JP2013227613A - Gas introducing device - Google Patents

Gas introducing device Download PDF

Info

Publication number
JP2013227613A
JP2013227613A JP2012099870A JP2012099870A JP2013227613A JP 2013227613 A JP2013227613 A JP 2013227613A JP 2012099870 A JP2012099870 A JP 2012099870A JP 2012099870 A JP2012099870 A JP 2012099870A JP 2013227613 A JP2013227613 A JP 2013227613A
Authority
JP
Japan
Prior art keywords
buffer chamber
gas
chamber
buffer
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012099870A
Other languages
Japanese (ja)
Inventor
Miki Omori
美紀 大森
Tetsuji Kiyota
清田  哲司
Yuichi Tateno
勇一 立野
Tsutomu Aihara
強 相原
Masashi Kubo
昌司 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2012099870A priority Critical patent/JP2013227613A/en
Publication of JP2013227613A publication Critical patent/JP2013227613A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas introducing device capable of introducing a prescribed source gas surely and as promptly as possible with the number of moles thereof fixed, regardless of vapor pressure of the source gas.SOLUTION: A gas introducing device includes: a single first buffer chamber 33b connected to an upstream side gas introducing pipe 32b extended from a gas supply source 31b; a plurality of second buffer chambers 33c connected to the first buffer chamber in series and having the same prescribed volume smaller than that of the first buffer chamber; and a downstream side gas introducing pipe 34b for introducing a source gas from a chamber selected from the first buffer chamber and the respective second buffer chambers to a treatment chamber. The volume of the second buffer chamber on the most upstream side including a connecting pipe 35a connecting the first buffer chamber and the second buffer chamber positioned on the most upstream side, and the volume of the second buffer chamber on the downstream side including a connecting pipe 35b connecting the second buffer chamber positioned on the upstream side and the second buffer chamber positioned on the downstream side, that are continued to each other, are made equal.

Description

本発明は、処理室に、所定の原料ガスをそのモル数を一定にして導入するガス導入装置に関する。   The present invention relates to a gas introduction device for introducing a predetermined source gas into a processing chamber with a constant number of moles thereof.

近年、原料分子がシリコンウエハ等の被処理基板の表面に集合して自律的に組みあがってなる自己組織化単分子膜(以下、「SAM」という)が注目されている。SAMは、例えば、シリコン、チタン等のコア原子に、上記被処理基板に化学吸着した官能基とこの官能基と反対側の末端官能基とを有し、この末端官能基を適宜選択することで、表面の物理的または化学的な性質を制御したりすることができ、トランジスタ等の電子デバイス、MEMSや画像表示デバイスなどの製造工程で広く利用されるようになっている。   In recent years, a self-assembled monomolecular film (hereinafter referred to as “SAM”) in which raw material molecules are assembled and autonomously assembled on the surface of a substrate to be processed such as a silicon wafer has attracted attention. The SAM has, for example, a functional group chemically adsorbed on the substrate to be processed and a terminal functional group opposite to the functional group on a core atom such as silicon or titanium, and by appropriately selecting the terminal functional group. It is possible to control the physical or chemical properties of the surface, and it is widely used in the manufacturing process of electronic devices such as transistors, MEMS and image display devices.

従来、高膜密度及び高配向性を備えたSAMを気相法にて形成する方法及び装置は例えば特許文献1で知られている。このものでは、成膜を行い得る処理室(成膜室)と、処理室内の温度を制御する雰囲気温度制御手段と、処理室内の湿度を制御する湿度制御手段と、処理室内に配置されたステージ上にセットされる被処理基板の温度を制御する基板温度調節手段とを備える。処理室の天井部には、原料ガスを処理室内に供給するガス導入装置のガス導入管と、処理室内のガスを排気するガス排気装置の排気管とが接続されている。そして、このガス導入装置により処理室内にSAM形成用の原料ガス(キャリアガスとの混合ガスを含む)を、湿度と温度とが適宜制御された処理室内に導入して成膜が行われる。この場合、湿度の調節は、例えば窒素等の主ガスに水蒸気ガスを混合して処理室内に導入することで行われる。   Conventionally, a method and an apparatus for forming a SAM having a high film density and high orientation by a vapor phase method are known, for example, from Patent Document 1. In this apparatus, a processing chamber (deposition chamber) capable of forming a film, an atmospheric temperature control means for controlling the temperature in the processing chamber, a humidity control means for controlling the humidity in the processing chamber, and a stage disposed in the processing chamber Substrate temperature adjusting means for controlling the temperature of the substrate to be processed set on the substrate. Connected to the ceiling of the processing chamber are a gas introduction pipe of a gas introduction device that supplies the source gas into the processing chamber and an exhaust pipe of a gas exhaust device that exhausts the gas in the processing chamber. Then, the gas introducing apparatus introduces a source gas for SAM formation (including a mixed gas with a carrier gas) into the processing chamber into the processing chamber in which the humidity and temperature are appropriately controlled to form a film. In this case, the humidity is adjusted by mixing the main gas such as nitrogen with a water vapor gas and introducing it into the processing chamber.

ここで、処理室内に原料ガスを導入するとき、成膜に必要不可欠な所定量の原料ガスのみを導入するようにしてSAM形成用の原料ガスの利用効率の向上を図ることが望ましい。このような場合、原料を固相または液相で収容したガス供給源から処理室に通じる原料ガスの導入管に所定容積のバッファ室を介設すると共に、このバッファ室の上流側及び下流側の導入管部分に開閉弁を夫々介設する。そして、ガス供給源の原料をガス化し、上流側の開閉弁を開弁してバッファ室内に所定量の原料ガスを一旦貯蔵し、成膜を行うに際しては下流側の開閉弁を開弁してこのバッファ室内の原料ガスのみを処理室内に導入する。   Here, when introducing the raw material gas into the processing chamber, it is desirable to improve the utilization efficiency of the raw material gas for forming the SAM by introducing only a predetermined amount of the raw material gas essential for film formation. In such a case, a buffer chamber having a predetermined volume is provided in a source gas introduction pipe that leads from the gas supply source containing the raw material in a solid phase or a liquid phase to the processing chamber, and upstream and downstream of the buffer chamber. An open / close valve is provided in each of the introduction pipe portions. Then, the raw material of the gas supply source is gasified, the upstream on-off valve is opened, a predetermined amount of source gas is temporarily stored in the buffer chamber, and the downstream on-off valve is opened when performing film formation. Only the source gas in the buffer chamber is introduced into the processing chamber.

然しながら、上記のような原料ガスの導入方法では、原料ガスの蒸気圧が高いとき、その都度バッファ室に導入する原料ガスの圧力を上記蒸気圧より低い所定圧力に揃えてバッファ室に原料ガスを導入することは困難であるという問題がある。原料ガスの圧力が異なっていると、処理室に導入される原料ガスのモル数が一定にならず、被処理基板毎にSAMの膜質(密度や配向性)が一定にならないという問題がある。この場合、バッファ室に通じる導入管にオリフィス等のガス流量を制御する部品を設け、バッファ室内の圧力を圧力計で監視しながら、開閉弁を制御して原料ガスをバッファ室内に導入することが考えられるが、これでは、バッファ室への原料ガスの導入の制御が面倒であると共に、原料ガス導入に時間がかかるという問題がある。   However, in the method of introducing the source gas as described above, when the vapor pressure of the source gas is high, the source gas is introduced into the buffer chamber by adjusting the pressure of the source gas introduced into the buffer chamber to a predetermined pressure lower than the vapor pressure each time. There is a problem that it is difficult to introduce. When the pressure of the source gas is different, the number of moles of the source gas introduced into the processing chamber is not constant, and there is a problem that the SAM film quality (density and orientation) is not constant for each substrate to be processed. In this case, a part for controlling the gas flow rate such as an orifice is provided in the introduction pipe that leads to the buffer chamber, and the on-off valve is controlled while the pressure in the buffer chamber is monitored with a pressure gauge to introduce the source gas into the buffer chamber. In this case, there is a problem that the introduction of the source gas into the buffer chamber is troublesome and the introduction of the source gas takes time.

国際公開第2006/112408号公報International Publication No. 2006/112408

本発明は、以上の点に鑑み、原料ガスの蒸気圧に関係なく、所定の原料ガスをそのモル数を一定にして確実かつ可及的速やかに導入することができるガス導入装置を提供することをその課題とするものである。   In view of the above, the present invention provides a gas introduction device capable of reliably and promptly introducing a predetermined source gas with a constant number of moles irrespective of the vapor pressure of the source gas. Is the issue.

上記課題を解決するために、処理室に所定の原料ガスをそのモル数を一定にして導入する本発明のガス導入装置は、ガス供給源からの上流側ガス導入管に接続される単一の第1バッファ室と、第1バッファ室に直列に接続され、第1バッファ室より小さい同一の所定容積を有する複数個の第2バッファ室と、第1バッファ室及び各第2バッファ室のうち選択されたものから原料ガスを処理室に導入する下流側ガス導入管とを備え、第1バッファ室から最上流側に位置する第2バッファ室までを接続する接続管を含めたこの最上流側の第2バッファ室の容積と、互いに連続する、上流側に位置する第2バッファ室から下流側に位置する第2バッファ室までを接続する接続管を含めたこの下流側の第2バッファ室の容積とを同等としたことを特徴とする。   In order to solve the above problems, a gas introduction apparatus of the present invention for introducing a predetermined source gas into a processing chamber with a constant number of moles is a single gas source connected to an upstream gas introduction pipe from a gas supply source. A first buffer chamber, a plurality of second buffer chambers connected in series to the first buffer chamber and having the same predetermined volume smaller than the first buffer chamber, and a selection among the first buffer chamber and each second buffer chamber And a downstream gas introduction pipe for introducing the raw material gas into the processing chamber from the generated gas, and the uppermost stream side including the connection pipe connecting the first buffer chamber to the second buffer chamber located on the uppermost stream side. The volume of the second buffer chamber including the connection pipe connecting the volume of the second buffer chamber and the second buffer chamber located upstream to the second buffer chamber located downstream is continuous. Is characterized by equality To.

本発明によれば、ガス供給源でガス化した原料ガスをその蒸気圧のまま第1バッファ室に先ず導入する。次に、第1バッファ室に一旦貯蔵された原料ガスを第2バッファ室へと移送する。このとき、第1バッファ室から最上流側に位置する第2バッファ室までを接続する接続管を含めたこの最上流側の第2バッファ室の容積と、互いに連続する、上流側に位置する第2バッファ室から下流側に位置する第2バッファ室までを接続する接続管を含めたこの下流側の第2バッファ室の容積を同等としたため、第1バッファ室から各第2バッファ室に原料ガスが均等に分圧されて、第1バッファ室及び各第2バッファ室内の圧力が互いに同等となってその原料ガスのモル数も同等となる。つまり、第1バッファ室及び各第2バッファ室内の圧力は、原料ガスの蒸気圧を第1バッファ室と各第2バッファ室とを足した数で除した圧力になる。この場合、処理室に導入するときの原料ガスの圧力に応じて第2バッファ室の数や容積を適宜設定しておく。そして、第1バッファ室及び各第2バッファ室のうち選択されたものから、例えば真空排気されている成膜室に原料ガスが順次供給されて成膜が行われる。   According to the present invention, the source gas gasified by the gas supply source is first introduced into the first buffer chamber while maintaining its vapor pressure. Next, the source gas once stored in the first buffer chamber is transferred to the second buffer chamber. At this time, the volume of the second buffer chamber on the uppermost stream side including the connection pipe connecting the first buffer chamber to the second buffer chamber located on the uppermost stream side is continuous with the first upstream buffer located on the upstream side. Since the volume of the second buffer chamber on the downstream side including the connecting pipe connecting the second buffer chamber to the second buffer chamber located on the downstream side is made equal, the source gas is transferred from the first buffer chamber to each second buffer chamber. Are equally divided so that the pressures in the first buffer chamber and the second buffer chambers are equal to each other, and the number of moles of the source gas is also equal. That is, the pressure in the first buffer chamber and each second buffer chamber is a pressure obtained by dividing the vapor pressure of the source gas by the sum of the first buffer chamber and each second buffer chamber. In this case, the number and volume of the second buffer chambers are appropriately set according to the pressure of the source gas when introduced into the processing chamber. Then, the source gas is sequentially supplied from the selected one of the first buffer chamber and each of the second buffer chambers to, for example, the film forming chamber that is evacuated to perform film formation.

このように本発明では、第1バッファ室に原料ガスをその蒸気圧のまま導入した後、第2バッファ室に分圧するだけであるため、複雑な制御なしに可及的速やかに開閉弁のみの開閉だけで原料ガスをそのモル数を一定にして処理室内に導入できることが実現できる。なお、本発明でいう「同等」とは、第1バッファ室と各第2バッファ室とに原料ガスが均等に分圧されていれば、厳密に一致している場合のみを意味するものではない。   As described above, in the present invention, since the raw material gas is introduced into the first buffer chamber while maintaining its vapor pressure, only the partial pressure is divided into the second buffer chamber, so that only the on-off valve can be used as quickly as possible without complicated control. It can be realized that the raw material gas can be introduced into the processing chamber with a constant number of moles only by opening and closing. Note that the “equivalent” in the present invention does not mean only when the source gases are evenly divided as long as the source gas is equally divided into the first buffer chamber and each second buffer chamber. .

本発明において、第1バッファ室から処理室に通じる下流側ガス導入管に、開閉弁を介在させて分岐管を接続し、この分岐管に、容積が可変の第3バッファ室を接続しておけば、第3バッファ室の容積に応じて第1及び第2のバッファ室内に導入される原料ガスの圧力を適宜変更することができてよい。この場合、例えば、第3バッファ室に真空排気装置を接続し、原料ガスを分圧した後、その内部を適宜真空引きされるようにしてもよく、また、第3バッファ室にも下流側ガス導入管を接続してこの第3バッファ室内の原料ガスも処理室に導入するようにしてもよい。   In the present invention, a branch pipe is connected to the downstream gas introduction pipe leading from the first buffer chamber to the processing chamber via an on-off valve, and a third buffer chamber having a variable volume can be connected to the branch pipe. For example, the pressure of the source gas introduced into the first and second buffer chambers may be appropriately changed according to the volume of the third buffer chamber. In this case, for example, an evacuation device may be connected to the third buffer chamber, and after the source gas is divided, the inside thereof may be appropriately evacuated. An introduction pipe may be connected to introduce the source gas in the third buffer chamber into the processing chamber.

本発明の実施形態のガス導入装置を備えた成膜装置の模式図。The schematic diagram of the film-forming apparatus provided with the gas introduction apparatus of embodiment of this invention.

以下、図面を参照して、被処理基板をシリコン基板Wとし、シリコン基板Wに自己組織化単分子膜(SAM)を成膜する成膜装置に本発明のガス導入装置を適用した実施形態について説明する。   Hereinafter, with reference to the drawings, an embodiment in which a gas introduction apparatus of the present invention is applied to a film forming apparatus that forms a self-assembled monolayer (SAM) on a silicon substrate W as a substrate to be processed will be described. explain.

図1を参照して、1は、成膜が行われる処理室1aを画成する真空チャンバを示す。以下において、図1を基準に、真空チャンバ1内でステージ2が設けられる側を下とし、上、右、左といった方向を示す用語を用いるものとするが、配置はこれに限定されるものではない。真空チャンバ1には、その内部を真空引きする真空ポンプPが設けられ、その下面中央にはシリコン基板Wが位置決め保持されるステージ2が設けられている。ステージ2には、図示省略のヒータや冷却手段が内蔵され、ステージ2上にセットされるシリコン基板Wを所定温度に制御できるようにしている。真空チャンバ1にもまた図示省略のヒータが設けられ、成膜時に処理室1a内の雰囲気温度を制御できるようにしている。そして、ステージ2に対向させて真空チャンバ1の上壁部には、第1及び第2の各ガス導入装置3,3が設けられている。 Referring to FIG. 1, reference numeral 1 denotes a vacuum chamber that defines a processing chamber 1a in which film formation is performed. In the following, with reference to FIG. 1, the side in which the stage 2 is provided in the vacuum chamber 1 will be the bottom, and terms indicating the direction such as top, right, and left will be used. However, the arrangement is not limited to this. Absent. The vacuum chamber 1 is provided with a vacuum pump P for evacuating the inside, and a stage 2 on which the silicon substrate W is positioned and held is provided at the center of the lower surface. The stage 2 incorporates a heater and a cooling unit (not shown) so that the silicon substrate W set on the stage 2 can be controlled to a predetermined temperature. The vacuum chamber 1 is also provided with a heater (not shown) so that the atmospheric temperature in the processing chamber 1a can be controlled during film formation. The first and second gas introduction devices 3 1 and 3 2 are provided on the upper wall portion of the vacuum chamber 1 so as to face the stage 2 .

第1のガス導入装置3はSAM形成用の原料ガスを導入するものであり、第2のガス導入装置3は、成膜時に処理室1a内を所定湿度に調節するために水蒸気ガスを導入するものである。SAM形成用の原料ガスとしては、表面の物理的または化学的な性質を制御するためにシリコン基板Wに成膜しようとするものに応じて適宜選択され、このような原料ガスは公知のものが利用できるため、ここでは省略する。ここで、原料ガスとして、コア原子がシリコンである化合物のものを用いるような場合、その蒸気圧は然程高くはない。このため、第1のガス導入装置3は、原料を液相で貯蔵し、この原料をガス化するヒータ(図示せず)を有するガス供給源31aと、ガス供給源31aからの上流側ガス導入管32aが接続される単一のバッファ室33aと、バッファ室33aから原料ガスを処理室1aに導入する下流側ガス導入管34aとで構成され、上流側ガス導入管32a及び下流側ガス導入管34aには夫々開閉弁V1,V2が夫々介設されている。この場合、バッファ室33aの容積は、成膜に必要不可欠な原料ガスの量に応じて適宜設定されている。 The first gas introduction device 3 1 is intended to introduce the raw material gas for SAM formation, the second gas introducing device 3 2, the steam gas in order to adjust the processing chamber 1a to the predetermined humidity at the time of film formation It is to be introduced. The source gas for SAM formation is appropriately selected depending on what is going to be formed on the silicon substrate W in order to control the physical or chemical properties of the surface. Since it can be used, it is omitted here. Here, when a compound having a core atom of silicon is used as the source gas, the vapor pressure is not so high. Therefore, the first gas introduction device 3 1, raw materials are stored in liquid phase, a gas supply source 31a having a heater (not shown) for gasifying the raw material, the upstream side gas from the gas supply source 31a A single buffer chamber 33a to which the introduction pipe 32a is connected, and a downstream side gas introduction pipe 34a for introducing the raw material gas from the buffer chamber 33a into the processing chamber 1a, and the upstream side gas introduction pipe 32a and the downstream side gas introduction. On-off valves V1 and V2 are respectively provided in the pipes 34a. In this case, the volume of the buffer chamber 33a is appropriately set according to the amount of source gas essential for film formation.

他方、水蒸気ガスは、上記原料ガスに比較して蒸気圧が高く、第1のガス導入装置3のような構成では、水蒸気ガスの圧力を蒸気圧より低い所定圧力に揃え、原料ガスのモル数を一定にしてバッファ室に原料ガスを導入することは困難である。そこで、本実施形態では、第2のガス導入装置3を次のように構成することとした。即ち、第2のガス導入装置3は、原料(HO)を液相で貯蔵し、この原料をガス化するヒータ(図示せず)を有するガス供給源31bと、ガス供給源31bからの上流側ガス導入管32bが接続される単一の第1バッファ室33bと、第1バッファ室33bから原料ガスを処理室1aに導入する下流側ガス導入管34bとを備える。そして、第1バッファ室33bに、第1バッファ室33bより小さい同一の所定容積を有する複数個の第2バッファ室33cが、下流側ガス導入管34bから分岐した接続管35a〜35dを介して直列に接続されている。この場合、第2バッファ室33cの数は、原料ガスの蒸気圧や処理室1a内に導入するときの原料ガスの圧力等を考慮して適宜選択される。また、第1バッファ室33bと最上流側に位置する第2バッファ室33cとの間の接続管35aの配管径及び長さ、並びに、第2バッファ室33c相互の間を接続する接続管35b〜35dの配管径及び長さを同等としている。各第2バッファ室33cには、その内部に一旦貯蔵された原料ガスを処理室1aに導入する他の下流側ガス導入管34cが接続されている。更に、上流側ガス導入管32b、各接続管35a〜35d及び下流側ガス導入管34b,34cには、同一の形態の開閉弁V3,V4,V5が夫々介設されている。なお、下流側ガス導入管34bのうち第1バッファ室33bから開閉弁V4までの長さは接続管35aの長さと同等することが好ましい。 On the other hand, water vapor gas, high vapor pressure as compared to the raw material gas, the first gas introduction device 3 1, such as configuration, the pressure of the steam gas arranged in a predetermined pressure lower than the vapor pressure, moles of the raw material gas It is difficult to introduce the raw material gas into the buffer chamber with a constant number. Therefore, in this embodiment, it was decided to constitute a second gas introduction device 3 2 as follows. That is, the second gas introducing device 3 2, raw materials (H 2 O) stored in the liquid phase, the raw material gas supply source 31b having a heater (not shown) for gasification, the gas supply source 31b A single first buffer chamber 33b to which the upstream gas introduction pipe 32b is connected, and a downstream gas introduction pipe 34b for introducing the raw material gas from the first buffer chamber 33b into the processing chamber 1a. A plurality of second buffer chambers 33c having the same predetermined volume smaller than the first buffer chamber 33b are connected in series to the first buffer chamber 33b via connection pipes 35a to 35d branched from the downstream gas introduction pipe 34b. It is connected to the. In this case, the number of second buffer chambers 33c is appropriately selected in consideration of the vapor pressure of the source gas, the pressure of the source gas when introduced into the processing chamber 1a, and the like. Further, the pipe diameter and length of the connecting pipe 35a between the first buffer chamber 33b and the second buffer chamber 33c located on the most upstream side, and the connecting pipes 35b to 35b connecting the second buffer chambers 33c to each other. The pipe diameter and length of 35d are the same. Each of the second buffer chambers 33c is connected to another downstream gas introduction pipe 34c for introducing the raw material gas once stored therein into the processing chamber 1a. Further, the upstream side gas introduction pipe 32b, the connection pipes 35a to 35d, and the downstream side gas introduction pipes 34b and 34c are respectively provided with on-off valves V3, V4 and V5 having the same configuration. In the downstream gas introduction pipe 34b, the length from the first buffer chamber 33b to the on-off valve V4 is preferably equal to the length of the connection pipe 35a.

また、第1バッファ室33bから処理室1aに通じる下流側ガス導入管34bに、開閉弁V6を介在させて分岐管36を接続し、この分岐管36に、容積が可変の第3バッファ室33dが接続されている。この場合、第3バッファ室33dは、第1バッファ室33bより小さい容積を有し、その内部にはピストンPSが設けられると共に、このピストンPSを駆動する直動モータPMが付設され、第3バッファ室33d内のピストンPSの相対位置を適宜制御してその内部の容積を可変するようにしている。なお、第3バッファ室33dの形態は、これに限定されるものではなく、例えばベローズを用いたものであってもよい。   Further, a branch pipe 36 is connected to the downstream side gas introduction pipe 34b leading from the first buffer chamber 33b to the processing chamber 1a via an on-off valve V6, and the third buffer chamber 33d having a variable volume is connected to the branch pipe 36. Is connected. In this case, the third buffer chamber 33d has a smaller volume than the first buffer chamber 33b, and a piston PS is provided therein, and a direct acting motor PM for driving the piston PS is additionally provided, and the third buffer chamber 33d is provided. The relative position of the piston PS in the chamber 33d is appropriately controlled so that the internal volume can be varied. The form of the third buffer chamber 33d is not limited to this, and for example, a bellows may be used.

以上説明したように、上記実施形態によれば、開閉弁V3のみを開弁してガス供給源31bでガス化した原料ガスをその蒸気圧のまま第1バッファ室33bに先ず導入する。次に、開閉弁V3を閉弁した後、開閉弁V5を全て開弁し、第1バッファ室33bに一旦貯蔵された原料ガスを第2バッファ室33cへと移送する。このとき、接続管35aの配管径及び長さを揃えて、第1バッファ室33bから最上流側に位置する第2バッファ室33cまでを接続する接続管35aを含めたこの最上流側の第2バッファ室33cの容積と、互いに連続する、上流側に位置する第2バッファ室33cから下流側に位置する第2バッファ室33cまでを接続する接続管35b〜35dを含めたこの下流側の第2バッファ室33cの各容積を同等としたため、第1バッファ室33bから各第2バッファ室33cに原料ガスが均等に分圧されて、第1バッファ室33b及び各第2バッファ室33c内の圧力が互いに同等となってその原料ガスのモル数も同等となる。つまり、第1バッファ室33b及び各第2バッファ室33c内の圧力は、原料ガスの蒸気圧を第1バッファ室33bと各第2バッファ室33cとを足した数で除した圧力になる。そして、開閉弁V5を閉弁した状態で開閉弁V4を順次開閉していくことで、第1バッファ室33b及び各第2バッファ室33cのうち選択されたものから真空排気されている処理室1aに原料ガスが順次供給される。最後に、第1バッファ室33b及び各第2バッファ室33c内の原料ガスが全て処理室1aに導入されると、上記操作を繰り返して、再度第1バッファ室33b及び各第2バッファ室33cに原料ガスが供給される。   As described above, according to the above-described embodiment, only the on-off valve V3 is opened and the source gas gasified by the gas supply source 31b is first introduced into the first buffer chamber 33b with the vapor pressure thereof. Next, after closing the on-off valve V3, all the on-off valves V5 are opened, and the raw material gas once stored in the first buffer chamber 33b is transferred to the second buffer chamber 33c. At this time, the pipe diameter and the length of the connecting pipe 35a are aligned, and the second upstream-side second pipe including the connecting pipe 35a connecting the first buffer chamber 33b to the second buffer chamber 33c located on the uppermost-stream side is included. The second downstream side including the volume of the buffer chamber 33c and the connecting pipes 35b to 35d connecting the second buffer chamber 33c located upstream and the second buffer chamber 33c located downstream are continuous with each other. Since the volumes of the buffer chambers 33c are made equal, the source gas is equally divided from the first buffer chambers 33b to the second buffer chambers 33c, and the pressures in the first buffer chambers 33b and the second buffer chambers 33c are changed. They are equivalent to each other, and the number of moles of the source gas is also equivalent. That is, the pressure in the first buffer chamber 33b and each second buffer chamber 33c is a pressure obtained by dividing the vapor pressure of the source gas by the number of the first buffer chamber 33b and each second buffer chamber 33c added. Then, by sequentially opening and closing the on-off valve V4 with the on-off valve V5 closed, the processing chamber 1a evacuated from the selected one of the first buffer chamber 33b and each of the second buffer chambers 33c. The raw material gas is sequentially supplied to. Finally, when all of the source gases in the first buffer chamber 33b and the second buffer chambers 33c are introduced into the processing chamber 1a, the above operation is repeated, and the first buffer chamber 33b and the second buffer chambers 33c are again supplied. Source gas is supplied.

このように本発明では、第1バッファ室33bに原料ガスをその蒸気圧のまま導入した後、第2バッファ室33cに分圧するだけであるため、複雑な制御なしに可及的速やかに開閉弁V3〜V5のみの開閉だけで原料ガスをそのモル数を一定にして処理室1a内に導入できることが実現できる。また、第3バッファ室33dの容積に応じて第1及び第2のバッファ室33b,33c内に導入される原料ガスの圧力を適宜変更することができてよい。この場合、第3バッファ室33dに図外の真空ポンプを接続し、原料ガスを分圧した後、その内部を適宜真空引きされるようにすればよい。   As described above, in the present invention, since the raw material gas is introduced into the first buffer chamber 33b while maintaining its vapor pressure, the pressure is only divided into the second buffer chamber 33c. It can be realized that the raw material gas can be introduced into the processing chamber 1a with a constant number of moles by only opening and closing V3 to V5. Further, the pressure of the source gas introduced into the first and second buffer chambers 33b and 33c may be appropriately changed according to the volume of the third buffer chamber 33d. In this case, a vacuum pump (not shown) may be connected to the third buffer chamber 33d, and after the source gas is divided, the inside may be appropriately evacuated.

以上、本発明の実施形態について説明したが、本発明は上記のものに限定されるものではない。上記実施形態では、水蒸気ガスをそのモル数を一定にして処理室内に導入する場合を例に説明したが、原料ガスの蒸気圧が高く、可及的速やかにバッファ室にその圧力を一定にしてバッファ室に導入できないような場合には本発明を適用することができる。また、上記実施形態では、第2バッファ室33c内の容積、接続管35a〜35dの配管径及び長さを揃えて各容積を同等とするものを例に説明したが、本発明は上記に限定されるものではない。例えば、第2バッファ室33c内の容積と接続管35aの配管径とを、その下流側に向かうに従い、大きくし、接続管35a〜35dの長さを下流側に向かうに従い、短くすることで、ガス導入装置の小型化を図るようにしてもよい。更に、上記実施形態では、SAMを気相法で成膜するものを例に説明したが、他の成膜処理装置やエッチング装置等において、ガスを一定の圧力、ひいてはモル数を一定に導入する必要があるような場合に本発明は広く適用することができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to said thing. In the above embodiment, the case where the water vapor gas is introduced into the processing chamber with a constant number of moles has been described as an example, but the vapor pressure of the raw material gas is high, and the pressure is made constant in the buffer chamber as quickly as possible. The present invention can be applied when it cannot be introduced into the buffer chamber. Moreover, in the said embodiment, although the volume in the 2nd buffer chamber 33c and the pipe diameter and length of the connecting pipes 35a-35d were arrange | positioned and demonstrated as an example, this invention is limited to the above. Is not to be done. For example, by increasing the volume in the second buffer chamber 33c and the pipe diameter of the connecting pipe 35a toward the downstream side, and shortening the length of the connecting pipes 35a to 35d toward the downstream side, You may make it aim at size reduction of a gas introduction apparatus. Furthermore, in the above-described embodiment, the case where the SAM is formed by the vapor phase method has been described as an example. However, in another film forming apparatus or an etching apparatus, the gas is introduced at a constant pressure and thus the number of moles is constant. The present invention can be widely applied when necessary.

1…真空チャンバ、1a…処理室、3…ガス導入装置、33b…第1バッファ室、33c…第2バッファ室、33d…第3バッファ室、31b…ガス供給源、32b…上流側ガス導入管、34b…下流側ガス導入管、35a〜35d…接続管、36…分岐管、V1〜V5…開閉弁、W…シリコン基板(被処理基板)。
DESCRIPTION OF SYMBOLS 1 ... Vacuum chamber, 1a ... Processing chamber, 3 2 ... Gas introduction apparatus, 33b ... 1st buffer chamber, 33c ... 2nd buffer chamber, 33d ... 3rd buffer chamber, 31b ... Gas supply source, 32b ... Upstream side gas introduction Pipe, 34b ... downstream gas introduction pipe, 35a-35d ... connection pipe, 36 ... branch pipe, V1-V5 ... open / close valve, W ... silicon substrate (substrate to be processed).

Claims (2)

処理室に所定の原料ガスをそのモル数を一定にして導入するガス導入装置であって、
ガス供給源からの上流側ガス導入管に接続される単一の第1バッファ室と、第1バッファ室に直列に接続され、第1バッファ室より小さい同一の所定容積を有する複数個の第2バッファ室と、第1バッファ室及び各第2バッファ室のうち選択されたものから原料ガスを処理室に導入する下流側ガス導入管とを備え、
第1バッファ室から最上流側に位置する第2バッファ室までを接続する接続管を含めたこの最上流側の第2バッファ室の容積と、互いに連続する、上流側に位置する第2バッファ室から下流側に位置する第2バッファ室までを接続する接続管を含めたこの下流側の第2バッファ室の容積とを同等としたことを特徴とするガス導入装置。
A gas introduction device for introducing a predetermined source gas into a processing chamber with a constant number of moles thereof,
A single first buffer chamber connected to the upstream gas introduction pipe from the gas supply source, and a plurality of second buffer chambers connected in series to the first buffer chamber and having the same predetermined volume smaller than the first buffer chamber A buffer chamber, and a downstream gas introduction pipe for introducing a source gas into the processing chamber from a selected one of the first buffer chamber and each second buffer chamber,
The volume of the second buffer chamber on the most upstream side including the connecting pipe connecting the first buffer chamber to the second buffer chamber located on the most upstream side, and the second buffer chamber located on the upstream side that are continuous with each other. A gas introducing device characterized in that the volume of the second buffer chamber on the downstream side including the connecting pipe connecting the first buffer chamber to the second buffer chamber located on the downstream side is made equal.
第1バッファ室から処理室に通じる下流側ガス導入管に、開閉弁を介在させて分岐管を接続し、この分岐管に、容積が可変の第3バッファ室を接続したことを特徴とする請求項1記載のガス導入装置。
A branch pipe is connected to a downstream side gas introduction pipe leading from the first buffer chamber to the processing chamber via an on-off valve, and a third buffer chamber having a variable volume is connected to the branch pipe. Item 2. The gas introduction device according to Item 1.
JP2012099870A 2012-04-25 2012-04-25 Gas introducing device Pending JP2013227613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012099870A JP2013227613A (en) 2012-04-25 2012-04-25 Gas introducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012099870A JP2013227613A (en) 2012-04-25 2012-04-25 Gas introducing device

Publications (1)

Publication Number Publication Date
JP2013227613A true JP2013227613A (en) 2013-11-07

Family

ID=49675530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012099870A Pending JP2013227613A (en) 2012-04-25 2012-04-25 Gas introducing device

Country Status (1)

Country Link
JP (1) JP2013227613A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108531889A (en) * 2017-03-02 2018-09-14 东京毅力科创株式会社 Gas supply device, method for supplying gas and film build method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108531889A (en) * 2017-03-02 2018-09-14 东京毅力科创株式会社 Gas supply device, method for supplying gas and film build method

Similar Documents

Publication Publication Date Title
JP2019209322A (en) Gas distribution system and reactor system including the same
JP5572515B2 (en) Film forming apparatus and film forming method
US10870920B2 (en) Gas supply device and valve device
US8372202B2 (en) Film deposition apparatus
KR101541361B1 (en) Fluidized bed ald appratus for nano-coated particle
TW201120235A (en) Batch CVD method and apparatus for semiconductor process
US8734901B2 (en) Film deposition method and apparatus
CN105925960A (en) Atomic layer deposition-based vacuum coating device for solar cell production
JP2013151720A (en) Vacuum film forming apparatus
TW200405401A (en) Thermal processing apparatus and method for evacuating a process chamber
JP2017179397A (en) Substrate treatment apparatus, supply method of gas, substrate treatment method, and film deposition method
US10607819B2 (en) Cleaning method and processing apparatus
JP2020506291A (en) Deposition or cleaning apparatus with movable structure and method of operation
JP2022500561A (en) Gas intake system, atomic layer deposition equipment and methods
US20070193637A1 (en) Systems and methods for controlling fluid flow
JP2013227613A (en) Gas introducing device
CN109686643A (en) Processing unit and component with diffusion path
JP2013532391A (en) Process chamber pressure control system and control method
WO2011114734A1 (en) Thin-film forming device
JP2011216906A (en) Substrate treatment apparatus and method of manufacturing semiconductor device
JP2005039123A (en) Chemical vapor deposition device
JP5357083B2 (en) Thin film forming apparatus and thin film forming method
JP2010202912A (en) Atomic layer deposition device and method therefor
TW201020445A (en) Gas supply system, pumping system, coating system, gas supply method, and pumping method
JP2011171468A (en) Thin film formation device and method for forming the thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160419