JP2013227657A - Method for producing high-strength cold-rolled steel sheet with excellent steel sheet shape - Google Patents

Method for producing high-strength cold-rolled steel sheet with excellent steel sheet shape Download PDF

Info

Publication number
JP2013227657A
JP2013227657A JP2013048343A JP2013048343A JP2013227657A JP 2013227657 A JP2013227657 A JP 2013227657A JP 2013048343 A JP2013048343 A JP 2013048343A JP 2013048343 A JP2013048343 A JP 2013048343A JP 2013227657 A JP2013227657 A JP 2013227657A
Authority
JP
Japan
Prior art keywords
less
cooling
temperature
steel sheet
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013048343A
Other languages
Japanese (ja)
Other versions
JP6047037B2 (en
Inventor
Motoo Sato
始夫 佐藤
Michiharu Nakaya
道治 中屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013048343A priority Critical patent/JP6047037B2/en
Publication of JP2013227657A publication Critical patent/JP2013227657A/en
Application granted granted Critical
Publication of JP6047037B2 publication Critical patent/JP6047037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method by which a high-strength cold-rolled steel sheet with an excellent steel sheet shape can be produced with good productivity.SOLUTION: A production method includes an annealing step of heating a steel product satisfying a prescribed constituent composition in an austenite single phase region for 15-600 seconds to anneal, a primary cooling step of, after annealing, gradually cooling down to a primary cooling stop temperature in the temperature range of 650-800°C at an average cooling rate of 10°C/second or lower (excluding 0°C/second), a secondary cooling step of gradually cooling down from the primary cooling stop temperature to a secondary cooling stop temperature in the temperature range from a temperature of an Ms point or above to 500°C or below at an average cooling rate of 20-100°C/second, a tertiary cooling step of rapidly cooling from the secondary cooling stop temperature to room temperature at an average cooling rate of higher than 100°C/second, and an over aging treatment step of heating up to the temperature region of 150-300°C and maintaining for 30-1,500 seconds, in the order.

Description

本発明は、引張強度が980MPa以上の高強度冷延鋼板を製造する方法に関するものであり、詳細には、鋼板形状に優れた高強度冷延鋼板の製造方法に関するものである。   The present invention relates to a method for producing a high-strength cold-rolled steel sheet having a tensile strength of 980 MPa or more, and specifically relates to a method for producing a high-strength cold-rolled steel sheet having an excellent steel plate shape.

近年、自動車の安全性向上に対する要求が強まっており、引張強度が980MPa以上の高強度冷延鋼板を用いた軽量で充分な衝撃吸収能を有する補強部材(例えば、バンパーリインホースメント、ドアインパクトバーなど)を積極的に設置しようとする動きがある。このような用途に用いられる高強度冷延鋼板には、加工性(特に、伸び)が良好であることも重要である。   In recent years, there has been an increasing demand for safety improvement of automobiles, and a lightweight and sufficient reinforcing member (for example, bumper reinforcement, door impact bar) using a high-strength cold-rolled steel sheet having a tensile strength of 980 MPa or more. Etc.) are actively trying to install. It is also important that the high-strength cold-rolled steel sheet used for such applications has good workability (particularly elongation).

上記高強度冷延鋼板としては、マルテンサイトに代表される硬質な低温変態組織を利用して組織強化したものが用いられている。硬質な低温変態組織を利用した高強度冷延鋼板は、水焼入れタイプの連続焼鈍設備を用いて製造できる。例えば、鋼材をAc1点以上の再結晶温度域で短時間加熱保持した後、水焼入れするか、或いは所定の温度域まで冷却してから水焼入れし、次いで過時効処理を施すことによって製造できる。 As the high-strength cold-rolled steel sheet, a structure strengthened using a hard low-temperature transformation structure typified by martensite is used. A high-strength cold-rolled steel sheet using a hard low-temperature transformation structure can be produced using a water quenching type continuous annealing facility. For example, it can be produced by heating and holding a steel material in a recrystallization temperature range of Ac 1 point or higher for a short time, followed by water quenching or cooling to a predetermined temperature range, followed by water quenching and then performing an overaging treatment. .

ところで成形ラインでの作業性の面からは、冷延鋼板の鋼板形状が良好であることも必要である。冷延鋼板の鋼板形状として鋼板の平坦度を低減する技術が特許文献1に提案されている。この文献に開示されている冷延鋼板は、金属組織がマルテンサイト単相で、引張強度が980MPa以上で、鋼板の平坦度が10mm以下であるところに特徴がある。この冷延鋼板は、冷間圧延後の鋼板をAc3変態点以上の均熱温度からMs点(マルテンサイト変態開始温度)〜Ms点+200℃の温度範囲まで20℃/秒以上の平均冷却速度で一次冷却し、上記温度範囲に0.1〜60秒間保持した後、100℃/秒以上の平均冷却速度で100℃以下まで二次冷却することによって製造している。Ms点〜Ms点+200℃の温度範囲における保持は、鋼板内の温度を均一化するために行われており、鋼板の板厚方向あるいは幅方向での冷却速度の違いに起因する温度ムラが生じると、鋼板内の応力が低減されず、鋼板形状が劣化することが記載されている。しかしMs点〜Ms点+200℃の温度範囲で保持するには、塩浴、金属浴、或いは誘導加熱装置などを新たに設ける必要があり、コスト高となる。また、所定の温度範囲で保持しているため、生産性が悪かった。 By the way, from the viewpoint of workability in the forming line, it is necessary that the cold rolled steel sheet has a good shape. Patent Document 1 proposes a technique for reducing the flatness of a steel plate as a cold rolled steel plate shape. The cold-rolled steel sheet disclosed in this document is characterized in that the metal structure is a martensite single phase, the tensile strength is 980 MPa or more, and the flatness of the steel sheet is 10 mm or less. This cold-rolled steel sheet has an average cooling rate of 20 ° C./second or more from the soaking temperature above the Ac 3 transformation point to the Ms point (Martensite transformation start temperature) to Ms point + 200 ° C. temperature range after cold rolling. In the above temperature range for 0.1 to 60 seconds, followed by secondary cooling to 100 ° C. or less at an average cooling rate of 100 ° C./second or more. The holding in the temperature range of Ms point to Ms point + 200 ° C. is performed in order to make the temperature in the steel plate uniform, and temperature unevenness occurs due to the difference in cooling rate in the plate thickness direction or width direction of the steel plate. And it is described that the stress in the steel sheet is not reduced and the shape of the steel sheet deteriorates. However, in order to maintain in the temperature range of Ms point to Ms point + 200 ° C., it is necessary to newly provide a salt bath, a metal bath, an induction heating device, or the like, resulting in an increase in cost. Moreover, since it hold | maintained in the predetermined | prescribed temperature range, productivity was bad.

特開2011−202195号公報JP 2011-202195 A

本発明は上記の様な事情に着目してなされたものであって、その目的は、定盤上に冷延鋼板を載置したときに反りが少ない鋼板形状に優れた高強度冷延鋼板を生産性良く製造できる方法を提供することにある。   The present invention has been made paying attention to the circumstances as described above, and its purpose is to provide a high-strength cold-rolled steel sheet excellent in steel sheet shape with less warpage when the cold-rolled steel sheet is placed on a surface plate. The object is to provide a method capable of producing with high productivity.

上記課題を解決することのできた本発明に係る鋼板形状に優れた高強度冷延鋼板の製造方法とは、C:0.1〜0.20%(質量%の意味。以下、成分について同じ。)、Si:0.2〜2%、Mn:1.0〜3%、P:0.05%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Ti:0.001〜0.2%、Al:0.01〜0.1%、B:0.0002〜0.01%、およびN:0.01%以下(0%を含まない)を満足し、残部が鉄および不可避不純物からなり、金属組織全体に対する比率は、焼戻しマルテンサイトは65面積%以上、残留オーステナイトは5面積%以下(0面積%を含む)、フェライトは20面積%以下(0面積%を含む)、ベイナイトは10面積%以下(0面積%を含む)を満足する高強度冷延鋼板の製造方法である。そして本発明の製造方法は、前記成分組成を満足する鋼材をオーステナイト単相域で15〜600秒間加熱して焼鈍する焼鈍工程と、焼鈍後、650〜800℃の温度域における一次冷却停止温度まで平均冷却速度10℃/秒以下(0℃/秒を含まない)で徐冷する一次冷却工程と、前記一次冷却停止温度から下記式(1)で算出されるMs点の温度以上、500℃以下の温度域における二次冷却停止温度まで平均冷却速度20〜100℃/秒で冷却する二次冷却工程と、前記二次冷却停止温度から室温まで平均冷却速度100℃/秒超で急冷する三次冷却工程と、150〜300℃の温度域に加熱し、30〜1500秒間保持する過時効処理工程とをこの順で含む点に要旨を有している。下記式(1)において、[ ]は、各元素の含有量(質量%)を意味している。
Ms=561−474×[C]−33×[Mn]−17×[Ni]−17×[Cr]−21×[Mo]・・・(1)
With the manufacturing method of the high strength cold-rolled steel plate excellent in the steel plate shape which concerns on this invention which was able to solve the said subject, C: 0.1-0.20% (meaning mass%. Hereinafter, it is the same about a component. ), Si: 0.2-2%, Mn: 1.0-3%, P: 0.05% or less (not including 0%), S: 0.01% or less (not including 0%), Satisfying Ti: 0.001-0.2%, Al: 0.01-0.1%, B: 0.0002-0.01%, and N: 0.01% or less (excluding 0%) The balance is composed of iron and inevitable impurities, and the ratio to the entire metal structure is 65 area% or more for tempered martensite, 5 area% or less for retained austenite (including 0 area%), and 20 area% or less for ferrite (0 Bainite has a high strength satisfying 10 area% or less (including 0 area%). A method for producing a rolled steel sheet. And the manufacturing method of this invention is the annealing process which heats and anneals the steel materials which satisfy | fill the said component composition in an austenite single phase area for 15 to 600 seconds, and the primary cooling stop temperature in the temperature range of 650-800 degreeC after annealing. Primary cooling step of slow cooling at an average cooling rate of 10 ° C./second or less (excluding 0 ° C./second), and a temperature of Ms point or higher calculated by the following formula (1) from the primary cooling stop temperature, 500 ° C. or lower Secondary cooling step of cooling at an average cooling rate of 20 to 100 ° C./second to a secondary cooling stop temperature in the temperature range of the above, and tertiary cooling rapidly cooling from the secondary cooling stop temperature to room temperature at an average cooling rate of over 100 ° C./second It has a gist in that it includes a process and an overaging treatment process in which heating is performed in a temperature range of 150 to 300 ° C. and holding for 30 to 1500 seconds in this order. In the following formula (1), [] means the content (% by mass) of each element.
Ms = 561-474 × [C] −33 × [Mn] −17 × [Ni] −17 × [Cr] −21 × [Mo] (1)

前記鋼材は、更に他の元素として、
(a)Cu:1%以下(0%を含まない)および/またはNi:1%以下(0%を含まない)、
(b)Cr:1%以下(0%を含まない)および/またはMo:1%以下(0%を含まない)、
等の元素を含有してもよい。
The steel material, as another element,
(A) Cu: 1% or less (not including 0%) and / or Ni: 1% or less (not including 0%),
(B) Cr: 1% or less (not including 0%) and / or Mo: 1% or less (not including 0%),
Etc. may be contained.

なお、本明細書において、「鋼板形状に優れた」とは、定盤上に冷延鋼板を設置したときに反りが少ないことを意味している。   In the present specification, “excellent in steel plate shape” means that there is little warpage when a cold-rolled steel plate is installed on a surface plate.

本発明によれば、所定の成分組成を満足する鋼材をオーステナイト単相域で加熱して焼鈍した後、室温まで冷却してから過時効処理を施すにあたり、冷却過程では、所定の温度域を境に冷却速度を3段階に変えて冷却している。そして本発明では、特にオーステナイト単相域から650〜800℃の温度域における一次冷却停止温度までを徐冷しているため、鋼材内に温度分布を生じさせずに均一に冷却できる。その結果、上記特許文献1のように、Ms点〜Ms点+200℃の温度範囲で保持して鋼板内の温度を均一化するための新たな設備を設けなくても、鋼板形状に優れた高強度冷延鋼板を生産性良く製造できる。   According to the present invention, when a steel material satisfying a predetermined component composition is heated and annealed in an austenite single-phase region and then cooled to room temperature and then subjected to an overaging treatment, in the cooling process, the predetermined temperature region is exceeded. The cooling rate is changed in three stages. And in this invention, since it cools gradually from the austenite single phase area | region to the primary cooling stop temperature in the temperature range of 650-800 degreeC, it can cool uniformly, without producing temperature distribution in steel materials. As a result, as in the above-mentioned Patent Document 1, it is possible to maintain a temperature range of Ms point to Ms point + 200 ° C., and to provide a high steel plate shape without providing new equipment for uniformizing the temperature in the steel plate. Strength cold-rolled steel sheets can be manufactured with high productivity.

図1は、急冷開始温度と、鋼板の反り高さとの関係を示すグラフである。FIG. 1 is a graph showing the relationship between the rapid cooling start temperature and the warp height of the steel sheet.

本発明者らは、定盤上に冷延鋼板を載置したときに反りが少ない鋼板形状に優れた高強度冷延鋼板を新たな設備投資をすることなく製造できる方法を提供するために鋭意検討を重ねてきた。その結果、所定の成分組成を満足する鋼材をオーステナイト単相域で加熱して焼鈍した後、室温まで冷却してから過時効処理を施すにあたり、冷却過程では、オーステナイト単相域から650〜800℃の温度域における一次冷却停止温度までを平均冷却速度10℃/秒以下で徐冷(以下、一次冷却ということがある。)した後、一次冷却停止温度からMs点の温度以上、500℃以下の温度域における二次冷却停止温度まで平均冷却速度20〜100℃/秒で冷却(以下、二次冷却ということがある。)し、次いで二次冷却停止温度から室温まで平均冷却速度100℃/秒超で急冷(以下、三次冷却ということがある。)することが重要であること、このように3段階冷却を行えば、上述した特許文献1のように、所定の温度範囲で保持し、鋼板内の温度を均一にするための新たな設備を設けることなく鋼板形状に優れた高強度冷延鋼板を生産性良く製造できることを見出し、本発明を完成した。   The present inventors have earnestly provided a method for producing a high-strength cold-rolled steel sheet excellent in the shape of a steel sheet with little warpage when the cold-rolled steel sheet is placed on a surface plate without making a new capital investment. I have been studying it. As a result, a steel material satisfying a predetermined component composition is heated and annealed in an austenite single phase region, and then cooled to room temperature and then subjected to an overaging treatment. In the cooling process, from the austenite single phase region to 650 to 800 ° C. After the gradual cooling to the primary cooling stop temperature in the temperature range of 10 ° C./second or less (hereinafter sometimes referred to as primary cooling), the temperature of the Ms point or higher and 500 ° C. or lower from the primary cooling stop temperature. Cooling is performed at an average cooling rate of 20 to 100 ° C./second until the secondary cooling stop temperature in the temperature range (hereinafter sometimes referred to as secondary cooling), and then the average cooling rate of 100 ° C./second from the secondary cooling stop temperature to room temperature. It is important to perform supercooling (hereinafter also referred to as tertiary cooling), and if three-stage cooling is performed in this way, the temperature is maintained within a predetermined temperature range as in Patent Document 1 described above. Found can be produced with good productivity high strength cold rolled steel sheet excellent in without steel shape providing a new equipment for equalizing the temperature in steel plate, thereby completing the present invention.

特に、本発明では、オーステナイト単相域から650〜800℃の温度域における一次冷却停止温度までを徐冷することが重要である。この温度範囲を徐冷することによって、鋼材内における温度ムラを無くし、温度分布を均一にできる。そして、この温度分布を均一にした鋼材を、二次冷却停止温度から室温まで急冷することによって、マルテンサイト変態に伴う変態歪を均一に発生させつつマルテンサイトを生成させることができるため、上記特許文献1のように恒温保持するための新たな設備を設けなくても、鋼板の長手方向における変態歪のムラがなくなり、反りの発生を抑制でき、鋼板形状が良好となる。   In particular, in the present invention, it is important to gradually cool from the austenite single phase region to the primary cooling stop temperature in the temperature region of 650 to 800 ° C. By gradually cooling the temperature range, temperature unevenness in the steel material can be eliminated and the temperature distribution can be made uniform. And, by rapidly cooling the steel material having a uniform temperature distribution from the secondary cooling stop temperature to room temperature, it is possible to generate martensite while uniformly generating transformation strain associated with martensitic transformation. Even without providing a new facility for maintaining a constant temperature as in Document 1, there is no unevenness of transformation strain in the longitudinal direction of the steel sheet, the occurrence of warpage can be suppressed, and the steel sheet shape is improved.

以下、本発明に係る高強度冷延鋼板の製造方法について説明する。   Hereinafter, the manufacturing method of the high intensity | strength cold-rolled steel plate which concerns on this invention is demonstrated.

本発明の高強度冷延鋼板は、C:0.1〜0.20%、Si:0.2〜2%、Mn:1.0〜3%、P:0.05%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Ti:0.001〜0.2%、Al:0.01〜0.1%、B:0.0002〜0.01%、およびN:0.01%以下(0%を含まない)を満足し、残部が鉄および不可避不純物からなるものであり、金属組織は、焼戻しマルテンサイト、残留オーステナイト、フェライト、およびベイナイトを有し、前記金属組織全体に対する比率は、前記焼戻しマルテンサイトは65面積%以上、前記残留オーステナイトは5面積%以下(0面積%を含む)、前記フェライトは20面積%以下(0面積%を含む)、前記ベイナイトは10面積%以下(0面積%を含む)を満足しているものである。   The high-strength cold-rolled steel sheet of the present invention has C: 0.1 to 0.20%, Si: 0.2 to 2%, Mn: 1.0 to 3%, P: 0.05% or less (0% Not included), S: 0.01% or less (not including 0%), Ti: 0.001 to 0.2%, Al: 0.01 to 0.1%, B: 0.0002 to 0.01 % And N: 0.01% or less (excluding 0%), the balance is made of iron and inevitable impurities, and the metal structure has tempered martensite, residual austenite, ferrite, and bainite. The ratio of the entire metal structure is 65 area% or more for the tempered martensite, 5 area% or less (including 0 area%) for the retained austenite, and 20 area% or less (including 0 area%) for the ferrite. The bainite is 10 area% or less (including 0 area%). It is those that are happy.

こうした高強度冷延鋼板は、前記成分組成を満足する鋼材をオーステナイト単相域で15〜600秒間加熱して焼鈍する焼鈍工程と、焼鈍後、650〜800℃の一次冷却停止温度まで平均冷却速度10℃/秒以下(0℃/秒を含まない)で徐冷する一次冷却工程と、前記一次冷却停止温度から下記式(1)式で算出されるMs点の温度以上、500℃以下の温度域における二次冷却停止温度まで平均冷却速度20〜100℃/秒で冷却する二次冷却工程と、前記二次冷却停止温度から室温まで平均冷却速度100℃/秒超で急冷する三次冷却工程と、150〜300℃の温度域に加熱し、30〜1500秒間保持する過時効処理工程とをこの順で含む方法によって製造できる。下記式(1)において、[ ]は、各元素の含有量(質量%)を意味している。
Ms=561−474×[C]−33×[Mn]−17×[Ni]−17×[Cr]−21×[Mo]・・・(1)
Such a high-strength cold-rolled steel sheet includes an annealing process in which a steel material satisfying the above-described composition is annealed by heating for 15 to 600 seconds in an austenite single-phase region, and an average cooling rate to a primary cooling stop temperature of 650 to 800 ° C. after annealing. A primary cooling step of gradual cooling at 10 ° C./second or less (not including 0 ° C./second), and a temperature not lower than the temperature of Ms point calculated by the following formula (1) from the primary cooling stop temperature and not higher than 500 ° C. A secondary cooling step of cooling at an average cooling rate of 20 to 100 ° C./second to a secondary cooling stop temperature in the region, and a tertiary cooling step of rapidly cooling from the secondary cooling stop temperature to room temperature at an average cooling rate of over 100 ° C./second; And an over-aging treatment step of heating in a temperature range of 150 to 300 ° C. and holding for 30 to 1500 seconds in this order. In the following formula (1), [] means the content (% by mass) of each element.
Ms = 561-474 × [C] −33 × [Mn] −17 × [Ni] −17 × [Cr] −21 × [Mo] (1)

まず、焼鈍工程に供する鋼材を製造する手順について説明する。   First, a procedure for manufacturing a steel material to be subjected to the annealing process will be described.

上記鋼材は、常法に従って製造したものを準備すればよく、例えば、上記成分組成を満足するように成分調整を行なって得られた鋼片を熱間圧延し、次いで冷間圧延を行って製造すればよい。即ち、上記成分組成を満足する鋼片を、例えば、1100〜1300℃に加熱した後、仕上げ圧延温度(熱間圧延終了温度)を、例えば、850〜950℃として熱間圧延を行い、巻取り温度を、例えば、400〜700℃として巻き取って熱延鋼板を製造すればよい。   What is necessary is just to prepare what the said steel materials manufactured according to the conventional method, for example, hot-rolling the steel piece obtained by adjusting a component so that the said component composition may be satisfied, and then performing cold rolling, and manufacturing. do it. That is, after the steel slab satisfying the above component composition is heated to, for example, 1100 to 1300 ° C., the hot rolling is performed at a finish rolling temperature (hot rolling end temperature) of, for example, 850 to 950 ° C. What is necessary is just to manufacture a hot-rolled steel plate by winding up temperature as 400-700 degreeC, for example.

得られた熱延鋼板を、常法に従って酸洗し、表面の酸化スケールを除去した後、冷間圧延して冷延鋼板を製造すればよい。冷間圧延は、圧下率(冷延率)を、例えば、30〜80%として行えばよい。   The obtained hot-rolled steel sheet may be pickled according to a conventional method to remove the oxide scale on the surface, and then cold-rolled to produce a cold-rolled steel sheet. Cold rolling may be performed at a rolling reduction (cold rolling ratio) of 30 to 80%, for example.

なお、上記熱延鋼板は、通常の製鋼、鋳造および熱間圧延の各工程を経て製造することを想定しているが、例えば、薄手鋳造などにより熱間圧延工程の一部もしくは全部を省略して製造してもよい。   The hot-rolled steel sheet is assumed to be manufactured through ordinary steelmaking, casting, and hot rolling processes, but some or all of the hot rolling process is omitted, for example, by thin casting. May be manufactured.

次に、焼鈍工程から順を追って説明する。   Next, the annealing process will be described in order.

[焼鈍工程]
焼鈍工程では、上記成分組成を満足する鋼材をオーステナイト単相域で15〜600秒間均熱して焼鈍を行う。
[Annealing process]
In the annealing step, the steel material satisfying the above component composition is annealed by soaking for 15 to 600 seconds in the austenite single phase region.

焼鈍温度が低過ぎてオーステナイト単相域に到達していない場合は、鋼材中の炭化物が充分に溶解しなかったり、フェライトの再結晶が完了せず、所望の強度や延性が得られない。従って焼鈍温度はオーステナイト温度域とする。   When the annealing temperature is too low to reach the austenite single phase region, carbides in the steel material are not sufficiently dissolved or recrystallization of ferrite is not completed, and desired strength and ductility cannot be obtained. Accordingly, the annealing temperature is set to the austenite temperature range.

上記オーステナイト単相域とは、Ac3点以上の温度域であり、Ac3点は、鋼材の成分組成と、「レスリー鉄鋼材料科学」(丸善株式会社、1985年5月31日発行、P.273)に記載されている下記式(a)から算出できる。下記式(a)中、[ ]は各元素の含有量(質量%)を示しており、鋼材に含まれない元素の含有量は0質量%として計算すればよい。
Ac3(℃)=910−203×[C]1/2+44.7×[Si]−30×[Mn]−11×[Cr]+31.5×[Mo]−20×[Cu]−15.2×[Ni]+400×[Ti]+104×[V]+700×[P]+400×[Al]・・・(a)
The austenite single-phase region is a temperature region of Ac 3 point or higher, and the Ac 3 point represents the component composition of the steel material and the “Leslie Steel Materials Science” (Maruzen Co., Ltd., issued May 31, 1985, p. 273) can be calculated from the following formula (a). In the following formula (a), [] indicates the content (% by mass) of each element, and the content of elements not included in the steel material may be calculated as 0% by mass.
Ac 3 (° C.) = 910−203 × [C] 1/2 + 44.7 × [Si] −30 × [Mn] −11 × [Cr] + 31.5 × [Mo] −20 × [Cu] −15 2 × [Ni] + 400 × [Ti] + 104 × [V] + 700 × [P] + 400 × [Al] (a)

上記焼鈍温度の上限は特に限定されないが、950℃を超えるとオーステナイト粒の成長が著しくなり、後の冷却によって生成する組織を粗大化させることがある。組織が粗大化すると、鋼板の延性、伸びフランジ性、靭性などが劣化することがある。従って焼鈍温度は、950℃以下とすることが好ましく、より好ましくは930℃以下、更に好ましくは920℃以下とする。   The upper limit of the annealing temperature is not particularly limited, but when it exceeds 950 ° C., the growth of austenite grains becomes remarkable, and the structure produced by subsequent cooling may be coarsened. When the structure becomes coarse, the ductility, stretch flangeability, toughness, etc. of the steel sheet may deteriorate. Accordingly, the annealing temperature is preferably 950 ° C. or less, more preferably 930 ° C. or less, and further preferably 920 ° C. or less.

上記焼鈍時間が15秒未満の場合は、上記オーステナイト単相域で加熱しても時間が短過ぎるため、鋼材中の炭化物が充分に溶解しなかったり、フェライトの再結晶が完了せず、所望の強度や延性が得られないことがある。従って上記焼鈍時間は、15秒以上とし、好ましくは30秒以上、より好ましくは60秒以上とする。しかし上記焼鈍時間を600秒以上としてもその効果は飽和し、多大なエネルギーを消費してコスト増加を招く。従って上記焼鈍時間は600秒以下、好ましくは500秒以下、より好ましくは400秒以下とする。   If the annealing time is less than 15 seconds, the heating time in the austenite single phase region is too short, so that the carbide in the steel material is not sufficiently dissolved or the recrystallization of ferrite is not completed, Strength and ductility may not be obtained. Therefore, the annealing time is 15 seconds or longer, preferably 30 seconds or longer, more preferably 60 seconds or longer. However, even if the annealing time is 600 seconds or more, the effect is saturated, and a large amount of energy is consumed, resulting in an increase in cost. Therefore, the annealing time is 600 seconds or less, preferably 500 seconds or less, more preferably 400 seconds or less.

[一次冷却工程]
一次冷却工程では、焼鈍後、上記焼鈍温度から、650〜800℃の温度域における一次冷却停止温度まで平均冷却速度10℃/秒以下(0℃/秒を含まない)で徐冷する。平均冷却速度10℃/秒以下で徐冷することによって、鋼材内における温度ムラを低減し、鋼板内における温度分布を均一にできる。その結果、後述する三次冷却工程ではマルテンサイト変態による変態歪を均一に導入させることができる。よって、上記特許文献1のように、新たな保持設備を設けなくても、鋼板形状に優れた高強度冷延鋼板を製造できる。
[Primary cooling process]
In the primary cooling step, after annealing, annealing is performed at an average cooling rate of 10 ° C./second or less (not including 0 ° C./second) from the annealing temperature to the primary cooling stop temperature in the temperature range of 650 to 800 ° C. By gradually cooling at an average cooling rate of 10 ° C./second or less, temperature unevenness in the steel material can be reduced, and the temperature distribution in the steel plate can be made uniform. As a result, transformation strain due to martensitic transformation can be introduced uniformly in the tertiary cooling step described later. Therefore, as in Patent Document 1, a high-strength cold-rolled steel sheet having an excellent steel plate shape can be manufactured without providing a new holding facility.

上記一次冷却停止温度が650℃を下回ると、フェライトが過剰に生成し、焼入れ時に所望のマルテンサイトの生成量を確保できないため、鋼板の強度が低下する。よって一次冷却停止温度は650℃以上、好ましくは670℃以上、より好ましくは680℃以上とする。しかし一次冷却停止温度が800℃を超えると、鋼材内の温度ムラを低減する効果が殆ど得られないため、他の製造条件を適切に制御しても後述する三次冷却工程で導入される変態歪が不均一となるため、鋼板形状が良好な高強度冷延鋼板を製造できない。従って一次冷却停止温度は800℃以下、好ましくは780℃以下、より好ましくは750℃以下とする。   When the primary cooling stop temperature is lower than 650 ° C., ferrite is excessively generated, and a desired martensite generation amount cannot be ensured at the time of quenching, so that the strength of the steel sheet decreases. Therefore, the primary cooling stop temperature is 650 ° C. or higher, preferably 670 ° C. or higher, more preferably 680 ° C. or higher. However, when the primary cooling stop temperature exceeds 800 ° C., the effect of reducing the temperature unevenness in the steel material is hardly obtained. Therefore, even if other manufacturing conditions are appropriately controlled, the transformation strain introduced in the tertiary cooling process described later. Therefore, a high-strength cold-rolled steel sheet having a good steel plate shape cannot be produced. Therefore, the primary cooling stop temperature is 800 ° C. or lower, preferably 780 ° C. or lower, more preferably 750 ° C. or lower.

なお、上記一次冷却停止温度は、フェライトを生成させて鋼板の延性を向上させる場合には、例えば、650〜700℃の低温側の温度域で設定すればよく、フェライトの生成を抑制して鋼板の強度を向上させる場合には、例えば、700〜800℃の高温側の温度域で設定することが推奨される。   The primary cooling stop temperature may be set, for example, in a temperature range on the low temperature side of 650 to 700 ° C. in order to improve the ductility of the steel sheet by generating ferrite and suppress the generation of ferrite to the steel sheet. When improving the intensity | strength of, it is recommended to set in the temperature range of the high temperature side of 700-800 degreeC, for example.

上記一次冷却停止温度までの平均冷却速度が10℃/秒を超えると、鋼材内に温度ムラが生じ、鋼板内の温度分布が均一にならないため、他の製造条件を適切に制御しても後述する三次冷却工程で導入される変態歪が不均一となるため、鋼板形状が良好な高強度冷延鋼板を製造できない。従って一次冷却工程における平均冷却速度は10℃/秒以下、好ましくは8℃/秒以下、より好ましくは5℃/秒以下とする。   If the average cooling rate up to the primary cooling stop temperature exceeds 10 ° C./second, temperature unevenness occurs in the steel material, and the temperature distribution in the steel sheet does not become uniform. Since the transformation strain introduced in the tertiary cooling step is not uniform, a high-strength cold-rolled steel sheet having a good steel sheet shape cannot be produced. Therefore, the average cooling rate in the primary cooling step is 10 ° C./second or less, preferably 8 ° C./second or less, more preferably 5 ° C./second or less.

上記一次冷却工程における平均冷却速度の下限値は特に限定されず、生産性に問題ない範囲であればよい。   The lower limit value of the average cooling rate in the primary cooling step is not particularly limited as long as it does not cause a problem in productivity.

[二次冷却工程]
二次冷却工程では、上記一次冷却停止温度から、上記式(1)で算出されるMs点の温度以上、500℃以下の温度域における二次冷却停止温度まで平均冷却速度20〜100℃/秒で冷却する。この二次冷却によって、一次冷却工程で生成したフェライトが成長するのを抑制し、オーステナイトを過冷状態のまま、マルテンサイト変態を起こさせる温度域(Ms点の温度以上、500℃以下の温度域)まで冷却でき、金属組織を適切に制御できる。
[Secondary cooling process]
In the secondary cooling step, the average cooling rate is 20 to 100 ° C./second from the primary cooling stop temperature to the secondary cooling stop temperature in the temperature range of the Ms point calculated by the above formula (1) to 500 ° C. or less. Cool with. This secondary cooling suppresses the growth of ferrite produced in the primary cooling step, and austenite is kept in a supercooled state, causing a martensitic transformation (temperature range above the Ms point and below 500 ° C.) ) And can control the metal structure appropriately.

上記二次冷却停止温度までの平均冷却速度が20℃/秒を下回ると、冷却途中でフェライトが生成、成長し、鋼板の強度が低下する。また、冷却途中でベイナイトが生成、成長し、鋼板の強度にバラツキが生じ、安定した材質の高強度冷延鋼板を製造できない。よって二次冷却工程における平均冷却速度は20℃/秒以上、好ましくは25℃/秒以上、より好ましくは30℃/秒以上とする。   When the average cooling rate up to the secondary cooling stop temperature is less than 20 ° C./second, ferrite is generated and grows during cooling, and the strength of the steel sheet is reduced. Further, bainite is generated and grows during cooling, and the strength of the steel sheet varies, and a high-strength cold-rolled steel sheet with a stable material cannot be manufactured. Therefore, the average cooling rate in the secondary cooling step is 20 ° C./second or more, preferably 25 ° C./second or more, more preferably 30 ° C./second or more.

しかし二次冷却工程における平均冷却速度が100℃/秒を超えると、鋼材を均一に冷却できないため、鋼材内に温度ムラが生じ、温度分布が発生する。従って後述する三次冷却工程でマルテンサイト変態に伴って導入される変態歪が不均一に導入されるため、鋼板形状を改善できなくなる。従って二次冷却工程における平均冷却速度は100℃/秒以下、好ましくは80℃/秒以下、より好ましくは60℃/秒以下とする。   However, when the average cooling rate in the secondary cooling step exceeds 100 ° C./second, the steel material cannot be cooled uniformly, so that temperature unevenness occurs in the steel material, and temperature distribution occurs. Therefore, since the transformation strain introduced along with the martensitic transformation is introduced non-uniformly in the tertiary cooling step described later, the steel plate shape cannot be improved. Therefore, the average cooling rate in the secondary cooling step is 100 ° C./second or less, preferably 80 ° C./second or less, more preferably 60 ° C./second or less.

上記二次冷却停止温度がMs点の温度を下回ると、二次冷却の途中でマルテンサイト変態が起こり、マルテンサイトが生成する。このマルテンサイトは、後述する三次冷却時に生成するマルテンサイトよりも強度が低いため、所望の強度が得られない。従って二次冷却停止温度はMs点の温度以上、好ましくはMs点+5℃以上、より好ましくはMs点+10℃以上とする。   When the secondary cooling stop temperature is lower than the temperature at the Ms point, martensitic transformation occurs during secondary cooling, and martensite is generated. Since this martensite is lower in strength than martensite generated during the third cooling described later, the desired strength cannot be obtained. Accordingly, the secondary cooling stop temperature is set to the temperature of the Ms point or higher, preferably the Ms point + 5 ° C. or higher, more preferably the Ms point + 10 ° C. or higher.

しかし上記二次冷却停止温度が500℃を超えると、後述する三次冷却時に鋼材の温度低下量が大きくなり過ぎるため、冷却時の鋼材に導入される熱歪が大きくなる。従って反りが発生して鋼板形状を改善できない。よって二次冷却停止温度は500℃以下、好ましくはMs点+50℃以下、より好ましくはMs点+45℃以下とする。   However, if the secondary cooling stop temperature exceeds 500 ° C., the amount of temperature drop of the steel material becomes too large at the time of tertiary cooling described later, so that the thermal strain introduced into the steel material at the time of cooling becomes large. Accordingly, warpage occurs and the steel plate shape cannot be improved. Therefore, the secondary cooling stop temperature is 500 ° C. or lower, preferably Ms point + 50 ° C. or lower, more preferably Ms point + 45 ° C. or lower.

上記二次冷却は、鋼材にガスを吹き付けて冷却するガスジェット冷却すればよい。吹き付けるガスとしては、不活性ガス(例えば、窒素ガス)を用いればよい。   The secondary cooling may be performed by gas jet cooling in which a gas is blown onto the steel material for cooling. As the gas to be sprayed, an inert gas (for example, nitrogen gas) may be used.

[三次冷却工程]
三次冷却工程では、上記二次冷却停止温度から室温(27℃)まで平均冷却速度100℃/秒超で急冷する。この温度域を急冷することによって、過冷却状態のオーステナイトをマルテンサイトに変態させることができる。このとき本発明では、上記一次冷却工程で鋼材内の温度ムラを低減し、鋼材内の温度分布を均一にしているため、マルテンサイト変態に伴う変態歪を鋼材内に均一に導入できる。その結果、鋼材の材質が均一となるため、反りが発生し難く、鋼板形状が良好となる。また、マルテンサイトが生成することによって、鋼板の強度を高めることができる。平均冷却速度は、マルテンサイト組織が得られる速度であればよく、好ましくは150℃/秒以上、より好ましくは200℃/秒以上とする。なお、三次冷却工程における平均冷却速度の上限は特に限定されるものではない。
[Third cooling process]
In the tertiary cooling step, rapid cooling is performed from the secondary cooling stop temperature to room temperature (27 ° C.) at an average cooling rate exceeding 100 ° C./second. By quenching this temperature range, the supercooled austenite can be transformed into martensite. At this time, in the present invention, since the temperature unevenness in the steel material is reduced and the temperature distribution in the steel material is made uniform in the primary cooling step, the transformation strain accompanying the martensitic transformation can be uniformly introduced into the steel material. As a result, since the material of the steel material is uniform, warpage is unlikely to occur and the steel plate shape is good. Moreover, the strength of the steel sheet can be increased by forming martensite. The average cooling rate may be a rate at which a martensite structure is obtained, and is preferably 150 ° C./second or more, more preferably 200 ° C./second or more. In addition, the upper limit of the average cooling rate in a tertiary cooling process is not specifically limited.

上記急冷の冷却方法は、例えば、水焼入れ、水冷ロール冷却、気水冷却、およびガスジェット冷却などその方法は問わない。例えば、鋼材を水槽に浸漬する水焼入れの場合には、水槽に浸漬したノズルから噴流水を鋼材に吹き付けて行えばよく、吹き付ける噴流水の量を調整することによって鋼材の平均冷却速度を制御できる。また、前述の冷却方法を変更することで、冷却速度を制御することができる。   The quenching cooling method may be any method such as water quenching, water cooling roll cooling, air-water cooling, and gas jet cooling. For example, in the case of water quenching in which a steel material is immersed in a water tank, it is only necessary to spray jet water onto the steel material from a nozzle immersed in the water tank, and the average cooling rate of the steel material can be controlled by adjusting the amount of jet water to be sprayed. . In addition, the cooling rate can be controlled by changing the above-described cooling method.

[過時効処理工程]
過時効処理工程では、上記三次冷却工程において室温まで冷却した後、150〜300℃の温度域に加熱し、30〜1500秒間保持して過時効処理(低温焼戻し処理)を行う。この温度域で所定時間保持することによって、マルテンサイトを焼戻し、固溶Cが多く、熱的に不安定な焼入れままの鋼材を安定化させることができる。即ち、固溶Cが多量に存在すると熱的に不安定なため、室温で長時間保管している間に固溶Cが炭化物を形成して析出することで鋼板形状が変化したり、鋼板の機械的特性が変化する原因となる。従って本発明では過時効処理を必ず行う必要がある。
[Overaging process]
In the overaging treatment step, after cooling to room temperature in the tertiary cooling step, heating to a temperature range of 150 to 300 ° C. and holding for 30 to 1500 seconds, an overaging treatment (low temperature tempering treatment) is performed. By holding for a predetermined time in this temperature range, martensite can be tempered, and a steel material that has a lot of dissolved C and is thermally unstable can be stabilized. That is, when a large amount of solute C is present, it is thermally unstable, so that the solute C forms carbides and precipitates during storage at room temperature for a long time, and the steel sheet shape changes, It causes the mechanical properties to change. Therefore, in the present invention, it is necessary to perform overaging treatment.

保持温度が150℃未満では、過時効処理が不充分となり、熱的に不安定な鋼材を安定化させることができない。従って保持温度は150℃以上、好ましくは160℃以上、より好ましくは170℃以上とする。しかし保持温度が300℃を超えると、マルテンサイトが軟化し、鋼材の強度が急激に低下する。従って保持温度は300℃以下、好ましくは250℃以下、より好ましくは230℃以下とする。   If the holding temperature is less than 150 ° C., the overaging treatment becomes insufficient, and the thermally unstable steel material cannot be stabilized. Accordingly, the holding temperature is 150 ° C. or higher, preferably 160 ° C. or higher, more preferably 170 ° C. or higher. However, when the holding temperature exceeds 300 ° C., martensite is softened, and the strength of the steel material is rapidly reduced. Accordingly, the holding temperature is 300 ° C. or lower, preferably 250 ° C. or lower, more preferably 230 ° C. or lower.

保持時間が30秒未満では、過時効処理が不充分となり、熱的に不安定な焼入れままの鋼材を安定させることができない。従って保持時間は30秒以上、好ましくは60秒以上、より好ましくは120秒以上、更に好ましくは180秒以上とする。しかし保持時間が1500秒を超えてもその効果は飽和し、生産性が低下するだけである。従って保持時間は1500秒以下、好ましくは1200秒以下、より好ましくは900秒以下、更に好ましくは600秒以下とする。   If the holding time is less than 30 seconds, the overaging treatment becomes insufficient, and the thermally unstable steel material cannot be stabilized. Accordingly, the holding time is 30 seconds or longer, preferably 60 seconds or longer, more preferably 120 seconds or longer, and even more preferably 180 seconds or longer. However, even if the holding time exceeds 1500 seconds, the effect is saturated and productivity is only lowered. Accordingly, the holding time is set to 1500 seconds or shorter, preferably 1200 seconds or shorter, more preferably 900 seconds or shorter, and even more preferably 600 seconds or shorter.

[その他]
本発明の製造方法によれば、過時効処理した後、鋼材の形状修正を目的とする調質圧延を行う必要はないが、鋼材の表面粗度を調整したり、鋼材の材質を調整するために、必要に応じて調質圧延を行っても勿論構わない。
[Others]
According to the production method of the present invention, it is not necessary to perform temper rolling for the purpose of correcting the shape of the steel material after the overaging treatment, but in order to adjust the surface roughness of the steel material or to adjust the material of the steel material Of course, temper rolling may be performed if necessary.

次に、上記製造方法で得られる本発明に係る高強度冷延鋼板の成分組成と金属組織について詳細に説明する。   Next, the component composition and metal structure of the high-strength cold-rolled steel sheet according to the present invention obtained by the above production method will be described in detail.

<成分組成>
本発明の高強度冷延鋼板は、下記に示す範囲でC、Si、Mn、P、S、Ti、Al、B、およびNを含有するものである。
<Ingredient composition>
The high-strength cold-rolled steel sheet of the present invention contains C, Si, Mn, P, S, Ti, Al, B, and N in the ranges shown below.

[C:0.1〜0.20%]
Cは、鋼板の高強度化に必要不可欠な元素であり、C量が0.1%未満では、鋼板の強度確保と延性との両立が困難となる。従ってC量は0.1%以上、好ましくは0.115%以上、より好ましくは0.120%以上とする。しかしC量が0.20%を超えて過剰になると、引張強度が高くなり過ぎるため、鋼板形状を改善できない。また、引張強度が高くなり過ぎるため、伸びが低下する。また、C量が過剰になると溶接部や熱影響部が著しく硬化し、溶接性が劣化する。従ってC量は0.20%以下、好ましくは0.18%以下、より好ましくは0.17%以下とする。
[C: 0.1 to 0.20%]
C is an element indispensable for increasing the strength of the steel sheet. When the C content is less than 0.1%, it is difficult to ensure both the strength of the steel sheet and the ductility. Therefore, the C content is 0.1% or more, preferably 0.115% or more, more preferably 0.120% or more. However, if the amount of C exceeds 0.20% and becomes excessive, the tensile strength becomes too high, and the steel plate shape cannot be improved. Moreover, since tensile strength becomes high too much, elongation falls. On the other hand, when the amount of C is excessive, the welded part and the heat-affected part are markedly cured, and the weldability deteriorates. Therefore, the C content is 0.20% or less, preferably 0.18% or less, more preferably 0.17% or less.

[Si:0.2〜2%]
Siは、フェライトの固溶強化に作用する元素であり、フェライトの硬度を確保すると共に、鋼板の伸びを高めるために作用する元素である。従ってSiは、0.2%以上、好ましくは0.3%以上、より好ましくは0.4%以上とする。しかしSiを過剰に含有すると、赤スケール等の発生により表面性状の劣化や、めっき付着性の劣化やめっき密着性の劣化を引き起こす。従ってSi量は2%以下、好ましくは1.5%以下、より好ましくは1.4%以下とする。
[Si: 0.2-2%]
Si is an element that acts on the solid solution strengthening of ferrite, and is an element that acts to secure the hardness of the ferrite and increase the elongation of the steel sheet. Therefore, Si is 0.2% or more, preferably 0.3% or more, more preferably 0.4% or more. However, when Si is contained excessively, the occurrence of red scale or the like causes deterioration of surface properties, deterioration of plating adhesion, and deterioration of plating adhesion. Therefore, the Si amount is 2% or less, preferably 1.5% or less, more preferably 1.4% or less.

[Mn:1.0〜3%]
Mnは、鋼板の強化に作用する元素である。また、硬質相である焼戻しマルテンサイトの生成量を確保するために必要な元素である。従ってMn量は1.0%以上、好ましくは1.3%以上、より好ましくは1.50%以上、更に好ましくは1.7%以上とする。しかしMn量が3%を超えて過剰に含有すると、鋳造性を劣化させるなど生産性を低下させる。従ってMn量は3%以下、好ましくは2.7%以下、より好ましくは2.5%以下とする。
[Mn: 1.0 to 3%]
Mn is an element that acts on the strengthening of the steel sheet. Further, it is an element necessary for securing the amount of tempered martensite that is a hard phase. Therefore, the amount of Mn is 1.0% or more, preferably 1.3% or more, more preferably 1.50% or more, and still more preferably 1.7% or more. However, if the amount of Mn exceeds 3% and excessively contained, the productivity is lowered, for example, the castability is deteriorated. Accordingly, the Mn content is 3% or less, preferably 2.7% or less, more preferably 2.5% or less.

[P:0.05%以下(0%を含まない)]
Pは、鋼板を強化し、伸びを高めるために作用する元素であるが、過剰に含有すると、粒界偏析により脆化を引き起こし、衝撃特性を劣化させる。従ってP量は、0.05%以下、好ましくは0.03%以下、より好ましくは0.01%以下とする。
[P: 0.05% or less (excluding 0%)]
P is an element that acts to reinforce the steel sheet and increase the elongation, but if contained excessively, it causes embrittlement by grain boundary segregation and degrades impact characteristics. Therefore, the P content is 0.05% or less, preferably 0.03% or less, more preferably 0.01% or less.

[S:0.01%以下(0%を含まない)]
Sは、不可避的に含有する元素であり、MnSなどの硫化物系介在物を形成して耐衝撃性を劣化させたり、溶接部のメタルフローに沿った割れの原因となるので、極力低減させる必要がある。そこで製造コストを考慮し、本発明では、0.01%以下、好ましくは0.007%以下、より好ましくは0.005%以下とする。
[S: 0.01% or less (excluding 0%)]
S is an element that is unavoidably contained, and forms sulfide-based inclusions such as MnS to deteriorate the impact resistance or cause cracking along the metal flow of the welded portion, so that it is reduced as much as possible. There is a need. Therefore, considering the manufacturing cost, in the present invention, it is 0.01% or less, preferably 0.007% or less, more preferably 0.005% or less.

[Ti:0.001〜0.2%]
Tiは、微細な炭化物や窒化物を形成することによって、結晶粒の微細化と粒成長抑制効果とを発揮させる元素である。また、Tiの微細な炭化物や窒化物は、鋼板内部の拡散性水素をトラップするトラップサイトとして作用し、鋼板の水素脆性感受性を低下させる。また、Tiの微細な炭化物や窒化物は、生成錆を緻密化し、耐食性を向上させるのに作用する。従ってTiは、0.001%以上、好ましくは0.01%以上、より好ましくは0.03%以上とする。しかしTiを過剰に含有すると、炭化物が粗大化し、強度が低下する。従ってTi量は0.2%以下、好ましくは0.15%以下、より好ましくは0.1%以下とする。
[Ti: 0.001 to 0.2%]
Ti is an element that exhibits finer crystal grains and an effect of suppressing grain growth by forming fine carbides and nitrides. Further, fine carbides and nitrides of Ti act as trap sites for trapping diffusible hydrogen inside the steel sheet, thereby reducing the sensitivity to hydrogen embrittlement of the steel sheet. Further, fine carbides and nitrides of Ti act to densify the generated rust and improve the corrosion resistance. Therefore, Ti is 0.001% or more, preferably 0.01% or more, more preferably 0.03% or more. However, when Ti is contained excessively, the carbide is coarsened and the strength is lowered. Therefore, the Ti content is 0.2% or less, preferably 0.15% or less, more preferably 0.1% or less.

[Al:0.01〜0.1%]
Alは、脱酸剤として作用する元素であり、本発明では、0.01%以上含有させる必要がある。好ましくは0.02%以上、より好ましくは、0.03%以上である。しかしAlを過剰に含有すると、鋼板中にアルミナ等の介在物が多く生成し、鋼板の加工性が劣化する。従ってAl量は0.1%以下、好ましくは0.09%以下、より好ましくは0.08%以下とする。
[Al: 0.01 to 0.1%]
Al is an element that acts as a deoxidizer, and in the present invention, it is necessary to contain 0.01% or more. Preferably it is 0.02% or more, More preferably, it is 0.03% or more. However, when Al is contained excessively, many inclusions such as alumina are generated in the steel sheet, and the workability of the steel sheet deteriorates. Therefore, the Al content is 0.1% or less, preferably 0.09% or less, more preferably 0.08% or less.

[B:0.0002〜0.01%]
Bは、オーステナイト粒界からのフェライトの生成、成長を抑制する作用を有している元素であり、鋼板形状を改善するために必要かつ重要な元素である。従ってB量は0.0002%以上、好ましくは0.0005%以上、より好ましくは0.0010%以上とする。しかしBを過剰に含有して0.01%を超えると、加工性が劣化する。従ってB量は0.01%以下、好ましくは0.007%以下、より好ましくは0.005%以下とする。
[B: 0.0002 to 0.01%]
B is an element having an action of suppressing the formation and growth of ferrite from the austenite grain boundary, and is an element necessary and important for improving the steel plate shape. Therefore, the B content is 0.0002% or more, preferably 0.0005% or more, more preferably 0.0010% or more. However, if it contains B excessively and exceeds 0.01%, workability deteriorates. Therefore, the B content is 0.01% or less, preferably 0.007% or less, more preferably 0.005% or less.

[N:0.01%以下(0%を含まない)]
Nは、不可避的に含有する元素であり、過剰に含有すると窒化物を形成して加工性を劣化させる元素である。特に、鋼板中のBと結合してBN析出物を形成すると、オーステナイト粒界からのフェライト生成抑制作用が充分に発揮されないため、鋼板形状を改善できない。また、BN析出物を形成すると、Bによる焼入れ性向上作用が阻害される。従ってNは0.01%以下、好ましくは0.008%以下、より好ましくは0.006%以下とする。
[N: 0.01% or less (excluding 0%)]
N is an element that is inevitably contained, and when it is excessively contained, nitride is formed and the workability is deteriorated. In particular, when BN precipitates are formed by combining with B in the steel sheet, the effect of suppressing the formation of ferrite from the austenite grain boundary is not sufficiently exhibited, so that the shape of the steel sheet cannot be improved. Further, when BN precipitates are formed, the effect of improving hardenability by B is hindered. Therefore, N is 0.01% or less, preferably 0.008% or less, more preferably 0.006% or less.

本発明に係る高強度冷延鋼板の成分組成は上述した通りであり、残部は鉄およびS、N以外の不可避不純物である。   The component composition of the high-strength cold-rolled steel sheet according to the present invention is as described above, and the balance is inevitable impurities other than iron and S and N.

本発明の高強度冷延鋼板は、更に他の元素として、下記に示す範囲で、(a)Cuおよび/またはNi、(b)Crおよび/またはMo、等の元素を含有してもよい。   The high-strength cold-rolled steel sheet of the present invention may further contain other elements such as (a) Cu and / or Ni, (b) Cr and / or Mo as other elements.

[(a)Cu:1%以下(0%を含まない)および/またはNi:1%(0%を含まない)]
CuおよびNiは、鋼板の強度を高める作用を有する元素である。こうした作用を有効に発揮させるには、Cuは0.05%以上含有させることが好ましく、より好ましくは0.08%以上、更に好ましくは0.1%以上とする。Niは、0.05%以上含有させることが好ましく、より好ましくは0.08%以上、更に好ましくは0.1%以上とする。しかしCu量が1%を超えると熱間圧延時に表面疵を発生し易くなるなど製造性が悪くなったり、鋼板の加工性が悪くなることがある。従ってCu量は1%以下とすることが好ましく、より好ましくは0.9%以下、更に好ましくは0.8%以下とする。また、Ni量が1%を超えると鋼板の加工性が悪くなることがある。従ってNi量は1%以下とすることが好ましく、より好ましくは0.9%以下、更に好ましくは0.8%以下とする。なお、Cuを単独で含有させると、熱間での脆化を引き起こす懸念があるため、Niと併用することが推奨される。Niは高価な元素であるため、鋼板の強化が必要な場合のみ添加することが推奨される。
[(A) Cu: 1% or less (excluding 0%) and / or Ni: 1% (excluding 0%)]
Cu and Ni are elements having an effect of increasing the strength of the steel sheet. In order to exhibit such an action effectively, Cu is preferably contained in an amount of 0.05% or more, more preferably 0.08% or more, and further preferably 0.1% or more. Ni is preferably contained in an amount of 0.05% or more, more preferably 0.08% or more, and further preferably 0.1% or more. However, if the amount of Cu exceeds 1%, it may be easy to generate surface flaws during hot rolling, resulting in poor productivity and poor workability of the steel sheet. Accordingly, the Cu content is preferably 1% or less, more preferably 0.9% or less, and still more preferably 0.8% or less. On the other hand, if the Ni content exceeds 1%, the workability of the steel sheet may deteriorate. Therefore, the Ni content is preferably 1% or less, more preferably 0.9% or less, and still more preferably 0.8% or less. In addition, when Cu is contained alone, there is a concern that hot embrittlement may occur, so it is recommended to use it together with Ni. Since Ni is an expensive element, it is recommended to add it only when it is necessary to strengthen the steel sheet.

[(b)Cr:1%以下(0%を含まない)および/またはMo:1%以下(0%を含まない)]
CrとMoは、鋼板の強度を高めるのに作用する元素である。また、CrとMoは、強度と延性のバランスを劣化させる炭化物の生成を抑制する作用も有している。特にMoは、溶接熱影響部の軟化防止にも作用する。こうした作用を有効に発揮させるには、Crは0.005%以上含有させることが好ましく、より好ましくは0.05%以上、更に好ましくは0.1%以上とする。Moは0.005%以上含有させることが好ましく、より好ましくは0.01%以上、更に好ましくは0.05%以上とする。しかし過剰に含有すると、鋼板の延性を劣化させる。従ってCrは1%以下とすることが好ましく、より好ましくは0.8%以下、更に好ましくは0.5%以下とする。Moは1%以下とすることが好ましく、より好ましくは0.8%以下、更に好ましくは0.5%以下とする。CrとMoは、夫々単独で、或いは併用して含有させればよい。CrとMoを併用する場合の合計量は、例えば、1.5%以下とすることが好ましく、より好ましくは1%以下とする。
[(B) Cr: 1% or less (excluding 0%) and / or Mo: 1% or less (excluding 0%)]
Cr and Mo are elements that act to increase the strength of the steel sheet. Moreover, Cr and Mo also have the effect | action which suppresses the production | generation of the carbide | carbonized_material which degrades the balance of intensity | strength and ductility. In particular, Mo also acts to prevent softening of the weld heat affected zone. In order to effectively exhibit such an action, Cr is preferably contained in an amount of 0.005% or more, more preferably 0.05% or more, and further preferably 0.1% or more. Mo is preferably contained in an amount of 0.005% or more, more preferably 0.01% or more, and still more preferably 0.05% or more. However, when it contains excessively, the ductility of a steel plate will be deteriorated. Therefore, Cr is preferably 1% or less, more preferably 0.8% or less, and still more preferably 0.5% or less. Mo is preferably 1% or less, more preferably 0.8% or less, and still more preferably 0.5% or less. Cr and Mo may be contained alone or in combination. For example, the total amount when Cr and Mo are used in combination is preferably 1.5% or less, and more preferably 1% or less.

<金属組織>
本発明の高強度冷延鋼板は、焼戻しマルテンサイト、残留オーステナイト(以下、残留γと表記することがある。)、フェライト、およびベイナイトを有しており、金属組織全体に対する比率は、下記の通りである。
<Metallic structure>
The high-strength cold-rolled steel sheet of the present invention has tempered martensite, residual austenite (hereinafter sometimes referred to as residual γ), ferrite, and bainite, and the ratio to the entire metal structure is as follows. It is.

[焼戻しマルテンサイト:65面積%以上]
焼戻しマルテンサイトとは、水焼入れによるマルテンサイト変態完了後に昇温して焼戻しすることにより生成する焼戻された組織を意味する。上記焼戻しマルテンサイトは、鋼板形状を改善し、特性を安定化するために必要な組織である。また、焼戻しマルテンサイトは、硬質相であり、鋼板の高強度化に寄与する。従って上記焼戻しマルテンサイトは、金属組織全体に対して65面積%以上、好ましくは75面積%以上、更に好ましくは85面積%以上、特に好ましくは90.0面積%以上、最も好ましくは100面積%である。
[Tempered martensite: 65 area% or more]
The tempered martensite means a tempered structure formed by heating and tempering after completion of the martensite transformation by water quenching. The said tempered martensite is a structure | tissue required in order to improve a steel plate shape and to stabilize a characteristic. Moreover, tempered martensite is a hard phase and contributes to high strength of the steel sheet. Accordingly, the tempered martensite is 65 area% or more, preferably 75 area% or more, more preferably 85 area% or more, particularly preferably 90.0 area% or more, most preferably 100 area%, based on the entire metal structure. is there.

[残留オーステナイト(残留γ):5面積%以下(0面積%を含む)]
残留γは、成形加工時に変態して硬質なマルテンサイトとなり、鋼板の伸びフランジ性を低下させる。従って残留γはできるだけ低減することが好ましく、5面積%までであれば許容できる。好ましくは3面積%以下であり、より好ましくは2.5面積%以下、最も好ましくは0面積%である。
[Residual austenite (residual γ): 5 area% or less (including 0 area%)]
Residual γ is transformed into hard martensite at the time of forming and reduces the stretch flangeability of the steel sheet. Therefore, it is preferable to reduce the residual γ as much as possible, and it is acceptable up to 5 area%. Preferably it is 3 area% or less, More preferably, it is 2.5 area% or less, Most preferably, it is 0 area%.

[フェライト:20面積%以下(0面積%を含む)]
鋼板形状を改善するには、フェライトをできるだけ低減し、焼戻しマルテンサイトの生成量を増大させる必要がある。また、フェライトが過剰に生成すると、硬質相である焼戻しベイナイトの生成量を確保できず、鋼板の強度が低下する。従ってフェライトは20面積%以下とする必要があり、好ましくは15面積%以下、より好ましくは13.0面積%以下であり、最も好ましくは0面積%である。
[Ferrite: 20 area% or less (including 0 area%)]
In order to improve the steel sheet shape, it is necessary to reduce ferrite as much as possible and increase the amount of tempered martensite produced. Moreover, when ferrite produces | generates excessively, the production | generation amount of the tempered bainite which is a hard phase cannot be ensured, but the intensity | strength of a steel plate will fall. Accordingly, ferrite needs to be 20 area% or less, preferably 15 area% or less, more preferably 13.0 area% or less, and most preferably 0 area%.

なお、フェライトは、鋼板の伸びを高めて加工性を向上させる作用を有している。従って加工性の向上が要求される場合には、フェライトを積極的に含有させてもよく、好ましくは1面積%以上、より好ましくは3面積%以上、更に好ましくは5面積%以上、特に好ましくは10面積%以上とする。   In addition, ferrite has the effect | action which raises the elongation of a steel plate and improves workability. Therefore, when improvement in workability is required, ferrite may be positively contained, preferably 1 area% or more, more preferably 3 area% or more, still more preferably 5 area% or more, particularly preferably. 10 area% or more.

[ベイナイト:10面積%以下(0面積%を含む)]
ベイナイトは、上記焼戻しマルテンサイトと同様、鋼板の高強度化に寄与する硬質相である。しかしベイナイトが生成する温度域によってその特性は大きく変化し、材質のバラツキを生じさせることがある。従ってベイナイトはできるだけ低減することが推奨され、10面積%までであれば許容できる。好ましくは5面積%以下、より好ましくは3.0面積%以下、最も好ましくは0面積%である。
[Bainite: 10 area% or less (including 0 area%)]
Bainite is a hard phase that contributes to increasing the strength of the steel sheet, like the tempered martensite. However, the characteristics vary greatly depending on the temperature range where bainite is generated, which may cause variations in material. Therefore, it is recommended to reduce bainite as much as possible, and up to 10 area% is acceptable. Preferably it is 5 area% or less, More preferably, it is 3.0 area% or less, Most preferably, it is 0 area%.

上記焼戻しマルテンサイト、フェライト、およびベイナイトの組織分率については、圧延方向に対して平行な断面を露出させ、鏡面研磨した後、ナイタールによる腐食を施し、光学顕微鏡または走査型電子顕微鏡を用いて金属組織を観察し、写真撮影し、画像解析を行って算出すればよい。   For the structural fractions of the above tempered martensite, ferrite, and bainite, the cross-section parallel to the rolling direction is exposed, mirror-polished, and then subjected to corrosion by nital, and metal using an optical microscope or scanning electron microscope The calculation may be performed by observing the tissue, taking a photograph, performing image analysis, and the like.

上記残留オーステナイトの組織分率は、Cr管球を用いたX線回折法により測定すればよい。   The structural fraction of the residual austenite may be measured by an X-ray diffraction method using a Cr tube.

本発明の高強度冷延鋼板は、例えば、バンパーリインホースメントなどの衝撃吸収能を有する部品や、ドアインパクトバーのような補強部材に用いられる。   The high-strength cold-rolled steel sheet of the present invention is used, for example, for parts having impact absorption capability such as bumper reinforcement and reinforcing members such as door impact bars.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

真空溶解により鋼を溶製し、下記表1に示す成分組成の鋼片(残部は鉄およびS、N以外の不可避不純物)を作製した。下記表1に示す成分組成に基づいて上記式(1)で算出されるMs点の温度を下記表1に併せて示す。得られた鋼片を1250℃に加熱し、仕上げ圧延温度を900℃として熱間圧延した後、650℃で巻取り、厚さ2.8mmの熱延鋼板を製造した。得られた熱延鋼板を酸洗し、冷間圧延して厚さ1.4mmの冷延鋼板(鋼材)を製造した。   Steel was melted by vacuum melting to produce steel pieces having the composition shown in Table 1 below (the balance being iron, inevitable impurities other than S and N). The temperature at the Ms point calculated by the above formula (1) based on the component composition shown in Table 1 below is also shown in Table 1 below. The obtained steel slab was heated to 1250 ° C., hot rolled at a finish rolling temperature of 900 ° C., and then wound at 650 ° C. to produce a hot-rolled steel sheet having a thickness of 2.8 mm. The obtained hot-rolled steel sheet was pickled and cold-rolled to produce a cold-rolled steel sheet (steel material) having a thickness of 1.4 mm.

次に、得られた鋼材を、水焼入れタイプの熱処理設備にて熱処理した。熱処理設備としては、アルバック理工株式会社製の鋼板熱処理シュミレータ(型番:CCT−AQV)を用いた。熱処理には、上記鋼材を厚み1.4mm×幅150mm×長さ250mmに切り出した試験片を用いた。熱処理は、上記試験片を専用治具に設置し、下記表2に示す熱パターンで行った。即ち、上記試験片を焼鈍温度920℃に加熱し、この温度で下記表2に示す時間保持した後、一次冷却として、下記表2に示す平均冷却速度(℃/秒)で下記表2に示す一次冷却停止温度(℃)まで冷却し、この一次冷却停止温度から、二次冷却として、下記表2に示す平均冷却速度(℃/秒)で下記表2に示す二次冷却停止温度(℃)まで冷却した後、試験片に噴流水を吹き付けて下記表2に示す平均冷却速度(℃/秒)で室温(27℃)まで水焼入れを行って三次冷却を行った。   Next, the obtained steel material was heat-treated in a water-quenching type heat treatment facility. As the heat treatment equipment, a steel plate heat treatment simulator (model number: CCT-AQV) manufactured by ULVAC-RIKO Inc. was used. A test piece obtained by cutting the steel material into a thickness of 1.4 mm, a width of 150 mm, and a length of 250 mm was used for the heat treatment. The heat treatment was carried out with the thermal pattern shown in Table 2 below by placing the test piece on a dedicated jig. That is, after heating the said test piece to 920 degreeC of annealing temperature and hold | maintaining at this temperature for the time shown in following Table 2, it shows in following Table 2 by the average cooling rate (degreeC / sec) shown in following Table 2 as primary cooling. Cooled to the primary cooling stop temperature (° C.), and from this primary cooling stop temperature, the secondary cooling stop temperature (° C.) shown in the following Table 2 at the average cooling rate (° C./second) shown in the following Table 2 as the secondary cooling. After cooling to room temperature, jet water was sprayed on the test piece, and water quenching was performed to room temperature (27 ° C.) at an average cooling rate (° C./second) shown in Table 2 below to perform tertiary cooling.

なお、下記表2に示したNo.7、20、26は、焼鈍後、一次冷却停止温度まで冷却した後、この温度から上記と同じ条件で水焼入れを行って室温まで最終冷却を行った。この最終冷却を便宜上、三次冷却と呼ぶこととする。   In addition, No. shown in Table 2 below. Nos. 7, 20, and 26 were annealed and then cooled to the primary cooling stop temperature, and were then quenched from this temperature to the room temperature by water quenching under the same conditions as described above. This final cooling is called tertiary cooling for convenience.

下記表2に示したNo.8、21、27は、焼鈍後、この温度から上記と同じ条件で水焼入れを行って室温まで最終冷却を行った。この最終冷却を便宜上、三次冷却と呼ぶこととする。   No. shown in Table 2 below. After annealing, Nos. 8, 21, and 27 were subjected to water quenching from this temperature under the same conditions as described above, and finally cooled to room temperature. This final cooling is called tertiary cooling for convenience.

下記表2には、説明の便宜上、三次冷却(最終冷却)を開始したときの温度(急冷開始温度)をまとめて示す。   In Table 2 below, for convenience of explanation, temperatures at the time of starting the tertiary cooling (final cooling) (rapid cooling start temperature) are collectively shown.

室温まで冷却した後、下記表2に示す焼戻し温度に加熱し、この温度で下記表2に示す時間保持して過時効処理(低温焼戻し処理)を行った。過時効処理を施した試験片について、金属組織、引張特性、鋼板形状を評価した。   After cooling to room temperature, the mixture was heated to the tempering temperature shown in Table 2 below, and maintained at this temperature for the time shown in Table 2 below to perform an overaging treatment (low temperature tempering treatment). About the test piece which performed the overaging process, the metal structure, the tensile characteristic, and the steel plate shape were evaluated.

<金属組織>
焼戻しマルテンサイト、フェライト、およびベイナイトの組織分率については、上記焼戻し処理を施した試験片の圧延方向に対して平行な断面を露出させ、鏡面研磨した後、ナイタールによる腐食を施し、光学顕微鏡または走査型電子顕微鏡を用いて板厚に対して1/4位置における金属組織を観察し、写真撮影し、画像解析を行って算出した。各組織の割合は、画像解析装置を用いて撮影した写真を2値化することにより求めた。
<Metallic structure>
For the structural fraction of tempered martensite, ferrite, and bainite, a cross section parallel to the rolling direction of the test piece subjected to the tempering treatment was exposed, mirror-polished, and then subjected to corrosion by nital, an optical microscope or A metal structure at a 1/4 position with respect to the plate thickness was observed using a scanning electron microscope, photographed, and image analysis was performed for calculation. The ratio of each tissue was determined by binarizing a photograph taken using an image analysis apparatus.

残留オーステナイトの組織分率は、リガク製RINT1500X線回折測定装置を用いて測定した。測定は、鋼板を板厚方向に1/4厚に減厚した面を電解研磨した面を測定面として行った。測定源としてCo Kα線を使用し、スキャン速度1.2°/分の条件でX線回折により、α―Feの回折ピーク(110)、(200)、(211)および、γ−Feの回折ピーク(111)、(200)、(220)、(311)面の積分強度を測定し、得られた各面の積分強度からそれぞれの組み合わせについて残留γの面積率を算出し、その平均値を残留γ量とした。   The structural fraction of retained austenite was measured using a RINT 1500 X-ray diffraction measurement apparatus manufactured by Rigaku. The measurement was performed using a surface obtained by electropolishing a surface obtained by reducing the thickness of the steel sheet to ¼ thickness in the thickness direction. Using Co Kα rays as a measurement source and diffraction peaks of α-Fe (110), (200), (211) and γ-Fe by X-ray diffraction at a scan rate of 1.2 ° / min. Measure the integrated intensity of the peaks (111), (200), (220), and (311) planes, calculate the area ratio of residual γ for each combination from the obtained integrated intensity of each plane, and calculate the average value. The amount of residual γ was taken.

金属組織全体に対する各組織の分率(面積%)を下記表3に示す。   The fraction (area%) of each structure with respect to the entire metal structure is shown in Table 3 below.

<引張特性>
過時効処理を施した試験片の圧延方向に対して垂直な方向が長手方向となるように、JIS 5号引張試験片を切り出し、JIS Z2241に基づいて、0.2%耐力(YS)、引張強度(TS)、および破断伸び(EL)を測定した。また、YSとTSに基づいて降伏比(YR)を算出した。結果を下記表3に示す。本発明では、YSが900MPa以上の場合を合格、900MPa未満の場合を不合格とし、TSが980MPa以上の場合を合格、980MPa未満の場合を不合格とし、ELが8.5%以上の場合を合格、8.5%未満の場合を不合格と判定した。本発明では、YSとTSの両方が合格と判定された場合を「高強度」と評価し、ELが合格と判定された場合を「加工性に優れる」と評価した。
<Tensile properties>
A JIS No. 5 tensile test piece was cut out so that the direction perpendicular to the rolling direction of the test piece subjected to overaging treatment was the longitudinal direction, and 0.2% proof stress (YS), tensile based on JIS Z2241 Strength (TS) and elongation at break (EL) were measured. Moreover, the yield ratio (YR) was calculated based on YS and TS. The results are shown in Table 3 below. In the present invention, the case where YS is 900 MPa or more is passed, the case where it is less than 900 MPa is rejected, the case where TS is 980 MPa or more is passed, the case where it is less than 980 MPa is rejected, and the case where EL is 8.5% or more The case where it passed and less than 8.5% was determined to be unacceptable. In this invention, the case where both YS and TS were determined to be passed was evaluated as “high strength”, and the case where EL was determined to be passed was evaluated as “excellent in workability”.

<鋼板形状>
鋼板形状は、試験片の大きさを変更した点以外は上記特許文献2の図1と同様にして測定した反り高さに基づいて評価した。反り高さは、焼戻し処理を施した試験片を反りが上になるように定盤上に設置し、触針が測定物上を移動する接触式変位計を用いて測定した。具体的には、幅方向の中心位置および幅方向の両端から25mm離れた位置において鋼板の形状を連続的に測定し、定盤面からの高さの最大値を反り高さとして測定した。測定は、試験片(厚み1.4mm×幅150mm×長さ250mm)の長さ方向の全体に亘って測定した。測定結果を下記表3に示す。本発明では、反り高さが3mm以下で高い平坦度を有している場合を合格、反り高さが3mmを超え、平坦度が低い場合を不合格と判定した。本発明では、反り高さが合格と判定されたものを「鋼板形状に優れる」と評価した。
<Steel shape>
The steel plate shape was evaluated based on the warp height measured in the same manner as in FIG. 1 of Patent Document 2 except that the size of the test piece was changed. The warp height was measured using a contact displacement meter in which a tempered test piece was placed on a surface plate so that the warp was up, and the stylus moved over the object to be measured. Specifically, the shape of the steel sheet was continuously measured at the center position in the width direction and at a position 25 mm away from both ends in the width direction, and the maximum value from the surface plate surface was measured as the warp height. The measurement was performed over the entire length of the test piece (thickness 1.4 mm × width 150 mm × length 250 mm). The measurement results are shown in Table 3 below. In the present invention, the case where the warp height is 3 mm or less and high flatness is determined to be acceptable, and the case where the warp height exceeds 3 mm and the flatness is low is determined to be unacceptable. In the present invention, a material whose warp height was determined to be acceptable was evaluated as “excellent in steel plate shape”.

本実施例では、YS、TS、EL、および反り高さの全てが合格と判定された場合を発明例、一つでも不合格と判定された場合を比較例と評価した。   In this example, a case where all of YS, TS, EL, and warp height were determined to be acceptable was evaluated as an invention example, and a case where even one was determined to be unacceptable was evaluated as a comparative example.

下記表1〜表3から次のように考察できる。No.1〜4、9、12、13、15〜18、22、24、28、30、40、41、43〜45、47、48、50は、いずれも本発明で規定している要件を満足している例であり、鋼板形状に優れた高強度冷延鋼板を生産性良く製造できていることが分かる。   The following Table 1 to Table 3 can be considered as follows. No. 1-4, 9, 12, 13, 15-18, 22, 24, 28, 30, 40, 41, 43-45, 47, 48, 50 all satisfy the requirements defined in the present invention. It can be seen that a high-strength cold-rolled steel sheet excellent in steel sheet shape can be produced with high productivity.

一方、No.5、10、14、19、42、46、49、51は、二次冷却停止温度が高過ぎる例であり、三次冷却工程で熱歪が多く導入されたため、反り高さが大きくなり、鋼板形状を改善できなかった。No.6とNo.11は、二次冷却停止温度が低過ぎる例であり、ベイナイトが過剰に生成したため、YSが低くなり過ぎた。No.7、20、26は、いずれも一次停止温度からそのまま水焼入れした例であり、急冷開始温度が高過ぎるため、熱歪が大きくなり、反り高さが大きくなって鋼板形状を改善できなかった。   On the other hand, no. 5, 10, 14, 19, 42, 46, 49, 51 are examples in which the secondary cooling stop temperature is too high, and since a large amount of thermal strain was introduced in the tertiary cooling process, the warp height increased, and the steel plate shape Could not be improved. No. 6 and no. No. 11 is an example in which the secondary cooling stop temperature is too low. Since bainite was excessively generated, YS was too low. No. Nos. 7, 20, and 26 are examples of water quenching as they were from the primary stop temperature, and since the rapid cooling start temperature was too high, the thermal strain increased, the warp height increased, and the steel plate shape could not be improved.

No.8、21、27は、いずれも920℃で180秒間保持して焼鈍した後、そのまま水焼入れした例である。鋼材内に温度分布が生じたまま冷却しているため、マルテンサイト変態に伴う変態歪が不均一に導入された。また、920℃から水焼入れしているため、熱歪も大きくなった。よって反り高さが大きくなり、鋼板形状を改善できなかった。No.23、25、29、31は、いずれも二次冷却工程における冷却速度が小さ過ぎ、また二次冷却停止温度が高過ぎる例である。従って三次冷却工程で熱歪が多く導入されたため、反り高さが大きくなり、鋼板形状を改善できなかった。   No. Nos. 8, 21, and 27 are examples in which water annealing was performed as it was after annealing by holding at 920 ° C. for 180 seconds. Since the steel material was cooled with the temperature distribution generated, transformation strain accompanying martensitic transformation was introduced non-uniformly. Further, since water quenching was performed from 920 ° C., the thermal strain also increased. Therefore, the warp height was increased and the steel plate shape could not be improved. No. 23, 25, 29, and 31 are examples in which the cooling rate in the secondary cooling step is too small and the secondary cooling stop temperature is too high. Therefore, since a large amount of thermal strain was introduced in the tertiary cooling process, the warp height increased and the steel plate shape could not be improved.

No.32〜39は、いずれも鋼片の成分組成が本発明で規定している要件を満足しない例である。No.32は、B量が少な過ぎる例であり、フェライトが過剰に生成したため、焼戻しマルテンサイトの生成量を確保できず、YSおよびTSが低下した。No.33は、B量が少な過ぎ、また二次冷却停止温度が高過ぎる例であり、フェライトが過剰に生成したため、YSおよびTSが低下し、鋼板形状を改善できなかった。   No. 32 to 39 are examples in which the composition of the steel slab does not satisfy the requirements defined in the present invention. No. No. 32 is an example in which the amount of B is too small. Since ferrite was generated excessively, the amount of tempered martensite generated could not be secured, and YS and TS decreased. No. No. 33 is an example in which the amount of B is too small and the secondary cooling stop temperature is too high. Since ferrite was excessively generated, YS and TS were lowered and the steel plate shape could not be improved.

No.34は、C量が多過ぎる例であり、TSが高くなり過ぎたため、鋼板形状を改善できなかった。また、TSが高くなり過ぎたため、ELが低くなった。No.35は、C量が多過ぎ、また二次冷却停止温度が高過ぎる例であり、TSが高くなり過ぎたため、鋼板形状を改善できなかった。また、TSが高くなり過ぎたため、ELが低くなった。   No. No. 34 is an example in which the amount of C is too much, and since TS became too high, the steel plate shape could not be improved. Moreover, since TS became too high, EL became low. No. No. 35 is an example in which the amount of C is too much and the secondary cooling stop temperature is too high. TS was too high, so the steel plate shape could not be improved. Moreover, since TS became too high, EL became low.

No.36とNo.37は、Si量が少な過ぎる例であり、ELが低くなった。特にNo.37は、二次冷却速度が小さ過ぎ、二次冷却停止温度が高過ぎるため、三次冷却工程で熱歪が多く導入され、鋼板形状も改善できなかった。   No. 36 and no. 37 is an example in which the amount of Si is too small, and the EL was low. In particular, no. In No. 37, since the secondary cooling rate was too low and the secondary cooling stop temperature was too high, a large amount of thermal strain was introduced in the tertiary cooling step, and the steel plate shape could not be improved.

No.38とNo.39は、Mn量が少な過ぎる例であり、フェライトが過剰に生成したため、焼戻しマルテンサイトの生成量を確保できず、TSが低下した。特にNo.39は、二次冷却停止温度が高過ぎるため、ベイナイトが過剰に生成し、反り高さが大きくなり、鋼板形状を改善できなかった。   No. 38 and no. No. 39 is an example in which the amount of Mn is too small. Since ferrite was excessively generated, the amount of tempered martensite generated could not be ensured, and TS decreased. In particular, no. In No. 39, since the secondary cooling stop temperature was too high, bainite was generated excessively, the warp height was increased, and the steel plate shape could not be improved.

次に、三次冷却工程における急冷開始温度と、反り高さとの関係を示すグラフを図1に示す。なお、図1には、下記表3に示したNo.1〜31、40〜51のデータのみをプロットし、鋼片の成分組成が本発明で規定している要件を満足しない例(No.32〜39)はプロットしていない。図1から明らかなように、三次冷却工程における急冷開始温度を500℃以下とすることによって、反り高さを3mm以下にでき、鋼板形状を改善できることが分かる。   Next, the graph which shows the relationship between the rapid cooling start temperature in a tertiary cooling process, and curvature height is shown in FIG. In FIG. 1, No. 1 shown in Table 3 below is shown. Only data of 1 to 31 and 40 to 51 are plotted, and examples (No. 32-39) in which the composition of the steel slab does not satisfy the requirements defined in the present invention are not plotted. As is clear from FIG. 1, it can be seen that by setting the rapid cooling start temperature in the tertiary cooling step to 500 ° C. or less, the warp height can be 3 mm or less, and the steel plate shape can be improved.

Figure 2013227657
Figure 2013227657

Figure 2013227657
Figure 2013227657

Figure 2013227657
Figure 2013227657

Claims (3)

C :0.1〜0.20%(質量%の意味。以下、成分について同じ。)、
Si:0.2〜2%、
Mn:1.0〜3%、
P :0.05%以下(0%を含まない)、
S :0.01%以下(0%を含まない)、
Ti:0.001〜0.2%、
Al:0.01〜0.1%、
B :0.0002〜0.01%、および
N :0.01%以下(0%を含まない)を満足し、
残部が鉄および不可避不純物からなり、
金属組織全体に対する比率は、
焼戻しマルテンサイトは65面積%以上、
残留オーステナイトは5面積%以下(0面積%を含む)、
フェライトは20面積%以下(0面積%を含む)、
ベイナイトは10面積%以下(0面積%を含む)を満足する高強度冷延鋼板の製造方法であって、
前記成分組成を満足する鋼材をオーステナイト単相域で15〜600秒間加熱して焼鈍する焼鈍工程と、
焼鈍後、650〜800℃の温度域における一次冷却停止温度まで平均冷却速度10℃/秒以下(0℃/秒を含まない)で徐冷する一次冷却工程と、
前記一次冷却停止温度から下記式(1)で算出されるMs点の温度以上、500℃以下の温度域における二次冷却停止温度まで平均冷却速度20〜100℃/秒で冷却する二次冷却工程と、
前記二次冷却停止温度から室温まで平均冷却速度100℃/秒超で急冷する三次冷却工程と、
150〜300℃の温度域に加熱し、30〜1500秒間保持する過時効処理工程
とをこの順で含むことを特徴とする鋼板形状に優れた高強度冷延鋼板の製造方法。
Ms=561−474×[C]−33×[Mn]−17×[Ni]−17×[Cr]−21×[Mo]・・・(1)
[式(1)において、[ ]は、各元素の含有量(質量%)を意味している。]
C: 0.1 to 0.20% (meaning mass%, hereinafter the same for the components),
Si: 0.2-2%
Mn: 1.0-3%
P: 0.05% or less (excluding 0%),
S: 0.01% or less (excluding 0%),
Ti: 0.001 to 0.2%,
Al: 0.01 to 0.1%,
B: 0.0002 to 0.01%, and N: 0.01% or less (not including 0%),
The balance consists of iron and inevitable impurities,
The ratio to the whole metal structure is
Tempered martensite is more than 65 area%,
Residual austenite is 5 area% or less (including 0 area%),
Ferrite is 20 area% or less (including 0 area%),
Bainite is a method for producing a high-strength cold-rolled steel sheet that satisfies 10 area% or less (including 0 area%),
An annealing process in which a steel material satisfying the above component composition is annealed by heating for 15 to 600 seconds in an austenite single phase region;
After the annealing, a primary cooling step of gradually cooling at an average cooling rate of 10 ° C./second or less (not including 0 ° C./second) to a primary cooling stop temperature in a temperature range of 650 to 800 ° C .;
A secondary cooling step of cooling at an average cooling rate of 20 to 100 ° C./second from the primary cooling stop temperature to the secondary cooling stop temperature in the temperature range of Ms point or higher and 500 ° C. or lower calculated by the following formula (1). When,
A tertiary cooling step of rapidly cooling from the secondary cooling stop temperature to room temperature at an average cooling rate exceeding 100 ° C./second;
The manufacturing method of the high strength cold-rolled steel plate excellent in the steel plate shape characterized by including the overaging process process heated to a 150-300 degreeC temperature range, and hold | maintaining for 30-1500 seconds in this order.
Ms = 561-474 × [C] −33 × [Mn] −17 × [Ni] −17 × [Cr] −21 × [Mo] (1)
[In Formula (1), [] means content (mass%) of each element. ]
前記鋼材は、更に他の元素として、
Cu:1%以下(0%を含まない)および/または
Ni:1%以下(0%を含まない)を含有する請求項1に記載の製造方法。
The steel material, as another element,
The manufacturing method according to claim 1, containing Cu: 1% or less (excluding 0%) and / or Ni: 1% or less (excluding 0%).
前記鋼材は、更に他の元素として、
Cr:1%以下(0%を含まない)および/または
Mo:1%以下(0%を含まない)を含有する請求項1または2に記載の製造方法。
The steel material, as another element,
The production method according to claim 1 or 2, comprising Cr: 1% or less (excluding 0%) and / or Mo: 1% or less (excluding 0%).
JP2013048343A 2012-03-29 2013-03-11 Manufacturing method of high-strength cold-rolled steel sheet with excellent steel plate shape Active JP6047037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013048343A JP6047037B2 (en) 2012-03-29 2013-03-11 Manufacturing method of high-strength cold-rolled steel sheet with excellent steel plate shape

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012078153 2012-03-29
JP2012078153 2012-03-29
JP2013048343A JP6047037B2 (en) 2012-03-29 2013-03-11 Manufacturing method of high-strength cold-rolled steel sheet with excellent steel plate shape

Publications (2)

Publication Number Publication Date
JP2013227657A true JP2013227657A (en) 2013-11-07
JP6047037B2 JP6047037B2 (en) 2016-12-21

Family

ID=49675564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013048343A Active JP6047037B2 (en) 2012-03-29 2013-03-11 Manufacturing method of high-strength cold-rolled steel sheet with excellent steel plate shape

Country Status (1)

Country Link
JP (1) JP6047037B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104831046A (en) * 2015-04-13 2015-08-12 唐山钢铁集团有限责任公司 Production method of ferrite and martensite tissue duplex steel pipe
WO2015151827A1 (en) * 2014-03-31 2015-10-08 株式会社神戸製鋼所 High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet having excellent ductility, stretch-flangeability, and weldability
WO2016139876A1 (en) * 2015-03-03 2016-09-09 Jfeスチール株式会社 High-strength steel sheet and method for producing same
WO2016177420A1 (en) * 2015-05-06 2016-11-10 Thyssenkrupp Steel Europe Ag Flat steel product and method for the production thereof
JP2016194135A (en) * 2015-03-31 2016-11-17 株式会社神戸製鋼所 High strength high ductility steel sheet excellent in production stability, manufacturing method thereof and cold rolled original sheet used for manufacturing high strength high ductility steel sheet
JP2017507241A (en) * 2013-12-11 2017-03-16 アルセロールミタル High strength steel and manufacturing method
CN107142426A (en) * 2017-06-21 2017-09-08 唐山钢铁集团有限责任公司 A kind of superhigh intensity annealed sheet steel and its manufacture method
JP2019007086A (en) * 2014-03-31 2019-01-17 株式会社神戸製鋼所 HIGH STRENGTH COLD ROLLED STEEL SHEET OR HIGH STRENGTH HOT-DIP GALVANIZED STEEL SHEET EXCELLENT IN DUCTILITY, STRETCH FLANGING PROPERTY AND WELDABILITY, AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE AND 0.2% BEARING FORCE OF 700 MPa OR MORE
JP2020019992A (en) * 2018-07-31 2020-02-06 Jfeスチール株式会社 Thin steel sheet and manufacturing method therefor
JP2022531275A (en) * 2019-12-09 2022-07-06 ヒュンダイ スチール カンパニー Ultra-high-strength cold-rolled steel sheet and its manufacturing method
JP2023505693A (en) * 2019-12-13 2023-02-10 アルセロールミタル Heat-treated cold-rolled steel sheet and manufacturing method thereof
WO2023037878A1 (en) 2021-09-09 2023-03-16 日本製鉄株式会社 Cold-rolled steel sheet and method for manufacturing same
WO2023090736A1 (en) * 2021-11-19 2023-05-25 주식회사 포스코 Cold rolled steel sheet and manufacturing method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271942A (en) * 1993-03-17 1994-09-27 Nkk Corp Production of ultrahigh strength cold rolled steel sheet good in strip shape
JPH101740A (en) * 1996-06-12 1998-01-06 Kobe Steel Ltd Ultrahigh strength steel sheet excellent in delayed fracture resistance, and its production
JP2005273002A (en) * 2004-02-27 2005-10-06 Jfe Steel Kk Superhigh strength cold-rolled steel sheet having superior bendability and formability for extension flange and manufacturing method therefor
JP2009079255A (en) * 2007-09-26 2009-04-16 Jfe Steel Kk High-tensile-strength cold-rolled steel sheet and method for manufacturing the same
JP2010215958A (en) * 2009-03-16 2010-09-30 Jfe Steel Corp High-strength cold-rolled steel sheet superior in bending workability and delayed fracture resistance, and manufacturing method therefor
JP2011202195A (en) * 2010-03-24 2011-10-13 Jfe Steel Corp Ultrahigh strength cold rolled steel sheet and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271942A (en) * 1993-03-17 1994-09-27 Nkk Corp Production of ultrahigh strength cold rolled steel sheet good in strip shape
JPH101740A (en) * 1996-06-12 1998-01-06 Kobe Steel Ltd Ultrahigh strength steel sheet excellent in delayed fracture resistance, and its production
JP2005273002A (en) * 2004-02-27 2005-10-06 Jfe Steel Kk Superhigh strength cold-rolled steel sheet having superior bendability and formability for extension flange and manufacturing method therefor
JP2009079255A (en) * 2007-09-26 2009-04-16 Jfe Steel Kk High-tensile-strength cold-rolled steel sheet and method for manufacturing the same
JP2010215958A (en) * 2009-03-16 2010-09-30 Jfe Steel Corp High-strength cold-rolled steel sheet superior in bending workability and delayed fracture resistance, and manufacturing method therefor
JP2011202195A (en) * 2010-03-24 2011-10-13 Jfe Steel Corp Ultrahigh strength cold rolled steel sheet and method for producing same

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017507241A (en) * 2013-12-11 2017-03-16 アルセロールミタル High strength steel and manufacturing method
US10597745B2 (en) 2013-12-11 2020-03-24 Arcelormittal High strength steel and manufacturing method
WO2015151827A1 (en) * 2014-03-31 2015-10-08 株式会社神戸製鋼所 High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet having excellent ductility, stretch-flangeability, and weldability
JP2015200012A (en) * 2014-03-31 2015-11-12 株式会社神戸製鋼所 High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, and high-strength alloy galvanized steel sheet having excellent ductility, stretch-flangeability, and weldability
KR101926244B1 (en) 2014-03-31 2018-12-06 가부시키가이샤 고베 세이코쇼 High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet having excellent ductility, stretch-flangeability, and weldability
CN106103774A (en) * 2014-03-31 2016-11-09 株式会社神户制钢所 The high strength cold rolled steel plate of ductility, stretch flangeability and welding property excellent, high-strength hot-dip galvanized steel sheet and high-strength and high-ductility galvannealed steel sheet
JP2019007086A (en) * 2014-03-31 2019-01-17 株式会社神戸製鋼所 HIGH STRENGTH COLD ROLLED STEEL SHEET OR HIGH STRENGTH HOT-DIP GALVANIZED STEEL SHEET EXCELLENT IN DUCTILITY, STRETCH FLANGING PROPERTY AND WELDABILITY, AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE AND 0.2% BEARING FORCE OF 700 MPa OR MORE
US10501830B2 (en) 2014-03-31 2019-12-10 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet having excellent ductility, stretch-flangeability, and weldability
WO2016139876A1 (en) * 2015-03-03 2016-09-09 Jfeスチール株式会社 High-strength steel sheet and method for producing same
JP6048625B1 (en) * 2015-03-03 2016-12-21 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
CN107406938B (en) * 2015-03-03 2019-07-26 杰富意钢铁株式会社 High-strength steel sheet and its manufacturing method
CN107406938A (en) * 2015-03-03 2017-11-28 杰富意钢铁株式会社 High-strength steel sheet and its manufacture method
US10590505B2 (en) 2015-03-03 2020-03-17 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
JP2016194135A (en) * 2015-03-31 2016-11-17 株式会社神戸製鋼所 High strength high ductility steel sheet excellent in production stability, manufacturing method thereof and cold rolled original sheet used for manufacturing high strength high ductility steel sheet
CN104831046A (en) * 2015-04-13 2015-08-12 唐山钢铁集团有限责任公司 Production method of ferrite and martensite tissue duplex steel pipe
WO2016177763A1 (en) * 2015-05-06 2016-11-10 Thyssenkrupp Steel Europe Ag Flat steel product and method for the production thereof
CN107580634A (en) * 2015-05-06 2018-01-12 蒂森克虏伯钢铁欧洲股份公司 Flat product and its production method
KR20180003581A (en) * 2015-05-06 2018-01-09 티센크루프 스틸 유럽 악티엔게젤샤프트 Flat product and method of manufacturing the same
KR102594922B1 (en) 2015-05-06 2023-10-27 티센크루프 스틸 유럽 악티엔게젤샤프트 Flat steel products and manufacturing methods thereof
JP2018518593A (en) * 2015-05-06 2018-07-12 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Flat steel products and manufacturing method thereof
WO2016177420A1 (en) * 2015-05-06 2016-11-10 Thyssenkrupp Steel Europe Ag Flat steel product and method for the production thereof
CN107142426A (en) * 2017-06-21 2017-09-08 唐山钢铁集团有限责任公司 A kind of superhigh intensity annealed sheet steel and its manufacture method
CN107142426B (en) * 2017-06-21 2019-05-24 唐山钢铁集团有限责任公司 A kind of superhigh intensity annealed sheet steel and its manufacturing method
JP2020019992A (en) * 2018-07-31 2020-02-06 Jfeスチール株式会社 Thin steel sheet and manufacturing method therefor
JP2022531275A (en) * 2019-12-09 2022-07-06 ヒュンダイ スチール カンパニー Ultra-high-strength cold-rolled steel sheet and its manufacturing method
JP7357691B2 (en) 2019-12-09 2023-10-06 ヒュンダイ スチール カンパニー Ultra-high strength cold-rolled steel sheet and its manufacturing method
JP2023505693A (en) * 2019-12-13 2023-02-10 アルセロールミタル Heat-treated cold-rolled steel sheet and manufacturing method thereof
JP2023506477A (en) * 2019-12-13 2023-02-16 アルセロールミタル Heat-treated cold-rolled steel sheet and manufacturing method thereof
WO2023037878A1 (en) 2021-09-09 2023-03-16 日本製鉄株式会社 Cold-rolled steel sheet and method for manufacturing same
KR20240032929A (en) 2021-09-09 2024-03-12 닛폰세이테츠 가부시키가이샤 Cold rolled steel sheet and manufacturing method thereof
WO2023090736A1 (en) * 2021-11-19 2023-05-25 주식회사 포스코 Cold rolled steel sheet and manufacturing method therefor

Also Published As

Publication number Publication date
JP6047037B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP6047037B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent steel plate shape
JP6291289B2 (en) High-strength cold-rolled steel sheet excellent in steel sheet shape and shape freezing property and method for producing the same
JP6524810B2 (en) Steel plate excellent in spot weld resistance and its manufacturing method
JP6566026B2 (en) Plated steel sheet
JP6536294B2 (en) Hot dip galvanized steel sheet, alloyed hot dip galvanized steel sheet, and method for producing them
JP5287770B2 (en) High strength steel plate and manufacturing method thereof
JP3857939B2 (en) High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate
CN102822375B (en) Ultra high strength cold rolled steel sheet and method for producing same
JP6179461B2 (en) Manufacturing method of high-strength steel sheet
JP6846522B2 (en) High-strength cold-rolled steel sheets with excellent yield strength, ductility, and hole expansion properties, hot-dip galvanized steel sheets, and methods for manufacturing these.
JP5924332B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP4291860B2 (en) High-strength steel sheet and manufacturing method thereof
JP6149368B2 (en) Manufacturing method of high-tensile steel plate with excellent delayed fracture resistance
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
JP5958667B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP6079726B2 (en) Manufacturing method of high-strength steel sheet
JP6160574B2 (en) High-strength hot-rolled steel sheet excellent in strength-uniform elongation balance and method for producing the same
JP2017529457A (en) HPF molded member with excellent bendability and manufacturing method thereof
JP2017115239A (en) Thick steel sheet excellent in ultra low temperature toughness
JP2016183414A (en) High strength hot rolled steel excellent in strength uniformity in sheet width direction and manufacturing method therefor
JP2008308732A (en) Hardened steel plate member, steel plate for hardening, and their manufacturing methods
JPWO2020080407A1 (en) Steel plate and its manufacturing method
JP5747249B2 (en) High-strength steel material excellent in strength, ductility and energy absorption capacity and its manufacturing method
JP2008189973A (en) Method for producing high-toughness and high-tension steel sheet excellent in strength-elongation balance
JP4192857B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161118

R150 Certificate of patent or registration of utility model

Ref document number: 6047037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150