる。
1-2. Additive Element Powder A mixture obtained by adding additive element powder to pure aluminum powder may be used. As such an additive element, a plurality of elements consisting of a single element selected from magnesium, silicon, titanium, iron, nickel, copper, zinc and the like or any combination of two or more are preferably used. Such a mixture forms an alloy of aluminum and an additive element by heat treatment. Depending on the type of additive element, an intermetallic compound of aluminum and the additive element is further formed. Various effects can be obtained by including such an aluminum alloy or an intermetallic compound. For example, in an aluminum alloy of aluminum and an additive element such as silicon or copper, the melting point of the aluminum powder is lowered and the temperature required for the heat treatment can be lowered, so that the energy required for production can be reduced and the strength by alloying can be reduced. Will improve. Further, when an intermetallic compound of aluminum and an additive element such as nickel is formed, heat is generated and sintering is promoted, and a structure in which the intermetallic compound is dispersed is formed, so that high strength can be achieved.

アルミニウム合金粉末に添加元素粉末を加えてもよく、アルミニウム合金粉末と純アルミニウム粉末との混合物に、添加元素粉末を加えてもよい。これらの場合には、新たな合金系や金属間化合物が形成される。更に、添加元素粉末として、複数の添加元素粉末同士を合金化した添加元素合金粉末を用いてもよい。   The additive element powder may be added to the aluminum alloy powder, or the additive element powder may be added to a mixture of the aluminum alloy powder and the pure aluminum powder. In these cases, new alloy systems and intermetallic compounds are formed. Furthermore, an additive element alloy powder obtained by alloying a plurality of additive element powders may be used as the additive element powder.

アルミニウム合金粉末や純アルミニウム粉末に対する添加元素粉末や添加元素合金粉末の添加量は、形成される合金や金属間化合物の化学式量に基づいて適宜決定される。
また、添加元素粉末の粒径は、1〜50μmが好ましい。純アルミニウム粉末、アルミニウム合金粉末、支持粉末との十分な混合を図るためにより微細であるのが好ましく、少なくとも支持粉末より細かいものが用いられる。添加元素粉末の粒径は、アルミニウム粉末と同様にレーザー回折散乱法(マイクロトラック法)で測定したメジアン径で規定する。
The addition amount of the additive element powder or additive element alloy powder to the aluminum alloy powder or pure aluminum powder is appropriately determined based on the chemical formula amount of the alloy or intermetallic compound to be formed.
The particle size of the additive element powder is preferably 1 to 50 μm. In order to achieve sufficient mixing with the pure aluminum powder, the aluminum alloy powder, and the support powder, it is preferably finer, and at least finer than the support powder is used. The particle diameter of the additive element powder is defined by the median diameter measured by the laser diffraction scattering method (microtrack method) in the same manner as the aluminum powder.

1−3.支持粉末
本発明では支持粉末としては、アルミニウム粉末の融点よりも高い融点を有するものを用いる。また、混合粉末を金属板と複合化する場合には、アルミニウム粉末と金属板の低い方の融点よりも高い融点を有するものを用いる。このような支持粉末としては水溶性塩が好ましく、入手の容易性から塩化ナトリウムや塩化カリウムが好適に用いられる。支持粉末が除去されることで形成された空間が多孔質アルミニウムの孔になることから、支持粉末の粒径が孔径に反映される。そこで、本発明で用いる支持粉末の粒径は、10〜1000μmとするのが好ましい。支持粉末の粒径は、ふるいの目開きで規定する。従って、分級によって支持粉末の粒径を揃えることで、孔径の揃った多孔質アルミニウムが得られる。
1-3. Supporting powder In the present invention, a supporting powder having a melting point higher than that of the aluminum powder is used. When the mixed powder is combined with a metal plate, a powder having a melting point higher than the lower melting point of the aluminum powder and the metal plate is used. As such a supporting powder, a water-soluble salt is preferable, and sodium chloride and potassium chloride are preferably used from the viewpoint of availability. Since the space formed by removing the support powder becomes pores of porous aluminum, the particle size of the support powder is reflected in the pore diameter. Therefore, the particle size of the support powder used in the present invention is preferably 10 to 1000 μm. The particle size of the support powder is defined by the opening of the sieve. Accordingly, porous aluminum having a uniform pore diameter can be obtained by making the particle diameter of the support powder uniform by classification.

1−4.金属板
本発明においては、混合粉末を金属板と複合化した状態で用いてもよい。金属板とは無孔の板や箔及び、有孔の金網、エキスパンドメタル、パンチングメタル等の網状体である。金属板が支持体となり多孔質アルミニム集電体の強度が向上し、更に導電性が向上する。金属板としては熱処理時に蒸発又は分解しない素材、具体的にはアルミニウム、チタン、鉄、ニッケル、銅等の金属やその合金製のものが好適に利用できる。
1-4. Metal Plate In the present invention, the mixed powder may be used in a state where it is combined with a metal plate. The metal plate is a non-porous plate or foil, and a net-like body such as a perforated wire mesh, expanded metal, or punching metal. The metal plate serves as a support, and the strength of the porous aluminum current collector is improved and the conductivity is further improved. As the metal plate, a material that does not evaporate or decompose during heat treatment, specifically, a metal such as aluminum, titanium, iron, nickel, copper, or an alloy thereof can be suitably used.

混合粉末と金属板との複合化とは、例えば金属板に金網を用いた場合には、網目の中に混合粉末を充填しつつ網全体を混合粉末で覆うような一体化状態をいう。金属板の両側に結合金属粉末壁を設けた多孔質アルミニウムに例えば触媒や活物質を充填する場合、金属板が有孔の網状体であれば金属板で分けられる領域の片側からの充填であっても、もう一方の領域にまで充填することができるため、金属板は網状体であることが好ましい。ここで、有孔とは、金網の網目部分、パンチングメタルのパンチ部分、エキスパンドメタルの網目部分、金属繊維の繊維と繊維との隙間部分を言う。
網状体の有孔の孔径は、接合した混合粉末から支持粉末を除去して得られる孔の径より大きくても、小さくてもよい。
網状体の有孔の開口率は、多孔質アルミニウム集電体の気孔率を損なわないためにも大きい方が好ましい。
The composite of the mixed powder and the metal plate refers to an integrated state in which, for example, when a metal mesh is used for the metal plate, the entire net is covered with the mixed powder while filling the mixed powder in the mesh. When, for example, a catalyst or an active material is filled in porous aluminum provided with bonded metal powder walls on both sides of the metal plate, if the metal plate is a perforated network, the filling is from one side of the region divided by the metal plate. However, since the other region can be filled, the metal plate is preferably a net-like body. Here, the perforated means a mesh part of a metal mesh, a punch part of a punching metal, a mesh part of an expanded metal, and a gap part between fibers of metal fibers.
The pore diameter of the pores of the network may be larger or smaller than the diameter of the holes obtained by removing the support powder from the joined mixed powder.
It is preferable that the aperture ratio of the perforated hole in the network is large so as not to impair the porosity of the porous aluminum current collector.

1−5.混合方法
アルミニウム粉末と支持粉末の混合割合は、それぞれの体積をVal、Vsとしてアルミニウム粉末の体積率であるVal/(Val+Vs)が5〜20%とするのが好ましく、より好ましくは5〜10%である。ここで体積Val、Vsはそれぞれの質量と比重から求めた値である。アルミニウム粉末の体積率が20%を超える場合には、支持粉末の含有率が少な過ぎるために支持粉末同士が接触することなく独立して存在することになり、支持粉末を十分に除去しきれない。除去しきれない支持粉末は、多孔質アルミニウムの腐食の原因となる。一方、アルミニウム粉末の体積率が5%未満の場合には、多孔質アルミニウムを構成する壁が薄くなり過ぎることで、多孔質アルミニウムの強度が不十分となり、取り扱いや形状維持が困難となる。
また、支持粉末をアルミニウム粉末で十分に覆れた状態を達成するために、アルミニウム粉末の粒径(dal)が支持粉末の粒径(ds)に比べて十分に小さいこと、例えば、dal/dsが0.1以下であることが好ましい。
1-5. Mixing method The mixing ratio of the aluminum powder and the support powder is preferably such that Val / (Val + Vs), which is the volume ratio of the aluminum powder, is 5 to 20%, more preferably 5 to 10%. It is. Here, the volumes Val and Vs are values obtained from the respective mass and specific gravity. When the volume ratio of the aluminum powder exceeds 20%, the support powder content is too small and the support powders exist independently without contacting each other, and the support powder cannot be removed sufficiently. . Support powder that cannot be removed causes corrosion of porous aluminum. On the other hand, when the volume ratio of the aluminum powder is less than 5%, the wall constituting the porous aluminum becomes too thin, so that the strength of the porous aluminum becomes insufficient, and handling and shape maintenance become difficult.
In order to achieve a state where the support powder is sufficiently covered with the aluminum powder, the particle size (dal) of the aluminum powder is sufficiently smaller than the particle size (ds) of the support powder, for example, dal / ds. Is preferably 0.1 or less.

なお、アルミニウムを支持粉末と混合する混合手段としては、振動攪拌機、容器回転混合機といったものが用いられるが、十分な混合状態が得られるのであれば特に限定されるものではない。   The mixing means for mixing aluminum with the support powder may be a vibration stirrer or a container rotating mixer, but is not particularly limited as long as a sufficient mixing state can be obtained.

1−6.複合化方法
混合粉末を成形用金型に充填する際に、混合粉末と金属板とを複合化してもよい。複合化の形態としては、混合粉末の間に金属板を挟んでも、混合粉末を金属板で挟んでも構わない。また、混合粉末と金属板の複合化を繰り返して多段にすることもできる。複合化の際にはアルミニウム粉末や支持粉末の粒径、混合割合の異なる混合粉末や、種類の異なる複数の金属板を組み合わせることもできる。
1-6. Compounding Method When the mixed powder is filled in a molding die, the mixed powder and the metal plate may be combined. As a composite form, a metal plate may be sandwiched between mixed powders, or a mixed powder may be sandwiched between metal plates. Further, the composite of the mixed powder and the metal plate can be repeated to make multiple stages. In the case of compounding, mixed powders having different particle sizes and mixing ratios of aluminum powder and support powder, and a plurality of different types of metal plates can be combined.

1−7.加圧成形方法
加圧成形時の圧力は、200MPa以上とするのが好ましい。十分な圧力を加えて成形することでアルミニウム粉末同士が擦れ合い、アルミニウム粉末同士の焼結を阻害するアルミニウム粉末表面の強固な酸化皮膜が破壊される。この酸化皮膜は融解したアルミニウムを閉じ込め、互いに接触することを妨げると共に、融解アルミニウムとの濡れ性に劣り、液体状のアルミニウムを排斥する作用がある。そのため、加圧成形の圧力が200MPa未満の場合にはアルミニウム粉末表面の酸化皮膜の破壊が不十分で、加熱時に融解したアルミニウムが成形体の外に滲み出し玉状のアルミニウムの塊が形成される場合がある。アルミニウム塊が存在する状態で電極を作製した場合、この玉状のアルミニウム塊がセパレータを突き破ってショートの原因となる点で弊害となる。成形圧力は使用する装置や金型が許容する限り大きい方が形成される三次元多孔質アルミニウムの壁が強固になって好ましい。しかしながら、400MPaを超えると効果が飽和する傾向がある。加圧成形体の離型性を高める目的でステアリン酸等の脂肪酸、ステアリン酸亜鉛等の金属石鹸、各種ワックス、合成樹脂、オレフィン系合成炭化水素等の潤滑剤を使用することが好ましい。
1-7. Pressure molding method The pressure during pressure molding is preferably 200 MPa or more. By forming by applying sufficient pressure, the aluminum powders rub against each other, and the strong oxide film on the surface of the aluminum powder that inhibits the sintering of the aluminum powders is destroyed. This oxide film confines molten aluminum and prevents it from coming into contact with each other, and is inferior in wettability with molten aluminum and has the effect of rejecting liquid aluminum. Therefore, when the pressure of pressure molding is less than 200 MPa, the destruction of the oxide film on the surface of the aluminum powder is insufficient, and the aluminum melted during heating oozes out of the molded body to form a ball-shaped aluminum lump. There is a case. When an electrode is produced in the presence of an aluminum lump, this ball-shaped aluminum lump breaks through the separator, causing a short circuit. The three-dimensional porous aluminum wall on which the molding pressure is as large as the apparatus and mold used allow is preferable. However, if it exceeds 400 MPa, the effect tends to be saturated. For the purpose of enhancing the releasability of the pressure-molded body, it is preferable to use a lubricant such as a fatty acid such as stearic acid, a metal soap such as zinc stearate, various waxes, synthetic resins, and olefinic synthetic hydrocarbons.

1−8.熱処理方法
熱処理は使用するアルミニウム粉末の融点以上で、かつ、支持粉末の融点未満の温度で行う。混合粉末を金属板と複合化する場合には、アルミニウム粉末の融点以上で、かつ、支持粉末の融点未満の温度で熱処理を行う。また、アルミニウム粉末の融点とは、純アルミニウム又はアルミニウム合金の液相が生じる温度であり、金属板の融点とは、同様に液相が生じる温度である。液相が生じる温度まで加熱することで、アルミニウム粉末及び金属板から液相が滲み出し、液相同士が接触することでアルミニウム粉末同士、アルミニウム粉末と金属板が金属的に結合する。
1-8. Heat treatment method The heat treatment is carried out at a temperature not lower than the melting point of the aluminum powder used and lower than the melting point of the supporting powder. When the mixed powder is combined with the metal plate, the heat treatment is performed at a temperature not lower than the melting point of the aluminum powder and lower than the melting point of the supporting powder. The melting point of the aluminum powder is a temperature at which a liquid phase of pure aluminum or an aluminum alloy is generated, and the melting point of the metal plate is a temperature at which a liquid phase is similarly generated. By heating to a temperature at which a liquid phase is generated, the liquid phase oozes out from the aluminum powder and the metal plate, and the aluminum phases and the aluminum powder and the metal plate are metallicly bonded by contacting the liquid phases.

熱処理温度が上記融点未満の場合には、アルミニウムが融解しないためにアルミニウム粉末同士、アルミニウム粉末と金属板との結合が不十分となる。また、上記融点以上に加熱すると、焼結体の最表面に位置する支持粉末の表面を覆っていたアルミニウムが除去され、開口率が大きな表面を有する焼結体が形成される。焼結体の開口率が大きいと、集電体に適用した際に活物質を充填するのに有利である。   When the heat treatment temperature is lower than the melting point, aluminum is not melted, so that bonding between the aluminum powders and between the aluminum powder and the metal plate becomes insufficient. Moreover, when heated above the melting point, the aluminum covering the surface of the support powder located on the outermost surface of the sintered body is removed, and a sintered body having a surface with a large aperture ratio is formed. A large aperture ratio of the sintered body is advantageous for filling the active material when applied to the current collector.

加熱温度が支持粉末の融点以上では支持粉末が融解してしまうため、加熱は支持粉末の融点未満の温度で行う。支持粉末として塩化ナトリウムや塩化カリウムなどの水溶性塩を用いる場合には、好ましくは700℃未満、更に好ましくは680℃未満で熱処理を行う。支持粉末の融点以上の温度で加熱した場合には、支持粉末の融解に伴い有孔体の形状を維持できない。また、温度が高くなるほど融解したアルミニウムの粘度が低下し、加圧成形体の外側にまで融解したアルミニウムが滲み出て、凸状のアルミニウム塊が形成される。アルミニウム塊が存在する状態で電極を作製した場合、この凸状の部分がセパレータを突き破ってショートを起こす原因となる点で弊害となる。熱処理における加熱保持時間は、1〜60分程度が好ましい。また、熱処理時に加圧成形体に荷重を掛け、加圧成形体の圧縮を行ったり、加熱と冷却の繰り返しを複数回行ってもよい。   When the heating temperature is equal to or higher than the melting point of the support powder, the support powder is melted. When a water-soluble salt such as sodium chloride or potassium chloride is used as the support powder, the heat treatment is preferably performed at a temperature lower than 700 ° C., more preferably lower than 680 ° C. When heated at a temperature equal to or higher than the melting point of the support powder, the shape of the porous body cannot be maintained as the support powder melts. In addition, the higher the temperature, the lower the viscosity of the molten aluminum, and the molten aluminum oozes out to the outside of the pressure-molded body, forming a convex aluminum lump. When an electrode is produced in the presence of an aluminum lump, this convex portion breaks the separator and causes a short circuit, which is a harmful effect. The heat holding time in the heat treatment is preferably about 1 to 60 minutes. Further, a load may be applied to the pressure-formed body during the heat treatment to compress the pressure-formed body, or heating and cooling may be repeated a plurality of times.

熱処理を行う不活性雰囲気はアルミニウムの酸化を抑制する雰囲気であり、真空;窒素、アルゴン、水素、分解アンモニア及びこれらの混合ガス;の雰囲気が好適に用いられ、真空雰囲気が好ましい。真空雰囲気は、好ましくは2×10−2Pa以下、更に好ましくは1×10−2Pa以下である。2×10−2Paを超える場合、アルミニウム粉末表面に吸着した水分の除去が不十分となり、熱処理時にアルミニウム表面の酸化が進行する。前述のとおりアルミニウム表面の酸化皮膜は液体状のアルミニウムとの濡れ性に劣り、その結果、融解したアルミニウムが滲み出し玉状の塊が形成される。窒素等の不活性ガス雰囲気の場合は、酸素濃度を200ppm以下、露点を−35℃以下にすることが好ましい。 The inert atmosphere for performing the heat treatment is an atmosphere for suppressing oxidation of aluminum, and an atmosphere of vacuum; nitrogen, argon, hydrogen, decomposed ammonia and a mixed gas thereof is preferably used, and a vacuum atmosphere is preferable. The vacuum atmosphere is preferably 2 × 10 −2 Pa or less, more preferably 1 × 10 −2 Pa or less. When it exceeds 2 × 10 −2 Pa, removal of moisture adsorbed on the surface of the aluminum powder becomes insufficient, and oxidation of the aluminum surface proceeds during heat treatment. As described above, the oxide film on the aluminum surface is inferior in wettability with liquid aluminum, and as a result, molten aluminum oozes out to form a ball-like lump. In the case of an inert gas atmosphere such as nitrogen, it is preferable that the oxygen concentration is 200 ppm or less and the dew point is −35 ° C. or less.

1−9.支持粉末の除去方法
焼結体中の支持粉末の除去は、支持粉末を水に溶出させて行う方法が好適に用いられる。焼結体を十分な量の水浴または流水浴に浸漬する等の方法により、支持粉末を容易に溶出することができる。支持粉末として水溶性塩を用いる場合には、これを溶出させる水は、イオン交換水や蒸留水等、不純物の少ない方が好ましいが、水道水でも特に問題は無い。浸漬時間は、通常、数時間〜24時間程度の範囲で適宜選択される。浸漬中に超音波等によって振動を与えることにより、溶出を促進することもできる。
1-9. Support Powder Removal Method A method of removing the support powder in the sintered body by eluting the support powder into water is suitably used. The supporting powder can be easily eluted by a method such as immersing the sintered body in a sufficient amount of water bath or flowing water bath. When a water-soluble salt is used as the support powder, the water for eluting it is preferably free from impurities such as ion exchange water or distilled water, but tap water is not particularly problematic. The immersion time is usually appropriately selected within the range of several hours to 24 hours. Elution can be promoted by applying vibration by ultrasonic waves or the like during the immersion.

2.塗膜の形成方法
2−1.塗膜用懸濁液の調製
上記のようにして作製した三次元多孔質アルミニウムの金属壁の表面に、導電助剤と高分子結合剤とから成る塗膜を形成する。まず、導電助剤、高分子結合剤及び分散媒から成る懸濁液を調製する。導電助剤と高分子結合剤は上述のものが用いられる。高分子結合剤を分散又は溶解させた分散媒に導電助剤を添加することにより、導電助剤、高分子結合剤及び分散媒から成る懸濁液を調製する。高分子結合剤の固形分100質量部に対して、導電助剤を固形分で20〜80質量部の割合で添加するのが好ましい。分散媒としては、水やアルコールの他、NMP等の有機溶剤を用いることもできる。また、懸濁液の粘度を調整する目的で、塗膜の性能を損なわない範囲でCMC等の増粘剤を加えてもよい。なお、懸濁液中の導電助剤と高分子結合剤との含有量(濃度)は、懸濁液の粘度等を考慮して適宜決定される。また、分散方法は特に限定されるものではなく、ボールミルやホモジナイザー等の既知の分散方法を適用できる。
2. Method for forming coating film 2-1. Preparation of Suspension for Coating Film A coating film composed of a conductive additive and a polymer binder is formed on the surface of the metal wall of the three-dimensional porous aluminum produced as described above. First, a suspension composed of a conductive aid, a polymer binder, and a dispersion medium is prepared. The above-mentioned conductive assistant and polymer binder are used. By adding a conductive additive to a dispersion medium in which a high molecular binder is dispersed or dissolved, a suspension composed of the conductive auxiliary, the high molecular binder, and the dispersion medium is prepared. It is preferable to add the conductive additive at a ratio of 20 to 80 parts by mass with respect to 100 parts by mass of the solid content of the polymer binder. As a dispersion medium, an organic solvent such as NMP can be used in addition to water and alcohol. Further, for the purpose of adjusting the viscosity of the suspension, a thickener such as CMC may be added as long as the performance of the coating film is not impaired. In addition, the content (concentration) of the conductive additive and the polymer binder in the suspension is appropriately determined in consideration of the viscosity of the suspension. The dispersion method is not particularly limited, and a known dispersion method such as a ball mill or a homogenizer can be applied.

2−2.塗膜形成
三次元多孔質アルミニウムの空孔内面も含めた内部全体に、上記懸濁液を接触させこれを含浸させる。次いで、含浸しきれなかった余分の懸濁液を除去し、更に乾燥によって分散媒を飛散・蒸発させる。三次元多孔質アルミニウムに懸濁液を接触させる方法は、特に限定されるものではない。例えば、懸濁液に三次元多孔質アルミニウムを浸漬する方法、固定した三次元多孔質アルミニウム中において懸濁液を透過させる方法などが用いられる。三次元多孔質アルミニウムに懸濁液を接触させる直前、又は接触させている最中に、三次元多孔質アルミニウムを減圧状態に保持することによって懸濁液との接触を妨げる原因となる三次元多孔質アルミニウム中の空気を除去してもよい。更に、三次元多孔質アルミニウムに対する懸濁液の濡れ性を高めるために、三次元多孔質アルミニウムに懸濁液を接触させる直前に、懸濁液の分散媒と親和性の溶剤で三次元多孔質アルミニウム全体を処理してもよい。
2-2. Coating formation The above-mentioned suspension is brought into contact with and impregnated into the entire interior including the pore inner surface of the three-dimensional porous aluminum. Next, the excess suspension that cannot be completely impregnated is removed, and the dispersion medium is scattered and evaporated by drying. The method for bringing the suspension into contact with the three-dimensional porous aluminum is not particularly limited. For example, a method of immersing three-dimensional porous aluminum in the suspension, a method of allowing the suspension to permeate through the fixed three-dimensional porous aluminum, and the like are used. Three-dimensional porosity that prevents contact with the suspension by holding the three-dimensional porous aluminum under reduced pressure immediately before or during contact with the suspension in contact with the three-dimensional porous aluminum Air in the quality aluminum may be removed. Furthermore, in order to increase the wettability of the suspension with respect to the three-dimensional porous aluminum, the three-dimensional porous with a suspension medium and an affinity solvent immediately before the suspension is brought into contact with the three-dimensional porous aluminum. The entire aluminum may be processed.

三次元多孔質アルミニウムからの余分な懸濁液の除去方法は、特に限定されるものではない。例えば、三次元多孔質アルミニウムを鉛直方向に沿って垂下し、重力で余分な懸濁液を自然落下させる方法;三次元多孔質アルミニウムを分散媒が染み込み易い材料と接触させて余分な懸濁液を吸い取る方法;三次元多孔質アルミニウム中に気体を透過させることにより、余分な懸濁液を内部から追い出す方法;などを用いることができ、これら方法を二つ以上組み合わせてもよい。余分な懸濁液を除去した後の乾燥条件は特に限定されるものではないが、50〜250℃の温度で1〜60分間保持するのが好ましい。   The method for removing the excess suspension from the three-dimensional porous aluminum is not particularly limited. For example, a method in which three-dimensional porous aluminum is suspended along the vertical direction, and the excess suspension is allowed to fall spontaneously by gravity; three-dimensional porous aluminum is contacted with a material that is easily infiltrated by the dispersion medium, and the excess suspension And a method of expelling excess suspension from the inside by allowing gas to permeate through the three-dimensional porous aluminum, or a combination of two or more of these methods. The drying conditions after removing the excess suspension are not particularly limited, but it is preferable to hold at a temperature of 50 to 250 ° C. for 1 to 60 minutes.

3.電極合材の充填方法
3−1.充填用スラリーの調製
上記のようにして塗膜を形成した三次元多孔質アルミニウムの空孔内に、塗膜を介して金属壁に接触するように電極合材を充填する。
電極合材は正極活物質を含み、導電助剤及び結着剤を更に含んでいるのが好ましい。正極活物質、導電助剤及び結着剤のスラリー中の濃度は限定されるものではなく、スラリー粘度などの観点から適宜選択すれば良い。また、粘度調整に増粘剤を加えても良く、良好な分散状態とするために分散剤を加えても良い。スラリーの溶媒も特に限定されるものではないが、例えば、N‐メチル‐2‐ピロリドン、水等が好適に用いられる。結着剤としてポリフッ化ビニリデンを用いる場合には、N‐メチル‐2‐ピロリドンを溶媒に用いるのが好ましく、結着剤としてポリテトラフルオロエチレン、ポリビニルアルコール、カルボキシメチルセルロース(CMC)等を用いる場合は、水を溶媒に用いるのが好ましい。
3. 3. Method for filling electrode mixture 3-1. Preparation of slurry for filling The electrode mixture is filled into the pores of the three-dimensional porous aluminum having the coating film formed as described above so as to come into contact with the metal wall through the coating film.
The electrode mixture preferably contains a positive electrode active material and further contains a conductive additive and a binder. The concentration of the positive electrode active material, the conductive additive and the binder in the slurry is not limited, and may be appropriately selected from the viewpoint of slurry viscosity and the like. Further, a thickener may be added to adjust the viscosity, and a dispersant may be added to obtain a good dispersion state. The solvent for the slurry is not particularly limited, and for example, N-methyl-2-pyrrolidone, water and the like are preferably used. When using polyvinylidene fluoride as a binder, it is preferable to use N-methyl-2-pyrrolidone as a solvent. When using polytetrafluoroethylene, polyvinyl alcohol, carboxymethyl cellulose (CMC), etc. as a binder, Preferably, water is used as a solvent.

3−2.電極合材の充填
正極活物質、導電助剤及び結着剤(必要に応じて、増粘剤及び/又は分散剤)の成分を溶媒に分散したスラリーは、例えば、圧入法などの公知の方法により多孔質アルミニウム中に充填される。圧入法としては、多孔質アルミニウムを隔膜として一方側にスラリーを配置し、他方側はスラリーの透過側とするものである。そして、他方側の透過側を減圧にしてスラリーを透過させるにことによって、多孔質アルミニウムの空孔中に上記各成分を充填するものである。これに替わって、一方側に配置したスラリーを加圧することにより、多孔質アルミニウムの孔中に上記各成分を充填してもよい。
また、圧入法に替えて、上記各成分を溶媒に分散したスラリー中に多孔質アルミニウムを浸漬し、上記各成分を多孔質アルミニウムの空孔中に拡散させる方法(以下、「浸漬法」と称する)を採用してもよい。
以上のようにして上記各成分が充填された正極は溶媒を飛散・蒸発させて乾燥されるが、乾燥条件としては、50〜200℃で1〜60分間保持するのが好ましい。
3-2. Filling of electrode mixture A slurry in which components of a positive electrode active material, a conductive additive and a binder (thickener and / or dispersant as required) are dispersed in a solvent is, for example, a known method such as a press-fitting method. To fill the porous aluminum. As a press-fitting method, a slurry is disposed on one side with porous aluminum as a diaphragm, and the other side is a slurry permeation side. And the said each component is filled in the void | hole of porous aluminum by making the permeation | transmission side of the other side pressure-reduced, and making a slurry permeate | transmit. Alternatively, the above-mentioned components may be filled in the pores of the porous aluminum by pressurizing the slurry disposed on one side.
In place of the press-fitting method, porous aluminum is immersed in a slurry in which the above components are dispersed in a solvent, and the above components are diffused into the pores of the porous aluminum (hereinafter referred to as “immersion method”). ) May be adopted.
As described above, the positive electrode filled with each of the above components is dried by scattering and evaporating the solvent. The drying condition is preferably maintained at 50 to 200 ° C. for 1 to 60 minutes.

4.プレス処理
このようにして作製される非水二次電池用正極は、ロールプレス機や平板プレス機等を用いて加圧するプレス処理によって活物質を含む電極合材の電極密度が調整される。特に、平板プレス機を用いてプレス処理するのが望ましい。このようなプレス処理により、電極合材の電極密度向上率を110〜500%とすることが好ましい。電極密度向上率が110%未満では、プレス処理が不十分であり、塗膜を介して電極合材と三次元多孔質アルミニウムの金属壁との十分な接触が図れず電気抵抗が増大する場合がある。一方、電極密度向上率が500%を超えると、過剰なプレス処理により電極内部に電解液が染み込み難くなり、リチウムイオンの拡散が阻害されて電池特性が低下する場合がある。
4). Press treatment In the positive electrode for a non-aqueous secondary battery produced in this manner, the electrode density of the electrode mixture containing an active material is adjusted by press treatment using a roll press or a flat plate press. In particular, it is desirable to perform press processing using a flat plate press. It is preferable that the electrode density improvement rate of the electrode mixture is set to 110 to 500% by such press treatment. If the electrode density improvement rate is less than 110%, the press treatment is insufficient, and there may be a case where the electrode mixture and the metal wall of the three-dimensional porous aluminum cannot be sufficiently contacted through the coating film, resulting in an increase in electrical resistance. is there. On the other hand, when the electrode density improvement rate exceeds 500%, it becomes difficult for the electrolytic solution to permeate into the electrode due to excessive press treatment, and the diffusion of lithium ions may be hindered to deteriorate the battery characteristics.

ここで、電極合材の電極密度とは、電極において活物質を含む電極合材が占める体積をV(cm)とし、電極合材の質量をW(g)とした際に、W/V(g/cm)で表わされるものとする。また、電極密度向上率とは、電極合材が充填された直後の電極密度(W/V)beに対する、プレス処理等により緻密にした後の電極密度(W/V)afの比を%で表わしたもの、すなわち、{(W/V)af/(W/V)be}×100(%)で示されるものである。 Here, the electrode density of the electrode mixture is W / V when the volume occupied by the electrode mixture containing the active material in the electrode is V (cm 3 ) and the mass of the electrode mixture is W (g). It shall be represented by (g / cm 3 ). The electrode density improvement rate is the ratio of the electrode density (W / V) af after being densified by press treatment or the like to the electrode density (W / V) be immediately after the electrode mixture is filled in%. What is represented, ie, {(W / V) af / (W / V) be} × 100 (%).

C.非水電解質二次電池
本発明に係る非水電解質二次電池は、上記非水電解質用正極と、リチウムの吸蔵放出が可能な負極と、正負極間に配置されたセパレータと、非水電解質とを用いて組み立てられる。
C. Nonaqueous electrolyte secondary battery The nonaqueous electrolyte secondary battery according to the present invention includes the above positive electrode for nonaqueous electrolyte, a negative electrode capable of occluding and releasing lithium, a separator disposed between positive and negative electrodes, and a nonaqueous electrolyte. It is assembled using.

1.負極
負極にも、正極と同様の多孔質アルミニウム集電体を用い、その孔中に負極活物質を含む電極合材を充填してもよく、この電極合材にも、正極と同様の導電助剤と結着剤を用いてもよい。これに代えて、負極集電体と、負極活物質を含む電極合材を溶媒に分散したスラリーを負極集電体上に塗布することにより形成した電極合材層とから負極を用いてもよい。この場合にも、電極合材に導電助剤と結合剤を含有させてもよい。
1. Negative electrode The same porous aluminum current collector as the positive electrode may be used for the negative electrode, and the electrode mixture containing the negative electrode active material may be filled in the pores. An agent and a binder may be used. Instead, a negative electrode may be used from a negative electrode current collector and an electrode mixture layer formed by applying a slurry in which an electrode mixture containing a negative electrode active material is dispersed in a solvent on the negative electrode current collector. . Also in this case, the electrode mixture may contain a conductive additive and a binder.

負極活物質としては非水電解質二次電池に使用できるものであれば特に制限されるものではなく、例えば、天然黒鉛や人造黒鉛、メソカーボンマイクロビーズ(MCMB)、ハードカーボンやソフトカーボンなどの炭素材料;Al、Si、Sn等のリチウムと化合することができる金属材料や合金材料;チタン酸リチウム(LiTi12)などの酸化物材料;を用いることができる。 The negative electrode active material is not particularly limited as long as it can be used for a non-aqueous electrolyte secondary battery. For example, natural graphite, artificial graphite, mesocarbon microbeads (MCMB), carbon such as hard carbon and soft carbon Materials: Metal materials and alloy materials that can be combined with lithium such as Al, Si, and Sn; oxide materials such as lithium titanate (Li 4 Ti 5 O 12 ) can be used.

2.セパレータと非水電解質
正極と負極のセパレータとしては、一般的に用いられているポリエチレン(PE)、ポリプロピレン(PP)などの高分子膜が用いられる。また、非水電解質としては、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)などの有機溶媒に溶解させた六フッ化リン酸リチウム(LiPF)、過塩素酸リチウム(LiClO)を用いることができる。
2. Separator and Nonaqueous Electrolyte As the separator for the positive electrode and the negative electrode, generally used polymer films such as polyethylene (PE) and polypropylene (PP) are used. As the non-aqueous electrolyte, lithium hexafluorophosphate (LiPF 6 ) or lithium perchlorate (LiClO 4 ) dissolved in an organic solvent such as ethylene carbonate (EC) or diethyl carbonate (DEC) is used. it can.

以下に発明例及び比較例により、本発明を具体的に説明する。なお、本発明は、以下の実施例に限定されるものではない。   The present invention will be specifically described below with reference to invention examples and comparative examples. The present invention is not limited to the following examples.

発明例1〜7及び比較例1〜5
(三次元多孔質アルミニウムの作製)
アルミニウム粉末としてアルミニウム純度99.9%、粒径3μmの純アルミニウム粉末(融点:660℃)を、支持粉末として篩目開きで300〜500μmの塩化ナトリウム粉末(融点:800℃)を用いた。これらアルミニウム粉末と支持粉末を、体積比でアルミニウム粉末:支持粉末=1:9の割合で混合して混合粉末を調製した。
Invention Examples 1-7 and Comparative Examples 1-5
(Production of three-dimensional porous aluminum)
Pure aluminum powder (melting point: 660 ° C.) having an aluminum purity of 99.9% and a particle diameter of 3 μm was used as the aluminum powder, and sodium chloride powder (melting point: 800 ° C.) having a sieve opening of 300 to 500 μm was used as the supporting powder. These aluminum powder and support powder were mixed at a volume ratio of aluminum powder: support powder = 1: 9 to prepare a mixed powder.

上記混合粉末を直径13mmの穴を有する金型に充填し、400MPaで加圧成形した。混合物の充填量は加圧成形体の厚さが1mmとなる重量とした。この加圧成形体を最大到達圧力が1×10−2Pa以下、670℃の雰囲気下において5分間保持する熱処理を施して焼結体を作製した。得られた集電体を冷却後、20℃の流水(水道水)中に6時間浸漬して支持粉末を溶出させ、三次元多孔質アルミニウム試料(直径13mm×厚さ1mm)を作製した。作製した三次元多孔質アルミニウム試料について、上記式(1)から気孔率を求めた。 The mixed powder was filled in a mold having a hole with a diameter of 13 mm and pressure-molded at 400 MPa. The filling amount of the mixture was set to a weight at which the thickness of the pressure-molded body was 1 mm. The pressure-formed body was subjected to heat treatment for 5 minutes in an atmosphere at a maximum ultimate pressure of 1 × 10 −2 Pa or less and 670 ° C. to produce a sintered body. After cooling the obtained current collector, it was immersed in flowing water (tap water) at 20 ° C. for 6 hours to elute the supporting powder, thereby preparing a three-dimensional porous aluminum sample (diameter 13 mm × thickness 1 mm). About the produced three-dimensional porous aluminum sample, the porosity was calculated | required from said Formula (1).

(塗膜の形成)
上記のようにして作製した三次元多孔質アルミニウムの金属壁上に、導電助剤と高分子結合剤とを含む塗膜を形成した。なお、比較例1では、塗膜を形成しなかった。
(Formation of coating film)
A coating film containing a conductive additive and a polymer binder was formed on the metal wall of the three-dimensional porous aluminum produced as described above. In Comparative Example 1, no coating film was formed.

高分子結合剤のモノマーとして、メタクリル酸エチル、ブチルアクリレート、メチルメタクリレートを用い、この順に10:70:20の質量比でこれらモノマーを配合し、重量平均分子量が90000〜120000の範囲のアクリル共重合体を重合して、高分子結合剤とした。次いで、界面活性剤を用いて上記高分子結合剤を分散媒である水に分散させて分散液を調製した。この分散液に高分子結合剤の固形分100質量部に対して表1に示す質量部で導電助剤としてアセチレンブラックを添加し、ボールミルにて8時間分散して塗膜形成用の懸濁液を調製した。   As a polymer binder monomer, ethyl methacrylate, butyl acrylate, and methyl methacrylate are used, and these monomers are blended in this order at a mass ratio of 10:70:20, and an acrylic copolymer having a weight average molecular weight in the range of 90000 to 120,000. The polymer was polymerized to obtain a polymer binder. Next, the above polymer binder was dispersed in water as a dispersion medium using a surfactant to prepare a dispersion. To this dispersion, acetylene black was added as a conductive aid in a mass part shown in Table 1 with respect to 100 parts by mass of the solid content of the polymer binder, and dispersed for 8 hours in a ball mill to form a suspension for coating film formation. Was prepared.

Figure 2013232295
Figure 2013232295

上記懸濁液100ミリリットルと上記三次元多孔質アルミニウム試料を密閉された容器に入れ、この容器を5分間ロータリーポンプで減圧した。減圧した状態で懸濁液中に三次元多孔質アルミニウム試料を浸漬させ、容器内を大気圧に戻したところで三次元多孔質アルミニウムを懸濁液から引き上げた。懸濁液から引き上げた各三次元多孔質アルミニウム試料を、濾紙を敷いたブフナロート上に置き、吸引濾過により各三次元多孔質アルミニウムに付着している余分な懸濁液を除去した。次いで、吸引濾過した各三次元多孔質アルミニウムを150℃の乾燥装置内で10分間乾燥し、各三次元多孔質アルミニウムの金属壁上に塗膜を形成した。   100 ml of the suspension and the three-dimensional porous aluminum sample were put in a sealed container, and the container was decompressed with a rotary pump for 5 minutes. A three-dimensional porous aluminum sample was immersed in the suspension under reduced pressure, and the three-dimensional porous aluminum was pulled up from the suspension when the inside of the container was returned to atmospheric pressure. Each three-dimensional porous aluminum sample pulled up from the suspension was placed on a buch funnel covered with filter paper, and excess suspension adhering to each three-dimensional porous aluminum was removed by suction filtration. Subsequently, each three-dimensional porous aluminum filtered by suction was dried for 10 minutes in a drying apparatus at 150 ° C., and a coating film was formed on the metal wall of each three-dimensional porous aluminum.

各三次元多孔質アルミニウム試料の単位体積当たりの塗膜質量(g/cm)を、表1に示す。この塗膜質量は、塗膜形成後の三次元多孔質アルミニウム試料の質量から塗膜形成前の質量を差し引いた全塗膜質量(g)を、塗膜形成前の三次元多孔質アルミニウム試料の体積で割ったものである。 Table 1 shows the coating mass (g / cm 3 ) per unit volume of each three-dimensional porous aluminum sample. The coating mass is the total coating mass (g) obtained by subtracting the mass before coating formation from the mass of the three-dimensional porous aluminum sample after coating formation. Divided by volume.

(電極合材の充填)
正極活物質としてリン酸鉄リチウム100重量部、導電助剤としてアセチレンブラック5.0重量部、結着剤としてPVDF5.5重量部を用い、これらを200重量部のNMPに分散して電極合材のスラリーを調製した。
(Filling electrode mixture)
Using 100 parts by weight of lithium iron phosphate as the positive electrode active material, 5.0 parts by weight of acetylene black as the conductive auxiliary agent, and 5.5 parts by weight of PVDF as the binder, these were dispersed in 200 parts by weight of NMP and electrode mixture A slurry was prepared.

前記浸漬法を用いて、正極活物質、導電助剤及び結着剤を溶媒に分散したスラリー中に塗膜を設けた各三次元多孔質アルミニウムを密閉された容器に入れ、ロータリーポンプで5分間減圧した後、三次元多孔質アルミニウムをスラリー中に浸漬した。浸漬後、容器内を大気圧に戻し、スラリーから引き上げた多孔質アルミニウムの表裏面に付着した余分のスラリーを、ヘラを用いて擦り切り落とした。   Using the dipping method, each three-dimensional porous aluminum provided with a coating film in a slurry in which a positive electrode active material, a conductive additive, and a binder are dispersed in a solvent is placed in a sealed container, and is rotated with a rotary pump for 5 minutes. After decompression, the three-dimensional porous aluminum was immersed in the slurry. After immersion, the inside of the container was returned to atmospheric pressure, and excess slurry adhering to the front and back surfaces of the porous aluminum pulled up from the slurry was scraped off using a spatula.

次いで、スラリーを充填した各三次元多孔質アルミニウム試料を120℃の乾燥装置内で60分間乾燥させ、正極の電極合材を充填した各三次元多孔質アルミニウム試料を作製した。最後に、これら試料を平板プレス機により圧力0.50トン/cmでプレス処理して各非水電解質二次電池用正極試料とした。 Next, each three-dimensional porous aluminum sample filled with the slurry was dried in a drying apparatus at 120 ° C. for 60 minutes to prepare each three-dimensional porous aluminum sample filled with the positive electrode mixture. Finally, these samples were pressed by a flat plate press at a pressure of 0.50 ton / cm 2 to obtain positive electrode samples for each non-aqueous electrolyte secondary battery.

(評価セルの作製)
上記のプレス処理した正極試料を作用極とし、対極及び参照極にリチウム金属を用い、これらの電極間にポリプロピレン製マイクロポーラスセパレータを挟んで電池ケースに収めてコイン型電池を作製した。電解液としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の混合溶媒(体積比でEC:EMC=3:7)にLiPFを1mol/L溶解させた非水電解液を用いた。
(Production of evaluation cell)
The positive electrode sample subjected to the above press treatment was used as a working electrode, lithium metal was used for the counter electrode and the reference electrode, and a polypropylene microporous separator was sandwiched between these electrodes and housed in a battery case to produce a coin-type battery. As the electrolytic solution, a nonaqueous electrolytic solution in which 1 mol / L of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (volume ratio EC: EMC = 3: 7) was used.

(放電レート特性)
上述のように作製した電池を用いて、充放電特性の評価試験を行った。充放電試験は0.2Cの電流で4.0Vまで充電し、0.2Cと5Cの電流で放電させ、このときの0.2C放電時と5C放電時の初期放電電圧の差を測定した。ここで、1Cはその電池の電流容量(Ah)を1時間(h)で取り出す時の電流値(A)である。初期放電電圧の差が0.65V以下のものを○、0.65Vより高く0.70V以下であるものを△、0.70Vを超えるものを×とし、○及び△を合格、×を不合格とした。結果を表1に示す。
(Discharge rate characteristics)
Using the battery prepared as described above, an evaluation test of charge / discharge characteristics was performed. In the charge / discharge test, the battery was charged to 4.0 V with a current of 0.2 C and discharged with a current of 0.2 C and 5 C, and the difference in initial discharge voltage between 0.2 C discharge and 5 C discharge was measured. Here, 1C is a current value (A) when the current capacity (Ah) of the battery is taken out in one hour (h). The difference between the initial discharge voltages is 0.65V or less, ◯, the one that is higher than 0.65V and 0.70V or less is △, the one that exceeds 0.70V is ×, ○ and △ are acceptable, and x is unacceptable. It was. The results are shown in Table 1.

(0.2C放電容量)
また、0.2Cで放電した時の容量を電極中の活物質の質量で割った0.2C放電容量を求めた。これが120mAh/g以上のものを○、それ未満のものを×とし、○を合格、×を不合格とした。結果を表1に示す。
(0.2C discharge capacity)
Moreover, the 0.2C discharge capacity which calculated | required the capacity | capacitance when discharged at 0.2 C by the mass of the active material in an electrode was calculated | required. When this was 120 mAh / g or more, it was evaluated as “◯”, and those less than that as “×”, “◯” as acceptable, and “x” as unacceptable. The results are shown in Table 1.

(500サイクル試験後における正極活物質の脱落)
0.2Cの電流で4Vまで充電し、0.2Cで2.0Vまで放電させる充放電試験を1サイクルとして、この充放電試験の500サイクル後に正極試料から正極活物質が脱落したか否かを目視観察により評価した。正極活物質の脱落がなかったものを○、正極活物質の脱落が若干見られたものを△、正極活物質の脱落が顕著に見られたものを×とし、○及び△を合格、×を不合格とした。結果を表1に示す。
(Drop off of positive electrode active material after 500 cycle test)
A charge / discharge test in which the battery is charged to 4 V at a current of 0.2 C and discharged to 2.0 V at 0.2 C is taken as one cycle, and whether or not the positive electrode active material has dropped from the positive electrode sample after 500 cycles of the charge / discharge test. Evaluation was made by visual observation. The case where the positive electrode active material did not fall off was marked as ◯, the case where the positive electrode active material was slightly removed as △, the case where the positive electrode active material was markedly dropped as x, and ○ and △ passed, x It was rejected. The results are shown in Table 1.

(総合評価)
上記の放電レート特性、0.2C放電容量、ならびに、500サイクル試験後の正極活物質の脱落有無の評価において、全て○の場合を総合評価が○、○と△で構成されている場合を総合評価が△、一つ以上の×が含まれている場合を総合評価が×とし、○及び△を総合評価が合格、×を総合評価が不合格とした。結果を表1に示す。
(Comprehensive evaluation)
In the evaluation of the discharge rate characteristics, 0.2C discharge capacity, and the presence or absence of the positive electrode active material after the 500 cycle test, the overall evaluation is a case where the overall evaluation is composed of ○, ○ and Δ. A case where the evaluation was Δ and one or more xs were included was an overall evaluation, and ○ and Δ were a pass for the overall evaluation, and × was a pass for the overall evaluation. The results are shown in Table 1.

発明例1〜7では、三次元多孔質アルミニウム試料の単位体積当たりの塗膜質量及び正極活物質の質量がそれぞれ、本発明で規定する範囲内であった。その結果、放電レート特性、0.2C放電容量、ならびに、500サイクル試験後の正極活物質の脱落有無の評価がいずれも合格であり、総合評価も合格となった。   In Invention Examples 1 to 7, the coating mass per unit volume of the three-dimensional porous aluminum sample and the mass of the positive electrode active material were within the ranges specified in the present invention. As a result, the discharge rate characteristics, 0.2C discharge capacity, and evaluation of the presence or absence of the positive electrode active material after the 500 cycle test were all passed, and the overall evaluation was also passed.

比較例1では、導電助剤と高分子結合剤の混合物から成る塗膜を形成しなかったために、三次元多孔質アルミニウムにおける正極活物質の保持力が不十分となり、500サイクル試験後における正極活物質の脱落が顕著であった。また、電極合材と三次元多孔質アルミニウム集電体との電気的な接触が不十分となる部分が生じることで、放電レート特性が不合格であった。その結果、総合評価も不合格となった。   In Comparative Example 1, since the coating film composed of the mixture of the conductive auxiliary agent and the polymer binder was not formed, the holding power of the positive electrode active material in the three-dimensional porous aluminum was insufficient, and the positive electrode active material after the 500 cycle test was Material dropout was significant. Moreover, the discharge rate characteristic was disqualified because the part which electrical contact with an electrode compound material and a three-dimensional porous aluminum electrical power collector becomes inadequate arises. As a result, the overall evaluation also failed.

比較例2では、三次元多孔質アルミニウムに形成された塗膜質量が少な過ぎたために、三次元多孔質アルミニウムにおける正極活物質の保持力が不十分となり、500サイクル試験後の正極活物質の脱落が顕著に見られた。その結果、総合評価も不合格となった。   In Comparative Example 2, since the coating film mass formed on the three-dimensional porous aluminum was too small, the holding power of the positive electrode active material in the three-dimensional porous aluminum became insufficient, and the positive electrode active material dropped after the 500 cycle test. Was noticeable. As a result, the overall evaluation also failed.

比較例3では、三次元多孔質アルミニウムに形成された塗膜質量が多過ぎたために、塗膜によって三次元多孔質アルミニウムの小孔が一部塞がれた状態となり、空孔内に十分な正極活物質を充填できなかった。また、小孔が一部塞がれたことでイオン導電率が低下して0.2C放電容量が不合格となり、総合評価も不合格となった。   In Comparative Example 3, since the coating film mass formed on the three-dimensional porous aluminum was too much, the small holes of the three-dimensional porous aluminum were partially blocked by the coating film, and the pores were sufficient. The positive electrode active material could not be filled. Moreover, ion conductivity fell because the small hole was partially plugged, and the 0.2 C discharge capacity was rejected, and the overall evaluation was also rejected.

比較例4では、三次元多孔質アルミニウムに形成された塗膜質量が多過ぎたために、塗膜によって三次元多孔質アルミニウムの小孔が一部塞がれた状態となり、空孔内に十分な正極活物質を充填できなかった。また、小孔が一部塞がれたことでイオン導電率が低下して0.2C放電容量が不合格となった。また、三次元多孔質アルミニウムに形成された塗膜の導電助剤の割合が少な過ぎたために、三次元多孔質アルミニウムと活物質との電気的導通が不十分となり、放電レート特性が不合格であった。これらの結果、総合評価も不合格となった。   In Comparative Example 4, since the coating film mass formed on the three-dimensional porous aluminum was too much, the small holes of the three-dimensional porous aluminum were partially blocked by the coating film, and the pores were sufficient. The positive electrode active material could not be filled. Moreover, the ionic conductivity was lowered by partially closing the small holes, and the 0.2C discharge capacity was rejected. In addition, since the proportion of the conductive additive in the coating film formed on the three-dimensional porous aluminum is too small, the electrical continuity between the three-dimensional porous aluminum and the active material is insufficient, and the discharge rate characteristics are not acceptable. there were. As a result, the overall evaluation also failed.

比較例5では、三次元多孔質アルミニウムに形成された塗膜質量が少な過ぎ、かつ、この塗膜における高分子結合剤の割合が少な過ぎたために、三次元多孔質アルミニウムにおける正極活物質の保持力が不十分となり、500サイクル試験後の活物質の脱落が顕著に見られた。その結果、総合評価も不合格となった。   In Comparative Example 5, since the coating film mass formed on the three-dimensional porous aluminum is too small and the ratio of the polymer binder in the coating film is too small, the positive electrode active material is retained in the three-dimensional porous aluminum. The force was insufficient, and the active material dropped out after the 500 cycle test. As a result, the overall evaluation also failed.

本発明に係る非水電解質二次電池用正極は、充放電サイクルを繰り返した際における活物質の脱落が抑制され、電極容量の低下も防止される。更に、当該非水電解質二次電池用正極を用いた非水電解質二次電池によって、電池性能として高エネルギー密度が達成される。   In the positive electrode for a non-aqueous electrolyte secondary battery according to the present invention, the active material is prevented from dropping when the charge / discharge cycle is repeated, and the electrode capacity is also prevented from decreasing. Furthermore, a high energy density is achieved as battery performance by the non-aqueous electrolyte secondary battery using the positive electrode for non-aqueous electrolyte secondary batteries.

1・・空孔
2・・金属壁
3・・小孔
1 .... Hole 2 .... Metal wall 3 .... Small hole

Claims (6)

リチウムを吸蔵放出可能な正極活物質を含む電極合材を含有する非水電解質二次電池用正極であって、金属壁によって画成された空孔を有する三次元多孔質アルミニウムを集電体としてその空孔中に前記電極合材が充填されており、前記金属壁と電極合材とが導電助剤と高分子結合剤とから形成される塗膜を介して接触していることを特徴とする非水電解質二次電池用正極。   A positive electrode for a non-aqueous electrolyte secondary battery containing an electrode mixture containing a positive electrode active material capable of occluding and releasing lithium, and using a three-dimensional porous aluminum having pores defined by metal walls as a current collector The electrode mixture is filled in the pores, and the metal wall and the electrode mixture are in contact with each other through a coating film formed from a conductive additive and a polymer binder. A positive electrode for a non-aqueous electrolyte secondary battery. 前記三次元多孔質アルミニウムの単位体積当たりの前記塗膜の質量が、0.001〜0.07g/cmである、請求項1に記載の非水電解質二次電池用正極。 The positive electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein a mass of the coating film per unit volume of the three-dimensional porous aluminum is 0.001 to 0.07 g / cm 3 . 前記塗膜における高分子結合剤に対する導電助剤の固形分としての質量比率が20〜80%である、請求項1又は2に記載の非水電解質二次電池用正極。   The positive electrode for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein a mass ratio as a solid content of the conductive additive to the polymer binder in the coating film is 20 to 80%. 導電助剤、高分子結合剤及び分散媒を含む懸濁液を、金属壁によって画成された空孔を有する三次元多孔質アルミニウムの集電体の内部に含浸させる工程と;前記懸濁液を内部に含浸させた三次元多孔質アルミニウムを乾燥して分散媒を飛散・蒸発させ、前記導電助剤と高分子結合剤とを含む塗膜を金属壁上に形成する工程と;リチウムを吸蔵放出可能な正極活物質を含む電極合材を溶媒に分散したスラリーを、前記塗膜が金属壁上に形成された三次元多孔質アルミニウムの内部に含浸させる工程と;前記スラリーを内部に含浸させた三次元多孔質アルミニウムを乾燥して溶媒を飛散・蒸発させ、前記塗膜を介して金属壁に接触するように電極合材を空孔中に充填する工程と;空孔中に電極合材が充填された三次元多孔質アルミニウムの集電体をプレス処理する工程と;を含むことを特徴とする非水電解質二次電池用正極の製造方法。   Impregnating a suspension containing a conductive aid, a polymer binder, and a dispersion medium into a three-dimensional porous aluminum current collector having pores defined by metal walls; Drying the three-dimensional porous aluminum impregnated inside to disperse and evaporate the dispersion medium to form a coating film containing the conductive auxiliary agent and the polymer binder on the metal wall; Impregnating a slurry in which an electrode mixture containing a releasable positive electrode active material is dispersed in a solvent into a three-dimensional porous aluminum in which the coating film is formed on a metal wall; impregnating the slurry in the interior; Drying the three-dimensional porous aluminum to disperse and evaporate the solvent, and filling the electrode mixture into the pores so as to contact the metal wall through the coating film; and the electrode mixture into the pores; Of Three-dimensional Porous Aluminum Filled with Metal Process and pressing process; the positive electrode manufacturing method for a non-aqueous electrolyte secondary battery, which comprises a. 前記懸濁液において、高分子結合剤の固形分100質量部に対する導電助剤の固形分の比率が20〜80質量部である、請求項4に記載の非水電解質二次電池用正極の製造方法。   The positive electrode for a non-aqueous electrolyte secondary battery according to claim 4, wherein in the suspension, the ratio of the solid content of the conductive additive to the solid content of 100 parts by mass of the polymer binder is 20 to 80 parts by mass. Method. 請求項1〜3のいずれか一項に記載の非水電解質二次電池用正極と、リチウムを吸蔵放出可能な負極と、これら正負極間に配置されたセパレータと、非水電解質とを備えたことを特徴とする非水電解質二次電池。   A positive electrode for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, a negative electrode capable of occluding and releasing lithium, a separator disposed between the positive and negative electrodes, and a nonaqueous electrolyte. A non-aqueous electrolyte secondary battery.
JP2012102659A 2012-04-27 2012-04-27 Non-aqueous electrolyte secondary battery positive electrode, method for producing the non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery using the non-aqueous electrolyte secondary battery positive electrode Expired - Fee Related JP6071241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012102659A JP6071241B2 (en) 2012-04-27 2012-04-27 Non-aqueous electrolyte secondary battery positive electrode, method for producing the non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery using the non-aqueous electrolyte secondary battery positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012102659A JP6071241B2 (en) 2012-04-27 2012-04-27 Non-aqueous electrolyte secondary battery positive electrode, method for producing the non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery using the non-aqueous electrolyte secondary battery positive electrode

Publications (2)

Publication Number Publication Date
JP2013232295A true JP2013232295A (en) 2013-11-14
JP6071241B2 JP6071241B2 (en) 2017-02-01

Family

ID=49678579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012102659A Expired - Fee Related JP6071241B2 (en) 2012-04-27 2012-04-27 Non-aqueous electrolyte secondary battery positive electrode, method for producing the non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery using the non-aqueous electrolyte secondary battery positive electrode

Country Status (1)

Country Link
JP (1) JP6071241B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087948A1 (en) * 2013-12-12 2015-06-18 住友電気工業株式会社 Carbon material-coated metal porous body, collector, electrode, and power storage device
JP2015153459A (en) * 2014-02-10 2015-08-24 古河機械金属株式会社 Electrode sheet, all-solid lithium ion battery, and method of manufacturing electrode sheet
JP2019054012A (en) * 2019-01-09 2019-04-04 古河機械金属株式会社 Electrode sheet, all-solid type lithium ion battery, and method for manufacturing electrode sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170126A (en) * 1994-12-15 1996-07-02 Sumitomo Electric Ind Ltd Porous metallic body, its production and plate for battery using the same
JP2000195501A (en) * 1998-12-25 2000-07-14 Matsushita Electric Ind Co Ltd Organic electrolyte battery and manufacture of the same
JP2001023643A (en) * 1999-07-05 2001-01-26 Toshiba Battery Co Ltd Polymer lithium secondary battery
WO2011013756A1 (en) * 2009-07-30 2011-02-03 日本ゼオン株式会社 Electrode for electrochemical-element, and electrochemical element
WO2011152280A1 (en) * 2010-05-31 2011-12-08 住友電気工業株式会社 Three-dimensional net-like aluminum porous material, electrode comprising the aluminum porous material, non-aqueous electrolyte battery equipped with the electrode, and non-aqueous electrolytic solution capacitor equipped with the electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170126A (en) * 1994-12-15 1996-07-02 Sumitomo Electric Ind Ltd Porous metallic body, its production and plate for battery using the same
JP2000195501A (en) * 1998-12-25 2000-07-14 Matsushita Electric Ind Co Ltd Organic electrolyte battery and manufacture of the same
JP2001023643A (en) * 1999-07-05 2001-01-26 Toshiba Battery Co Ltd Polymer lithium secondary battery
WO2011013756A1 (en) * 2009-07-30 2011-02-03 日本ゼオン株式会社 Electrode for electrochemical-element, and electrochemical element
WO2011152280A1 (en) * 2010-05-31 2011-12-08 住友電気工業株式会社 Three-dimensional net-like aluminum porous material, electrode comprising the aluminum porous material, non-aqueous electrolyte battery equipped with the electrode, and non-aqueous electrolytic solution capacitor equipped with the electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087948A1 (en) * 2013-12-12 2015-06-18 住友電気工業株式会社 Carbon material-coated metal porous body, collector, electrode, and power storage device
JP2015153459A (en) * 2014-02-10 2015-08-24 古河機械金属株式会社 Electrode sheet, all-solid lithium ion battery, and method of manufacturing electrode sheet
JP2019054012A (en) * 2019-01-09 2019-04-04 古河機械金属株式会社 Electrode sheet, all-solid type lithium ion battery, and method for manufacturing electrode sheet

Also Published As

Publication number Publication date
JP6071241B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP5310450B2 (en) Non-aqueous electrochemical cell current collector and electrode using the same
JP6149031B2 (en) Method for producing electrode for non-aqueous electrolyte secondary battery
JP5893410B2 (en) Method for producing porous aluminum current collector for non-aqueous electrolyte secondary battery, and method for producing positive electrode for non-aqueous electrolyte secondary battery
JP2019106352A (en) Method for producing sulfide solid-state battery
JP6071241B2 (en) Non-aqueous electrolyte secondary battery positive electrode, method for producing the non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery using the non-aqueous electrolyte secondary battery positive electrode
JP2009199744A (en) Negative electrode for lithium secondary battery and its manufacturing method
JP5142264B2 (en) Non-aqueous electrolyte secondary battery current collector and method for producing the same, and positive electrode for non-aqueous electrolyte secondary battery and method for producing the same
WO2015087948A1 (en) Carbon material-coated metal porous body, collector, electrode, and power storage device
JP2013243063A (en) Method of manufacturing electrode using porous metal collector
JP2017091673A (en) Lithium ion battery
JP5509786B2 (en) Positive electrode for non-aqueous electrolyte secondary battery
JP6583993B2 (en) Lithium secondary battery charge / discharge method
JP2013214374A (en) Positive electrode for nonaqueous electrolytic secondary batteries, and nonaqueous electrolytic secondary battery using the same
JP6122580B2 (en) Method for producing electrode using porous metal current collector
JP2014022150A (en) Nonaqueous electrolyte secondary battery
JP6962235B2 (en) Manufacturing method of positive electrode for lithium ion secondary battery
JP2020087516A (en) Method for manufacturing zinc battery negative electrode and method for manufacturing zinc battery
JP2020087554A (en) Electrolyte solution for zinc battery and zinc battery
JP2019079755A (en) Negative electrode for non-aqueous electrolyte, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5961067B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP6443725B2 (en) Porous aluminum sintered body, method for producing the same, and method for producing an electrode
JP6071407B2 (en) Al-Si alloy current collector used for positive electrode for nonaqueous electrolyte secondary battery and method for producing the same, positive electrode for nonaqueous electrolyte secondary battery using the current collector and method for producing the same, and non-electrode using the positive electrode Water electrolyte secondary battery
JP6071243B2 (en) Method for producing electrode for non-aqueous electrolyte secondary battery
WO2023195233A1 (en) Negative electrode for zinc battery, and zinc battery
JP2019216059A (en) Porous membrane, battery member, and zinc battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161227

R150 Certificate of patent or registration of utility model

Ref document number: 6071241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees