JP2013227778A - Method for installing elastic support - Google Patents

Method for installing elastic support Download PDF

Info

Publication number
JP2013227778A
JP2013227778A JP2012100256A JP2012100256A JP2013227778A JP 2013227778 A JP2013227778 A JP 2013227778A JP 2012100256 A JP2012100256 A JP 2012100256A JP 2012100256 A JP2012100256 A JP 2012100256A JP 2013227778 A JP2013227778 A JP 2013227778A
Authority
JP
Japan
Prior art keywords
support
fixing member
bearing
elastic bearing
laminated rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012100256A
Other languages
Japanese (ja)
Other versions
JP5944732B2 (en
Inventor
Akihiro Sugiuchi
章浩 杉内
Norio Kosaka
則夫 小坂
Noriya Yoshioka
典哉 吉岡
Tokio Watai
富喜男 渡井
Takafumi Ogawa
貴文 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2012100256A priority Critical patent/JP5944732B2/en
Publication of JP2013227778A publication Critical patent/JP2013227778A/en
Application granted granted Critical
Publication of JP5944732B2 publication Critical patent/JP5944732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for installing an elastic support for uniformly giving compressive force to a base isolation device.SOLUTION: In a method for installing an elastic support of this invention, a plurality of jacks 58 are arranged around a fixing member 46 disposed at the center of a lower face of an elastic support 22, so as to compress the elastic support 22 provided on an upper member 34. Under this compressed state, the elastic support 22 is fixed on a lower member 36 by the fixing member 46, and thereafter, the weight supported by the jacks 58 is transferred to the fixing member 46.

Description

本発明は、構造物を免震化する弾性支承の設置方法に関する。   The present invention relates to an installation method of an elastic bearing for isolating a structure.

免震改修工事等において、構造物を免震化するために免震装置を設置する場合、構造物を支持する柱や杭の一部を切断撤去し、この切断撤去した箇所に免震装置を設置することが多い。例えば、特許文献1では、鋼管型サポートにより構造物を仮受けした状態で、柱と杭との間に免震装置を設置している。   When installing a seismic isolation device for seismic isolation repair work, etc., the pillars and piles that support the structure are cut and removed, and the seismic isolation device is installed at the cut and removed locations. Often installed. For example, in patent document 1, the seismic isolation apparatus is installed between the pillar and the pile in the state which received the structure temporarily with the steel pipe type support.

ここで、免震装置が積層ゴム支承等のゴム支持部を有する弾性支承である場合、仮受けを外して構造物の荷重を免震装置が受けた際に、免震装置が上下方向に収縮して構造物が沈下してしまう。   Here, when the seismic isolation device is an elastic bearing having a rubber support such as a laminated rubber bearing, when the seismic isolation device receives the load of the structure after removing the temporary support, the seismic isolation device contracts vertically. Then the structure will sink.

この問題を避けるために、免震装置に予め圧縮力を与えて、免震装置が構造物の荷重を受けたときに生じ得る量だけ上下方向に圧縮させた状態で、免震装置を設置することが考えられるが、設置した免震装置に所定の免震機能を発揮させるためには、免震装置に対して均一に圧縮力を与えなければならない。   To avoid this problem, install the seismic isolation device in a state where the seismic isolation device is compressed in the vertical direction by an amount that can be generated when the seismic isolation device receives the load of the structure. However, in order for the installed seismic isolation device to exhibit a predetermined seismic isolation function, it is necessary to apply a uniform compressive force to the seismic isolation device.

特開2010−37837号公報JP 2010-37837 A

本発明は係る事実を考慮し、免震装置に対して均一に圧縮力を与えることを課題とする。   This invention considers the fact which concerns, and makes it a subject to give a compressive force uniformly with respect to a seismic isolation apparatus.

請求項1に記載の発明は、構造部材が支持する構造物の鉛直荷重を支保工で支持した状態で前記構造部材の一部を切断撤去し、前記構造部材を上部材と下部材とに分ける工程と、前記上部材の下面又は前記下部材の上面に、弾性支承の上面又は下面を取り付けた後に、前記弾性支承の下面又は上面の平面視にて中央部に、高さ調整可能な固定部材を配置する、又は、弾性支承の下面又は上面の平面視にて中央部に、高さ調整可能な固定部材を配置した後に、前記上部材の下面又は前記下部材の上面に、前記弾性支承の上面又は下面を取り付ける工程と、前記固定部材の周りにジャッキを複数配置して、前記下部材の上面又は前記上部材の下面を反力受けにして前記弾性支承の下面又は上面を前記ジャッキで押し、前記弾性支承を圧縮させる工程と、前記固定部材の高さを調整して、前記弾性支承を前記下部材又は前記上部材に固定する工程と、前記ジャッキが支えている鉛直荷重を前記固定部材に移し替えて前記ジャッキを外す工程と、前記支保工を撤去する工程と、を有する弾性支承の設置方法である。   According to the first aspect of the present invention, a part of the structural member is cut and removed in a state where the vertical load of the structure supported by the structural member is supported by a support, and the structural member is divided into an upper member and a lower member. And a fixing member whose height can be adjusted in the center in a plan view of the lower surface or upper surface of the elastic bearing after attaching the upper surface or lower surface of the elastic bearing to the lower surface of the upper member or the upper surface of the lower member. Or a height-adjustable fixing member at the center in a plan view of the lower surface or upper surface of the elastic bearing, and then the elastic bearing on the lower surface of the upper member or the upper surface of the lower member. A step of attaching an upper surface or a lower surface, and a plurality of jacks are arranged around the fixing member, and the upper surface of the lower member or the lower surface of the upper member is received as a reaction force and the lower surface or the upper surface of the elastic bearing is pushed by the jack. , Work to compress the elastic bearing And adjusting the height of the fixing member to fix the elastic support to the lower member or the upper member, and transferring the vertical load supported by the jack to the fixing member to remove the jack. It is the installation method of the elastic bearing which has a process and the process of removing the said support work.

請求項1に記載の発明では、構造物の鉛直荷重を支保工で支持した状態で、圧縮した状態の弾性支承を下部材又は上部材に固定することができるので、支保工を撤去して構造物の鉛直荷重を弾性支承が受けた際に、弾性支承が上下方向に収縮して構造物が沈下したり、構造物が不同沈下したりするのを防ぐことができる。   In the first aspect of the present invention, the elastic support in a compressed state can be fixed to the lower member or the upper member in a state where the vertical load of the structure is supported by the support. When the elastic bearing receives a vertical load of an object, it can be prevented that the elastic bearing contracts vertically and the structure sinks or the structure sinks unevenly.

また、固定部材の周りに複数配置されたジャッキにより、弾性支承の下面又は上面のうちの外周部が押されるので、弾性支承の下面又は上面を上下方向へ平行移動するようにして弾性支承に圧縮力を作用させることができる。これにより、弾性支承に対して均一に圧縮力を与えることができる。   In addition, since the outer peripheral portion of the lower surface or upper surface of the elastic bearing is pushed by a plurality of jacks arranged around the fixing member, the elastic bearing is compressed by moving the lower surface or upper surface of the elastic bearing in the vertical direction. Force can be applied. Thereby, a compressive force can be given uniformly with respect to an elastic bearing.

請求項2に記載の発明は、請求項1に記載の弾性支承の設定方法において、前記弾性支承の下面又は上面に取り付けられ、前記ジャッキが下方又は上方に配置される支持プレートと、前記支持プレートに設けられ、前記固定部材を上下方向へ移動可能に係合する係合部と、を有する。   According to a second aspect of the present invention, in the elastic bearing setting method according to the first aspect, the support plate is attached to the lower surface or the upper surface of the elastic bearing, and the jack is disposed below or above, and the support plate And an engaging portion that engages the fixing member so as to be movable in the vertical direction.

請求項2に記載の発明では、固定部材を上下方向へ移動可能に係合する係合部により、固定部材の高さを調整することができる。また、固定部材と支持プレートとの接合部に生じる力は支持プレート全体に分散するので、弾性支承の下面又は上面の局所に過大な力が発生するのを防ぐことができる。   According to the second aspect of the present invention, the height of the fixing member can be adjusted by the engaging portion that engages the fixing member so as to be movable in the vertical direction. Moreover, since the force generated at the joint between the fixing member and the support plate is dispersed throughout the support plate, it is possible to prevent an excessive force from being generated locally on the lower surface or the upper surface of the elastic bearing.

請求項3に記載の発明は、請求項1又は2に記載の弾性支承の設置方法において、免震改修工事を行う建物の階層を複数の作業空間に区分けし、該作業空間毎に前記弾性支承を取り付けていく。   According to a third aspect of the present invention, in the elastic bearing installation method according to the first or second aspect, the hierarchy of the building where the seismic isolation repair work is performed is divided into a plurality of work spaces, and the elastic bearings are divided into the work spaces. Install.

請求項3に記載の発明では、免震改修工事を行う建物の階層における、弾性支承の取り付けが行われている作業空間以外の場所は、免震改修工事の影響を受けることなく使用することができる(例えば、弾性支承の取り付けが行われている作業空間以外の場所で、居住者が通常通り生活することができる)。すなわち、所謂、居ながらでの工事を行うことができる。   In the invention according to claim 3, a place other than the work space where the elastic bearing is installed in the hierarchy of the building where the seismic isolation repair work is performed may be used without being affected by the seismic isolation repair work. Yes (for example, a resident can live as usual in a place other than the work space where the elastic bearing is attached). That is, it is possible to perform the so-called construction while being.

本発明は上記構成としたので、免震装置に対して均一に圧縮力を与えることができる。   Since this invention was set as the said structure, it can give a compressive force uniformly with respect to a seismic isolation apparatus.

本発明の実施形態に係る弾性支承の設置方法の手順を示す正面図である。It is a front view which shows the procedure of the installation method of the elastic bearing which concerns on embodiment of this invention. 本発明の実施形態に係る弾性支承の設置方法の手順を示す正面図である。It is a front view which shows the procedure of the installation method of the elastic bearing which concerns on embodiment of this invention. 本発明の実施形態に係る弾性支承の設置方法の手順を示す正面図である。It is a front view which shows the procedure of the installation method of the elastic bearing which concerns on embodiment of this invention. 本発明の実施形態に係る積層ゴム支承及び支承受け替え用架台を示す正面図である。It is a front view which shows the laminated rubber bearing which concerns on embodiment of this invention, and the mount for a bearing replacement. 図4のA−A断面図である。It is AA sectional drawing of FIG. 本発明の実施形態に係る固定部材の変形例を示す断面図である。It is sectional drawing which shows the modification of the fixing member which concerns on embodiment of this invention. 本発明の実施形態に係る固定部材の変形例を示す正面図である。It is a front view which shows the modification of the fixing member which concerns on embodiment of this invention. 図7のB−B断面図である。It is BB sectional drawing of FIG. 本発明の実施形態に係る荷重伝達プレートの変形例を示す正面図である。It is a front view which shows the modification of the load transmission plate which concerns on embodiment of this invention. 本発明の実施形態に係る弾性支承の設置方法を用いた免震改修工事の状況を示す立面図である。It is an elevation view which shows the condition of the seismic isolation repair work using the installation method of the elastic bearing which concerns on embodiment of this invention.

図を参照しながら、本発明の実施形態を説明する。ここでは、本発明の弾性支承の設置方法を用いて、図1(a)の正面図に示す既存建物10の1階部分の階層12を免震層に改修する一例について説明する。   Embodiments of the present invention will be described with reference to the drawings. Here, an example in which the floor 12 of the first floor portion of the existing building 10 shown in the front view of FIG. 1A is repaired to a seismic isolation layer using the elastic bearing installation method of the present invention will be described.

図1(a)に示すように、既存建物10の2階から上の部分を構成する構造物14が、構造部材としての1階の柱16に支持されている。また、柱16は、2階の梁18を支持し、この梁18が2階の床スラブ20を支持している。   As shown to Fig.1 (a), the structure 14 which comprises the upper part from the 2nd floor of the existing building 10 is supported by the pillar 16 of the 1st floor as a structural member. The column 16 supports a beam 18 on the second floor, and the beam 18 supports a floor slab 20 on the second floor.

本実施形態の弾性支承の設置方法では、躯体の補強工程、構造物の仮受け工程、構造部材の切断・撤去工程、弾性支承の取付工程、支承受け替え用架台の設置工程(支承支持部材の取付工程、荷重伝達部材の取付工程)、ジャッキの配置工程、プレロード工程、弾性支承の固定工程、固定部材への荷重移し替え工程、及び支保工の撤去工程を行うことによって、柱16の一部を切断除去し、この切断除去した箇所に、後に説明する弾性支承としての積層ゴム支承22を設置する。   In the elastic bearing installation method of the present embodiment, the frame reinforcing process, the structure temporary receiving process, the structural member cutting / removing process, the elastic bearing mounting process, the bearing replacement installation process (the supporting support member A part of the column 16 by performing the mounting process, the mounting process of the load transmitting member), the jack placing process, the preloading process, the elastic bearing fixing process, the load transfer process to the fixing member, and the support removal process. Is cut and removed, and a laminated rubber bearing 22 as an elastic bearing, which will be described later, is installed at this cut and removed position.

弾性支承の設置方法では、まず、図1(b)の正面図に示すように、柱16の下部の周囲と、梁18と柱16とを接合している柱梁仕口部24の周囲とに、鉄筋コンクリートVを増打ちする(躯体の補強工程)。   In the installation method of the elastic bearing, first, as shown in the front view of FIG. 1B, the periphery of the lower portion of the column 16 and the periphery of the column beam joint portion 24 joining the beam 18 and the column 16 In addition, the reinforced concrete V is increased in number (reinforcing step of the frame).

次に、図1(c)に示すように、柱16が支持している構造物14の鉛直荷重を移し替えて支持させる支保工としての仮受支柱26を、柱16が支持している構造物14の鉛直荷重を負担可能な本数だけ柱16の周辺に設置する。   Next, as shown in FIG. 1C, a structure in which the column 16 supports a temporary support column 26 as a support for transferring and supporting the vertical load of the structure 14 supported by the column 16. As many as the number that can bear the vertical load of the object 14 is installed around the pillar 16.

仮受支柱26は、1階の床スラブ28上の基礎梁30の真上に設置された油圧ジャッキ32の上に載置する。そして、油圧ジャッキ32をジャッキアップして負担すべき軸力を仮受支柱26に加えることにより、仮受支柱26の上端部を梁18に押し付けて、仮受支柱26を梁18に固定する。すなわち、柱16が支持している構造物14の鉛直荷重を仮受支柱26によって支持する(構造物の仮受け工程)。   The temporary support column 26 is placed on a hydraulic jack 32 installed just above the foundation beam 30 on the floor slab 28 on the first floor. Then, by jacking up the hydraulic jack 32 and applying an axial force to be borne to the temporary support post 26, the upper end portion of the temporary support post 26 is pressed against the beam 18 to fix the temporary support post 26 to the beam 18. In other words, the vertical load of the structure 14 supported by the pillar 16 is supported by the temporary support column 26 (temporary reception process of the structure).

次に、図1(d)の正面図に示すように、柱16が支持している構造物14の鉛直荷重を仮受支柱26により支持した状態で柱16の一部を切断撤去し、上部材としての上柱34と、下部材としての下柱36とに、柱16を分ける(構造部材の切断・撤去工程)。   Next, as shown in the front view of FIG. 1D, a part of the column 16 is cut and removed while the vertical load of the structure 14 supported by the column 16 is supported by the temporary support column 26. The column 16 is divided into an upper column 34 as a member and a lower column 36 as a lower member (structural member cutting / removal step).

次に、図2(a)の正面図に示すように、柱梁仕口部24の下面に、鉄筋コンクリートによってブロック状の支承取付部38を構築し、この支承取付部38の下面にボルト等によって弾性支承としての積層ゴム支承22の上部フランジ40を取り付ける。すなわち、支承取付部38を介して、上柱34の下面に積層ゴム支承22の上面を取り付ける(弾性支承の取付工程)。積層ゴム支承22は、ゴム層と鋼板とが交互に積層された円柱状の支承本体88を備える支承である。   Next, as shown in the front view of FIG. 2 (a), a block-shaped bearing mounting portion 38 is constructed of reinforced concrete on the lower surface of the column beam joint portion 24, and a bolt or the like is formed on the lower surface of the bearing mounting portion 38. The upper flange 40 of the laminated rubber bearing 22 as an elastic bearing is attached. That is, the upper surface of the laminated rubber bearing 22 is attached to the lower surface of the upper column 34 via the bearing attachment portion 38 (elastic bearing attachment process). The laminated rubber bearing 22 is a bearing provided with a cylindrical bearing body 88 in which rubber layers and steel plates are alternately laminated.

次に、図2(b)の正面図に示すように、支承受け替え用架台42を積層ゴム支承22の直下に設置する(支承受け替え用架台の設置工程)。支承受け替え用架台42は、図4の正面図に示すように、支承支持部材44、固定部材46、及び荷重伝達部材48を有している。   Next, as shown in the front view of FIG. 2B, the support replacement stand 42 is installed directly below the laminated rubber support 22 (installation step of the support replacement stand). As shown in the front view of FIG. 4, the support receiving stand 42 includes a support support member 44, a fixing member 46, and a load transmission member 48.

支承支持部材44は、図4のA−A断面図である図5に示すように、平面形状が正方形の鋼板からなる支持プレート50と、支持プレート50の平面視にて中心部に上端面が接合された鋼管からなる係合部52と、係合部52の外周面から放射状に複数設けられ、支持プレート50に接合された鋼板からなるリブ54とを備えている。係合部52の内周面には、雌ネジ56が形成されており、隣り合うリブ54同士の間には、後に説明する油圧ジャッキ58の配置が可能な大きさのスペースSが形成されている。   As shown in FIG. 5 which is an AA cross-sectional view of FIG. 4, the support member 44 has a support plate 50 made of a steel plate having a square planar shape, and an upper end surface at the center in the plan view of the support plate 50. A plurality of engaging portions 52 made of joined steel pipes and a plurality of ribs 54 made of steel plates joined radially to the support plate 50 from the outer peripheral surface of the engaging portion 52 are provided. A female screw 56 is formed on the inner peripheral surface of the engaging portion 52, and a space S is formed between the adjacent ribs 54 so that a hydraulic jack 58 described later can be disposed. Yes.

固定部材46は、鋼管からなり、外周面に雄ネジ60が形成されている。固定部材46は、係合部52に形成された雌ネジ56に固定部材46の雄ネジ60をねじ込むことによって、係合部52の中空孔に挿入され、上下方向へ移動可能に係合部52に係合されている。よって、係合部52に対して固定部材46を回転させることにより、係合部52の雌ネジ56に対する固定部材46の雄ネジ60のねじ込み量を変えて、固定部材46の高さを調整することができる。   The fixing member 46 is made of a steel pipe, and a male screw 60 is formed on the outer peripheral surface. The fixing member 46 is inserted into the hollow hole of the engaging portion 52 by screwing the male screw 60 of the fixing member 46 into the female screw 56 formed in the engaging portion 52, and the engaging portion 52 is movable in the vertical direction. Is engaged. Therefore, by rotating the fixing member 46 with respect to the engaging portion 52, the screwing amount of the male screw 60 of the fixing member 46 with respect to the female screw 56 of the engaging portion 52 is changed to adjust the height of the fixing member 46. be able to.

荷重伝達部材48は、平面形状が正方形の鋼板からなる荷重伝達プレート62と、平面視にて荷重伝達プレート62の中央部に突設された鋼製のコッター部材64とを備えている。コッター部材64は、円柱状に形成されており、外径の大きさが固定部材46の内径の大きさよりも若干小さくなっている。   The load transmission member 48 includes a load transmission plate 62 made of a steel plate having a square planar shape, and a steel cotter member 64 protruding from the center of the load transmission plate 62 in plan view. The cotter member 64 is formed in a columnar shape, and the outer diameter is slightly smaller than the inner diameter of the fixed member 46.

固定部材46の下部には、固定部材46の中空孔内にグラウトを充填するためのグラウト注入孔66が複数形成され、係合部52の上部には、固定部材46の中空孔内にグラウトを充填する際の空気抜き孔68が複数形成されている。   A plurality of grout injection holes 66 for filling grout into the hollow holes of the fixing member 46 are formed at the lower part of the fixing member 46, and grout is inserted into the hollow holes of the fixing member 46 at the upper part of the engaging portion 52. A plurality of air vent holes 68 for filling are formed.

支承受け替え用架台の設置工程では、積層ゴム支承22の下部フランジ70にボルト等により支持プレート50を固定することによって、固定部材46が設けられている支承支持部材44を積層ゴム支承22に取り付ける支承支持部材の取付工程と、下柱36の上面にボルト等により荷重伝達プレート62を固定することによって、荷重伝達部材48を下柱36に取り付ける荷重伝達部材の取付工程とを行う。支承支持部材の取付工程を行うことによって、積層ゴム支承22の下面の平面視にて中央部に固定部材46が配置される。   In the installation process of the support replacement stand, the support plate 50 provided with the fixing member 46 is attached to the laminated rubber bearing 22 by fixing the support plate 50 to the lower flange 70 of the laminated rubber bearing 22 with a bolt or the like. A mounting process of the support member and a mounting process of the load transmission member for fixing the load transmission member 48 to the lower column 36 by fixing the load transmission plate 62 to the upper surface of the lower column 36 with a bolt or the like. By performing the mounting process of the support member, the fixing member 46 is disposed at the center portion in plan view of the lower surface of the laminated rubber support 22.

次に、図2(b)の正面図、図4、及び図5に示すように、固定部材46の周りに位置する荷重伝達プレート62上に油圧ジャッキ58を複数配置する(ジャッキの配置工程)。図5に示すように、油圧ジャッキ58は、外周部領域72と中央部領域74とからなる積層ゴム支承22の支圧面76における外周部領域72(支圧面76のうちの中央部以外の領域)の直下に位置するようにして、リブ54同士の間に形成されたスペースSに配置されている。図5の例では、円形の支圧面76の周方向に対して等間隔になるように、リブ54同士の間に形成された8つのスペースSの全てに油圧ジャッキ58が配置されている。油圧ジャッキ58で支持プレート50を押す際に、支持プレート50の面が水平(一意)に保持されて上下方向に平行移動できるように、油圧ジャッキ58は3つ以上配置するのが好ましく、多くの油圧ジャッキ58を配置するのがより好ましい。   Next, as shown in the front view of FIG. 2B, FIG. 4, and FIG. 5, a plurality of hydraulic jacks 58 are arranged on the load transmission plate 62 positioned around the fixing member 46 (jack arranging step). . As shown in FIG. 5, the hydraulic jack 58 includes an outer peripheral region 72 (region other than the central portion of the bearing surface 76) in the bearing surface 76 of the laminated rubber bearing 22 including the outer peripheral region 72 and the central region 74. It is arranged in a space S formed between the ribs 54 so as to be located immediately below the rib 54. In the example of FIG. 5, the hydraulic jacks 58 are disposed in all of the eight spaces S formed between the ribs 54 so as to be equally spaced with respect to the circumferential direction of the circular bearing surface 76. When pushing the support plate 50 with the hydraulic jack 58, it is preferable to arrange three or more hydraulic jacks 58 so that the surface of the support plate 50 is held horizontally (unique) and can be translated in the vertical direction. More preferably, a hydraulic jack 58 is arranged.

次に、図2(c)の正面図に示すように、下柱36(荷重伝達プレート62)の上面を反力受けにして、支持プレート50を介して積層ゴム支承22の下面(下部フランジ70)を油圧ジャッキ58で押し(図2(c)では、油圧ジャッキ58をジャッキアップし)、積層ゴム支承22を圧縮させる(プレロード工程)。このときの圧縮力は、仮受支柱26を撤去した際に、積層ゴム支承22が上下方向へ収縮して構造物14が沈下しない大きさにする。これにより、固定部材46の下面は、荷重伝達プレート62の上面から離れて浮いた状態になる。   Next, as shown in the front view of FIG. 2 (c), the upper surface of the lower pillar 36 (load transmission plate 62) is used as a reaction force receiver, and the lower surface (lower flange 70) of the laminated rubber support 22 through the support plate 50. ) Is pushed by the hydraulic jack 58 (in FIG. 2 (c), the hydraulic jack 58 is jacked up), and the laminated rubber support 22 is compressed (preloading step). The compression force at this time is set such that when the temporary support column 26 is removed, the laminated rubber support 22 contracts vertically and the structure 14 does not sink. As a result, the lower surface of the fixing member 46 floats away from the upper surface of the load transmission plate 62.

次に、図2(d)の正面図に示すように、係合部52に対して固定部材46を人の手で回転させて固定部材46の高さを調整し、固定部材46の下面が荷重伝達プレート62の上面に接触するまで固定部材46を下方へ伸長して、積層ゴム支承22を下柱36に固定する(弾性支承の固定工程)。固定部材46の下面が荷重伝達プレート62の上面に接触した状態で、コッター部材64が固定部材46の中空孔内に収容される。これにより、積層ゴム支承22に作用する鉛直荷重を荷重伝達プレート62を介して下柱36へ確実に伝達することができると共に、積層ゴム支承22(固定部材46)に作用するせん断力を、固定部材46、コッター部材64、荷重伝達プレート62の順に伝えて下柱36へ確実に伝達することができる。なお、係合部52に対して固定部材46を人の手で回転させる際に、グラウト注入孔66に鋼棒等の治具を差し込み、これをハンドルにして回転させるようにしてもよい。   Next, as shown in the front view of FIG. 2D, the fixing member 46 is rotated with respect to the engaging portion 52 by a human hand, and the height of the fixing member 46 is adjusted. The fixing member 46 is extended downward until it comes into contact with the upper surface of the load transmitting plate 62, and the laminated rubber support 22 is fixed to the lower pillar 36 (elastic support fixing process). The cotter member 64 is accommodated in the hollow hole of the fixing member 46 with the lower surface of the fixing member 46 in contact with the upper surface of the load transmission plate 62. Accordingly, the vertical load acting on the laminated rubber support 22 can be reliably transmitted to the lower column 36 via the load transmission plate 62, and the shearing force acting on the laminated rubber support 22 (fixing member 46) is fixed. The member 46, the cotter member 64, and the load transmission plate 62 can be transmitted in this order and reliably transmitted to the lower column 36. When the fixing member 46 is rotated manually with respect to the engaging portion 52, a jig such as a steel rod may be inserted into the grout injection hole 66, and this may be rotated as a handle.

次に、図3(a)の正面図に示すように、油圧ジャッキ58の軸力を開放し(図3(a)では、油圧ジャッキ58をジャッキダウンし)、油圧ジャッキ58が支えている構造物14の鉛直荷重を固定部材46に移し替えた後に、油圧ジャッキ58を撤去する(固定部材への荷重移し替え工程)。   Next, as shown in the front view of FIG. 3A, the axial force of the hydraulic jack 58 is released (the hydraulic jack 58 is jacked down in FIG. 3A), and the hydraulic jack 58 supports it. After the vertical load of the object 14 is transferred to the fixing member 46, the hydraulic jack 58 is removed (the process of transferring the load to the fixing member).

次に、図3(b)の正面図に示すように、油圧ジャッキ32の軸力を開放し(図3(b)では、油圧ジャッキ32をジャッキダウンし)、油圧ジャッキ32及び仮受支柱26を撤去する(支保工の撤去工程)。   Next, as shown in the front view of FIG. 3B, the axial force of the hydraulic jack 32 is released (the hydraulic jack 32 is jacked down in FIG. 3B), and the hydraulic jack 32 and the temporary support post 26 Is removed (support removal process).

次に、図4で示したグラウト注入孔66からグラウトを注入し、固定部材46及び係合部52の中空孔内にグラウトを充填して硬化させる。   Next, the grout is injected from the grout injection hole 66 shown in FIG. 4, and the grout is filled in the hollow holes of the fixing member 46 and the engaging portion 52 and hardened.

最後に、図3(c)の正面図に示すように、下柱36の上面に、鉄筋コンクリートVによって、支承受け替え用架台42が埋設されたブロック状の支承支持部78を構築する。   Finally, as shown in the front view of FIG. 3 (c), a block-like support support portion 78 in which the support receiving support 42 is embedded by reinforced concrete V on the upper surface of the lower column 36 is constructed.

次に、本発明の実施形態に係る弾性支承の設置方法の作用及び効果について説明する。   Next, operations and effects of the elastic bearing installation method according to the embodiment of the present invention will be described.

本実施形態では、図2(d)で示すように、構造物14の鉛直荷重を仮受支柱26で支持した状態で、圧縮した状態の積層ゴム支承22を下柱36に固定することができるので、仮受支柱26を撤去して構造物14の鉛直荷重を積層ゴム支承22が受けた際に、積層ゴム支承22が上下方向に収縮して構造物14が沈下したり、構造物14が不同沈下したりするのを防ぐことができる。   In this embodiment, as shown in FIG. 2 (d), the laminated rubber bearing 22 in a compressed state can be fixed to the lower column 36 while the vertical load of the structure 14 is supported by the temporary support column 26. Therefore, when the provisional support column 26 is removed and the laminated rubber support 22 receives the vertical load of the structure 14, the laminated rubber support 22 contracts in the vertical direction, and the structure 14 sinks, It is possible to prevent the sinking.

一般的に、積層ゴム支承等の弾性支承の支圧面の直径は数十cm以上であり、この支圧面に数百ton以上の荷重が作用するので、図2(c)で説明したプレロード工程においても、この程度の圧縮力を積層ゴム支承22に与えなければならない。積層ゴム支承22を構成するゴム層は、鉄骨やコンクリートに比べて剛性が低いので、このような大きな荷重が偏って弾性支承の支圧面に作用して局所的に過大な荷重が発生すると、ゴム層が局所的に歪んでしまったり、破壊されてしまったり等して、積層ゴム支承22を圧縮した状態で所定の免震性能を発揮させることができなくなってしまう。例えば、積層ゴム支承の支圧面の平面視にて中心部を油圧ジャッキで押した場合には、この中心部を支点にして支圧面がふらついてしまうので、積層ゴム支承に対して均一に圧縮力を与えることができない。   In general, the diameter of the bearing surface of an elastic bearing such as a laminated rubber bearing is several tens of centimeters or more, and a load of several hundred tons or more acts on the bearing surface. Therefore, in the preloading process described with reference to FIG. However, this level of compressive force must be applied to the laminated rubber support 22. Since the rubber layer constituting the laminated rubber bearing 22 has lower rigidity than that of steel frame or concrete, if such a large load is biased and acts on the bearing surface of the elastic bearing, an excessively large load is generated locally. If the layer is locally distorted or destroyed, it becomes impossible to exhibit a predetermined seismic isolation performance in a state where the laminated rubber bearing 22 is compressed. For example, when the center part is pushed with a hydraulic jack in a plan view of the bearing surface of the laminated rubber bearing, the bearing surface will be staggered with this center part as a fulcrum, so the compressive force is uniformly applied to the laminated rubber bearing. Can not give.

これに対して、本実施形態では、図5に示すように、固定部材46の周りに複数配置された油圧ジャッキ58によって、積層ゴム支承22の支圧面76における外周部領域72が押されるので、支圧面76(支持プレート50)を上下方向へ平行移動するようにして積層ゴム支承22に圧縮力を作用させることができる。これにより、積層ゴム支承22に対して均一に圧縮力を与えることができる。また、図2(d)に示すように、積層ゴム支承22に対して均一に圧縮力を与えた状態で、積層ゴム支承22が固定部材46により下柱36に固定されるので、積層ゴム支承22を固定部材46によって均一に支持することができる。   On the other hand, in the present embodiment, as shown in FIG. 5, the outer peripheral region 72 in the bearing surface 76 of the laminated rubber bearing 22 is pushed by a plurality of hydraulic jacks 58 arranged around the fixing member 46. A compressive force can be applied to the laminated rubber support 22 by moving the bearing surface 76 (support plate 50) in the vertical direction. Thereby, it is possible to uniformly apply a compressive force to the laminated rubber support 22. Further, as shown in FIG. 2 (d), the laminated rubber support 22 is fixed to the lower column 36 by the fixing member 46 in a state where a compression force is uniformly applied to the laminated rubber support 22, so that the laminated rubber support 22 22 can be uniformly supported by the fixing member 46.

さらに、本実施形態では、図4に示すように、係合部52に対して上下方向へ移動可能に固定部材46が係合されているので、固定部材46の高さを調整することができる。また、係合部52に形成された雌ネジ56と、固定部材46に形成された雄ネジ60とによって構成されたネジ機構によって、固定部材46の高さを調整するので、固定部材46の高さの微調整ができる。   Further, in the present embodiment, as shown in FIG. 4, the fixing member 46 is engaged with the engaging portion 52 so as to be movable in the vertical direction, so that the height of the fixing member 46 can be adjusted. . Further, the height of the fixing member 46 is adjusted by the screw mechanism formed by the female screw 56 formed on the engaging portion 52 and the male screw 60 formed on the fixing member 46. You can fine-tune the height.

また、本実施形態では、固定部材46と支持プレート50との接合部に生じる力が支持プレート50全体に分散するので、積層ゴム支承22の支圧面76の局所に過大な力が発生するのを防ぐことができる。例えば、図2(c)では、油圧ジャッキ58から支持プレート50に作用する力が、支持プレート50全体に分散するので、より均一に積層ゴム支承22に圧縮力を与えることができる。   Further, in this embodiment, the force generated at the joint between the fixing member 46 and the support plate 50 is dispersed throughout the support plate 50, so that an excessive force is generated locally on the bearing surface 76 of the laminated rubber bearing 22. Can be prevented. For example, in FIG. 2C, since the force acting on the support plate 50 from the hydraulic jack 58 is dispersed throughout the support plate 50, the compression force can be applied to the laminated rubber support 22 more uniformly.

さらに、本実施形態では、図5に示すように、複数の油圧ジャッキ58が、円形の支圧面76の周方向に対して等間隔になるように配置されているので、支圧面76の周方向に対して、油圧ジャッキ58によって押す力を支持プレート50に均一に作用させることができる。これにより、より安定して積層ゴム支承22の支圧面76(支持プレート50)を上下方向へ平行移動させることができる。   Further, in the present embodiment, as shown in FIG. 5, the plurality of hydraulic jacks 58 are arranged at equal intervals with respect to the circumferential direction of the circular bearing surface 76. On the other hand, the pressing force by the hydraulic jack 58 can be applied to the support plate 50 uniformly. Thereby, the bearing surface 76 (support plate 50) of the laminated rubber bearing 22 can be translated more stably in the vertical direction.

また、本実施形態の支持プレート50は、図5に示すように、リブ54により曲げ剛性が高められており、油圧ジャッキ58によって押された際に平面形状が保持されるので、支持プレート50から積層ゴム支承22の支圧面76に均一に圧縮力を作用させることができる。   Further, as shown in FIG. 5, the support plate 50 of the present embodiment has a bending rigidity enhanced by the ribs 54, and the planar shape is maintained when pressed by the hydraulic jack 58. A compressive force can be applied uniformly to the bearing surface 76 of the laminated rubber bearing 22.

さらに、本実施形態では、図3(a)に示すように、積層ゴム支承22を圧縮した状態で、油圧ジャッキ58が支えている鉛直荷重を固定部材46に移し替えるので、他の柱16への積層ゴム支承22の設置に油圧ジャッキ58を転用することができる。   Furthermore, in this embodiment, as shown in FIG. 3A, the vertical load supported by the hydraulic jack 58 is transferred to the fixing member 46 in a state where the laminated rubber support 22 is compressed. The hydraulic jack 58 can be diverted to the installation of the laminated rubber bearing 22.

なお、本発明の実施形態では、構造物14を既存建物10の2階から上の部分とした例を示したが、構造物14を既存建物10の1階から上の部分とし、本実施形態の弾性支承の設置方法を用いて既存建物10の基礎層に複数の積層ゴム支承22を設置して、既存建物10の基礎免震化を図るようにしてもよいし、構造物14を既存建物10の3階から上の部分とし、本実施形態の弾性支承の設置方法を用いて既存建物10の中間層に複数の積層ゴム支承22を設置して、既存建物10の中間免震化を図るようにしてもよい。   In the embodiment of the present invention, an example in which the structure 14 is a part above the second floor of the existing building 10 is shown. However, the structure 14 is a part above the first floor of the existing building 10, and this embodiment A plurality of laminated rubber bearings 22 may be installed on the foundation layer of the existing building 10 by using the elastic bearing installation method described above, and the existing building 10 may be designed to be isolated from the base, or the structure 14 may be installed in the existing building. 10 and the upper part from the third floor, and using the elastic bearing installation method of the present embodiment, a plurality of laminated rubber bearings 22 are installed in the intermediate layer of the existing building 10 to achieve the intermediate isolation of the existing building 10. You may do it.

また、本実施形態では、構造部材を柱16とした例を示したが、構造物の鉛直荷重を支持する他の部材であってもよい。例えば、構造部材を、杭や基礎底版等にしてもよい。   Moreover, although the example which used the structural member as the pillar 16 was shown in this embodiment, the other member which supports the vertical load of a structure may be sufficient. For example, the structural member may be a pile, a foundation bottom plate, or the like.

さらに、本実施形態では、図1(b)に示す躯体の補強工程において、柱16の下部と柱梁仕口部24との周囲に鉄筋コンクリートVを増打ちした例を示したが、柱16の下部と柱梁仕口部24とが必要とする強度を有していれば、増打ちはしなくてもよい。   Furthermore, in the present embodiment, an example in which the reinforced concrete V is increased around the lower portion of the column 16 and the column beam joint portion 24 in the reinforcing step of the frame shown in FIG. If the lower part and the column beam joint part 24 have the required strength, it is not necessary to increase the number of hits.

また、本実施形態では、図4に示すように、荷重伝達部材48、支承支持部材44、積層ゴム支承22の順に、下方から上方へ配置した例を示したが、この配置を上下逆にしてもよい。すなわち、積層ゴム支承22、支承支持部材44、荷重伝達部材48の順に、下方から上方へ配置してもよい。   Moreover, in this embodiment, as shown in FIG. 4, the example which has arrange | positioned from the bottom to the top in order of the load transmission member 48, the bearing support member 44, and the lamination | stacking rubber bearing 22 was shown, However, this arrangement is turned upside down. Also good. That is, the laminated rubber bearing 22, the bearing support member 44, and the load transmission member 48 may be arranged in this order from the bottom to the top.

具体的には、柱16が支持する構造物14の鉛直荷重を仮受支柱26で支持した状態で柱16の一部を切断撤去し、柱16を上柱34と下柱36とに分ける工程と、下柱36の上面に、積層ゴム支承22の下面を取り付ける工程と、積層ゴム支承22の上面の平面視にて中央部に、高さ調整可能な固定部材46を配置する工程と、固定部材46の周りに油圧ジャッキ58を複数配置して、上柱34の下面を反力受けにして積層ゴム支承22の上面を油圧ジャッキ58で押し、積層ゴム支承22を圧縮させる工程と、固定部材46の高さを調整して、積層ゴム支承22を上柱34に固定する工程と、油圧ジャッキ58が支えている鉛直荷重を固定部材46に移し替えた後に、油圧ジャッキ58を撤去する工程と、仮受支柱26を撤去する工程とによって、弾性支承の設置方法を構成する。また、この場合、支持プレート50は、積層ゴム支承22の上面に取り付けられ、油圧ジャッキ58は、この支持プレート50の上方に配置される。   Specifically, a step of cutting and removing a part of the column 16 in a state where the vertical load of the structure 14 supported by the column 16 is supported by the temporary support column 26, and dividing the column 16 into an upper column 34 and a lower column 36. A step of attaching the lower surface of the laminated rubber support 22 to the upper surface of the lower pillar 36, a step of arranging a fixing member 46 whose height can be adjusted at the center in a plan view of the upper surface of the laminated rubber support 22, A step of arranging a plurality of hydraulic jacks 58 around the member 46, pressing the upper surface of the laminated rubber support 22 with the hydraulic jack 58 using the lower surface of the upper pillar 34 as a reaction force, and compressing the laminated rubber support 22, and a fixing member Adjusting the height of 46 and fixing the laminated rubber support 22 to the upper column 34; and transferring the vertical load supported by the hydraulic jack 58 to the fixing member 46 and then removing the hydraulic jack 58; Removing the temporary support post 26; Accordingly, it constitutes a method of installing the elastic bearing. In this case, the support plate 50 is attached to the upper surface of the laminated rubber support 22, and the hydraulic jack 58 is disposed above the support plate 50.

また、本実施形態では、支承取付部38を介して、上柱34の下面に積層ゴム支承22の上面を取り付けた後に、積層ゴム支承22の下面の平面視にて中央部に固定部材46を配置した例を示したが、固定部材46が設けられている支承支持部材44を積層ゴム支承22に先に取り付けておいて、この積層ゴム支承22を、支承取付部38を介して上柱34の下面に取り付けるようにしてもよい。すなわち、積層ゴム支承22の下面の平面視にて中央部に固定部材46を配置した後に、上柱34の下面に、積層ゴム支承22の上面を取り付けるようにしてもよい。   Further, in the present embodiment, after attaching the upper surface of the laminated rubber bearing 22 to the lower surface of the upper pillar 34 via the bearing attaching portion 38, the fixing member 46 is attached to the central portion in plan view of the lower surface of the laminated rubber bearing 22. As shown in the example of arrangement, the bearing support member 44 provided with the fixing member 46 is first attached to the laminated rubber bearing 22, and the laminated rubber bearing 22 is connected to the upper column 34 via the bearing mounting portion 38. You may make it attach to the lower surface of. That is, the upper surface of the laminated rubber support 22 may be attached to the lower surface of the upper column 34 after the fixing member 46 is disposed at the center portion in plan view of the lower surface of the laminated rubber support 22.

さらに、本実施形態では、弾性支承を積層ゴム支承22とした例を示したが、弾性支承は、ゴム支持部を有する支承であればよい。例えば、弾性支承を、鉛プラグ入り積層ゴム支承や弾性滑り支承にしてもよい。   Furthermore, in this embodiment, although the example which made the elastic support the laminated rubber support 22 was shown, the elastic support should just be a support which has a rubber support part. For example, the elastic bearing may be a laminated rubber bearing with a lead plug or an elastic sliding bearing.

また、本実施形態では、ジャッキを油圧ジャッキ58とした例を示したが、ジャッキは、積層ゴム支承22の下面を押して、必要とする圧縮力を積層ゴム支承22へ与えることができるものであればよい。   Further, in the present embodiment, an example in which the jack is the hydraulic jack 58 has been described. However, the jack can press the lower surface of the laminated rubber support 22 to apply a necessary compressive force to the laminated rubber support 22. That's fine.

さらに、本実施形態では、係合部52の雌ネジ56に固定部材46の雄ネジ60をねじ込むことによって、固定部材46を上下方向へ移動可能に係合部52に係合した例を示したが、係合部52に対して上下方向に移動可能に固定部材46が設けられていればよい。例えば、係合部が固定部材の中空孔に挿入されるようにし、固定部材に形成された雌ネジに係合部に形成された雄ネジをねじ込む構成にしてもよい。   Further, in the present embodiment, an example is shown in which the fixing member 46 is engaged with the engaging portion 52 so as to be movable in the vertical direction by screwing the male screw 60 of the fixing member 46 into the female screw 56 of the engaging portion 52. However, the fixing member 46 only needs to be provided so as to be movable in the vertical direction with respect to the engaging portion 52. For example, the engaging portion may be inserted into the hollow hole of the fixing member, and the male screw formed in the engaging portion may be screwed into the female screw formed in the fixing member.

また、図6(a)〜(c)の正面断面図に示すように、係合部52及び固定部材46にネジを形成しないで、係合部52に対して上下方向へスライド可能に固定部材46を設けるようにしてもよい。例えば、図6(a)の状態からプレロード工程を行うことによって係合部52が上方に移動すると、図6(b)に示すように、係合部52は固定部材46に対して上方向へスライドするので、固定部材46はそのまま荷重伝達プレート62上に載置された状態を維持する。そして、図6(c)に示すように、この状態で、グラウト注入孔66から固定部材46及び係合部52の中空孔内にグラウトを充填し硬化させる。図6(c)には、固定部材46の途中までグラウトGが充填されている状況が描かれているが、グラウトGは、支持プレート50の下面まで充填される。すなわち、固定部材46の中空孔内と係合部52の中空孔内とに完全に充填される。これによって、下柱36(荷重伝達プレート62)に積層ゴム支承22(支承支持部材44)を固定することができる。   Further, as shown in the front sectional views of FIGS. 6A to 6C, the fixing member is slidable in the vertical direction with respect to the engaging portion 52 without forming screws in the engaging portion 52 and the fixing member 46. 46 may be provided. For example, when the engaging portion 52 moves upward by performing the preloading process from the state of FIG. 6A, the engaging portion 52 moves upward with respect to the fixing member 46 as shown in FIG. Since it slides, the fixing member 46 maintains the state of being placed on the load transmission plate 62 as it is. 6C, in this state, the grout is filled from the grout injection hole 66 into the hollow holes of the fixing member 46 and the engaging portion 52 and hardened. FIG. 6C illustrates a situation in which the grout G is filled up to the middle of the fixing member 46, but the grout G is filled up to the lower surface of the support plate 50. That is, the hollow hole of the fixing member 46 and the hollow hole of the engaging portion 52 are completely filled. Thereby, the laminated rubber bearing 22 (supporting support member 44) can be fixed to the lower column 36 (load transmitting plate 62).

さらに、図7の正面図、及び図7のB−B断面図である図8に示すように、固定部材を、厚い鋼板を楔状に形成した楔部材80としてもよい。図7、8には、正方形の支圧面を有する角柱状の支承本体86を備える積層ゴム支承82が上柱34の下面に取り付けられ、この積層ゴム支承82の下部フランジ84の下面に支持プレート50がボルト等により固定されている。   Furthermore, as shown in FIG. 8 which is a front view of FIG. 7 and a BB cross-sectional view of FIG. 7, the fixing member may be a wedge member 80 in which a thick steel plate is formed in a wedge shape. 7 and 8, a laminated rubber bearing 82 having a prismatic bearing body 86 having a square bearing surface is attached to the lower surface of the upper pillar 34, and the support plate 50 is attached to the lower surface of the lower flange 84 of the laminated rubber bearing 82. Is fixed by bolts or the like.

図8に示すように、支持プレート50の下面には、井桁状に組まれたリブ90が接合されている。また、図7に示すように、リブ90の下端面は、水平方向の中心部に向かって下方に傾斜した傾斜面となっており、この傾斜面の傾斜角度と、楔部材80の楔角度は等しくなっている。また、支持プレート50とリブ90との間でせん断力が確実に伝達されるように、平面視にて中央部に位置する支持プレート50の下面に、鋼製のコッター部材92を固定し、このコッター部材92を取り囲むようにしてリブ90を配置している。   As shown in FIG. 8, a rib 90 assembled in a cross beam shape is joined to the lower surface of the support plate 50. Further, as shown in FIG. 7, the lower end surface of the rib 90 is an inclined surface inclined downward toward the central portion in the horizontal direction. The inclination angle of the inclined surface and the wedge angle of the wedge member 80 are as follows. Are equal. In addition, a steel cotter member 92 is fixed to the lower surface of the support plate 50 located in the center in plan view so that the shearing force is reliably transmitted between the support plate 50 and the rib 90. Ribs 90 are arranged so as to surround the cotter member 92.

図8に示すように、油圧ジャッキ58は、積層ゴム支承82の支圧面94における外周部領域96(支圧面94のうちの中央部以外の領域)の直下に位置するようにして、リブ90の間に形成されたスペースPに配置されている。図8の例では、正方形の支圧面94の周方向に対して等間隔になるように、8つのスペースPの全てに油圧ジャッキ58が配置されている。   As shown in FIG. 8, the hydraulic jack 58 is positioned directly below the outer peripheral portion region 96 (region other than the central portion of the bearing surface 94) of the bearing surface 94 of the laminated rubber bearing 82. It is arranged in a space P formed therebetween. In the example of FIG. 8, hydraulic jacks 58 are arranged in all eight spaces P so as to be equidistant from the circumferential direction of the square bearing surface 94.

そして、図7に示すように、プレロード工程によって支持プレート50及びリブ90が上方へ持ち上げられることにより、リブ90の下端面と、荷重伝達プレート62の上面との間に形成された楔状の隙間へ、楔部材80を挿入して、下柱36(荷重伝達プレート62)に積層ゴム支承82(支持プレート50)を固定している。   Then, as shown in FIG. 7, the support plate 50 and the rib 90 are lifted upward by the preloading process, so that the wedge-shaped gap formed between the lower end surface of the rib 90 and the upper surface of the load transmission plate 62 is obtained. The wedge member 80 is inserted, and the laminated rubber support 82 (support plate 50) is fixed to the lower column 36 (load transmission plate 62).

また、本実施形態では、図4に示すように、荷重伝達プレート62に設けたコッター部材64により、積層ゴム支承22に作用するせん断力を下柱36へ伝達する例を示したが、コッター部材64を設けずに、荷重伝達プレート62に固定部材46を溶接等によって固定するようにしてもよい。   In the present embodiment, as shown in FIG. 4, an example in which the shear force acting on the laminated rubber support 22 is transmitted to the lower pillar 36 by the cotter member 64 provided on the load transmission plate 62 has been described. The fixing member 46 may be fixed to the load transmission plate 62 by welding or the like without providing the reference numeral 64.

また、図9の正面図に示すように、図4で示した荷重伝達プレート62を、円筒や角筒等の筒状の外周壁100と、この外周壁100の上端開口を塞ぐように設けられたプレート102とによって構成された鋼製の荷重伝達キャップ104にして、下柱36の上端部に被せるようにしてもよい。図9では、プレート102にねじ込まれて貫通するボルト106のねじ込み量を変えることにより、プレート102の下面からのボルト106の端部の突出量を調整して、プレート102の水平レベルを調整している。また、下柱36の上面とプレート102の下面との間に形成される隙間にグラウトGを充填して硬化させている。   Further, as shown in the front view of FIG. 9, the load transmission plate 62 shown in FIG. 4 is provided so as to block the cylindrical outer peripheral wall 100 such as a cylinder or a rectangular tube and the upper end opening of the outer peripheral wall 100. A steel load transmission cap 104 constituted by the plate 102 may be placed on the upper end portion of the lower column 36. In FIG. 9, by changing the screwing amount of the bolt 106 that is screwed into the plate 102 and adjusting the amount of protrusion of the end of the bolt 106 from the lower surface of the plate 102, the horizontal level of the plate 102 is adjusted. Yes. In addition, the gap formed between the upper surface of the lower pillar 36 and the lower surface of the plate 102 is filled with grout G and cured.

また、本実施形態では、図4で示したグラウト注入孔66からグラウトを注入し、固定部材46及び係合部52の中空孔内にグラウトを充填して硬化させる例を示したが、固定部材46のみで構造物14の鉛直荷重を支持できれば、グラウトは注入しなくてもよい。   Further, in the present embodiment, an example in which grout is injected from the grout injection hole 66 shown in FIG. 4 and the grout is filled into the hollow holes of the fixing member 46 and the engaging portion 52 and cured is shown. If the vertical load of the structure 14 can be supported by only 46, the grout need not be injected.

また、本実施形態では、図3(c)で示すように、下柱36の上面に、鉄筋コンクリートVによって、支承受け替え用架台42が埋設されたブロック状の支承支持部78を構築する例を示したが、支承受け替え用架台42のみで構造物14の鉛直荷重を支持できれば、支承支持部78を構築しなくてもよい。   Further, in the present embodiment, as shown in FIG. 3C, an example of constructing a block-shaped support support portion 78 in which the support replacement base 42 is embedded by reinforced concrete V on the upper surface of the lower column 36. Although shown, if the vertical load of the structure 14 can be supported only by the support replacement stand 42, the support support portion 78 may not be constructed.

また、本実施形態の弾性支承の設置方法を用いて、既存建物10の階層12に備えられている複数の柱16のそれぞれに対し、同時に積層ゴム支承22を設置してもよいし、1つ又は所定の数の柱16毎に、順に積層ゴム支承22を設置してもよい。   Moreover, the laminated rubber support 22 may be simultaneously installed with respect to each of the plurality of pillars 16 provided in the level 12 of the existing building 10 by using the elastic bearing installation method of the present embodiment. Or you may install the laminated rubber support 22 in order for every predetermined number of pillars 16.

例えば、図10(a)〜(c)の立面図に示すように、免震改修工事を行う既存建物10の階層12を複数の作業空間W1〜W5に区分けし、作業空間W1〜W5に備えられている柱16毎に積層ゴム支承22を順に取り付けていけば、積層ゴム支承22の取り付けが行われている作業空間以外の場所は、免震改修工事の影響を受けることなく使用することができる(例えば、積層ゴム支承22の取り付けが行われている作業空間以外の場所で、居住者が通常通り生活することができる)。すなわち、所謂、居ながらでの工事を行うことができる。   For example, as shown in the elevation views of FIGS. 10A to 10C, the floor 12 of the existing building 10 that performs the seismic isolation repair work is divided into a plurality of work spaces W1 to W5, and the work spaces W1 to W5 are divided. If the laminated rubber bearings 22 are attached in order to each of the columns 16 provided, the place other than the work space where the laminated rubber bearings 22 are attached should be used without being affected by the seismic isolation repair work. (For example, a resident can live as usual in a place other than the work space where the laminated rubber support 22 is attached). That is, it is possible to perform the so-called construction while being.

図10(a)の例では、積層ゴム支承22の取り付けが行われている作業空間W1以外の場所(作業空間W2〜W5となる建物空間)、図10(b)の例では、積層ゴム支承22の取り付けが行われている作業空間W2以外の場所(作業空間W1、W3〜W5となる建物空間)、図10(c)の例では、積層ゴム支承22の取り付けが行われている作業空間W3以外の場所(作業空間W1、W2、W4、W5となる建物空間)が、免震改修工事の影響を受けることなく使用することができる。   In the example of FIG. 10A, the place other than the work space W1 where the laminated rubber support 22 is attached (the building space that becomes the work spaces W2 to W5), and in the example of FIG. 10B, the laminated rubber support. In the example of FIG. 10C, a work space where the laminated rubber support 22 is attached in a place other than the work space W2 where the attachment of the work piece 22 is performed (a building space that becomes work spaces W1, W3 to W5). Places other than W3 (building spaces that become work spaces W1, W2, W4, and W5) can be used without being affected by the seismic isolation work.

また、本実施形態では、本発明の弾性支承の設置方法を免震改修工事に適用した例を示したが、本発明の弾性支承の設置方法は、弾性支承のさまざまな受け替え工事に適用することができる。例えば、橋梁の支承材の受け替え工事、逆打ち工法で新築の免震建物を施工する際に行う、構真柱の切断除去した箇所に支承材を設置する工事等に適用することができる。   Further, in this embodiment, an example in which the elastic bearing installation method of the present invention is applied to seismic isolation repair work is shown. However, the elastic bearing installation method of the present invention is applied to various replacement works of elastic bearings. be able to. For example, the present invention can be applied to a construction for replacing a bridge bearing material, a construction for installing a bearing material at a location where a construction pillar has been cut and removed, and the like, which is performed when constructing a new base-isolated building by a reverse driving method.

以上、本発明の実施形態について説明したが、本発明はこうした実施形態に何等限定されるものでなく、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to such embodiment at all, Of course, in the range which does not deviate from the summary of this invention, it can implement in a various aspect.

14 構造物
16 柱(構造部材)
22、82 積層ゴム支承(弾性支承)
26 仮受支柱(支保工)
34 上柱(上部材)
36 下柱(下部材)
46 固定部材
50 支持プレート
52 係合部
58 油圧ジャッキ(ジャッキ)
14 Structure 16 Pillar (Structural member)
22, 82 Laminated rubber support (elastic support)
26 Temporary support column (support work)
34 Upper pillar (upper member)
36 Lower pillar (lower member)
46 fixed member 50 support plate 52 engaging portion 58 hydraulic jack (jack)

Claims (3)

構造部材が支持する構造物の鉛直荷重を支保工で支持した状態で前記構造部材の一部を切断撤去し、前記構造部材を上部材と下部材とに分ける工程と、
前記上部材の下面又は前記下部材の上面に、弾性支承の上面又は下面を取り付けた後に、前記弾性支承の下面又は上面の平面視にて中央部に、高さ調整可能な固定部材を配置する、又は、弾性支承の下面又は上面の平面視にて中央部に、高さ調整可能な固定部材を配置した後に、前記上部材の下面又は前記下部材の上面に、前記弾性支承の上面又は下面を取り付ける工程と、
前記固定部材の周りにジャッキを複数配置して、前記下部材の上面又は前記上部材の下面を反力受けにして前記弾性支承の下面又は上面を前記ジャッキで押し、前記弾性支承を圧縮させる工程と、
前記固定部材の高さを調整して、前記弾性支承を前記下部材又は前記上部材に固定する工程と、
前記ジャッキが支えている鉛直荷重を前記固定部材に移し替えて前記ジャッキを外す工程と、
前記支保工を撤去する工程と、
を有する弾性支承の設置方法。
Cutting and removing a part of the structural member in a state where the vertical load of the structure supported by the structural member is supported by a supporting work, and dividing the structural member into an upper member and a lower member;
After the upper surface or the lower surface of the elastic bearing is attached to the lower surface of the upper member or the upper surface of the lower member, a fixing member whose height can be adjusted is disposed in the center of the lower surface or the upper surface of the elastic bearing in plan view Or, after disposing a fixing member whose height can be adjusted at the center in the plan view of the lower surface or upper surface of the elastic bearing, the upper surface or lower surface of the elastic bearing Attaching the process,
A step of arranging a plurality of jacks around the fixing member, pressing the lower surface or the upper surface of the elastic bearing with the jack by using the upper surface of the lower member or the lower surface of the upper member as a reaction force, and compressing the elastic bearing When,
Adjusting the height of the fixing member to fix the elastic support to the lower member or the upper member;
Transferring the vertical load supported by the jack to the fixing member and removing the jack;
Removing the support work;
The installation method of the elastic bearing which has.
前記弾性支承の下面又は上面に取り付けられ、前記ジャッキが下方又は上方に配置される支持プレートと、
前記支持プレートに設けられ、前記固定部材を上下方向へ移動可能に係合する係合部と、
を有する請求項1に記載の弾性支承の設置方法。
A support plate attached to the lower surface or the upper surface of the elastic bearing, wherein the jack is disposed below or above;
An engaging portion that is provided on the support plate and engages the fixing member so as to be movable in the vertical direction;
The installation method of the elastic bearing of Claim 1 which has these.
免震改修工事を行う建物の階層を複数の作業空間に区分けし、該作業空間毎に前記弾性支承を取り付けていく請求項1又は2に記載の弾性支承の設置方法。
The installation method of the elastic bearing of Claim 1 or 2 which divides | segments the hierarchy of the building which performs seismic isolation repair work into several working space, and attaches the said elastic bearing for every said working space.
JP2012100256A 2012-04-25 2012-04-25 Installation method of elastic bearing Active JP5944732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012100256A JP5944732B2 (en) 2012-04-25 2012-04-25 Installation method of elastic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012100256A JP5944732B2 (en) 2012-04-25 2012-04-25 Installation method of elastic bearing

Publications (2)

Publication Number Publication Date
JP2013227778A true JP2013227778A (en) 2013-11-07
JP5944732B2 JP5944732B2 (en) 2016-07-05

Family

ID=49675660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012100256A Active JP5944732B2 (en) 2012-04-25 2012-04-25 Installation method of elastic bearing

Country Status (1)

Country Link
JP (1) JP5944732B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212474A (en) * 2014-05-02 2015-11-26 大成建設株式会社 Base-isolating method of existing building
JP2016000913A (en) * 2014-06-11 2016-01-07 大成建設株式会社 Mounting structure and mounting method
JP2016160623A (en) * 2015-02-27 2016-09-05 大成建設株式会社 Base isolation repair method
JP2017031665A (en) * 2015-07-31 2017-02-09 株式会社横河ブリッジ Thin jack and seismic isolator using thin jack or installation method of bearing device
JP2018131879A (en) * 2017-02-17 2018-08-23 株式会社竹中工務店 Seismic isolation method for existing buildings
JP2020026730A (en) * 2018-08-09 2020-02-20 清水建設株式会社 Oscillation proof floating floor support spring telescoping mechanism, construction method of oscillation proof floating floor, and exchange method of spring unit of oscillation proof floating floor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246004A (en) * 1997-03-06 1998-09-14 Mase Kensetsu Kk Aseismic base isolation load changing method
JPH11303416A (en) * 1998-04-23 1999-11-02 Hazama Gumi Ltd Fixing construction of vibration isolation
JP2000186430A (en) * 1998-12-21 2000-07-04 Ohbayashi Corp Installation method for base isolation bearing to existing building
JP2001263419A (en) * 2000-03-21 2001-09-26 Kajima Corp Base isolation device installing device, and installation method using it
JP2005030107A (en) * 2003-07-09 2005-02-03 Kajima Corp Load receiving device for changing base isolation device and changing method of base isolation device
JP2006307513A (en) * 2005-04-28 2006-11-09 Kawaguchi Metal Industries Co Ltd Rubber bearing mounting fixture
JP2008057189A (en) * 2006-08-30 2008-03-13 Okumura Corp Base isolation construction method for existing building
JP2011179252A (en) * 2010-03-02 2011-09-15 Yokogawa Koji Kk Method and device for replacing load bearing of seismic isolation device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246004A (en) * 1997-03-06 1998-09-14 Mase Kensetsu Kk Aseismic base isolation load changing method
JPH11303416A (en) * 1998-04-23 1999-11-02 Hazama Gumi Ltd Fixing construction of vibration isolation
JP2000186430A (en) * 1998-12-21 2000-07-04 Ohbayashi Corp Installation method for base isolation bearing to existing building
JP2001263419A (en) * 2000-03-21 2001-09-26 Kajima Corp Base isolation device installing device, and installation method using it
JP2005030107A (en) * 2003-07-09 2005-02-03 Kajima Corp Load receiving device for changing base isolation device and changing method of base isolation device
JP2006307513A (en) * 2005-04-28 2006-11-09 Kawaguchi Metal Industries Co Ltd Rubber bearing mounting fixture
JP2008057189A (en) * 2006-08-30 2008-03-13 Okumura Corp Base isolation construction method for existing building
JP2011179252A (en) * 2010-03-02 2011-09-15 Yokogawa Koji Kk Method and device for replacing load bearing of seismic isolation device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212474A (en) * 2014-05-02 2015-11-26 大成建設株式会社 Base-isolating method of existing building
JP2016000913A (en) * 2014-06-11 2016-01-07 大成建設株式会社 Mounting structure and mounting method
JP2016160623A (en) * 2015-02-27 2016-09-05 大成建設株式会社 Base isolation repair method
JP2017031665A (en) * 2015-07-31 2017-02-09 株式会社横河ブリッジ Thin jack and seismic isolator using thin jack or installation method of bearing device
JP2018131879A (en) * 2017-02-17 2018-08-23 株式会社竹中工務店 Seismic isolation method for existing buildings
JP2020026730A (en) * 2018-08-09 2020-02-20 清水建設株式会社 Oscillation proof floating floor support spring telescoping mechanism, construction method of oscillation proof floating floor, and exchange method of spring unit of oscillation proof floating floor
JP7214507B2 (en) 2018-08-09 2023-01-30 清水建設株式会社 Anti-vibration floating floor support spring expansion and contraction mechanism, construction method of anti-vibration floating floor, and replacement method of spring unit of anti-vibration floating floor

Also Published As

Publication number Publication date
JP5944732B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
JP5944732B2 (en) Installation method of elastic bearing
CN109869028B (en) Assembled reinforced concrete silo and manufacturing method thereof
JP5437113B2 (en) Load receiving method and device for seismic isolation device
JP5894549B2 (en) Formwork using thin jacks, seismic isolation device installation method and bridge support exchange method
JP6545537B2 (en) Temporary support post and replacement method of seismic isolation device
JP6022631B1 (en) Seismic isolation device replacement method and seismic isolation structure
JP2006257741A (en) Tool for placing rubber support
JP5870015B2 (en) Seismic isolation device installation method and base isolation device installation structure for foundation pillars of existing buildings
JP6441030B2 (en) How to add underground facilities
KR101428539B1 (en) Reformed concrete filled tube column structure
JP6448683B2 (en) Slab support device and building dismantling method
JP7009724B2 (en) Column-beam frame repair method and repair column-beam frame
JP5749620B2 (en) Seismic isolation method for existing buildings
JPH09273163A (en) Earthquake resistant reinforcing method of existing building
KR102146577B1 (en) Fixed structure of high strength support material with easy to install at the construction site and construction method thereof
JP6546755B2 (en) Seismic isolation repair method
KR20120042413A (en) Basis structure of steel pole tower for mobile communication using precast concrete panel
JP6084388B2 (en) How to build a new foundation
RU96381U1 (en) REGULATED FOUNDATION FOR OPERATING FRAME FRAME REINFORCED CONCRETE BUILDINGS
JP2005002703A (en) Structure for supporting base-isolating device on existing column, and installation method for base-isolating device
JP4480023B2 (en) Rubber bearing loading jig
JP2006342543A (en) Artificial ground structure and method of constructing the same
JP5123967B2 (en) Seismic isolation method
JP5382828B2 (en) Seismic isolation structure
JP6326279B2 (en) Seismic isolation repair method for pile foundation structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160526

R150 Certificate of patent or registration of utility model

Ref document number: 5944732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150