JP2013229956A - パワー半導体モジュール - Google Patents

パワー半導体モジュール Download PDF

Info

Publication number
JP2013229956A
JP2013229956A JP2012098690A JP2012098690A JP2013229956A JP 2013229956 A JP2013229956 A JP 2013229956A JP 2012098690 A JP2012098690 A JP 2012098690A JP 2012098690 A JP2012098690 A JP 2012098690A JP 2013229956 A JP2013229956 A JP 2013229956A
Authority
JP
Japan
Prior art keywords
voltage
sic
avalanche
power semiconductor
semiconductor module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012098690A
Other languages
English (en)
Other versions
JP6024177B2 (ja
Inventor
Susumu Iwamoto
進 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012098690A priority Critical patent/JP6024177B2/ja
Publication of JP2013229956A publication Critical patent/JP2013229956A/ja
Application granted granted Critical
Publication of JP6024177B2 publication Critical patent/JP6024177B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

【課題】 ワイドバンドギャップ基板に形成された還流ダイオードのパワーサイクル耐量を高めることができるパワー半導体モジュールを提供する。
【解決手段】大きな静的アバランシェ耐量を有するSiC−SBD2を選定し、このSiC−SBD2の静的アバランシェ電圧をSi−IGBT1のダイナミックアバランシェ電圧Vavdより低くすることで、SiC−SBD2の基板の厚さを薄くし、オン電圧を低下させる。オン電圧の低下によりオン損失が低下して、SiC−SBD2のパワーサイクル耐量を向上させることができる。
【選択図】 図3

Description

この発明は、IGBT(絶縁ゲート型バイポーラトランジスタ)などのスイッチング素子とこのスイッチング素子に逆並列に接続される還流ダイオードである例えばショットキーバリアダイオードを有するパワー半導体モジュールに関する。
パワー半導体モジュールが使用される分野は、家電製品から電気鉄道、電気自動車、産業用ロボット、電力系統と広くにおよんでいる。パワー半導体装置の有用性が広がるにしたがい、その性能の向上が期待され、高周波化、小型化、大電力化がますます望まれている。
これらの分野で使用されるパワー半導体モジュールの多くは、交流−直流変換、直流−交流変換、直流−直流変換などの変換回路で使用されている。これらのパワー半導体モジュール内には、例えばIGBT(絶縁ゲート型バイポーラトランジスタ)やMOSFET(MOS型電界効果トランジスタ)などのスイッチング素子とこれらスイッチング素子と逆並列に接続される還流ダイオードであるFWD(フリー・ホイーリング・ダイオード)が搭載されている。
図7は、単相ブリッジインバータ回路図である。これは従来のインバータ回路の1例であり、破線で囲んだ部分の6A、6B、6C、6Dはパワー半導体モジュールを示している。
この例では、それぞれのパワー半導体モジュール6A、6B、6C、6Dは、1つの還流ダイオード(FWD)7A、7B、7C、7Dと1つのスイッチング素子(この例ではIGBT)3A、3B、3C、3Dをペアで搭載している。還流ダイオードは、スイッチング素子であるそれぞれのIGBTに逆並列に接続されてる。図中の符号の54は負荷でありインダクタンスを有する。55は直流の電源である。
自己消弧機能を持つIGBTやMOSFET等のスイッチング素子を含むインバータ回路を用いて直流−交流変換を行う場合、PWM(パルス幅変調)方式が一般的に使用されている。
図8は、図7の単相ブリッジインバータ回路を用いてPWM方式により直流−交流変換を行う時の負荷への出力波形図である。PWM方式ではスイッチング素子のゲート信号の方形パルス波形を、時間平均的に見れば負荷電圧が交流波形となる様に変調する。IGBT3A、3Dのオン・オフ動作で負荷4に正方向のパルス幅を変調したパルス電圧を出力すると、パルス電圧波形を時間平均的に見れば図8の実線Vmに示されている様な正弦波の半波が負荷に出力される。但し、この動作期間中(TAD)スイッチング素子であるIGBT3B、3Cはオフ状態である。次にIGBT3B、3Cのオン・オフ動作で負荷4に負方向のパルス電圧を出力し、残り半周期分(TBC)の正弦波の半波を負荷に出力する。
図8のIGBT3A、3Dのパルス動作期間中において、例えば、IGBT3Aがオン状態からオフになる時に、IGBT3Aに接続する回路配線の浮遊インダクタンスにより、IGBT3Aのコレクタ電圧は、図9に示すように、IGBT3Aのダイナミックアバランシェ電圧Vavd0(クランプ電圧)まで跳ね上がり、一定期間ダイナミックアバランシェ電圧Vavd0(クランプ電圧)を保持する。その後、IGBT3Aのコレクタ電圧は電源電圧に保持される。尚、図中の符号でIcはIGBTのコレクタ電流、Vcはコレクタ電圧、di/dtはコレクタ電流Icの立下りの傾斜、Vavs2はSiC−SBD2の静的アバランシェ電圧である。
特許文献1では、図7のFWDを2直列接続にしたSiC−SBDで構成して、FWDで発生する逆回復損失を減少させる例が記載されている。
以下の説明において、Siはシリコンであり、SiCは炭化珪素を指し、シリコン基板に形成したデバイスをSiで示し、炭化珪素基板に形成したデバイスをSiCで示す。また、SBDはショットキーバリアダイオードである。つまり、Si−IGBTはSi基板に形成されたIGBTであり、SiC−SBDはSiC基板に形成されたSBDである。さらに、前記したようにFWD(フリー・ホイーリング・ダイオード)は還流ダイオードであり、ここではSBDである。
特許文献2では、SiC−SIT(静電誘導型トランジスタ)とSiC−Di(ダイオード)でDC−DCコンバータを構成してSi−スイッチング素子を用いるよりもオン抵抗、スイッチング速度、温度特性を改善し、接合温度を160℃〜300℃で用いた例が記載されている。
特許文献3では、Si−FWDとSiC−FWDを直列接続し、Si−FWDの温度特性をSiC−FWDの温度特性で打ち消して、Si−FWDの熱暴走を防ぐ例が記載されている。
特許文献4では、SiC−FWDを用いることでSi−FWDの場合よりチップの温度上昇を半分にすることができた例が記載されている。
特許第4594477号公報 特開2006−187147号公報([0054]〜[0056]) 特許第4808290号公報([0033]、[0067]) 特許第4722229号公報([0052])
図10は、従来のインバータの1相分30の回路図である。ここでは1相分30とは上アームと下アームを直列接続した回路をいう。また、前記特許文献1に示すように、パワー半導体モジュールがSi−IGBT31とSiC−SBD32で構成された例をここでは示す。
一般にSiC−SBD32は結晶欠陥が多いため、大きなチップサイズの場合では良品率が低くなる。したがって一般には小さいサイズ(例えば2mm□など)で構成されることが多い。このときアノードパッドに打つことができるワイヤ本数も少なくなるので、アノードパッドとワイヤとの接合部の発熱も大きくなり、パワーサイクル耐量が低下する懸念がある。それゆえFWDとして機能するSiC−SBD2で発生する損失を小さくして、発熱を抑制する必要がある。
また、回路の配線インダクタンス(浮遊インダクタンスL)が大きい場合、図9に示されるように、スイッチング時にSi−IGBT1には回路のインダクタンス(L)と主電流(コレクタ電流Ic)の減少によりダイナミックアバランシェ電圧Vavdが印加される。この電圧Vavdの印加によりSiC−SBD32が破壊しないように、この電圧VavdでSiC−SBD32がアバランシェに突入しないように、点線で示す静的アバランシェ電圧Vavs2が高いSiC−SBD32を用いる。
しかし、静的アバランシェ電圧Vavs2が高いSiC−SBD32はドリフト層の厚さが厚いため、順電圧降下、通称、オン電圧(VF)が高くなってしまい、FWDとして機能するSiC−SBD32で発生する損失が大きくなる。その結果、パワーサイクル耐量の低下が懸念される。
また、特許文献1〜特許文献4において、大きな静的アバランシェ耐量を有するSiC−SBDを用いて、SiC−SBDの静的アバランシェ電圧をSi−IGBT1のダイナミックアバランシェ電圧より低くする。SiC−SBDの静的アバランシェ電圧を低くすることで、SiC−SBDのドリフト層の厚さを減少させてオン電圧を低下させる。オン電圧を低下させることでSiC−SBDで発生する損失を小さくして、SiC−SBDのパワーサイクル耐量を向上させるということについては記載されていない。
この発明の目的は、前記の課題を解決して、ワイドバンドギャップ基板に形成された還流ダイオードのパワーサイクル耐量を高めることができるパワー半導体モジュールを提供することにある。
前記の目的を達成するために、特許請求の範囲の請求項1に記載の発明によれば、スイッチング素子と、該スイッチング素子と逆並列接続される還流ダイオードを有するパワー半導体モジュールにおいて、前記スイッチング素子がシリコン基板に形成され、前記還流ダイオードがワイドバンドギャップ基板に形成され、使用中の接合温度の全範囲において前記還流ダイオードの静的アバランシェ電圧が前記スイッチング素子のダイナミックアバランシェ電圧より低い構成にする。
また、特許請求の範囲の請求項2記載の発明によれば、請求項1に記載の発明において、前記スイッチング素子のターンオフ時のダイナミックアバランシェ期間に発生する損失より前記還流ダイオードのアバランシェ耐量が大きいとよい。
また、特許請求の範囲の請求項3記載の発明によれば、請求項1または2に記載の発明において、前記ワイドバンドギャップ基板が炭化珪素からなる半導体基板であるとよい。
また、特許請求の範囲の請求項4に記載の発明によれば、請求項1〜3のいずれか一項に記載の発明において、前記スイッチング素子が絶縁ゲート型バイポーラトランジスタもしくはMOS型電界効果トランジスタであり、前記還流ダイオードがショットキーバリアダイオードであるとよい。
また、特許請求の範囲の請求項5に記載の発明によれば、請求項1〜4のいずれか一項に記載の発明において、前記還流ダイオードがボンディングワイヤで外部導出端子に接続するとよい。
この発明によれば、SiC−SBDの静的アバランシェ電圧をSi−IGBTのダイナミックアバランシェ電圧より低くすることで、SiC−SBDのパワーサイクル耐量を向上させることができる。
この発明の一実施例に係るパワー半導体モジュール100の回路構成図である。 SiC−SBDの静的アバランシェ耐量を向上させる方策を説明する図であり、(同図(a))はアバランシェ電流Iavがコーナーに集中する図、同図(b)はアバランシェ電流Iavが活性領域全域に流れる図である。 Si−IGBT1のダイナミックアバランシェ電圧VavdおよびSiC−SBD2の静的アバランシェ電圧Vavs2と接合温度の関係を示す模式図である。 静的アバランシェ電圧を説明する模式図である。 Si−IGBTのダイナミックアバランシェ電圧VavdとSiC−SBDの静的アバランシェ電圧Vavs2を説明する模式図である。 静的アバランシェ電圧Vavsおよびダイナミックアバランシェ電圧Vavdが温度が高くなると上昇するメカニズムを説明した模式図である。 単相ブリッジインバータ回路図である。 図7の単相ブリッジインバータ回路を用いてPWM方式により直流−交流変換を行う時の負荷への出力波形図である。 IGBT3Aのターンオフ時に発生するダイナミックアバランシェ電圧(クランプ電圧)を説明する模式図である。 従来のインバータの1相分30の回路図である。
実施の形態を以下の実施例で説明する。
<実施例>
図1は、この発明の一実施例に係るパワー半導体モジュール100の回路構成図である。ここで、パワー半導体モジュール100は、スイッチング素子とFWDとの逆並列回路1組をパッケージに格納し、1in1モジュールを構成する場合を例に挙げた。上記の逆並列回路を2個直列に接続して1つのパッケージに格納すると2in1モジュールとなる。上記の逆並列回路を2個直列に接続し、この直列回路をを2個並列接続して1つのパッケージに格納すると4in1モジュールとなり単相インバータが構成される。同様に、上記の直列回路を3個並列接続して1つのパッケージに格納すると6in1の3相インバータが構成される。
パワー半導体モジュール100は、Si−IGBT1と、これに逆並列接続されたSiC−SBD2とを備えている。Si−IGBT1のコレクタ1aとSiC−SBD2のカソード2bはそれぞれ接続し、さらにコレクタ端子3に接続する。Si−IGBT1のエミッタ1bとSiC−SBD2のアノード2aはそれぞれ接続し、さらにエミッタ端子4に接続する。
図示は省略するが、この例では、Si−IGBT1のコレクタ1aとSiC−SBD2のカソード2bは、絶縁基板の回路パターンに接合され、この回路パターンを介して外部導出端子(コレクタ端子3)に接続される。また、Si−IGBT1のエミッタ1bとSiC−SBD2のアノード2aは、ボンディングワイヤによって接続されて外部導出端子(エミッタ端子4)に接続される。
このパワー半導体モジュール100の使用中の接合温度の全範囲において、SiC−SBD2の静的アバランシェ電圧Vavs2をSi−IGBT1のダイナミックアバランシェ電圧Vavdより低くアバランシェ耐量が大きなSiC−SBD2を選定する。
この選定はパワー半導体モジュールの組立工程に先立って行う。また、素子の諸特性を実測して選定する。具体的にはSiC−SBD2の静的アバランシェ電圧Vavs2の測定は耐圧測定器であるカーブドレーサを用いて行う。Si−IGBT1のダイナミックアバランシェ電圧Vavdの測定は、インバータ回路を模擬したターンオフ装置を用いて行う。また、SiC−SBD2の静的アバランシェ耐量の測定は、パルス的で高電圧で大電流を流せる装置を用いて行う。これらの測定を行なって、素子を選定する。
Si−IGBT1がオフするときに回路配線の浮遊インダクタンスによって発生するダイナミックアバランシェ電圧VavdはSiC−SBD2の静的アバランシェ電圧Vavs2で抑制され、このSi−IGBT1に流れるダイナミックアバランシェ電流はSiC−SBD2に転流する。SiC−SBD2の静的アバランシェ耐量は高く設計されているため(測定により確認されている)、SiC−SBD2は破壊することはない。また、サージ電圧など過電圧がパワー半導体モジュール100に印加された場合も、SiC−SBDの静的アバランシェ耐量が高く設計されているため、SiC−SBD2は破壊することはない。
図2は、SiC−SBDの静的アバランシェ耐量を向上させる方法を示した模式図であり、同図(a)はチップの要部平面図、同図(b)はチップの要部断面図である。静的アバランシェ耐量とは、アバランシェ電流Iavが流れたときに発生する損失で素子が破壊しない耐量のことで、通常、アバランシェ電流Iavとその通電時間の積で表される。同図(a)に示すように、アバランシェ電流Iavがチップ15の端部15aの耐圧構造16に流れる設計では、チップ15のコーナー部17でアバランシェ電流Iavが集中して流れて、電流密度が上昇し破壊し易くなる。つまり、静的アバランシェ耐量が小さな素子となる。同図(b)に示すように、アバランシェ電流Iavを耐圧構造16に流れないようにして、チップ15の内側の活性領域18の全域に流す設計にする。この設計によってSiC−SBD2に流れるアバランシェ電流Iavの電流密度が低下し、基板の厚さを薄くしても静的アバランシェ耐量を高めることができる。また、ドリフト層が薄くなることでオン電圧を低下させることができる。そのため、SiC−SBD2において、SiC−SBD2と外部導出端子をボンディングワイヤで接続してもパワーサイクル耐量を大きくすることができる。
図3は、Si−IGBT1のダイナミックアバランシェ電圧VavdおよびSiC−SBD2の静的アバランシェ電圧Vavs2と接合温度の関係を示す模式図である。これらのデータは実験で求めた。また、図中の符号のTLは最低接合温度である。ここではTLを−40℃の例を挙げたが、素子設計によっては、−50℃やそれ以下になる場合もある。
SiC−SBD2の静的アバランシェ電圧Vavs2の接合温度依存性は、Si−IGBT1のダイナミックアバランシェ電圧Vavdに比べて緩やかになる。また、Si−IGBT1のダイナミックアバランシェ電圧VavdおよびSiC−SBD2の静的アバランシェ電圧Vavs2の双方とも接合温度Tjが高くなると高くなる。
図4は、静的アバランシェ電圧を説明する模式図である。縦軸は電流であり横軸は電圧である。素子に電圧が印加されると漏れ電流が流れる。印加電圧を上昇させ、印加電圧が雪崩を発生させる電界強度(シリコンでは5×10V/cm程度である)に達すると(立ち上がり電圧に達すると)、電子が格子へ衝突して発生する電子の数が雪崩的に増大して急激に漏れ電流は立ち上がりアバランシェ電流となる。このアバランシェ電流が流れる電圧が静的アバランシェ電圧である。このアバランシェ電流と静的アバランシェ電圧および(アバランシェ電流が流れても破壊が起こらない時間)で発生する損失(WS)に素子が耐える損失がアバランシェ耐量である。
図5は、Si−IGBTのダイナミックアバランシェ電圧VavdとSiC−SBDの静的アバランシェ電圧Vavs2を説明する模式図である。インダクタンスを通してSi−IGBT1にコレクタ電流Icを流す。Si−IGBT1がターンオフすると、コレクタ電流Icは下降する。そのコレクタ電流Icの下降の過程(ターンオフ過程)で、L×(di/dt)により電圧が発生する。この電圧が高くなると、Si−IGBT1はアバランシェ(降伏)に突入し、アバランシェ電流を流しながら一定の電圧になる。この一定になった電圧をダイナミックアバランシェ電圧Vavdもしくはクランプ電圧と称す。このダイナミックアバランシェ電圧Vavdは静的アバランシェ電圧Vavs1より低い電圧になる。
しかし、SiC−SBD2の静的アバランシェ電圧Vavs2がSi−IGBT1のダイナミックアバランシェ電圧Vavdより低いため、コレクタ電流IcはSiC−SBD2のアバランシェ電流として流れる。
尚、SiC−SBD2の静的アバランシェ電圧Vavs2を低下させる方策はエピタキシャル層の不純物濃度および厚みを制御するとよい。つまり、エピタキシャル層の厚みを薄くする、または比抵抗を低く(不純物濃度を高く)する、もしくは両方を適用するとよい。
つぎに、SiC−SBD2の静的アバランシェ耐量とSi−IGBT1のターンオフ時に発生するダイナミックアバランシェ期間(図の印加時間)で発生する損失(WS)の関係を説明する。
Si−IGBT1のターンオフ時のコレクタ電流Icが直線的に減少する場合、Ic×Vc÷2×印加時間で決まる損失(WS)がSi−IGBT1に発生する。しかし、Si−IGBT1のターンオフ時の跳ね上がり電圧がSiC−SBD2の静的アバランシェ電圧Vavs2に到達した時点で、コレクタ電流IcはすべてSiC−SBD2に転流してアバランシェ電流として流れる。そのため、Si−IGBT1で発生した損失(WS)はSiC−SBD2のアバランシェ電流と静的アバランシェ電圧および印加時間の積で表される損失として消費される。
SiC−SBD2の静的アバランシェ耐量をSi−IGBT1で発生する前記の損失(WS)より大きくすることによって、SiC−SBD2の破壊を防止できる。そのため、Si−IGBT1で発生する前記の損失(WS)より大きい静的アバランシェ耐量のSiC−SBD2を選定するとよい。
また、SiC−SBD2の静的アバランシェ耐量は温度が上がると小さくなり、一方、Si−IGBT1ののターンオフ時に発生する損失(WS)は温度が上がると大きくなる。そのため、使用中の接合温度の最高温度でSiC−SBD2の静的アバランシェ耐量がSi−IGBT1のターンオフ時に発生する損失(WS)より大きいことを確認することで、使用中の接合温度の全範囲でSiC−SBD2の静的アバランシェ耐量がSi−IGBT1のターンオフ時に発生する損失(WS)より大きいことを確認することができる。
図6は、静的アバランシェ電圧Vavsおよびダイナミックアバランシェ電圧Vavdが温度が高くなると上昇するメカニズムを説明した模式図である。ここではSi結晶を例として挙げたがSiC結晶の場合も同様である。先ず、静的アバランシェ電圧Vavsについて説明する。
Si基板10の両端に電圧Voを印加する。Si基板10の温度が上がると結晶格子11の振動12が激しくなる。この格子振動が激しくなると、電子13が格子11に衝突するまでの距離D(平均自由行程)が短くなる。そうすると、電子13は衝突までに十分高いエネルギーを得ることができない。そのため、電子13が格子11に衝突しても格子11に拘束されている電子13aを弾き飛ばせなくなり、アバランシェが起きにくくなる。この状態でアバランシェを起こすためには印加する電圧Voをさらに高くする必要がある。そのため、静的アバランシェ電圧Vavsの温度依存性は、温度が高くなると高くなる。
つぎに、ダイナミックアバランシェ電圧Vavdについて説明する。これは前記した電子の数が極めて多くなり(大電流が流れた場合)、この多数の電子が格子に衝突することで格子から電子が飛び出す。このときの飛び出す機構は結晶特有のイオン化率で決められ、前記の静的アバランシェ電圧より低い電圧になる。また、実験によると、ダイナミックアバランシェ電圧Vavdの温度依存性は、静的アバランシェ電圧Vavsと同様に、温度が高くなると高くなる。
また、実験によるとSiC−SBD2の静的アバランシェ電圧Vavs2の温度依存性の方がSi−IGBT1のダイナミックアバランシェ電圧Vavdの温度依存性より小さい。
図3に示す最低接合温度TLにおいて、SiC−SBD2の静的アバランシェ電圧Vavs2をSi−IGBT1のダイナミックアバランシェ電圧Vavdより低い素子を選定することで、使用中の接合温度の全範囲でSiC−SBD2の静的アバランシェ電圧Vavs2をSi−IGBT1の静的アバランシェ電圧Vavs1より低くすることができる。
そのため、SiC−SBD2の静的アバランシェ電圧Vavs2とSi−IGBT1のダイナミックアバランシェ電圧Vavdを使用中の接合温度の最低温度TLの一点で測定し、SiC−SBD2の静的アバランシェ電圧Vavs2をSi−IGBT1のダイナミックアバランシェ電圧Vavdより低い素子を選定すれば、使用中の接合温度の全範囲でSiC−SBD2の静的アバランシェ電圧Vavs2をSi−IGBT1のダイナミックアバランシェ電圧Vavdより低くすることができる。Si−IGBT1のターンオフ時に発生するダイナミックアバランシェ電圧VavdはSi−IGBT1の静的アバランシェ電圧Vavs1により抑制される。また、Si−IGBT1のダイナミックアバランシェ電圧VavdよりSiC−SBD2の静的アバランシェ電圧Vavs2を低くするため、SiC−SBD2のオン電圧を低下させることができる。オン電圧の低下によりオン損失が低下して、SiC−SBDのパワーサイクル耐量を向上させることができる。
尚、前記の説明ではSi−IGBT1とSiC−SBD2の組み合わせの例に挙げたが、Si−MOSFET(MOS型電界効果トランジスタ)とSiC−SBD2の組み合わせの場合も本発明を適用できる。
大きな静的アバランシェ耐量を有するSiC−SBDを選定し、このSiC−SBDの静的アバランシェ電圧をSi−IGBTのダイナミックアバランシェ電圧より低くすることで、SiC−SBDのドリフト層の厚さを薄くし、オン電圧を低下させる。オン電圧の低下によりオン損失が低下して、SiC−SBDのパワーサイクル耐量を向上させることができる。
1 Si−IGBT
1a コレクタ
1b エミッタ
2 SiC−SBD
2a アノード
2b カソード
3 コレクタ端子
4 エミッタ端子
5 ゲート端子
10 基板
11 結晶格子
12 格子振動
13 電子
13a 弾き飛んだ電子
15 チップ
15a 端部
16 耐圧構造
17 コーナー
18 活性領域
100 パワー半導体モジュール
Iav アバランシェ電流
Vavs1、Vavs2 静的アバランシェ電圧
Vavd ダイナミックアバランシェ電圧

Claims (5)

  1. スイッチング素子と、該スイッチング素子と逆並列接続される還流ダイオードを有するパワー半導体モジュールにおいて、
    前記スイッチング素子がシリコン基板に形成され、前記還流ダイオードがワイドバンドギャップ基板に形成され、使用中の接合温度の全範囲において前記還流ダイオードの静的アバランシェ電圧が前記スイッチング素子のダイナミックアバランシェ電圧より低いことを特徴とするパワー半導体モジュール。
  2. 前記スイッチング素子のターンオフ時のダイナミックアバランシェ期間に発生する損失より前記還流ダイオードのアバランシェ耐量が大きいことを特徴とする請求項1に記載のパワー半導体モジュール。
  3. 前記ワイドバンドギャップ基板が炭化珪素からなる半導体基板であることを特徴とする請求項1または2に記載のパワー半導体モジュール。
  4. 前記スイッチング素子が絶縁ゲート型バイポーラトランジスタもしくはMOS型電界効果トランジスタであり、前記還流ダイオードがショットキーバリアダイオードであることを特徴とする請求項1〜3のいずれか一項に記載のパワー半導体モジュール。
  5. 前記還流ダイオードがボンディングワイヤで外部導出端子に接続することを特徴とする請求項1〜4に記載のパワー半導体モジュール。
JP2012098690A 2012-04-24 2012-04-24 パワー半導体モジュール Active JP6024177B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012098690A JP6024177B2 (ja) 2012-04-24 2012-04-24 パワー半導体モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012098690A JP6024177B2 (ja) 2012-04-24 2012-04-24 パワー半導体モジュール

Publications (2)

Publication Number Publication Date
JP2013229956A true JP2013229956A (ja) 2013-11-07
JP6024177B2 JP6024177B2 (ja) 2016-11-09

Family

ID=49677099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012098690A Active JP6024177B2 (ja) 2012-04-24 2012-04-24 パワー半導体モジュール

Country Status (1)

Country Link
JP (1) JP6024177B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017153064A (ja) * 2015-10-23 2017-08-31 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag 半導体スイッチングデバイスおよびクランプダイオードを含む電気組立体
WO2022158596A1 (ja) * 2021-01-25 2022-07-28 住友電気工業株式会社 半導体装置
WO2022158597A1 (ja) * 2021-01-25 2022-07-28 住友電気工業株式会社 半導体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000116114A (ja) * 1998-09-30 2000-04-21 Hitachi Ltd 半導体電力変換装置
JP2006339508A (ja) * 2005-06-03 2006-12-14 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
JP2011108684A (ja) * 2009-11-12 2011-06-02 Sumitomo Electric Ind Ltd 半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000116114A (ja) * 1998-09-30 2000-04-21 Hitachi Ltd 半導体電力変換装置
JP2006339508A (ja) * 2005-06-03 2006-12-14 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
JP2011108684A (ja) * 2009-11-12 2011-06-02 Sumitomo Electric Ind Ltd 半導体装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017153064A (ja) * 2015-10-23 2017-08-31 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag 半導体スイッチングデバイスおよびクランプダイオードを含む電気組立体
US10333387B2 (en) 2015-10-23 2019-06-25 Infineon Techonologies Ag Electric assembly including a semiconductor switching device and a clamping diode
WO2022158596A1 (ja) * 2021-01-25 2022-07-28 住友電気工業株式会社 半導体装置
WO2022158597A1 (ja) * 2021-01-25 2022-07-28 住友電気工業株式会社 半導体装置

Also Published As

Publication number Publication date
JP6024177B2 (ja) 2016-11-09

Similar Documents

Publication Publication Date Title
Bolotnikov et al. Overview of 1.2 kV–2.2 kV SiC MOSFETs targeted for industrial power conversion applications
US11355477B2 (en) Power semiconductor module and power conversion device
JP4594477B2 (ja) 電力半導体モジュール
EP3029821B1 (en) Semiconductor device and power conversion device
JP5970194B2 (ja) 半導体スイッチング素子の駆動回路並びにそれを用いた電力変換回路
US6657874B2 (en) Semiconductor converter circuit and circuit module
JP2010238835A (ja) 複合半導体整流素子とそれを用いた電力変換装置
De et al. An all SiC MOSFET high performance PV converter cell
JP2016103897A (ja) 電力変換装置およびこれを備えた鉄道車両
JP5095803B2 (ja) 電力半導体モジュール
Liang et al. Performance evaluation of sic mosfet, si coolmos and igbt
JP6024177B2 (ja) パワー半導体モジュール
JP4724251B2 (ja) 電力半導体モジュール
JP2009225570A (ja) 電力変換装置
JP6007578B2 (ja) パワー半導体モジュールおよびその組立方法
JP2015033222A (ja) 半導体素子の駆動装置およびそれを用いる電力変換装置
JP6641782B2 (ja) 電力変換装置
Yamano et al. Expansion of power rating with 7th-Generation" X Series" RC-IGBT Modules for Industrial Applications
Korkh et al. Dynamic characteristic evaluation of a 600V reverse blocking IGBT device
JP2012050176A (ja) 電力変換装置のパワーモジュール
Yamano et al. The Series of 7th-Generation" X Series" RC-IGBT Modules for Industrial Applications
CHEN et al. High-power IGBT modules for 3-level power converters
Li et al. Switching performance of a 3.3-kv sic hybrid power module for railcar converters
Lorenz Power semiconductor devices and smart power IC's-the enabling technology for future high efficient power conversion systems
US20230170292A1 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160926

R150 Certificate of patent or registration of utility model

Ref document number: 6024177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250