JP2013224475A - Particle for thermal spraying, method for forming thermally sprayed coating film, and thermally sprayed member - Google Patents

Particle for thermal spraying, method for forming thermally sprayed coating film, and thermally sprayed member Download PDF

Info

Publication number
JP2013224475A
JP2013224475A JP2012098056A JP2012098056A JP2013224475A JP 2013224475 A JP2013224475 A JP 2013224475A JP 2012098056 A JP2012098056 A JP 2012098056A JP 2012098056 A JP2012098056 A JP 2012098056A JP 2013224475 A JP2013224475 A JP 2013224475A
Authority
JP
Japan
Prior art keywords
particles
thermal spraying
spraying
particle
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012098056A
Other languages
Japanese (ja)
Inventor
Tadahiro Shimazu
忠弘 島津
Yoshiichi Mito
芳一 水戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUYO GIKEN KK
SHIMAZU KOGYO KK
Original Assignee
KYUYO GIKEN KK
SHIMAZU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUYO GIKEN KK, SHIMAZU KOGYO KK filed Critical KYUYO GIKEN KK
Priority to JP2012098056A priority Critical patent/JP2013224475A/en
Publication of JP2013224475A publication Critical patent/JP2013224475A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a particle for thermal spraying which provides a flat and smooth and compact thermally sprayed coating film having excellent flowability without the need of surface polishing processing.SOLUTION: A particle for thermal spraying is a particle used as a raw material for thermal spraying and is obtained by being subjected to surface treatment with at least one organosilicon compound selected from organoalkoxysilane, organohalogensilane, and organoalkoxy halogensilane, wherein an average particle diameter of the particle is 45 μm or less. The particle for thermal spraying has excellent flowability even when it is a small inorganic particle with a small particle diameter, and the surface of a coating film obtained by performing thermal spraying of the particle for thermal spraying becomes flat and smooth and compact and has excellent adhesion and corrosion resistance.

Description

本発明は、溶射材料の流動性を改善し、良質な特性の溶射皮膜を形成することのできる溶射用粒子及び該粒子を用いた溶射皮膜の形成方法及び溶射部材に関する。   The present invention relates to a thermal spraying particle capable of improving the fluidity of a thermal spray material and forming a thermal spray coating having good quality characteristics, a thermal spray coating forming method using the particle, and a thermal spray member.

従来より、金属やセラミックスからなる基材表面に、溶射用粒子を溶射することによって緻密な溶射皮膜を形成し、基材の耐熱性、耐摩耗性、耐食性を向上させることが行われている。溶射方式としては、プラズマ溶射や高速フレーム(HVOF)溶射などが広く用いられている。これらの溶射法において、溶射用粒子として金属や金属酸化物などの無機物からなる粒子が使用されている。   Conventionally, a dense thermal spray coating is formed by spraying particles for thermal spraying on the surface of a base material made of metal or ceramics to improve the heat resistance, wear resistance, and corrosion resistance of the base material. As the spraying method, plasma spraying, high-speed flame (HVOF) spraying, and the like are widely used. In these thermal spraying methods, particles made of an inorganic material such as metal or metal oxide are used as the particles for thermal spraying.

ところで、溶射用粒子は細い搬送管を介して溶射ガンまで供給されて、噴出されるが、溶射時のプラズマ炎またはフレーム炎まで溶射用粒子が安定、かつ、定量的に供給できることが要求される。これは、溶射用粒子の供給が不安定となると、形成される溶射皮膜の厚みが不均一性になるためである。   By the way, the thermal spraying particles are supplied to the thermal spraying gun through a thin conveying tube and ejected, but it is required that the thermal spraying particles can be stably and quantitatively supplied up to the plasma flame or flame flame at the time of thermal spraying. . This is because when the supply of thermal spraying particles becomes unstable, the thickness of the thermal spray coating formed becomes non-uniform.

一方、溶射用粒子は、一般に粒径の細かいものほど、基材との密着性が高く、気孔率の低い緻密な溶射皮膜が得られる。
しかしながら、溶射用粒子の供給は溶射用粒子の流動性に大きく影響され、粒径が細かくなりすぎると、供給機のホッパー内部、ノズルや搬送管内で閉塞しやすくなるなどの問題がある。特に溶射用粒子が30μm以下になると、閉塞の問題が発生しやすくなり、10μm程度以下になると閉塞の問題が顕著になる。
そのため、粒径の小さい溶射用粒子を用いると、細い搬送管を介して溶射ガンへの安定的な供給が困難となり、溶射皮膜が形成されなかったり、又は形成されても溶射皮膜は気孔率が高く、皮膜密着性が悪化して、皮膜の耐食性、耐摩耗性等が不十分となるなどの問題があった。
On the other hand, as the particles for thermal spraying generally, the finer the particle diameter, the higher the adhesion with the substrate and the lower the porosity, the dense thermal sprayed coating can be obtained.
However, the supply of the particles for thermal spraying is greatly affected by the fluidity of the particles for thermal spraying, and if the particle size becomes too fine, there is a problem that the particles are likely to be clogged inside the hopper of the feeder, the nozzle or the transport pipe. In particular, when the thermal spraying particle is 30 μm or less, the problem of clogging is likely to occur, and when it is about 10 μm or less, the problem of clogging becomes prominent.
For this reason, when spray particles having a small particle diameter are used, it becomes difficult to stably supply the spray gun through a thin conveying tube, and the spray coating is not formed or even if formed, the spray coating has a porosity. High film adhesion deteriorates, resulting in problems such as insufficient corrosion resistance and wear resistance of the film.

これまでにも、溶射用粒子の流動性改善を目的とした様々な検討が行われている。例えば、特許文献1には、希土類元素の球状粒子からなる平均粒径10μm以上80μm以下の溶射用粒子が開示されている。また、特許文献2には、全体として球状に形成されるとともに、その外周面の一部に凹部が形成され、粒子直径(D50)が10μm以上50μm以下である溶射用粒子が開示されている。
これらは粒子形状を好適化して流動性を向上させたものであるが、粒子形状が球状、あるいは凹部を含む球状の粒子を製造するには高コストになるという問題がある。また、上記方法では、流動性低下の原因になりやすい10μm未満の微粉末を除去しており、10μm未満の溶射用粒子に適用できない可能性が高い。
So far, various studies have been conducted for the purpose of improving the fluidity of thermal spray particles. For example, Patent Document 1 discloses particles for thermal spraying having an average particle diameter of 10 μm or more and 80 μm or less made of spherical particles of rare earth elements. Further, Patent Document 2 discloses a thermal spraying particle that is formed in a spherical shape as a whole and has a recess formed in a part of its outer peripheral surface, and has a particle diameter (D 50 ) of 10 μm or more and 50 μm or less. .
These have been improved in fluidity by optimizing the particle shape, but there is a problem that it is expensive to produce spherical particles having a spherical particle shape or a recess. Moreover, in the said method, the fine powder less than 10 micrometers which tends to cause a fluid fall is removed, and possibility that it cannot apply to the particle for thermal spraying less than 10 micrometers is high.

一方で、特許文献3には、平均粒径が5μm以下のタングステン炭化物等の炭化物硬質粒子相を50体積%以上と、Co等の金属相を10体積%以上含有し、かつ、各製品粒子が断面空孔率30%以下である溶射用粒子が開示されている。
平均粒径が5μm以下の炭化物硬質粒子を使用しているが、炭化物硬質粒子は物性的に流動性が高く、従来の金属や金属酸化物などの無機物に直ちに適用できないことに加え、得られる溶射皮膜は、炭化物硬質粒子を金属相で結着したいわゆるサーメットであり、金属や金属酸化物などの無機物を溶融させた緻密な溶射皮膜とは異なるものである。
On the other hand, Patent Document 3 contains 50% by volume or more of a hard carbide particle phase such as tungsten carbide having an average particle size of 5 μm or less, and 10% by volume or more of a metal phase such as Co, and each product particle contains Thermal spray particles having a cross-sectional porosity of 30% or less are disclosed.
Although carbide hard particles with an average particle size of 5 μm or less are used, the carbide hard particles have high physical properties and are not fluidly applicable to conventional inorganic materials such as metals and metal oxides. The coating is a so-called cermet in which hard carbide particles are bound with a metal phase, and is different from a dense sprayed coating in which an inorganic material such as metal or metal oxide is melted.

特開2002−332559号公報JP 2002-332559 A 特開2011−137194号公報JP 2011-137194 A 特開平5−86452号公報Japanese Patent Laid-Open No. 5-86452

以上のように、従来の溶射用粒子は、小粒径の粒子に対する流動性向上の点で十分といえず、改良の余地が残されていた。
かかる状況下、本発明の目的は、粒径の小さな無機物粒子の場合でも流動性に優れるとともに、表面研磨加工を施さなくとも、平滑で緻密な溶射皮膜を与える溶射用粒子を提供することである。また、本発明の他の目的は、該溶射用粒子を用いた溶射皮膜の形成方法及び溶射部材を提供することである。
As described above, conventional thermal spray particles are not sufficient in terms of improving fluidity with respect to small-diameter particles, and there is room for improvement.
Under such circumstances, an object of the present invention is to provide particles for thermal spraying that are excellent in fluidity even in the case of inorganic particles having a small particle diameter and that provide a smooth and dense thermal spray coating without being subjected to surface polishing. . Another object of the present invention is to provide a thermal spray coating forming method and thermal spray member using the thermal spray particles.

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、特定の有機ケイ素化合物によって表面処理された溶射用粒子を被覆することにより、小さい粒径の場合でも流動性に優れることを見出し、本発明に至った。   As a result of intensive studies to solve the above problems, the present inventor has found that by coating the particles for thermal spraying surface-treated with a specific organosilicon compound, the fluidity is excellent even in the case of a small particle size. The present invention has been reached.

すなわち、本発明は、以下の発明に係るものである。
<1> 溶射原料に用いられる粒子であって、
有機アルコキシシラン、有機ハロゲンシラン及び有機アルコキシハロゲンシランから選ばれた少なくとも1種以上の有機ケイ素化合物によって表面処理されてなり、かつ、前記粒子の平均粒径が、45μm以下である溶射用粒子。
<2> 安息角が、55°以下である前記<1>記載の溶射用粒子。
<3> 基材表面に、前記<1>又は<2>に記載の溶射用粒子を溶射する溶射皮膜の形成方法。
<4> 基材表面に、前記<1>又は<2>に記載の溶射用粒子を溶射してなる溶射皮膜を備える溶射部材。
That is, the present invention relates to the following inventions.
<1> Particles used for thermal spraying raw material,
Particles for thermal spraying that are surface-treated with at least one organic silicon compound selected from organic alkoxysilanes, organic halogen silanes, and organic alkoxyhalogen silanes, and whose average particle diameter is 45 μm or less.
<2> The particles for thermal spraying according to <1>, wherein an angle of repose is 55 ° or less.
<3> A method for forming a thermal spray coating, in which the thermal spraying particles according to <1> or <2> are sprayed on a substrate surface.
<4> A thermal spray member provided with a thermal spray coating formed by thermal spraying the thermal spray particles according to <1> or <2> on a substrate surface.

本発明の溶射用粒子は、無機物粒子が有機ケイ素化合物により表面処理されており、流動性に優れる。そのため、粒径が小さい場合であっても流動性を良好なものとすることができる。したがって、今まで粉体供給機で供給できなかった粒径の小さな粉体まで供給することが可能となり、その無機物粒子を基材上に溶射することで、平滑で緻密なため高硬度な溶射皮膜を得ることができる。また、本発明の溶射用粒子は表面が有機ケイ素化合物により表面処理されているため、湿度の影響を受けにくく、劣化が少なく長期保存安定性に優れている。
該溶射用粒子を溶射してなる溶射部材は、形成される皮膜表面が、平滑で緻密になり、密着性、耐摩耗性および耐食性に優れる。
The particles for thermal spraying of the present invention are excellent in fluidity because the inorganic particles are surface-treated with an organosilicon compound. Therefore, fluidity can be improved even when the particle size is small. Therefore, it is possible to supply powder with a small particle size that could not be supplied with a powder supply machine until now, and spraying the inorganic particles onto the base material enables smooth and dense sprayed coating with high hardness. Can be obtained. Further, since the surface of the thermal spray particles of the present invention is surface-treated with an organosilicon compound, it is hardly affected by humidity, has little deterioration, and is excellent in long-term storage stability.
The thermal spray member obtained by thermal spraying the thermal spray particles has a smooth and dense coating surface and is excellent in adhesion, wear resistance and corrosion resistance.

アルミナ粒子の平均粒径と、安息角の関係を示す図である。It is a figure which shows the relationship between the average particle diameter of an alumina particle, and a repose angle. アルミナ粒子の平均粒径と、流動時間の関係を示す図である。It is a figure which shows the relationship between the average particle diameter of an alumina particle, and a flow time. 表面未処理のアルミナ粒子の供給目盛と供給量の関係を示す図である。It is a figure which shows the relationship between the supply scale and supply amount of the surface untreated alumina particles. ジメチルジエトキシシランで表面処理したアルミナ粒子の供給目盛と供給量の関係を示す図である。It is a figure which shows the relationship between the supply scale and supply amount of the alumina particle surface-treated with dimethyldiethoxysilane. 実施例1及び実施例3の溶射部材における溶射皮膜並びにαアルミナ粒子のX線回折パターンであるIt is a X-ray-diffraction pattern of the thermal spray coating in the thermal spray member of Example 1 and Example 3, and alpha alumina particle

以下、本発明について例示物等を示して詳細に説明するが、本発明は以下の例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。   Hereinafter, the present invention will be described in detail with reference to examples and the like, but the present invention is not limited to the following examples and the like, and can be arbitrarily modified and implemented without departing from the gist of the present invention.

本発明は、溶射原料に用いられる粒子であって、有機アルコキシシラン、有機ハロゲンシラン及び有機アルコキシハロゲンシランから選ばれた少なくとも1種以上の有機ケイ素化合物によって表面処理されてなり、かつ、前記粒子の平均粒径が、45μm以下である溶射用粒子に関する。   The present invention is a particle used as a thermal spray raw material, which is surface-treated with at least one organic silicon compound selected from organic alkoxysilane, organic halogen silane, and organic alkoxyhalogen silane, The present invention relates to particles for thermal spraying having an average particle diameter of 45 μm or less.

本発明の溶射用粒子は、金属、金属酸化物、その他セラミックス等からなる無機物粒子(以下、これらを総称して単に「無機物粒子」と呼ぶ場合がある。)が有機ケイ素化合物によって表面処理され、その表面が有機ケイ素化合物で被覆されており、表面に存在する有機ケイ素化合物の潤滑性により、非被覆の粒子と比較して流動性が向上する。   In the particles for thermal spraying of the present invention, inorganic particles composed of metals, metal oxides, other ceramics and the like (hereinafter, these may be collectively referred to simply as “inorganic particles”) are surface-treated with an organosilicon compound, The surface is coated with an organosilicon compound, and fluidity is improved as compared to uncoated particles due to the lubricity of the organosilicon compound present on the surface.

このような無機物粒子としては、金属、金属酸化物、セラミックス等従来公知の溶射原料を使用することができる。
金属としては、例えば、Cu、Ni、Cr、Co、Fe、Al、Mo、W、C、B、Si、Y、Mg、Mn、P、Zn、V、Ta、Inなどから選ばれた1種以上の混合物又は合金体、自溶性合金系材料などが挙げられる。
As such inorganic particles, conventionally known spraying raw materials such as metals, metal oxides, ceramics and the like can be used.
Examples of the metal include one selected from Cu, Ni, Cr, Co, Fe, Al, Mo, W, C, B, Si, Y, Mg, Mn, P, Zn, V, Ta, In, and the like. The above mixtures or alloy bodies, self-fluxing alloy materials and the like can be mentioned.

また、金属酸化物は、例えば、アルミナ、チタニア、クロミア、グレイアルミナ、チタン酸アルミニウム、イットリア、アルミナ・ジルコニア、ジルコンサンド、カルシア安定化ジルコニア、マグネシア安定化ジルコニア、イットリア安定化ジルコニア、酸化ニッケルなどが挙げられる。
また、その他のセラミックスとして、例えば、Cr32、WC、TiC、SiC、ZrC、MoB2、B4C、TiB2、ZrB2、TiN、ZrN、Si34、AlNなどが挙げられ、これらは単体、又は金属との造粒粉、焼結粉などの形態で使用することができる。
この中でも、アルミナ、特にαアルミナが好適に使用される。
Examples of the metal oxide include alumina, titania, chromia, gray alumina, aluminum titanate, yttria, alumina / zirconia, zircon sand, calcia stabilized zirconia, magnesia stabilized zirconia, yttria stabilized zirconia, nickel oxide, and the like. Can be mentioned.
Examples of other ceramics include Cr 3 C 2 , WC, TiC, SiC, ZrC, MoB 2 , B 4 C, TiB 2 , ZrB 2 , TiN, ZrN, Si 3 N 4 , and AlN. These can be used alone or in the form of granulated powder or sintered powder with metal.
Among these, alumina, particularly α-alumina is preferably used.

上記無機物粒子は、1種または2種以上(金属、金属酸化物及びその他のセラミックスの併用含む。)を使用してもよい。
上記無機物粒子の形状は、特に限定されるものではなく、例えば、球状、角状、鱗片状のものを用いることができる。
The inorganic particles may be used alone or in combination of two or more (including a combination of metals, metal oxides and other ceramics).
The shape of the inorganic particles is not particularly limited, and for example, a spherical shape, a square shape, or a scale shape can be used.

本発明の溶射用粒子において、上記無機物粒子の大きさは、平均粒径で45μm以下であり、好ましくは25μm以下であり、より好ましくは10μm以下であり、特に好ましくは5μm以下である。なお、本明細書において、「平均粒径」は、レーザー回折粒度分布計で測定したD50の値を意味する。
粒度分布は、レーザー回折粒度分布計(LS230,BECKMAN-COULTER社製)を使用した。レーザー回折粒度分布計は、粒子群の各粒子径に依存した、波長750nmのレーザー光の回折パターンを得ることによって粒度分布を測定する。直径0.4μm〜900μmの粒子を測定することができる。
なお、溶射材料は平均粒径が45μmより大きくなると、流動性が良く、通常の粉体供給機でも充分に安定した粉体供給が可能になる傾向にある。
これらの粒度のものは、通常、流動性は劣るが、本発明に係る有機ケイ素化合物で表面処理された本発明の溶射用粒子とすることにより流動性の大きな向上が認められる。
In the particles for thermal spraying of the present invention, the inorganic particles have an average particle size of 45 μm or less, preferably 25 μm or less, more preferably 10 μm or less, and particularly preferably 5 μm or less. In the present specification, “average particle diameter” means the value of D 50 measured with a laser diffraction particle size distribution meter.
For the particle size distribution, a laser diffraction particle size distribution analyzer (LS230, manufactured by BECKMAN-COULTER) was used. The laser diffraction particle size distribution meter measures the particle size distribution by obtaining a diffraction pattern of laser light having a wavelength of 750 nm depending on each particle diameter of the particle group. Particles having a diameter of 0.4 μm to 900 μm can be measured.
Note that when the average particle diameter of the thermal spray material is larger than 45 μm, the fluidity is good and the powder supply tends to be sufficiently stable even with a normal powder feeder.
Those having these particle sizes are usually inferior in fluidity, but a significant improvement in fluidity is observed by using the particles for thermal spraying of the present invention surface-treated with the organosilicon compound according to the present invention.

また、上記無機物粒子の大きさの下限は、表面処理の本発明の溶射用粒子の流動性が保たれる範囲で決定され、使用される有機ケイ素化合物の種類にもよるが、通常、平均粒径0.5μm以上、好ましくは、0.8μm以上、より好ましくは平均粒径1μm以上である。   In addition, the lower limit of the size of the inorganic particles is determined within a range in which the fluidity of the thermal spraying particles of the present invention for surface treatment is maintained, and depends on the type of the organosilicon compound used, but usually the average particle size The diameter is 0.5 μm or more, preferably 0.8 μm or more, and more preferably the average particle diameter is 1 μm or more.

また、本発明の溶射用粒子は、安息角が55°以下であることが好ましく、より好ましくは50°以下であり、さらに好ましくは、45°以下である。ここで、安息角とは、一定の高さの漏斗から水平な基板の上に落下させ、生成した円錐状堆積物の直径及び高さから算出して得られる低角を意味し、JIS R 9301−2−2のアルミナ粉末の安息角に準拠して測定することができる。
安息角が60°を超えると、流動性が低下して、粉末供給機のホッパー内において、粉体がブリッジを形成して供給できなくなる。
The thermal spray particles of the present invention preferably have an angle of repose of 55 ° or less, more preferably 50 ° or less, and still more preferably 45 ° or less. Here, the angle of repose means a low angle obtained by dropping from a funnel having a certain height onto a horizontal substrate and calculating from the diameter and height of the generated conical deposit. JIS R 9301 It can be measured according to the angle of repose of 2-2 alumina powder.
If the angle of repose exceeds 60 °, the fluidity is lowered and the powder cannot form and supply a bridge in the hopper of the powder feeder.

表面処理に使用される有機ケイ素化合物は、有機アルコキシシラン、有機ハロゲンシラン、および有機アルコキシハロゲンシランが挙げられる。
これらの具体的な例としては、メチルトリクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン、トリフロロプロピルトリクロロシラン、テトラメトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン、ヘキサメチルジシラザン、トリフルオロプロピルトリメトキシシラン、エチルトリエトキシシランなどが挙げられる。これらの有機ケイ素化合物は単独あるいは複数で使用できる。
本発明の溶射用粒子は、これらの有機ケイ素化合物による表面処理によって流動性は改善されるが、流動性の改善の程度からすると、メチルジクロロシラン、ジメチルジクロロシラン、フェニルトリクロロシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジメチルジエトキシシラン、ジフェニルジエトキシシランが好ましい。
Examples of the organosilicon compound used for the surface treatment include organoalkoxysilanes, organohalogen silanes, and organoalkoxyhalogen silanes.
Specific examples include methyltrichlorosilane, methyldichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, diphenyldichlorosilane, trifluoropropyltrichlorosilane, tetramethoxysilane, methyltrimethoxysilane, and dimethyldimethoxysilane. , Phenyltrimethoxysilane, diphenyldimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, decyltrimethoxysilane, hexa Examples include methyldisilazane, trifluoropropyltrimethoxysilane, and ethyltriethoxysilane. These organosilicon compounds can be used alone or in combination.
In the particles for thermal spraying of the present invention, the fluidity is improved by the surface treatment with these organosilicon compounds, but considering the degree of improvement in fluidity, methyldichlorosilane, dimethyldichlorosilane, phenyltrichlorosilane, dimethyldimethoxysilane, Phenyltrimethoxysilane, dimethyldiethoxysilane, and diphenyldiethoxysilane are preferred.

本発明の溶射用粒子において、上記無機物粒子を表面処理する有機ケイ素化合物の量は、有機ケイ素化合物の種類にもよるが、無機物粒子の重量に対して、通常、0.01〜5.0wt%であり、好ましくは0.01〜1.0wt%である。0.01wt%未満では潤滑性の向上が認められず、流動性改善しないおそれがあり、また5.0wt%を越えてもそれ以上の効果は認められづらい。   In the particles for thermal spraying according to the present invention, the amount of the organic silicon compound for surface-treating the inorganic particles is usually 0.01 to 5.0 wt% based on the weight of the inorganic particles, although it depends on the type of the organic silicon compound. Preferably, it is 0.01 to 1.0 wt%. If it is less than 0.01 wt%, improvement in lubricity is not recognized, and there is a possibility that fluidity may not be improved, and even if it exceeds 5.0 wt%, it is difficult to recognize any further effect.

上記無機物粒子を有機ケイ素化合物で表面処理する方法は、上記無機物粒子と上記有機ケイ素化合物とを接触させることにより行うことができる。
接触方法は、特に限定するものでないが、例えば、有機ケイ素化合物を適当な溶媒に溶解させた溶液に上記無機物粒子を浸漬した後に溶媒を除去して乾燥させる方法、有機ケイ素化合物を直接あるいは有機ケイ素化合物を含む溶液を上記無機物粒子に噴霧し表面に付着させる方法が挙げられる。
The surface treatment of the inorganic particles with an organosilicon compound can be performed by bringing the inorganic particles and the organosilicon compound into contact with each other.
The contact method is not particularly limited. For example, a method in which the inorganic particles are immersed in a solution in which an organic silicon compound is dissolved in an appropriate solvent and then the solvent is removed and dried, or the organic silicon compound is directly or organic silicon. The method of spraying the solution containing a compound on the said inorganic particle and making it adhere to the surface is mentioned.

表面処理によって形成される無機物粒子の表面を被覆する被覆物質は、有機ケイ素化合物と粒子表面の水分との反応により得られた重合反応生成物である。なお、有機ケイ素化合物の重合には無機物粒子に吸着している水分が通常用いられる。
本発明の溶射用粒子を製造するには、前記無機物粒子の表面で有機ケイ素化合物と水分を反応させ、その重合生成物で粒子表面を被覆する。
このような被覆処理にあたっては、有機ケイ素化合物をそのまま用いてもよく、また該化合物を有機溶媒又はpH調整した水溶液に分散又は溶解して用いてもよい。このような有機ケイ素化合物又はその溶液、分散液に無機物粒子を分散し、この懸濁液を静置又は撹拌して無機物粒子の表面に有機ケイ素化合物を被覆、又は反応結合させる。
ここで用いられる有機溶剤としては、有機ケイ素化合物を溶解可能なものであれば、特に限定はなく、例えば、メタノール、エタノール等のアルコール系溶媒、ヘキサン等の脂肪族炭化水素系溶媒、トルエン等の芳香族炭化水素系溶媒を用いることができる。また、pH調整した水溶液は、水に酢酸を添加してpH=3〜5に調整した水溶液を用いてもよい。有機溶媒を留去する方法としては、特に限定はなく、公知の種々の溶媒留去法を用いることができ、例えば、エバポレーターを用いる方法、室温〜100℃程度で揮発させる方法、常圧または減圧蒸留する方法、噴霧乾燥法、流動床乾燥法等を用いることができる。
処理温度は、室温以上で無機物粒子相互の反応が生じない温度以下にまで昇温することが好ましい。
また、乾式で行う製造方法としては、一般に用いられるボールミル、振動ミル、遊星粉砕機、ジェットミル、機械撹拌ブレード式ミキサー、容器回転式ミキサー等の混合機を用いて平均粒径45μm以下の無機物粒子に前述の有機ケイ素化合物を用いてもよい。
The coating substance which coat | covers the surface of the inorganic particle formed by surface treatment is a polymerization reaction product obtained by reaction of an organosilicon compound and the water | moisture content of a particle | grain surface. For the polymerization of the organosilicon compound, water adsorbed on the inorganic particles is usually used.
In order to produce the particles for thermal spraying according to the present invention, the surface of the inorganic particles is reacted with an organosilicon compound and moisture, and the particle surface is coated with the polymerization product.
In such coating treatment, the organosilicon compound may be used as it is, or the compound may be dispersed or dissolved in an organic solvent or a pH-adjusted aqueous solution. Inorganic particles are dispersed in such an organosilicon compound or a solution or dispersion thereof, and the suspension is allowed to stand or stir to coat or react bond the organosilicon compound on the surface of the inorganic particles.
The organic solvent used here is not particularly limited as long as it can dissolve the organosilicon compound. For example, alcohol solvents such as methanol and ethanol, aliphatic hydrocarbon solvents such as hexane, toluene and the like. Aromatic hydrocarbon solvents can be used. The aqueous solution adjusted to pH may be an aqueous solution adjusted to pH = 3 to 5 by adding acetic acid to water. The method for distilling off the organic solvent is not particularly limited, and various known solvent distilling methods can be used. For example, a method using an evaporator, a method of volatilizing at about room temperature to 100 ° C., normal pressure or reduced pressure A distillation method, a spray drying method, a fluidized bed drying method, or the like can be used.
The treatment temperature is preferably raised to a temperature not lower than room temperature and not higher than a temperature at which the inorganic particles do not react with each other.
In addition, as a dry production method, inorganic particles having an average particle size of 45 μm or less using a commonly used mixer such as a ball mill, a vibration mill, a planetary pulverizer, a jet mill, a mechanical stirring blade mixer, a container rotating mixer, etc. The above-mentioned organosilicon compound may be used.

好適な製造方法の具体例を挙げると、有機ケイ素化合物として、ジメチルジエトキシシランを、無機物粒子の重量に対して0.01〜5wt%の範囲(例えば、0.05〜5g)になるように、エタノール等の有機溶媒に混合溶解した溶液中に、無機物粒子(例えば、100g)を添加する。得られた混合溶液を、常温から100℃くらいで0.1〜2時間加熱・撹拌後、20〜150℃で乾燥させて有機溶媒を留去し、無機物粒子表面に有機ケイ素化合物の皮膜を有する溶射用粒子を得ることができる。   As a specific example of a suitable production method, dimethyldiethoxysilane is used as the organosilicon compound in a range of 0.01 to 5 wt% (for example, 0.05 to 5 g) with respect to the weight of the inorganic particles. Inorganic particles (for example, 100 g) are added to a solution mixed and dissolved in an organic solvent such as ethanol. The obtained mixed solution is heated and stirred from room temperature to about 100 ° C. for 0.1 to 2 hours, dried at 20 to 150 ° C. to distill off the organic solvent, and has an organic silicon compound film on the surface of the inorganic particles. Thermal spray particles can be obtained.

本発明の溶射用粒子は、上述のように表面処理により流動性が向上しており、従来公知のプラズマ溶射、高速フレーム(HVOF)溶射、減圧プラズマ溶射、コールドスプレー溶射等に好適に適用できる。
基材表面に、上述の溶射用粒子をプラズマ溶射または、高速フレーム溶射、コールドスプレー溶射、減圧プラズマ溶射等にて皮膜を形成することで得ることができる。ここで、プラズマガスとしては、特に限定されるものではなく、窒素/水素、アルゴン/水素、アルゴン/ヘリウム、アルゴン/窒素、アルゴン単体、窒素単体等を用いることができる。
高速フレーム溶射は、ケロシン、軽油、灯油、プロピレン、酸素などを用いて溶射を行う。
コールドスプレー溶射は、ヘリウム、ハロゲン、窒素、空気などを用いて溶射を行う。
なお、溶射条件等については、特に限定はなく、基材、溶射用粒子等の具体的材質、得られる溶射部材の用途等に応じて適宜設定すればよい。
The thermal spray particles of the present invention have improved fluidity by surface treatment as described above, and can be suitably applied to conventionally known plasma spraying, high-speed flame (HVOF) spraying, reduced pressure plasma spraying, cold spray spraying, and the like.
It can be obtained by forming a film on the surface of the substrate by plasma spraying the above-mentioned particles for spraying, high-speed flame spraying, cold spray spraying, low pressure plasma spraying, or the like. Here, the plasma gas is not particularly limited, and nitrogen / hydrogen, argon / hydrogen, argon / helium, argon / nitrogen, argon alone, nitrogen alone, or the like can be used.
High-speed flame spraying is performed using kerosene, light oil, kerosene, propylene, oxygen, or the like.
Cold spray spraying is performed using helium, halogen, nitrogen, air, or the like.
The thermal spraying conditions and the like are not particularly limited, and may be set as appropriate according to specific materials such as a base material and thermal spraying particles, the use of the resulting thermal spray member, and the like.

本発明の溶射用粒子の流動度は、50秒/50g以下であることが好ましく、より好ましくは、30秒/50g以下程度が目安であるが、最終的には粉末供給機において、脈動がなく、定量供給できることが条件である。
ここでいう「流動度」は、JIS Z2504(金属粉の見掛密度試験方法)にて測定した値を意味する。
The fluidity of the particles for thermal spraying of the present invention is preferably 50 seconds / 50 g or less, more preferably about 30 seconds / 50 g or less. However, in the powder feeder, there is no pulsation in the end. The condition is that a fixed amount can be supplied.
Here, “fluidity” means a value measured according to JIS Z2504 (apparent density test method for metal powder).

次に本発明の溶射方法及び溶射部材について説明する。
本発明の溶射方法は、基材表面に、上述の本発明の溶射用粒子を溶射することを特徴とする。また、本発明の溶射部材は、本発明の溶射方法によって得られ、基材表面に、上述の本発明の溶射用粒子を溶射してなる溶射皮膜を備えることを特徴とする。
本発明の溶射用粒子は、流動性が高いため、粉末供給機のホッパー内や細い搬送管を介して溶射ガンでの閉塞が起こりづらい。そのため、10μm以下の小粒径の溶射用粒子を用いても、脈動なく、安定的な供給が可能となる。そのため、該溶射用粒子を使用する本発明の溶射方法では、形成される溶射皮膜は、平滑で緻密であり、気孔率が低く、基材との密着性が良好となる。
Next, the thermal spraying method and thermal spray member of the present invention will be described.
The thermal spraying method of the present invention is characterized in that the above-mentioned thermal spraying particles of the present invention are sprayed on the surface of a substrate. Moreover, the thermal spray member of the present invention is obtained by the thermal spraying method of the present invention, and is characterized by including a thermal spray coating formed by spraying the above-described thermal spraying particles of the present invention on the surface of a base material.
Since the particles for thermal spraying of the present invention have high fluidity, it is difficult for the thermal spraying gun to be clogged with the inside of a hopper of a powder feeder or a thin conveying tube. Therefore, even if spray particles having a small particle size of 10 μm or less are used, stable supply can be achieved without pulsation. Therefore, in the thermal spraying method of the present invention using the particles for thermal spraying, the sprayed coating formed is smooth and dense, has a low porosity, and has good adhesion to the substrate.

本発明の溶射方法において、溶射方式も特に限定はなく、従来公知のプラズマ溶射、高速フレーム(HVOF)溶射、減圧プラズマ溶射、コールドスプレー溶射等に好適に適用できる。
溶射方式の中でも、高速フレーム(HVOF)溶射では、従来プラズマ溶射でしか皮膜形成できなかったアルミナ、酸化クロム、イットリア等の無機物粒子についても小粒径の溶射用粒子を用いることで溶射が可能となるため、組成変化の少ない溶射皮膜を作製できるようになり、特に好適な溶射方式である。
なお、溶射条件等については、特に限定はなく、基材の種類、溶射用粒子における無機物粒子の種類及び粒径、表面処理に使用される有機ケイ素化合物の種類、得られる溶射部材の用途等を考慮して適宜設定すればよい。
In the thermal spraying method of the present invention, the thermal spraying method is not particularly limited, and can be suitably applied to conventionally known plasma spraying, high-speed flame (HVOF) spraying, reduced pressure plasma spraying, cold spray spraying, and the like.
Among the thermal spraying methods, high-speed flame (HVOF) spraying enables spraying of inorganic particles such as alumina, chromium oxide, and yttria, which could only be formed by plasma spraying, by using small spray particles. Therefore, it becomes possible to produce a sprayed coating with little composition change, which is a particularly suitable spraying method.
The spraying conditions and the like are not particularly limited, and the type of base material, the type and particle size of inorganic particles in the particles for spraying, the type of organosilicon compound used for the surface treatment, the use of the resulting sprayed member, etc. It may be set as appropriate in consideration.

本発明の溶射部材において、基材は、特に限定はなく、一般の金属、合金、セラミックス、ガラス等の溶射用基材を用いることができる。例えば、具体的には、アルミニウム、鉄、ニッケル、クロム、スズ、シリコン、銅、亜鉛等の金属やこれらの合金、酸化物、窒化物、炭化物等が挙げられる。   In the thermal spray member of the present invention, the base material is not particularly limited, and a thermal spray base material such as a general metal, alloy, ceramics, or glass can be used. For example, specific examples include metals such as aluminum, iron, nickel, chromium, tin, silicon, copper, and zinc, alloys thereof, oxides, nitrides, and carbides.

本発明の溶射部材において、基材表面に形成される溶射皮膜の厚さは溶射プロセスによって異なるため、特に限定されないが、通常、100〜3000μmであり、好ましくは200〜500μmである。溶射皮膜の厚さが薄すぎると、溶射皮膜の耐食性、耐摩耗性等が不十分となり、溶射皮膜を形成した効果が得られなくなるおそれがある。一方、溶射皮膜の厚さが厚すぎると、溶射皮膜にクラックが生じやすくなったり、剥離が起こりやすくなる場合がある。   In the thermal spray member of the present invention, the thickness of the thermal spray coating formed on the surface of the base material varies depending on the thermal spraying process, and thus is not particularly limited, but is usually 100 to 3000 μm, preferably 200 to 500 μm. If the thickness of the sprayed coating is too thin, the corrosion resistance and wear resistance of the sprayed coating may be insufficient, and the effect of forming the sprayed coating may not be obtained. On the other hand, if the thermal spray coating is too thick, cracks may easily occur in the thermal spray coating, and peeling may occur easily.

以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is changed.

使用した原材料、評価方法は次の通りである。
(アルミナ粒子)
(1)アルミナ粒子A(AX3−32、マイクロン)
平均粒径:3μm
形状 :球状
(2)アルミナ粒子B(昭和電工製#3000)
平均粒径:3μm
形状 :矩形
(3)アルミナ粒子C(AX10−32、マイクロン)
平均粒径:10μm
形状 :球状
(4)アルミナ粒子D(17T、昭和電工)
平均粒径:12μm
形状 :矩形
(5)アルミナ粒子E(16T、昭和電工)
平均粒径:21μm
形状 :矩形

(有機ケイ素化合物)
(1)フェニルトリクロロシラン
(2)3−メタクリロキシプロピルトリメトキシシラン
(3)ジメチルジエトキシシラン
(4)メチルジクロロシラン
(5)ビニルトリメトキシシラン
(6)ジフェニルジエトキシシラン
(7)ジメチルジメトキシシラン
(8)ジメチルジクロロシラン
(9)フェニルトリメトキシシラン
(10)3−グリシドキシプロピルトリメトキシシラン
(11)3−アミノプロピルトリメトキシシラン
(12)加水分解性基含有シロキサン
(13)3−アミノプロピルメチルジメトキシシラン
(14)3−アクリロキシプロピルトリメトキシシラン

粉末供給機:TPA製TPF−1012
The raw materials used and the evaluation method are as follows.
(Alumina particles)
(1) Alumina particles A (AX3-32, Micron)
Average particle size: 3 μm
Shape: Spherical (2) Alumina particles B (# 3000, Showa Denko)
Average particle size: 3 μm
Shape: Rectangular (3) Alumina particles C (AX10-32, Micron)
Average particle size: 10 μm
Shape: Spherical (4) Alumina particles D (17T, Showa Denko)
Average particle size: 12 μm
Shape: Rectangular (5) Alumina particles E (16T, Showa Denko)
Average particle size: 21 μm
Shape: Rectangular

(Organic silicon compound)
(1) phenyltrichlorosilane (2) 3-methacryloxypropyltrimethoxysilane (3) dimethyldiethoxysilane (4) methyldichlorosilane (5) vinyltrimethoxysilane (6) diphenyldiethoxysilane (7) dimethyldimethoxysilane (8) Dimethyldichlorosilane (9) Phenyltrimethoxysilane (10) 3-Glycidoxypropyltrimethoxysilane (11) 3-Aminopropyltrimethoxysilane (12) Hydrolyzable group-containing siloxane (13) 3-Amino Propylmethyldimethoxysilane (14) 3-acryloxypropyltrimethoxysilane

Powder feeder: TPF-1012 made by TPA

溶射用粒子及び溶射皮膜の評価方法は以下の通りである。
(1)流動性
JIS−Z2504に準拠した方法で、流動性を評価した。具体的には、漏斗の底部に栓をし、溶射用粒子50gを上記漏斗内に入れ、底部の栓を外すと同時に振動数60Hzで振幅0.4mmの振動を与え、粒子の全量が流下するのに要する秒数をn=5で測定し、その測定結果を算術平均した。
(2)安息角
JIS R 9301−2−2のアルミナ粉末の安息角に準拠した方法で、一定の高さの漏斗から水平な基板の上に落下させ、生成した円錐状堆積物の直径及び高さから低角を算出し、この低角をn=5で測定し、その測定結果を算術平均した。
(3)皮膜硬度
マイクロビッカース硬度計(MVK-A、明石製作所製)を用いて皮膜硬度の測定を行った。試験荷重は2.94N、保持時間15秒とし、皮膜断面の硬度をn=5で測定し、その測定結果を算術平均した。
(4)皮膜表面粗さ
接触式表面粗さ計による表面粗さ計(SJ-201P、ミツトヨ) を用いて皮膜表面の粗さの測定を行った。皮膜表面の粗さをn=5で測定し、その測定結果を算術平均した。
(5)結晶性評価(X線回折)
X線回折装置(X’Pert PRO MPD、パナリティカル)を用いて、アルミナ粉末およびアルミナ皮膜(HVOF溶射で作製した皮膜、プラズマ溶射で作製した皮膜)について、X線回折を行い、結晶構造の同定を行った。
The evaluation method of the particles for thermal spraying and the thermal spray coating is as follows.
(1) Fluidity The fluidity was evaluated by a method based on JIS-Z2504. Specifically, the bottom of the funnel is plugged, 50 g of the thermal spray particles are put into the funnel, and the bottom plug is removed, and at the same time, a vibration with a vibration frequency of 60 Hz and an amplitude of 0.4 mm is applied, and the total amount of particles flows down. The number of seconds required for the measurement was measured at n = 5, and the measurement results were arithmetically averaged.
(2) Angle of repose By the method according to the angle of repose of alumina powder of JIS R 9301-2-2, it was dropped on a horizontal substrate from a funnel of a certain height, and the diameter and height of the generated conical deposits The low angle was calculated from this, the low angle was measured at n = 5, and the measurement results were arithmetically averaged.
(3) Film hardness Film hardness was measured using a micro Vickers hardness meter (MVK-A, manufactured by Akashi Seisakusho). The test load was 2.94 N, the holding time was 15 seconds, the hardness of the film cross section was measured at n = 5, and the measurement results were arithmetically averaged.
(4) Film surface roughness The film surface roughness was measured using a surface roughness meter (SJ-201P, Mitutoyo) using a contact-type surface roughness meter. The roughness of the film surface was measured at n = 5, and the measurement results were arithmetically averaged.
(5) Crystallinity evaluation (X-ray diffraction)
Using an X-ray diffractometer (X'Pert PRO MPD, Panalical), X-ray diffraction is performed on alumina powder and alumina coating (coating prepared by HVOF spraying and coating prepared by plasma spraying) to identify the crystal structure Went.

評価1:有機ケイ素化合物の種類と流動性評価の関係
溶射用粒子1
無機物粒子としてアルミナ粒子A、有機ケイ素化合物としてフェニルトリクロロシランを用いた。
フェニルトリクロロシラン1.0gをエタノール100ml中に混合溶解した溶液中に、アルミナの粉末(平均粒径3μm)100gを添加し、80℃で1時間加熱撹拌後、100℃で乾燥させ、表面にフェニルトリクロロシラン皮膜を有する溶射用粒子1を得た。
表1に使用した有機ケイ素化合物、目視での粉体状態、流動性評価、及び安息角の結果をまとめて示す。
Evaluation 1: Relationship between kind of organosilicon compound and fluidity evaluation Particle 1 for thermal spraying
Alumina particles A were used as the inorganic particles, and phenyltrichlorosilane was used as the organosilicon compound.
100 g of alumina powder (average particle size 3 μm) was added to a solution obtained by mixing 1.0 g of phenyltrichlorosilane in 100 ml of ethanol, heated and stirred at 80 ° C. for 1 hour, dried at 100 ° C., and phenyl on the surface. Thermal spray particles 1 having a trichlorosilane coating were obtained.
Table 1 summarizes the results of the organosilicon compounds used, the visual powder state, the fluidity evaluation, and the angle of repose.

溶射用粒子2〜15
有機ケイ素化合物として表1に示す有機ケイ素化合物を使用した以外は、溶射用粒子1の製造方法と同様の方法で溶射用粒子2〜15を得た。
表1に使用した有機ケイ素化合物、目視での粉体状態、流動性評価、及び安息角の結果をまとめて示す。
Thermal spray particles 2-15
Thermal spray particles 2 to 15 were obtained in the same manner as the thermal spray particle 1 manufacturing method except that the organosilicon compound shown in Table 1 was used as the organosilicon compound.
Table 1 summarizes the results of the organosilicon compounds used, the visual powder state, the fluidity evaluation, and the angle of repose.

溶射用粒子16、17
無機物粒子としてアルミナ粒子A、Bを表面処理せず、溶射用粒子16、17としてそのまま使用した。表1に目視での粉体状態、流動性評価、及び安息角の結果をまとめて示す。
Thermal spray particles 16, 17
Alumina particles A and B were not subjected to surface treatment as inorganic particles, and were used as spray particles 16 and 17 as they were. Table 1 summarizes the results of visual powder state, fluidity evaluation, and angle of repose.

評価2:アルミナ粒子の平均粒径と、安息角及び流動時間の関係
有機ケイ素化合物として、ジメチルジエトキシシランを使用し、無機物粒子として、粒径の異なるアルミナ粒子A〜Eを用いて、アルミナ粒子の平均粒径と、安息角及び流動時間の関係を評価した。
図1にアルミナ粒子の平均粒径と安息角の関係を示す。また、図2にアルミナ粒子の平均粒径と流動時間(秒/50g)の関係を示す。
図1に示されるように、すべての粒径のアルミナ粒子において、未処理のアルミナ粒子よりも、ジメチルジエトキシシランで表面処理したアルミナ粒子は、安息角が小さくなっていることがわかる。
また、流動性についても、未処理のアルミナ粒子よりも、ジメチルジエトキシシランで表面処理したアルミナ粒子の方が明らかに大きいことが分かった。特に、平均粒度が小さくなり、10μm以下であると、流動時間が速くなり、未処理のアルミナ粒子との差が顕著になることが分かった。
Evaluation 2: Relationship between average particle diameter of alumina particles, angle of repose, and flow time Alumina particles using dimethyldiethoxysilane as the organosilicon compound and alumina particles A to E having different particle diameters as the inorganic particles The relationship between the average particle diameter, the angle of repose and the flow time was evaluated.
FIG. 1 shows the relationship between the average particle diameter of alumina particles and the angle of repose. FIG. 2 shows the relationship between the average particle diameter of alumina particles and the flow time (seconds / 50 g).
As shown in FIG. 1, it can be seen that alumina particles having a surface treatment with dimethyldiethoxysilane have smaller repose angles than untreated alumina particles in alumina particles of all particle sizes.
It was also found that the alumina particles surface-treated with dimethyldiethoxysilane were clearly larger in terms of fluidity than untreated alumina particles. In particular, it was found that when the average particle size is small and the particle size is 10 μm or less, the flow time becomes fast, and the difference from untreated alumina particles becomes remarkable.

評価3:流動性向上粉末の供給量曲線の結果
図3に未処理粉末の粉末供給機の供給曲線を示す。また、図4に処理粉末の粉末供給機の供給曲線を示す。
未処理粉末は平均粒径3μmと10μmのアルミナ粉末が粉末供給機で定量供給することができなかったが、12μmと21μmのアルミナ粉末は定量供給することができた。流動性が向上した処理粉末は、平均粒径3μmと10μmのアルミナ粉末を定量供給することが可能となった。12μmと21μmのアルミナ粉末も供給量が向上した。したがって、粉末を処理することで定量供給性能が向上した。
Evaluation 3: Result of Supply Flow Curve of Flowability Improvement Powder FIG. 3 shows a supply curve of a powder supply machine for untreated powder. Moreover, the supply curve of the powder supply machine of a process powder is shown in FIG.
As for the untreated powder, alumina powder having an average particle diameter of 3 μm and 10 μm could not be quantitatively supplied by a powder feeder, but 12 μm and 21 μm alumina powder could be quantitatively supplied. The treated powder with improved fluidity can quantitatively supply alumina powder having an average particle size of 3 μm and 10 μm. The supply amount of 12 μm and 21 μm alumina powder was also improved. Therefore, the quantitative supply performance was improved by processing the powder.

評価4:溶射部材における溶射皮膜の評価
基材としてSS400を使用し、以下の条件で溶射を行って、表2に示す実施例1〜3の溶射部材を得た。

実施例1(プラズマ溶射)
溶射用粒子:3μmアルミナ粒子B+ジメチルジエトキシシラン
装置:TPS-100
溶射条件:
出力:200V×500A
プラズマガス:Ar/H2 =70/70 slm
粉末供給量: 4.2 kg/h
実施例2(プラズマ溶射)
溶射用粒子:21μmアルミナ粒子E+ジメチルジエトキシシラン
装置:TPS-100
溶射条件:
出力:200V×500A
プラズマガス:Ar/H2 =70/70 slm
粉末供給量: 4.5 kg/h
実施例3(HVOF溶射)
溶射用粒子:3μmアルミナ粒子B+ジメチルジエトキシシラン
装置:JP5000
溶射条件:
出力:86psi(灯油/酸素)
粉末供給量: 3.8 kg/h
Evaluation 4: Evaluation of thermal spray coating on thermal spray member Using SS400 as a base material, thermal spray was performed under the following conditions to obtain thermal spray members of Examples 1 to 3 shown in Table 2.

Example 1 (plasma spraying)
Thermal spray particles: 3 μm alumina particles B + dimethyldiethoxysilane Equipment: TPS-100
Thermal spraying conditions:
Output: 200V x 500A
Plasma gas: Ar / H 2 = 70/70 slm
Powder supply rate: 4.2 kg / h
Example 2 (plasma spraying)
Thermal spray particles: 21 μm alumina particles E + dimethyldiethoxysilane Equipment: TPS-100
Thermal spraying conditions:
Output: 200V x 500A
Plasma gas: Ar / H 2 = 70/70 slm
Powder supply: 4.5 kg / h
Example 3 (HVOF spraying)
Thermal spray particles: 3 μm alumina particles B + dimethyldiethoxysilane Equipment: JP5000
Thermal spraying conditions:
Output: 86psi (kerosene / oxygen)
Powder supply: 3.8 kg / h

(1)皮膜硬度及び皮膜表面粗さの評価
実施例1〜3の溶射部材における溶射皮膜の硬度及び表面粗さを評価した結果を表2に示す。
平均粒径3μmのプラズマ皮膜が平均硬度Hv=1027で、21μmのプラズマ皮膜が平均硬度Hv1012であった。粒径の細かい方が硬度の高い緻密な皮膜を形成していることがわかった。
平均粗さは、21μmのプラズマ皮膜のRa=4.38μmであり、3μmのプラズマ皮膜がRa=3.91μmであり、3μmのHVOF皮膜はRa=1.68μmであった。この結果から、HVOF皮膜ではプラズマ皮膜より非常に粗さが小さく、平滑な皮膜が形成できることがわかった。プラズマ皮膜においても平均粒径が細かい方が粗さの小さい皮膜が形成できることがわかった。
(1) Evaluation of film hardness and film surface roughness Table 2 shows the results of evaluating the hardness and surface roughness of the sprayed film in the thermal spray members of Examples 1 to 3.
The plasma film with an average particle diameter of 3 μm had an average hardness Hv = 1027, and the plasma film with a diameter of 21 μm had an average hardness Hv1012. It was found that a finer film with a higher particle size formed a higher hardness.
The average roughness was Ra = 4.38 μm for the 21 μm plasma coating, Ra = 3.91 μm for the 3 μm plasma coating, and Ra = 1.68 μm for the 3 μm HVOF coating. From this result, it was found that the HVOF coating is much smaller in roughness than the plasma coating and can form a smooth coating. It was also found that a film with a smaller average particle diameter can be formed with a smaller roughness in the plasma film.

(2)溶射皮膜の結晶性評価
実施例1(プラズマ溶射皮膜、アルミナ粒子B3μm)、実施例3(HVOF溶射皮膜、アルミナ粒子B3μm)について、溶射皮膜の結晶性を評価した。
図5に実施例1及び実施例3の溶射皮膜のX線回折パターンを示す。なお、図5には比較のため、溶射なしのアルミナ粒子B(α-Al2O3)3μmのX線回折パターンも併せて示した。
α-Al2O3の粒子で作製されたHVOF溶射皮膜は、プラズマ溶射皮膜に比べ、結晶性が高く、結晶相がαリッチであり、γ-Al2O3への変態が非常に起こりにくい皮膜を形成できることがわかった。微粉末をHVOFで皮膜を形成すると組成変化の少ない皮膜が作製できることがわかった。よく溶融したプラズマ溶射皮膜は、γリッチの皮膜になっていた。
(2) Crystallinity Evaluation of Thermal Sprayed Coating For Example 1 (plasma sprayed coating, alumina particle B 3 μm) and Example 3 (HVOF sprayed coating, alumina particle B 3 μm), the crystallinity of the sprayed coating was evaluated.
FIG. 5 shows X-ray diffraction patterns of the thermal spray coatings of Example 1 and Example 3. For comparison, FIG. 5 also shows an X-ray diffraction pattern of 3 μm of alumina particles B (α-Al 2 O 3 ) without spraying.
HVOF sprayed coatings made with α-Al 2 O 3 particles have higher crystallinity and α-rich crystal phase than plasma sprayed coatings, and transformation to γ-Al 2 O 3 is very unlikely It was found that a film could be formed. It was found that a film with little composition change can be produced by forming a film of fine powder with HVOF. The well-melted plasma sprayed coating was a γ-rich coating.

現在、溶射技術は、半導体業界ではプラズマエッチング装置の内部冶具材の耐プラズマエロージョン対策として適用され、自動車業界ではピストン関連部品、酸素センサーに適用され、印刷業界ではアニロックスロールに適用され、さらに発電業界では蒸気発生用ボイラチューブの延命対策として耐食性及び耐摩耗性を向上させるために適用されている。 これらの用途においてプロセス及び材料開発の期待は高く、皮膜の緻密化、密着力向上、薄膜化による皮膜性能の向上などが望まれている。
このような状況下、本発明の溶射用粒子は、流動性に優れ、安定的な供給が可能であるため、平滑で緻密な溶射皮膜を与えることができ、工業的に有望である。
Currently, thermal spraying technology is applied in the semiconductor industry as an anti-plasma erosion countermeasure for internal jig materials in plasma etching equipment, is applied to piston-related parts and oxygen sensors in the automotive industry, is applied to anilox rolls in the printing industry, and is also used in the power generation industry. Is applied to improve corrosion resistance and wear resistance as a measure to extend the life of steam generating boiler tubes. In these applications, the expectation of process and material development is high, and it is desired to improve the film performance by densifying the film, improving the adhesion, and reducing the film thickness.
Under such circumstances, the thermal spray particles of the present invention are excellent in fluidity and can be stably supplied. Therefore, a smooth and dense thermal spray coating can be provided, which is industrially promising.

Claims (4)

溶射原料に用いられる粒子であって、
有機アルコキシシラン、有機ハロゲンシラン及び有機アルコキシハロゲンシランから選ばれた少なくとも1種以上の有機ケイ素化合物によって表面処理されてなり、かつ、前記粒子の平均粒径が、45μm以下であることを特徴とする溶射用粒子。
Particles used for thermal spraying raw material,
It is surface-treated with at least one organic silicon compound selected from organic alkoxysilanes, organic halogen silanes, and organic alkoxy halogen silanes, and the average particle diameter of the particles is 45 μm or less. Thermal spray particles.
安息角が、55°以下である請求項1記載の溶射用粒子。   The thermal spraying particle according to claim 1, wherein an angle of repose is 55 ° or less. 基材表面に、請求項1又は2に記載の溶射用粒子を溶射することを特徴とする溶射皮膜の形成方法。   A method for forming a thermal spray coating, comprising spraying the particles for thermal spraying according to claim 1 or 2 onto a substrate surface. 基材表面に、請求項1又は2に記載の溶射用粒子を溶射してなる溶射皮膜を備えることを特徴とする溶射部材。   A thermal spray member comprising a thermal spray coating formed by thermal spraying the thermal spray particles according to claim 1 on a substrate surface.
JP2012098056A 2012-04-23 2012-04-23 Particle for thermal spraying, method for forming thermally sprayed coating film, and thermally sprayed member Pending JP2013224475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012098056A JP2013224475A (en) 2012-04-23 2012-04-23 Particle for thermal spraying, method for forming thermally sprayed coating film, and thermally sprayed member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012098056A JP2013224475A (en) 2012-04-23 2012-04-23 Particle for thermal spraying, method for forming thermally sprayed coating film, and thermally sprayed member

Publications (1)

Publication Number Publication Date
JP2013224475A true JP2013224475A (en) 2013-10-31

Family

ID=49594721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012098056A Pending JP2013224475A (en) 2012-04-23 2012-04-23 Particle for thermal spraying, method for forming thermally sprayed coating film, and thermally sprayed member

Country Status (1)

Country Link
JP (1) JP2013224475A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016074935A (en) * 2014-10-03 2016-05-12 富士電機株式会社 Composite powder material for flame spray and flame sprayed insulation base plate
JP2019094565A (en) * 2017-11-22 2019-06-20 三菱重工業株式会社 Film deposition apparatus and film deposition method
CN112410719A (en) * 2020-10-20 2021-02-26 安徽华飞机械铸锻有限公司 Wear-resistant heat-resistant steel
US11097509B2 (en) 2016-08-30 2021-08-24 Corning Incorporated Siloxane plasma polymers for sheet bonding
US11123954B2 (en) 2014-01-27 2021-09-21 Corning Incorporated Articles and methods for controlled bonding of thin sheets with carriers
US11167532B2 (en) 2015-05-19 2021-11-09 Corning Incorporated Articles and methods for bonding sheets with carriers
US11192340B2 (en) 2014-04-09 2021-12-07 Corning Incorporated Device modified substrate article and methods for making
US11331692B2 (en) 2017-12-15 2022-05-17 Corning Incorporated Methods for treating a substrate and method for making articles comprising bonded sheets
US11535553B2 (en) 2016-08-31 2022-12-27 Corning Incorporated Articles of controllably bonded sheets and methods for making same
US11905201B2 (en) 2015-06-26 2024-02-20 Corning Incorporated Methods and articles including a sheet and a carrier

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11123954B2 (en) 2014-01-27 2021-09-21 Corning Incorporated Articles and methods for controlled bonding of thin sheets with carriers
US11192340B2 (en) 2014-04-09 2021-12-07 Corning Incorporated Device modified substrate article and methods for making
JP2016074935A (en) * 2014-10-03 2016-05-12 富士電機株式会社 Composite powder material for flame spray and flame sprayed insulation base plate
US11167532B2 (en) 2015-05-19 2021-11-09 Corning Incorporated Articles and methods for bonding sheets with carriers
US11660841B2 (en) 2015-05-19 2023-05-30 Corning Incorporated Articles and methods for bonding sheets with carriers
US11905201B2 (en) 2015-06-26 2024-02-20 Corning Incorporated Methods and articles including a sheet and a carrier
US11097509B2 (en) 2016-08-30 2021-08-24 Corning Incorporated Siloxane plasma polymers for sheet bonding
US11535553B2 (en) 2016-08-31 2022-12-27 Corning Incorporated Articles of controllably bonded sheets and methods for making same
JP2019094565A (en) * 2017-11-22 2019-06-20 三菱重工業株式会社 Film deposition apparatus and film deposition method
US11331692B2 (en) 2017-12-15 2022-05-17 Corning Incorporated Methods for treating a substrate and method for making articles comprising bonded sheets
CN112410719A (en) * 2020-10-20 2021-02-26 安徽华飞机械铸锻有限公司 Wear-resistant heat-resistant steel
CN112410719B (en) * 2020-10-20 2023-01-20 安徽华飞机械铸锻有限公司 Wear-resistant heat-resistant steel

Similar Documents

Publication Publication Date Title
JP2013224475A (en) Particle for thermal spraying, method for forming thermally sprayed coating film, and thermally sprayed member
KR100751742B1 (en) Spray powder, thermal spraying process using it, and sprayed coating
Lin et al. Characterization of alumina–3 wt.% titania coating prepared by plasma spraying of nanostructured powders
TW555691B (en) Aqueous dispersion, a process for the preparation and the use thereof
EP2428592B1 (en) Method for forming zirconia film
CN107500782B (en) Preparation method of modified antifriction wear-resistant corrosion-resistant nano ceramic powder material for additive manufacturing
CN107849675B (en) Thermal spray powder, thermal spray method, and thermally sprayed coating
US8318261B2 (en) Thermally sprayed Al2O3 coatings having a high content of corundum without any property-reducing additives, and method for the production thereof
KR20070104495A (en) A method for smoothing the surface of a protective coating
Mehar et al. Effect of Y2O3 addition on tribological properties of plasma sprayed Al2O3-13% TiO2 coating
TW201341590A (en) Yttrium oxide coating
JP2004300555A (en) Thermal spraying powder, and method for forming thermal sprayed film using he same
KR20110118939A (en) Plasma resistant crystal ceramic coating film and manufacturing method of the same
CN109396453A (en) A kind of preparation method of dispersion-strengtherning aluminium bronze spherical powder
Ibrahim et al. Investigation of nanostructured and conventional alumina–titania coatings prepared by air plasma spray process
Wang et al. Electrical and mechanical properties of nano-structured TiN coatings deposited by vacuum cold spray
CN106488892B (en) Roller including abradable coating
JP2013136814A (en) Ceramic spray deposit and method for manufacturing the same
Deesom et al. Fabrication and properties of NiCr/CNTs nanocomposite coatings prepared by high velocity oxy-fuel spraying
Lu et al. An organic silicone composite coating for protection of Ti-6Al-4V alloy: Oxidation behavior at 600 ºC in dry air
Van Nguyen et al. Sealing Treatment of Plasma-Sprayed Cr 3 C 2-NiCr/Al 2 O 3-TiO 2 Coating by Aluminum Phosphate Sealant Containing Al 2 O 3 Nanoparticles
Liu et al. Microstructure and properties of AC-HVAF sprayed Ni60/WC composite coating
JP4650598B2 (en) Particles for oxide spraying for semiconductor manufacturing apparatus, manufacturing method thereof, and member for semiconductor manufacturing apparatus
CN110451920A (en) Polytetrafluoroethylene (PTFE) enhances gluing ceramic coating and preparation method thereof
JP7382377B2 (en) tantalum carbide composite