JP2013228269A - Heat flux measuring apparatus and heat flux measuring method - Google Patents

Heat flux measuring apparatus and heat flux measuring method Download PDF

Info

Publication number
JP2013228269A
JP2013228269A JP2012100329A JP2012100329A JP2013228269A JP 2013228269 A JP2013228269 A JP 2013228269A JP 2012100329 A JP2012100329 A JP 2012100329A JP 2012100329 A JP2012100329 A JP 2012100329A JP 2013228269 A JP2013228269 A JP 2013228269A
Authority
JP
Japan
Prior art keywords
heat flux
temperature
thermal resistor
measured
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012100329A
Other languages
Japanese (ja)
Other versions
JP5856534B2 (en
Inventor
Yukikatsu Ozaki
幸克 尾崎
Tadashi Ishihara
匡 石原
Yasuhiko Mishio
靖彦 三塩
Masato Watanabe
正人 渡辺
Makoto Tomita
誠 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2012100329A priority Critical patent/JP5856534B2/en
Publication of JP2013228269A publication Critical patent/JP2013228269A/en
Application granted granted Critical
Publication of JP5856534B2 publication Critical patent/JP5856534B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat flux measuring apparatus and a heat flux measuring method which suitably measure a heat flux even when a temporal change of an object temperature is small.SOLUTION: A surface 12a of a portion to be measured of an object 12 includes a thermal resistor 14, and on the basis of a difference ΔT(=T-T) between a temperature Tof the surface 12a of the portion to be measured and a temperature Tof a surface 14a of the thermal resistor 14, a heat flux q regarding a heat transfer from the surface 12a of the portion to be measured is calculated. Therefore, regardless of a temporal change of surface temperature of a portion to be measured, a heat flux regarding a heat transfer from the portion to be measured can be accurately measured.

Description

本発明は、熱流束測定装置及び熱流束測定方法に関し、特に、物体温度の時間変化が小さい場合にも好適に熱流束を測定するための改良に関する。   The present invention relates to a heat flux measuring device and a heat flux measuring method, and more particularly, to an improvement for suitably measuring a heat flux even when a time change of an object temperature is small.

被測定物からの熱移動に係る熱流束を測定する熱流束測定技術が知られている。例えば、特許文献1に記載された感温塗料を用いた物体表面の熱流束分布計測方法がそれである。この技術は、励起光を照射すると温度に応じて変化する感温塗料を用いて物体(被測定物)からの熱移動に係る熱流束を測定するものであり、その感温塗料が塗布された物体表面に励起光を照射した際の発光強度を画像データとして保存し、光強度と温度較正特性を用いて画像データから物体の温度を得ることで、その温度の時間変化から熱流束を測定するものである。   A heat flux measurement technique for measuring a heat flux related to heat transfer from an object to be measured is known. For example, the method for measuring the heat flux distribution on the surface of an object using the temperature-sensitive paint described in Patent Document 1 is that. This technology measures heat flux related to heat transfer from an object (object to be measured) using a temperature-sensitive paint that changes according to temperature when irradiated with excitation light, and the temperature-sensitive paint is applied. The emission intensity when the object surface is irradiated with excitation light is stored as image data, the temperature of the object is obtained from the image data using the light intensity and temperature calibration characteristics, and the heat flux is measured from the change in temperature over time. Is.

特開2004−212193号公報JP 2004-212193 A

しかし、前記従来の技術は、物体の温度に係る時間変化に基づいて熱流束を測定するものであることから、被測定物である物体の温度の時間変化が小さい場合には熱流束を精度良く測定できないという不具合があった。このような課題は、熱流束測定技術の改良を意図して本発明者等が鋭意研究を継続する過程において新たに見出したものである。   However, since the conventional technique measures the heat flux based on the time change related to the temperature of the object, the heat flux is accurately determined when the time change of the temperature of the object being measured is small. There was a problem that it could not be measured. Such a problem was newly found in the process of continuing the intensive research by the present inventors with the intention of improving the heat flux measurement technique.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、物体温度の時間変化が小さい場合にも好適に熱流束を測定する熱流束測定装置及び熱流束測定方法を提供することにある。   The present invention has been made in the background of the above circumstances, and the object of the present invention is to provide a heat flux measuring device and a heat flux measuring method for suitably measuring the heat flux even when the time change of the object temperature is small. Is to provide.

斯かる目的を達成するために、本第1発明の要旨とするところは、被測定物からの熱移動に係る熱流束を測定する熱流束測定装置であって、前記被測定物における被測定部位の表面に熱抵抗体が設けられ、前記被測定部位の表面温度と、前記熱抵抗体の表面温度との差に基づいて、前記被測定部位の表面からの熱移動に係る熱流束を算出することを特徴とするものである。   In order to achieve such an object, the gist of the first aspect of the present invention is a heat flux measuring device for measuring a heat flux related to heat transfer from an object to be measured, which is a part to be measured in the object to be measured. A heat resistor is provided on the surface of the substrate, and a heat flux related to heat transfer from the surface of the measured region is calculated based on a difference between the surface temperature of the measured region and the surface temperature of the thermal resistor. It is characterized by this.

このように、前記第1発明によれば、前記被測定物における被測定部位の表面に熱抵抗体が設けられ、前記被測定部位の表面温度と、前記熱抵抗体の表面温度との差に基づいて、前記被測定部位の表面からの熱移動に係る熱流束を算出するものであることから、前記被測定部位の表面温度の時間変化によらず、その被測定部位からの熱移動に係る熱流束を精度良く測定することができる。すなわち、物体温度の時間変化が小さい場合にも好適に熱流束を測定する熱流束測定装置を提供することができる。   Thus, according to the first invention, a thermal resistor is provided on the surface of the part to be measured in the object to be measured, and the difference between the surface temperature of the part to be measured and the surface temperature of the thermal resistor is determined. Based on the calculation of the heat flux related to the heat transfer from the surface of the measurement site, the heat transfer from the measurement site does not depend on the time change of the surface temperature of the measurement site. The heat flux can be measured with high accuracy. That is, it is possible to provide a heat flux measuring device that suitably measures heat flux even when the time change of the object temperature is small.

前記目的を達成するために、本第2発明の要旨とするところは、被測定物からの熱移動に係る熱流束を測定する熱流束測定装置であって、前記被測定物における被測定部位の表面に熱抵抗体が設けられ、その熱抵抗体は、その一部に他の部分よりも厚さ寸法が薄く形成された肉薄部を備えたものであり、その肉薄部の表面温度と、前記熱抵抗体におけるその肉薄部ではない部分の表面温度との差に基づいて、前記被測定部位の表面からの熱移動に係る熱流束を算出することを特徴とするものである。このようにすれば、前記被測定部位の表面温度の時間変化によらず、その被測定部位からの熱移動に係る熱流束を精度良く測定することができる。すなわち、物体温度の時間変化が小さい場合にも好適に熱流束を測定する熱流束測定装置を提供することができる。   In order to achieve the above object, the gist of the second invention is a heat flux measuring device for measuring a heat flux related to heat transfer from an object to be measured, wherein the measurement site of the object to be measured is measured. A thermal resistor is provided on the surface, and the thermal resistor is provided with a thin part formed with a thickness smaller than the other part in a part thereof, and the surface temperature of the thin part, The heat flux relating to the heat transfer from the surface of the measurement site is calculated based on the difference from the surface temperature of the portion of the thermal resistor that is not the thin portion. In this way, it is possible to accurately measure the heat flux related to the heat transfer from the measurement site regardless of the time change of the surface temperature of the measurement site. That is, it is possible to provide a heat flux measuring device that suitably measures heat flux even when the time change of the object temperature is small.

前記第1発明乃至第2発明に従属する本第3発明の要旨とするところは、前記熱抵抗体は、周縁部が円形状を成す板状に形成されたものである。このようにすれば、前記被測定物表面の周囲の流体の流れ方に対して、前記熱抵抗体表面温度に指向性が生じるのを抑制することで、その被測定部位からの熱移動に係る熱流束を更に精度良く測定することができる。   The gist of the third invention according to the first and second inventions is that the thermal resistor is formed in a plate shape having a circular peripheral edge. In this way, by suppressing the directivity in the surface temperature of the thermal resistance body with respect to the flow of the fluid around the surface of the object to be measured, it is related to the heat transfer from the part to be measured. The heat flux can be measured with higher accuracy.

前記目的を達成するために、本第4発明の要旨とするところは、被測定物からの熱移動に係る熱流束を測定する熱流束測定方法であって、前記被測定物における被測定部位の表面に熱抵抗体が設けられ、前記被測定部位の表面温度と、前記熱抵抗体の表面温度との差に基づいて、前記被測定部位の表面からの熱移動に係る熱流束を算出することを特徴とする。このようにすれば、前記被測定部位の表面温度の時間変化によらず、その被測定部位からの熱移動に係る熱流束を精度良く測定することができる。すなわち、物体温度の時間変化が小さい場合にも好適に熱流束を測定する熱流束測定方法を提供することができる。   In order to achieve the above object, the gist of the fourth invention is a heat flux measuring method for measuring a heat flux related to heat transfer from an object to be measured, comprising: A thermal resistor is provided on the surface, and a heat flux related to heat transfer from the surface of the measurement site is calculated based on a difference between the surface temperature of the measurement site and the surface temperature of the thermal resistor. It is characterized by. In this way, it is possible to accurately measure the heat flux related to the heat transfer from the measurement site regardless of the time change of the surface temperature of the measurement site. That is, it is possible to provide a heat flux measurement method that suitably measures the heat flux even when the time change of the object temperature is small.

本発明の一実施例である熱流束測定装置の構成を概略的に示す断面図である。It is sectional drawing which shows roughly the structure of the heat flux measuring apparatus which is one Example of this invention. 図1の熱流束測定装置における物体及び熱抵抗体を表面に垂直な方向から見た平面図である。It is the top view which looked at the object and thermal resistor in the heat flux measuring apparatus of FIG. 1 from the direction perpendicular | vertical to the surface. 図1の熱流束測定装置による測定に用いられる関係を導出するための検定装置の一例を示す図であり、外形を概略的に示す平面図である。It is a figure which shows an example of the verification apparatus for deriving the relationship used for the measurement by the heat flux measuring apparatus of FIG. 1, and is a top view which shows an outline schematically. 図3のIV-IV視断面を拡大して示す視断面図である。FIG. 4 is an enlarged cross-sectional view taken along the line IV-IV in FIG. 図3の検定装置による測定結果に関し、流体である空気の流れ方向に係る温度分布を示す図である。It is a figure which shows the temperature distribution concerning the flow direction of the air which is a fluid regarding the measurement result by the verification apparatus of FIG. 図5の測定結果に対応する、熱抵抗体における流体の流れに垂直な方向の温度分布を示す図である。It is a figure which shows the temperature distribution of the direction perpendicular | vertical to the flow of the fluid in a thermal resistor corresponding to the measurement result of FIG. 図1の熱流束測定装置による測定に係る、物体表面の温度の算出について説明する図である。It is a figure explaining calculation of the temperature of the object surface based on the measurement by the heat flux measuring apparatus of FIG. 図1の熱流束測定装置において、他の形状の熱抵抗体を設けた例について説明する図であり、熱抵抗体の中心を含む断面図である。In the heat flux measuring apparatus of FIG. 1, it is a figure explaining the example which provided the heat resistor of another shape, and is sectional drawing containing the center of a heat resistor. 図1の熱流束測定装置において、他の形状の熱抵抗体を設けた例について説明する図であり、熱抵抗体の中心軸方向から見た平面図である。In the heat flux measuring apparatus of FIG. 1, it is a figure explaining the example which provided the heat resistor of another shape, and is the top view seen from the central-axis direction of the heat resistor. 本発明の一実施例である熱流束測定方法の要部を説明する工程図である。It is process drawing explaining the principal part of the heat flux measuring method which is one Example of this invention.

前記熱流束測定装置は、好適には、予め実験的に求められた、前記熱抵抗体の表面温度及び前記被測定物の表面温度の温度差と、その温度差に対応する熱流束との関係(前処理としての温度差と熱流束とを関連付ける校正)に基づいて、赤外線温度センサ等により測定される前記熱抵抗体の表面温度及び前記被測定物の表面温度の温度差を熱流束に変換するものである。或いは、予め実験的に求められた、前記熱抵抗体におけるそれぞれ厚さ寸法が異なる部位に対応する複数箇所の表面温度相互の温度差と、その温度差に対応する熱流束との関係に基づいて、赤外線温度センサ等により測定される前記熱抵抗体におけるそれぞれ厚さ寸法が異なる部位に対応する複数箇所の表面温度の温度差を熱流束に変換するものである。   Preferably, the heat flux measuring device preferably has a relationship between a temperature difference between the surface temperature of the thermal resistor and the surface temperature of the object to be measured, and a heat flux corresponding to the temperature difference, obtained experimentally in advance. Based on (calibration associating temperature difference and heat flux as a pretreatment), the temperature difference between the surface temperature of the thermal resistor and the surface temperature of the object to be measured, which is measured by an infrared temperature sensor or the like, is converted into a heat flux. To do. Alternatively, based on the relationship between the temperature difference between the surface temperatures of a plurality of locations corresponding to the portions having different thickness dimensions in the thermal resistor, and the heat flux corresponding to the temperature difference, obtained in advance experimentally. The temperature difference of the surface temperature at a plurality of locations corresponding to the portions having different thickness dimensions in the thermal resistor measured by an infrared temperature sensor or the like is converted into a heat flux.

前記熱抵抗体の表面温度は、好適には、その熱抵抗体の表面全体の平均温度又はその中心部(表面に垂直な方向から見た平面視における中心)温度である。前記被測定物の表面温度は、好適には、その被測定物の表面において、前記熱抵抗体の中心(特に、熱抵抗体が円盤状である場合における円の中心)からの距離が等しい複数の測定点の温度の平均値である。   The surface temperature of the thermal resistor is preferably the average temperature of the entire surface of the thermal resistor or the central portion (center in a plan view as viewed from the direction perpendicular to the surface). Preferably, the surface temperature of the object to be measured is a plurality of distances from the center of the thermal resistor (especially, the center of the circle when the thermal resistor is disk-shaped) on the surface of the object to be measured. This is the average value of the temperatures at the measurement points.

前記熱流束測定装置において、好適には、前記被測定物の表面と、その表面に設けられた熱抵抗体の表面とに黒体塗料が塗布される。前記熱流束測定装置による熱流束の測定においては、この黒体塗料が塗布された部分における温度が測定され、その測定結果に基づいて前記被測定物の表面からの熱移動に係る熱流束が算出される。   In the heat flux measuring device, preferably, a black body paint is applied to the surface of the object to be measured and the surface of the thermal resistor provided on the surface. In the measurement of the heat flux by the heat flux measuring device, the temperature at the portion where the black body paint is applied is measured, and the heat flux related to the heat transfer from the surface of the object to be measured is calculated based on the measurement result. Is done.

前記熱抵抗体は、好適には、熱伝導率が小さく耐熱性に優れたポリイミド等の合成樹脂材料、或いはガラスやセラミックス等の無機材料等から構成されたもの或いは厚さ寸法が既知の塗装膜である。   The thermal resistor is preferably made of a synthetic resin material such as polyimide having a low thermal conductivity and excellent heat resistance, or an inorganic material such as glass or ceramics, or a coating film having a known thickness dimension It is.

以下、本発明の好適な実施例を図面に基づいて詳細に説明する。以下の説明に用いる図面において、各部の寸法比等は必ずしも正確には描かれていない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings used for the following description, the dimensional ratios and the like of each part are not necessarily drawn accurately.

図1は、本発明の一実施例である熱流束測定装置10の構成を概略的に示す断面図である。図2は、図1の熱流束測定装置10における物体12及び熱抵抗体14を表面に垂直な方向(図1の矢印IIで示す方向)から見た平面図である。本実施例の熱流束測定装置10は、被測定物である物体12からの熱移動(例えば対流熱伝達や熱放射等)に係る熱流束すなわち単位面積における単位時間あたりの熱量を測定するものであり、図1に示すように、前記物体12における被測定部位の表面12aには熱抵抗体14が設けられている。この熱抵抗体14は、好適には、熱伝導率が小さく耐熱性に優れたポリイミド等の合成樹脂材料、或いはガラスやセラミックス等の無機材料等から、周縁部が円形状を成す板状に形成されたものである。すなわち、前記熱抵抗体14は、好適には、所定の厚さ寸法を有する略円盤状を成すものであるが、その周縁部は必ずしも真円を成すものでなくともよく、例えば前記物体12の仕様によっては周縁部が楕円形を成すものであってもよい。前記熱抵抗体14は、例えば両面テープ(好適には、熱伝導率の高いシリコーン製の粘着テープ)、グリース、接着剤等の接着層16を介して前記物体12の表面12aに接着されている。すなわち、図1に示す熱流束測定装置10においては、前記物体12の表面12aに前記熱抵抗体14が前記接着層16を介して貼り付けられている。好適には、前記物体12の表面12a及び前記熱抵抗体14の表面14aには、図示しない黒体塗料(表面からの放射率を均一にするための塗料)が塗布されており、それら物体12の表面12a及び熱抵抗体14の表面14aの放射率が略等しくなっている。   FIG. 1 is a cross-sectional view schematically showing a configuration of a heat flux measuring apparatus 10 according to an embodiment of the present invention. FIG. 2 is a plan view of the object 12 and the thermal resistor 14 in the heat flux measuring device 10 of FIG. 1 as viewed from the direction perpendicular to the surface (the direction indicated by the arrow II in FIG. 1). The heat flux measuring device 10 of this embodiment measures the heat flux related to heat transfer (for example, convective heat transfer or heat radiation) from the object 12 that is the object to be measured, that is, the amount of heat per unit time in a unit area. As shown in FIG. 1, a thermal resistor 14 is provided on the surface 12 a of the measurement site in the object 12. The thermal resistor 14 is preferably formed in a plate shape having a circular periphery from a synthetic resin material such as polyimide having a low thermal conductivity and excellent heat resistance, or an inorganic material such as glass or ceramics. It has been done. In other words, the thermal resistor 14 preferably has a substantially disk shape having a predetermined thickness, but the peripheral edge thereof does not necessarily have to be a perfect circle. Depending on the specification, the periphery may be elliptical. The thermal resistor 14 is bonded to the surface 12a of the object 12 via an adhesive layer 16 such as a double-sided tape (preferably a silicone adhesive tape having high thermal conductivity), grease, adhesive, or the like. . That is, in the heat flux measuring apparatus 10 shown in FIG. 1, the thermal resistor 14 is attached to the surface 12 a of the object 12 via the adhesive layer 16. Preferably, the surface 12a of the object 12 and the surface 14a of the thermal resistor 14 are coated with a black body paint (paint for making the emissivity from the surface uniform) (not shown). The emissivities of the surface 12a and the surface 14a of the thermal resistor 14 are substantially equal.

図1に示すように、前記熱流束測定装置10は、赤外線温度センサ18を備えている。この赤外線温度センサ18は、物体から放射される赤外線の検出によりその物体の温度を測定するよく知られた放射温度計であり、少なくとも前記物体12の表面12aの温度及び前記熱抵抗体14の表面14aの温度を測定できる位置に設けられる。好適には、前記熱抵抗体14の表面14aの温度と、その熱抵抗体14の周囲における前記物体12の表面12aの温度とを、同期して(略同時に)測定できる位置に設けられる。好適には、少なくとも前記物体12の表面12a及び前記熱抵抗体14の表面14aであって、前記黒体塗料が塗布された部位の温度を測定できる位置に設けられる。   As shown in FIG. 1, the heat flux measuring device 10 includes an infrared temperature sensor 18. The infrared temperature sensor 18 is a well-known radiation thermometer that measures the temperature of an object by detecting infrared rays emitted from the object. At least the temperature of the surface 12a of the object 12 and the surface of the thermal resistor 14 are measured. It is provided at a position where the temperature of 14a can be measured. Preferably, it is provided at a position where the temperature of the surface 14a of the thermal resistor 14 and the temperature of the surface 12a of the object 12 around the thermal resistor 14 can be measured synchronously (substantially simultaneously). Preferably, at least the surface 12a of the object 12 and the surface 14a of the thermal resistor 14 are provided at positions where the temperature of the portion to which the black body paint is applied can be measured.

以下、前述のように構成された本実施例の熱流束測定装置10の原理について説明する。前記物体12とその物体12の周囲における流体(例えば、空気等)との間に温度差がある場合、斯かる物体12の表面12aと流体との間で熱交換が行われる。前記熱流束測定装置10は、この物体12の表面12aからの熱移動に係る熱流束を算出する。図1に示すような構成において、前記熱抵抗体14の厚さ方向(厚み方向)に熱伝導があると、その熱抵抗体14の厚さ方向で温度勾配(不均一な温度分布)が生じる。すなわち、前記熱抵抗体14における前記表面14aすなわち前記物体12との接着に係る前記接着層16とは逆側の表面と、前記物体12側すなわち前記接着層16側の表面14bとの間に温度勾配が生じる。ここで、前記接着層16が厚みを有する場合、その接着層16の厚さ方向にも温度勾配が生じるが、斯かる接着層16の厚さ寸法を十分に薄くすると共に熱伝導率を大きく(少なくとも熱抵抗体14の熱伝導率よりも大きく)構成すること等により、前記熱抵抗体14の厚さ寸法に係る温度勾配に比べ、前記接着層16における温度勾配はほとんど無視できる。   Hereinafter, the principle of the heat flux measuring device 10 of the present embodiment configured as described above will be described. When there is a temperature difference between the object 12 and a fluid (for example, air) around the object 12, heat exchange is performed between the surface 12a of the object 12 and the fluid. The heat flux measuring device 10 calculates a heat flux related to heat transfer from the surface 12 a of the object 12. In the configuration shown in FIG. 1, if there is thermal conduction in the thickness direction (thickness direction) of the thermal resistor 14, a temperature gradient (non-uniform temperature distribution) occurs in the thickness direction of the thermal resistor 14. . That is, the temperature between the surface 14 a of the thermal resistor 14, that is, the surface on the opposite side to the adhesive layer 16 relating to the adhesion to the object 12, and the surface 14 b on the object 12 side, that is, the adhesive layer 16 side. A gradient occurs. Here, when the adhesive layer 16 has a thickness, a temperature gradient also occurs in the thickness direction of the adhesive layer 16, but the thickness dimension of the adhesive layer 16 is sufficiently reduced and the thermal conductivity is increased ( The temperature gradient in the adhesive layer 16 is almost negligible compared to the temperature gradient related to the thickness dimension of the thermal resistor 14 by configuring the thermal resistor 14 to be at least larger than the thermal conductivity of the thermal resistor 14.

前記熱流束測定装置10のように、前記物体12の表面12aに前記熱抵抗体14が設けられた構成においては、その物体12の表面12aからの熱移動に応じて前記熱抵抗体14の厚さ方向の温度勾配が変化する。具体的には、前記熱抵抗体14が設けられた前記物体12の表面12aからの熱移動に係る熱流束が大きいほどその熱抵抗体14の厚さ方向の温度勾配は大きく、その表面12aからの熱移動に係る熱流束が小さいほどその熱抵抗体14の厚さ方向の温度勾配は小さくなる。すなわち、定常状態においては、伝熱に関するフーリエの法則より、前記熱抵抗体14が設けられた前記物体12の表面12aからの熱移動に係る熱流束と、その熱抵抗体14の厚さ方向の温度勾配とは略比例する。前記接着層16の厚さ方向の温度勾配が無視できる場合、前記熱抵抗体14における前記物体12側の表面14bの温度と、その物体12の表面12aの温度とは略等しいものと考えることができる。   In the configuration in which the thermal resistor 14 is provided on the surface 12a of the object 12 as in the heat flux measuring device 10, the thickness of the thermal resistor 14 is changed according to the heat transfer from the surface 12a of the object 12. The temperature gradient in the vertical direction changes. Specifically, as the heat flux related to heat transfer from the surface 12a of the object 12 provided with the thermal resistor 14 is larger, the temperature gradient in the thickness direction of the thermal resistor 14 is larger, and from the surface 12a. The smaller the heat flux related to the heat transfer, the smaller the temperature gradient in the thickness direction of the thermal resistor 14. That is, in the steady state, the heat flux related to the heat transfer from the surface 12a of the object 12 provided with the thermal resistor 14 and the thickness direction of the thermal resistor 14 according to Fourier's law regarding heat transfer. The temperature gradient is approximately proportional. When the temperature gradient in the thickness direction of the adhesive layer 16 is negligible, it can be considered that the temperature of the surface 14b of the thermal resistor 14 on the object 12 side and the temperature of the surface 12a of the object 12 are substantially equal. it can.

図3及び図4は、前記熱流束測定装置10による測定に用いられる、前記物体12の表面温度及び前記熱抵抗体14の表面温度の温度差ΔTとその温度差に対応する熱流束qとの関係(校正のための対応関係)を導出するための検定装置20の一例を示す図であり、図3は、矩形長手状の流路外形を概略的に示す平面図、図4は、図3のIV-IV視断面を拡大して示す視断面図である。図3においては流体の流れ方向を白抜き矢印で示すと共に筐体28の一部を切り欠いて示している。これらの図に示すように、前記検定装置20は、矩形長手状の流体流路22と、その流体流路22における一面(図4に示す例においては底部を構成する面)に設けられた加熱面24と、その加熱面24を加熱するための電気ヒータ26と、断熱材等の材料から構成された筐体28とを、備えて構成されている。前記加熱面24の一部(図3に示す熱流束センサ取り付け位置すなわちIV-IV視断面に相当する部分)には、前記熱抵抗体14が接着層16を介して貼り付けられている。図4に示すように、前記検定装置20における前記熱抵抗体14が設けられた位置には、前記赤外線温度センサ18によりその熱抵抗体14の表面温度及びその周囲の加熱面温度を測定できるように、前記筐体28の一部(図4では加熱面24と対向する上面の一部)に赤外線を透過する例えばゲルマニウムやサファイア等の材料から成る窓部30が設けられている。前記加熱面24及び熱抵抗体14の表面14aには、図1を用いて前述した構成と同様に図示しない黒体塗料が塗布されている。以上のように構成された検定装置20において、前記加熱面24からの熱移動に対応する熱流束qは、理論的に算出することができ、前記流体流路22における流体の加熱量を加熱面積で除した値となる。従って、前記検定装置20により上述のような測定を行うことで、前記ΔTと熱流束q=f(ΔT)との対応関係を実験的に得ることができる。   3 and 4 show the difference in temperature ΔT between the surface temperature of the object 12 and the surface of the thermal resistor 14 and the heat flux q corresponding to the temperature difference, which are used for the measurement by the heat flux measuring device 10. FIG. 3 is a diagram showing an example of a verification device 20 for deriving a relationship (corresponding relationship for calibration), FIG. 3 is a plan view schematically showing a rectangular longitudinal channel shape, and FIG. FIG. 4 is a cross-sectional view showing an enlarged view of IV-IV. In FIG. 3, the flow direction of the fluid is indicated by a white arrow, and a part of the housing 28 is cut away. As shown in these drawings, the test apparatus 20 is composed of a rectangular longitudinal fluid channel 22 and heating provided on one surface of the fluid channel 22 (the surface constituting the bottom in the example shown in FIG. 4). A surface 24, an electric heater 26 for heating the heating surface 24, and a casing 28 made of a material such as a heat insulating material are provided. The thermal resistor 14 is attached to a part of the heating surface 24 (the heat flux sensor mounting position shown in FIG. 3, that is, the part corresponding to the IV-IV sectional view) via an adhesive layer 16. As shown in FIG. 4, the surface temperature of the thermal resistor 14 and the surrounding heating surface temperature can be measured by the infrared temperature sensor 18 at the position where the thermal resistor 14 is provided in the test device 20. In addition, a window portion 30 made of a material such as germanium or sapphire that transmits infrared rays is provided in a part of the casing 28 (a part of the upper surface facing the heating surface 24 in FIG. 4). A black body paint (not shown) is applied to the heating surface 24 and the surface 14a of the thermal resistor 14 in the same manner as described above with reference to FIG. In the verification device 20 configured as described above, the heat flux q corresponding to the heat transfer from the heating surface 24 can be theoretically calculated, and the heating amount of the fluid in the fluid flow path 22 is determined as the heating area. The value divided by. Therefore, by performing the above-described measurement by the verification device 20, the correspondence between the ΔT and the heat flux q = f (ΔT) can be obtained experimentally.

図5は、前記検定装置20を用いて前記熱抵抗体14の表面温度(表面14aの温度)及びその熱抵抗体14の周囲における前記加熱面24の表面温度を測定した結果に関し、流体である空気の流れ方向に係る温度分布を示す図である。この図5における横軸は、前記熱抵抗体14の中心軸(平面視における中心)上における空気の流れ方向に対応する。この空気の流れ方向と前記熱抵抗体14との相対的な位置関係を便宜上図2に白抜き矢印で示している。図5の測定結果に示す例では、前記熱抵抗体14の表面温度は、流体(空気)の流れ方向で分布すなわち温度勾配があり、前縁側(流体の流れ方向上流側)で局所熱伝達が良く温度が低くなっている。しかし、前記熱抵抗体14の表面全体の平均温度をT1とすれば、その熱抵抗体14と流体の流れ方向との関係を特に考慮する必要がなくなり、解析を簡略化できる。一般に、赤外線温度センサの1画素あたりの温度測定面積は、測定点と温度計の距離や赤外線温度計の仕様等で異なるため、それらの影響をなくすためにも前記熱抵抗体14の表面温度T1を平均温度として熱流束の計算をしたほうが好ましい。図6は、図5の測定結果に対応する、前記熱抵抗体14における流体の流れに垂直な方向(加熱面24に平行な方向であって流体の流れ方向と垂直を成す方向)の温度分布を示す図である。この図6に示すように、前記熱抵抗体14の表面温度は、流体の流れに垂直な方向では略一定である。 FIG. 5 is a fluid regarding the result of measuring the surface temperature of the thermal resistor 14 (the temperature of the surface 14a) and the surface temperature of the heating surface 24 around the thermal resistor 14 using the test apparatus 20. It is a figure which shows the temperature distribution which concerns on the flow direction of air. The horizontal axis in FIG. 5 corresponds to the air flow direction on the central axis (center in plan view) of the thermal resistor 14. For convenience, the relative positional relationship between the air flow direction and the thermal resistor 14 is indicated by white arrows in FIG. In the example shown in the measurement result of FIG. 5, the surface temperature of the thermal resistor 14 has a distribution, that is, a temperature gradient in the flow direction of the fluid (air), and local heat transfer is performed on the leading edge side (upstream side of the fluid flow direction). The temperature is well low. However, if the average temperature of the entire surface of the heat resistor 14 and T 1, particularly it is not necessary to consider the relationship between the flow direction of the heat resistor 14 and the fluid, thereby simplifying the analysis. In general, since the temperature measurement area per pixel of the infrared temperature sensor differs depending on the distance between the measurement point and the thermometer, the specifications of the infrared thermometer, etc., the surface temperature T of the thermal resistor 14 is also eliminated in order to eliminate these effects. It is preferable to calculate the heat flux with 1 as the average temperature. FIG. 6 shows the temperature distribution in the direction perpendicular to the fluid flow in the thermal resistor 14 (the direction parallel to the heating surface 24 and perpendicular to the fluid flow direction) corresponding to the measurement result of FIG. FIG. As shown in FIG. 6, the surface temperature of the thermal resistor 14 is substantially constant in the direction perpendicular to the fluid flow.

以上を前提として、図1等に示す本実施例の熱流束測定装置10は、前記赤外線温度センサ18により測定される前記物体12の表面12aの温度T1及び前記熱抵抗体14の表面14aの温度T2に基づいて前記物体12の表面12aからの熱移動に係る熱流束qを算出する。すなわち、前記赤外線温度センサ18により測定される前記物体12の表面12aの温度T1と、前記熱抵抗体14の表面14aの温度T2との差ΔT(=T1−T2)を算出し、図3及び図4に示す検定装置20を用いて予め導出された関係(ΔTとq=f(ΔT)との対応関係)から、前記算出された温度差ΔTに基づいて、前記物体12の被測定部位の表面12aからの熱移動に係る熱流束q(=f(ΔT))を算出する。ここで、前記熱抵抗体14の表面平均温度は、その熱抵抗体14の中心温度(平面視における中心の温度)と略等しい。従って、前記熱抵抗体14の表面温度T1として、前記熱抵抗体14の表面全体の平均温度ではなく、その中心温度を用いてもよい。このようにすれば、測定をより簡単なものとすることができる。前記物体12の表面温度T2としては、例えば図7に示すように、前記熱抵抗体14の中心からの距離が等しい複数(図7では4つ)の測定点32a〜32dの温度を測定し、各測定点の温度の平均値を前記物体12の表面温度T2とするのが好ましい。前記物体12の表面12aにおける面方向(表面12aに平行な方向)に温度勾配が存在したとしても、斯かる平均値を前記物体12の表面温度T2として算出することで、前記熱抵抗体14の中心付近における前記物体12の表面温度を適用することができる。 On the premise of the above, the heat flux measuring device 10 of this embodiment shown in FIG. 1 and the like has the temperature T 1 of the surface 12a of the object 12 and the surface 14a of the thermal resistor 14 measured by the infrared temperature sensor 18. calculating the heat flux q according to heat transfer from the surface 12a of the object 12 based on the temperature T 2. That is, a difference ΔT (= T 1 −T 2 ) between the temperature T 1 of the surface 12 a of the object 12 measured by the infrared temperature sensor 18 and the temperature T 2 of the surface 14 a of the thermal resistor 14 is calculated. Based on the calculated temperature difference ΔT from the relationship derived beforehand using the test device 20 shown in FIGS. 3 and 4 (correspondence relationship between ΔT and q = f (ΔT)), A heat flux q (= f (ΔT)) relating to heat transfer from the surface 12a of the measurement site is calculated. Here, the surface average temperature of the thermal resistor 14 is substantially equal to the center temperature of the thermal resistor 14 (center temperature in plan view). Therefore, the surface temperature T 1 of the thermal resistor 14 may be the center temperature instead of the average temperature of the entire surface of the thermal resistor 14. In this way, the measurement can be made simpler. The surface temperature T 2 of the object 12, for example, as shown in FIG. 7, to measure the temperature of the measuring point 32a~32d multiple distances from the center of the heat resistor 14 is equal to (in Fig. 7, four) The average value of the temperatures at each measurement point is preferably the surface temperature T 2 of the object 12. Wherein even if the temperature gradient is present in the surface direction of the surface 12a of the object 12 (the direction parallel to the surface 12a), by calculating the such average values as the surface temperature T 2 of the object 12, the thermal resistor 14 The surface temperature of the object 12 in the vicinity of the center can be applied.

このように、本実施例によれば、被測定物である前記物体12における被測定部位の表面12aに熱抵抗体14が設けられ、前記被測定部位の表面12aの温度T1と、前記熱抵抗体14の表面14aの温度T2との差ΔT(=T1−T2)に基づいて、前記被測定部位の表面12aからの熱移動に係る熱流束qを算出するものであることから、前記被測定部位の表面温度の時間変化によらず、その被測定部位からの熱移動に係る熱流束を精度良く測定することができる。すなわち、物体12の温度の時間変化が小さい場合にも好適に熱流束を測定する熱流束測定装置10を提供することができる。 Thus, according to the present embodiment, the thermal resistor 14 is provided on the surface 12a of the measurement site of the object 12 that is the measurement object, and the temperature T 1 of the surface 12a of the measurement site and the heat Based on the difference ΔT (= T 1 −T 2 ) from the temperature T 2 of the surface 14 a of the resistor 14, the heat flux q relating to the heat transfer from the surface 12 a of the measurement site is calculated. The heat flux relating to the heat transfer from the measurement site can be accurately measured regardless of the time change of the surface temperature of the measurement site. That is, it is possible to provide the heat flux measuring device 10 that suitably measures the heat flux even when the time change of the temperature of the object 12 is small.

前記熱抵抗体14は、周縁部が円形状を成す板状に形成されたものであるため、前記被測定物表面12aの周囲の流体の流れ方に対して、前記熱抵抗体14の表面14aの温度に指向性が生じるのを抑制することで、その被測定部位からの熱移動に係る熱流束を更に精度良く測定することができる。   Since the thermal resistor 14 is formed in a plate shape having a circular periphery, the surface 14a of the thermal resistor 14 is affected by the flow of fluid around the surface 12a of the object to be measured. By suppressing the directivity from occurring in the temperature, the heat flux relating to the heat transfer from the measurement site can be measured with higher accuracy.

続いて、本発明の他の好適な実施例を図面に基づいて詳細に説明する。以下の説明において、実施例相互に共通する部分については同一の符号を付してその説明を省略する。   Next, another preferred embodiment of the present invention will be described in detail with reference to the drawings. In the following description, parts common to the embodiments are denoted by the same reference numerals and description thereof is omitted.

図8及び図9は、前記熱流束測定装置10において、前記物体12の表面12aに前記熱抵抗体14とは形状の異なる熱抵抗体34を設けた例について説明する図であり、図8は前記熱抵抗体34の中心を含む断面図、図9は前記熱抵抗体34の中心軸方向から見た平面図である。これらの図に示すように、本実施例の熱流束測定装置10に設けられた熱抵抗体34は、その一部に他の部分よりも厚さ寸法が薄く形成された肉薄部36を備えたものである。すなわち、比較的厚さ寸法が薄く形成された肉薄部36と、その肉薄部36よりも厚さ寸法が所定値Δt厚く形成された肉厚部38とを、備えている。図8及び図9においては、中央部(中心を含む部分)に肉厚部38が、その肉厚部38の周縁部(外周側)に肉薄部36がそれぞれ設けられた熱抵抗体34を例示しているが、中央部に肉薄部36が設けられると共に、その外周側に肉厚部38が設けられた熱抵抗体も好適に用いられる。前記熱抵抗体34は、前記接着層16を介して前記物体12の表面12aに貼り付けられている。   8 and 9 are diagrams for explaining an example in which a thermal resistor 34 having a shape different from that of the thermal resistor 14 is provided on the surface 12a of the object 12 in the heat flux measuring apparatus 10, and FIG. FIG. 9 is a cross-sectional view including the center of the thermal resistor 34, and FIG. 9 is a plan view of the thermal resistor 34 as viewed from the central axis direction. As shown in these drawings, the thermal resistor 34 provided in the heat flux measuring device 10 of the present embodiment is provided with a thin portion 36 formed in a part of which is thinner than other portions. Is. That is, a thin portion 36 having a relatively thin thickness dimension and a thick portion 38 having a thickness dimension larger than the thin portion 36 by a predetermined value Δt are provided. 8 and 9 exemplify a thermal resistor 34 in which a thick portion 38 is provided at the central portion (portion including the center) and a thin portion 36 is provided at the peripheral portion (outer peripheral side) of the thick portion 38. However, a thermal resistor in which a thin portion 36 is provided in the center portion and a thick portion 38 is provided on the outer peripheral side thereof is also preferably used. The thermal resistor 34 is attached to the surface 12 a of the object 12 through the adhesive layer 16.

前述のような構成を有する熱抵抗体34において、その熱抵抗体34の厚さ方向に熱伝導した場合、前記肉薄部36と肉厚部38とで厚さ寸法に差があることから、その肉薄部36の表面36aと肉厚部38の表面38aとでそれぞれの表面温度が異なる。従って、前記熱抵抗体34に関して、前記肉薄部36の表面36aの温度T1′と前記肉厚部38の表面38aの温度T2′との温度差ΔT′(=T1′−T2′)とその温度差に対応する熱流束qとの関係を前記検定装置20等により予め導出しておくことで、その関係から前記赤外線温度センサ18により検出される前記肉薄部36の表面36aの温度T1′と前記肉厚部38の表面38aの温度T2′との温度差ΔT′に基づいて前記物体12の表面12aからの熱移動に係る熱流束qを測定することができる。図1等を用いて前述した熱抵抗体14を有する熱流束測定装置10に比べて、図8等に示す熱抵抗体34を有する熱流束測定装置10では、前記接着層16の厚さ方向の温度勾配の影響を受けないことに加え、温度検出に係る前記表面36a、38aが同じ材質であることから放射率が等しく、黒体塗料を塗布せずとも精度良く赤外線による温度計測を行い得る等の利点がある。 In the thermal resistor 34 having the above-described configuration, when heat conduction is performed in the thickness direction of the thermal resistor 34, there is a difference in thickness between the thin portion 36 and the thick portion 38. The surface temperatures of the surface 36a of the thin portion 36 and the surface 38a of the thick portion 38 are different. Therefore, with respect to the thermal resistor 34, the temperature difference ΔT ′ (= T 1 ′ −T 2 ′) between the temperature T 1 ′ of the surface 36 a of the thin portion 36 and the temperature T 2 ′ of the surface 38 a of the thick portion 38. ) And the heat flux q corresponding to the temperature difference are derived in advance by the verification device 20 or the like, and the temperature of the surface 36a of the thin portion 36 detected by the infrared temperature sensor 18 from the relationship. Based on the temperature difference ΔT ′ between T 1 ′ and the temperature T 2 ′ of the surface 38 a of the thick portion 38, the heat flux q relating to the heat transfer from the surface 12 a of the object 12 can be measured. Compared to the heat flux measuring device 10 having the thermal resistor 14 described above with reference to FIG. 1 and the like, the heat flux measuring device 10 having the thermal resistor 34 shown in FIG. In addition to being unaffected by temperature gradients, the surfaces 36a and 38a related to temperature detection are made of the same material, so the emissivity is the same, and temperature can be measured accurately with infrared rays without applying black body paint. There are advantages.

本実施例によれば、被測定物である前記物体12における被測定部位の表面12aに熱抵抗体34が設けられ、その熱抵抗体34は、その一部に他の部分すなわち肉厚部38よりも厚さ寸法が薄く形成された肉薄部36を備えたものであり、その肉薄部36の表面温度T1′と、前記熱抵抗体34におけるその肉薄部36ではない部分すなわち肉厚部38の表面温度T2′との差ΔT′(=T1′−T2′)に基づいて、前記被測定部位の表面12aからの熱移動に係る熱流束qを算出することを特徴とするものである。このようにすれば、前記被測定部位の表面温度の時間変化によらず、その被測定部位からの熱移動に係る熱流束を精度良く測定することができる。すなわち、物体温度の時間変化が小さい場合にも好適に熱流束を測定する熱流束測定装置10を提供することができる。 According to the present embodiment, the thermal resistor 34 is provided on the surface 12a of the part to be measured in the object 12 which is the object to be measured, and the thermal resistor 34 has another part, that is, a thick part 38 in a part thereof. are those having a thin portion 36 having a thickness dimension is formed thinner than the surface temperature T 1 'of the thin portion 36, the heat resistive element not its thin portion 36 in the 34 portion or thick portion 38 The heat flux q relating to the heat transfer from the surface 12a of the part to be measured is calculated based on the difference ΔT ′ (= T 1 ′ −T 2 ′) from the surface temperature T 2 ′. It is. In this way, it is possible to accurately measure the heat flux related to the heat transfer from the measurement site regardless of the time change of the surface temperature of the measurement site. That is, it is possible to provide the heat flux measuring device 10 that suitably measures the heat flux even when the time change of the object temperature is small.

前記熱抵抗体34は、周縁部が円形状を成す板状に形成されたものであるため、前記被測定物表面12aの周囲の流体の流れ方に対して、前記熱抵抗体34の表面温度に指向性が生じるのを抑制することで、その被測定部位からの熱移動に係る熱流束を更に精度良く測定することができる。   Since the thermal resistor 34 is formed in a plate shape having a circular periphery, the surface temperature of the thermal resistor 34 with respect to the flow of fluid around the surface 12a to be measured. By suppressing the directivity from being generated, the heat flux related to the heat transfer from the measurement site can be measured with higher accuracy.

図10は、本発明の一実施例である熱流束測定方法の要部を説明する工程図である。先ず、第1表面温度測定工程P1において、前記赤外線温度センサ18により前記物体12の表面12aの温度T1乃至前記肉薄部36の表面36aの温度T1′が測定(検出)される。この第1表面温度測定工程P1と相前後して、第2表面温度測定工程P2において、前記赤外線温度センサ18により前記熱抵抗体14の表面14aの温度T2乃至前記肉厚部38の表面38aの温度T2′が測定(検出)される。次に、温度差算出工程P3において、前記第1表面温度測定工程P1により測定された第1温度T1乃至T1′と、前記第2表面温度測定工程P2により測定された第2温度T2乃至T2′との差ΔT(=T1−T2)乃至ΔT′(=T1′−T2′)が算出される。次に、熱流束算出工程P4において、予め定められた関係から、前記温度差算出工程P3にて算出された温度差ΔT(=T1−T2)乃至ΔT′(=T1′−T2′)に基づいて、前記物体12の表面12aからの熱移動に係る熱流束qが算出される。 FIG. 10 is a process diagram for explaining the main part of the heat flux measuring method according to one embodiment of the present invention. First, in the first surface temperature measurement step P1, the infrared temperature sensor 18 measures (detects) the temperature T 1 of the surface 12a of the object 12 to the temperature T 1 ′ of the surface 36a of the thin portion 36. In parallel with the first surface temperature measurement step P1, in the second surface temperature measurement step P2, the infrared temperature sensor 18 causes the temperature T 2 of the surface 14a of the thermal resistor 14 to the surface 38a of the thick portion 38 to be obtained. temperature T 2 'is measured (detected) in the. Next, in the temperature difference calculating step P3, the first temperatures T 1 to T 1 ′ measured in the first surface temperature measuring step P1 and the second temperature T 2 measured in the second surface temperature measuring step P2. or T 2 'difference between ΔT (= T 1 -T 2) to ΔT' (= T 1 '-T 2') is calculated. Next, in the heat flux calculation step P4, the temperature differences ΔT (= T 1 −T 2 ) to ΔT ′ (= T 1 ′ −T 2 ) calculated in the temperature difference calculation step P3 based on a predetermined relationship. ′), A heat flux q relating to heat transfer from the surface 12a of the object 12 is calculated.

本実施例によれば、被測定物である前記物体12における被測定部位の表面12aに熱抵抗体14が設けられ、前記被測定部位の表面温度T1と、前記熱抵抗体14の表面温度T2との差ΔTに基づいて、前記被測定部位の表面12aからの熱移動に係る熱流束qを算出するものであるため、前記被測定部位の表面温度の時間変化によらず、その被測定部位からの熱移動に係る熱流束を精度良く測定することができる。すなわち、物体温度の時間変化が小さい場合にも好適に熱流束を測定する熱流束測定方法を提供することができる。 According to the present embodiment, the thermal resistor 14 is provided on the surface 12a of the measurement site in the object 12 that is the measurement object, and the surface temperature T 1 of the measurement site and the surface temperature of the thermal resistance 14 are measured. Since the heat flux q relating to the heat transfer from the surface 12a of the measurement site is calculated on the basis of the difference ΔT with respect to T 2 , the measurement is performed regardless of the time change of the surface temperature of the measurement site. The heat flux related to heat transfer from the measurement site can be measured with high accuracy. That is, it is possible to provide a heat flux measurement method that suitably measures the heat flux even when the time change of the object temperature is small.

被測定物である前記物体12における被測定部位の表面12aに熱抵抗体34が設けられ、その熱抵抗体34は、その一部に他の部分よりも厚さ寸法が薄く形成された肉薄部36を備えたものであり、その肉薄部36の表面温度T1′と、前記熱抵抗体34におけるその肉薄部36ではない部分すなわち肉厚部38の表面温度T2′との差ΔT′に基づいて、前記被測定部位の表面12aからの熱移動に係る熱流束を算出するものであるため、前記被測定部位の表面温度の時間変化によらず、その被測定部位からの熱移動に係る熱流束を精度良く測定することができる。すなわち、物体温度の時間変化が小さい場合にも好適に熱流束を測定する熱流束測定方法を提供することができる。 A thermal resistor 34 is provided on the surface 12a of the measurement site in the object 12 to be measured, and the thermal resistor 34 is a thin portion formed in a part of which is thinner than other parts. 36, and the difference ΔT ′ between the surface temperature T 1 ′ of the thin portion 36 and the surface temperature T 2 ′ of the thermal resistor 34 that is not the thin portion 36, that is, the thick portion 38. Based on this, the heat flux related to the heat transfer from the surface 12a of the measurement site is calculated, so that the heat transfer from the measurement site does not depend on the time change of the surface temperature of the measurement site. The heat flux can be measured with high accuracy. That is, it is possible to provide a heat flux measurement method that suitably measures the heat flux even when the time change of the object temperature is small.

以上、本発明の好適な実施例を図面に基づいて詳細に説明したが、本発明はこれに限定されるものではなく、その趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。   The preferred embodiments of the present invention have been described in detail with reference to the drawings. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the present invention. Is.

10:熱流束測定装置、12:物体(被測定物)、12a:表面、14、34:熱抵抗体、14a:表面、36:肉薄部、36a:表面、38:肉厚部(他の部分)、38a:表面   10: heat flux measuring device, 12: object (object to be measured), 12a: surface, 14, 34: thermal resistor, 14a: surface, 36: thin part, 36a: surface, 38: thick part (other parts) ), 38a: surface

Claims (4)

被測定物からの熱移動に係る熱流束を測定する熱流束測定装置であって、
前記被測定物における被測定部位の表面に熱抵抗体が設けられ、
前記被測定部位の表面温度と、前記熱抵抗体の表面温度との差に基づいて、前記被測定部位の表面からの熱移動に係る熱流束を算出することを特徴とする熱流束測定装置。
A heat flux measuring device for measuring a heat flux related to heat transfer from an object to be measured,
A thermal resistor is provided on the surface of the measurement site in the measurement object,
A heat flux measurement device that calculates a heat flux related to heat transfer from the surface of the measurement site based on a difference between the surface temperature of the measurement site and the surface temperature of the thermal resistor.
被測定物からの熱移動に係る熱流束を測定する熱流束測定装置であって、
前記被測定物における被測定部位の表面に熱抵抗体が設けられ、
該熱抵抗体は、その一部に他の部分よりも厚さ寸法が薄く形成された肉薄部を備えたものであり、
該肉薄部の表面温度と、前記熱抵抗体における該肉薄部ではない部分の表面温度との差に基づいて、前記被測定部位の表面からの熱移動に係る熱流束を算出することを特徴とする熱流束測定装置。
A heat flux measuring device for measuring a heat flux related to heat transfer from an object to be measured,
A thermal resistor is provided on the surface of the measurement site in the measurement object,
The thermal resistor has a thin portion formed in a part thereof with a thickness dimension thinner than other portions,
A heat flux relating to heat transfer from the surface of the measurement site is calculated based on a difference between the surface temperature of the thin portion and the surface temperature of a portion of the thermal resistor that is not the thin portion. Heat flux measuring device.
前記熱抵抗体は、周縁部が円形状を成す板状に形成されたものである請求項1又は2に記載の熱流束測定装置。   The heat flux measuring device according to claim 1 or 2, wherein the thermal resistor is formed in a plate shape having a circular periphery. 被測定物からの熱移動に係る熱流束を測定する熱流束測定方法であって、
前記被測定物における被測定部位の表面に熱抵抗体が設けられ、
前記被測定部位の表面温度と、前記熱抵抗体の表面温度との差に基づいて、前記被測定部位の表面からの熱移動に係る熱流束を算出することを特徴とする熱流束測定方法。
A heat flux measurement method for measuring a heat flux related to heat transfer from an object to be measured,
A thermal resistor is provided on the surface of the measurement site in the measurement object,
A heat flux measurement method, comprising: calculating a heat flux related to heat transfer from the surface of the measurement site based on a difference between the surface temperature of the measurement site and the surface temperature of the thermal resistor.
JP2012100329A 2012-04-25 2012-04-25 Heat flux measuring device and heat flux measuring method Expired - Fee Related JP5856534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012100329A JP5856534B2 (en) 2012-04-25 2012-04-25 Heat flux measuring device and heat flux measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012100329A JP5856534B2 (en) 2012-04-25 2012-04-25 Heat flux measuring device and heat flux measuring method

Publications (2)

Publication Number Publication Date
JP2013228269A true JP2013228269A (en) 2013-11-07
JP5856534B2 JP5856534B2 (en) 2016-02-09

Family

ID=49676037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012100329A Expired - Fee Related JP5856534B2 (en) 2012-04-25 2012-04-25 Heat flux measuring device and heat flux measuring method

Country Status (1)

Country Link
JP (1) JP5856534B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166832A (en) * 2015-03-10 2016-09-15 株式会社日本自動車部品総合研究所 Heat flux sensor
US20220118757A1 (en) * 2020-10-16 2022-04-21 B&R Industrial Automation GmbH Hot foil stamping machine
CN118091294A (en) * 2024-03-12 2024-05-28 济宁天耕电气有限公司 Method for detecting resistor
WO2024117560A1 (en) * 2022-11-30 2024-06-06 한국기계연구원 Sensor pad for measuring heat flux having pattern, and measurement method and system using same
CN118091294B (en) * 2024-03-12 2024-10-25 济宁天耕电气有限公司 Method for detecting resistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337750A (en) * 2004-05-24 2005-12-08 Komatsu Ltd Heat flux measuring substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337750A (en) * 2004-05-24 2005-12-08 Komatsu Ltd Heat flux measuring substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166832A (en) * 2015-03-10 2016-09-15 株式会社日本自動車部品総合研究所 Heat flux sensor
US20220118757A1 (en) * 2020-10-16 2022-04-21 B&R Industrial Automation GmbH Hot foil stamping machine
US11981118B2 (en) * 2020-10-16 2024-05-14 B&R Industrial Automation GmbH Hot foil stamping machine
WO2024117560A1 (en) * 2022-11-30 2024-06-06 한국기계연구원 Sensor pad for measuring heat flux having pattern, and measurement method and system using same
CN118091294A (en) * 2024-03-12 2024-05-28 济宁天耕电气有限公司 Method for detecting resistor
CN118091294B (en) * 2024-03-12 2024-10-25 济宁天耕电气有限公司 Method for detecting resistor

Also Published As

Publication number Publication date
JP5856534B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
WO2015088024A1 (en) Internal temperature sensor
JP2016523356A5 (en)
US11193901B2 (en) Thermal conductivity measuring device, thermal conductivity measuring method and vacuum evaluation device
TWI568997B (en) Infrared sensor
JP6225766B2 (en) Internal temperature measurement method and internal temperature measurement device
TW201504603A (en) Method and system for measuring heat flux
WO2007036983A1 (en) Thermal conductivity measuring method and device, and gas component ratio measuring device
US9243943B2 (en) Air-flow sensor for adapter slots in a data processing system
JP2013531248A (en) Infrared temperature measurement and stabilization
JP6398807B2 (en) Temperature difference measuring device
JP5959111B2 (en) Heat flow sensor
JP5856534B2 (en) Heat flux measuring device and heat flux measuring method
JP2011214994A (en) Anemometer and wind direction and speed device
WO2016067952A1 (en) Internal temperature measurement device
JP6398810B2 (en) Internal temperature measuring device and temperature difference measuring module
JP2007093509A (en) Thermal physical property measurement method and device
JP2005337750A (en) Heat flux measuring substrate
JP6127019B2 (en) Method for measuring thermal diffusivity of translucent materials
JP2012181090A (en) Heat flux sensor
RU2548135C1 (en) Thermal wind-gage determination of fluid or gas flow velocity and direction and device to this end
JP2005340291A (en) Substrate heat state measuring device and substrate heat state analysis control method
CN106679818B (en) Device and method for measuring temperature distribution of smooth surface
JP6128374B2 (en) Infrared sensor device
JP2012073127A (en) Clinical thermometer
CN206339310U (en) The measurement apparatus of smooth surface Temperature Distribution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151211

R150 Certificate of patent or registration of utility model

Ref document number: 5856534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees