JP4650598B2 - Particles for oxide spraying for semiconductor manufacturing apparatus, manufacturing method thereof, and member for semiconductor manufacturing apparatus - Google Patents

Particles for oxide spraying for semiconductor manufacturing apparatus, manufacturing method thereof, and member for semiconductor manufacturing apparatus Download PDF

Info

Publication number
JP4650598B2
JP4650598B2 JP2001136440A JP2001136440A JP4650598B2 JP 4650598 B2 JP4650598 B2 JP 4650598B2 JP 2001136440 A JP2001136440 A JP 2001136440A JP 2001136440 A JP2001136440 A JP 2001136440A JP 4650598 B2 JP4650598 B2 JP 4650598B2
Authority
JP
Japan
Prior art keywords
oxide
particles
spraying
coating
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001136440A
Other languages
Japanese (ja)
Other versions
JP2002332559A (en
Inventor
孝雄 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2001136440A priority Critical patent/JP4650598B2/en
Publication of JP2002332559A publication Critical patent/JP2002332559A/en
Application granted granted Critical
Publication of JP4650598B2 publication Critical patent/JP4650598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造装置用酸化物溶射用粒子およびその製造方法、ならびに該粒子を用いた半導体製造装置用部材に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
従来から、金属、セラミックス等に金属酸化物を溶射することにより被膜を形成し、耐熱性、耐磨耗性、耐食性を付与することが行なわれている。
このような溶射被膜を形成するための溶射用粒子の製造方法として、(1)原料を電気炉で溶融し、冷却凝固後、粉砕機で微粉化し、その後分級することにより粒度調整を行って溶融粉砕粉を得る方法、(2)原料を焼結後、粉砕機で微粉化し、その後分級することにより粒度調整を行って焼結粉砕粉を得る方法、(3)原料粉末を有機バインダーに加えてスラリー化し、噴霧乾燥型造粒機を用いて造粒後、焼成し、場合によっては分級することにより粒度調整を行って造粒粉を得る方法、(4)溶液から晶出沈殿により粉体を作製する方法等が挙げられる。
【0003】
また、上記溶射用粒子に求められる特性としては、▲1▼溶射時のプラズマ炎またはフレーム炎まで材料が安定、かつ、定量的に供給できること、▲2▼溶射時に(プラズマ炎またはフレーム炎中で)粒子形状が崩れないこと、▲3▼溶射時に(プラズマ炎またはフレーム炎中で)粒子が完全に溶融すること、等が要求されている。
【0004】
ところで、上記溶射用粒子の供給は搬送チューブ等の細い流路を介して溶射ガンまで供給されることから、安定的かつ定量的に供給を行えるか否かは、溶射用粒子の粉体物性中、流動性にかなり影響されることとなる。
しかしながら、従来の製法にて作製した溶射用粒子は、一般的に、粒径を小さくしていくと流動性が悪化するものである。したがって、該小粒径粒子を用いて溶射被膜を形成しようとした場合、粉体供給が困難となることが多く、仮に粉体供給ができたとしても断続的な供給となるため、良好な特性を有する被膜を得ることができず、耐食性、耐摩耗性、被膜強度等に問題が出てくるという欠点があった。
【0005】
このような溶射被膜の耐食性、耐摩耗性、強度等は、基板となる下地と密接に関係するものであるが、耐食性に関しては、特に溶射被膜の表面状態に強く依存するため、凹凸の少ない、滑らかな表面を有する被膜が好ましい。このため、一般的に、溶射後に表面研磨仕上げ等を施し、表面を滑らかにすることが行われていた。
しかしながら、表面研磨加工を施すと、溶射被膜中のボイドに研磨くずが残留する虞があるため、例えば、半導体製造装置などのパーティクルフリーが要求される用途において問題となる。したがって、表面研磨加工を施さなくても凹凸なく、滑らかな表面状態を有する被膜を与える溶射用粒子の開発が求められていた。
【0006】
本発明は、このような事情に鑑みてなされたものであり、小さい粒径の場合でも流動性に優れるとともに、表面研磨加工を施さなくとも、滑らかで凹凸のない溶射被膜を与える半導体製造装置用酸化物溶射用粒子およびその製造方法、ならびに該粒子を用いた半導体製造装置用部材を提供することを目的とする。
【0007】
【課題を解決するための手段および発明の実施の形態】
本発明者らは、上記目的を達成するために鋭意検討を行った結果、酸化物溶射用粒子において、該粒子表面に脂肪酸被膜および/または脂肪酸化合物被膜を形成することで、小さい粒径の場合でも流動性に優れ、該溶射用粒子を溶射してなる被膜表面が、従来のものよりも平滑かつ高純度になり、密着性および耐食性に優れることを見いだすとともに、上記酸化物溶射用粒子を製造する際に、使用する脂肪酸の量を所定範囲に制御することで、良好な脂肪酸被膜および/または脂肪酸化合物被膜を有する酸化物溶射用粒子が得られることを見いだして、本発明を完成した。
【0008】
すなわち、本発明は、下記の半導体製造装置用酸化物溶射用粒子およびその製造方法、ならびに半導体製造装置用部材を提供する。
1.基材の表面に溶射被膜を形成してなる半導体製造装置用部材の前記溶射被膜の形成に用いる酸化物溶射用粒子であって、表面に脂肪酸被膜および/または脂肪酸化合物被膜を有する酸化イットリウム希土類酸化物およびイットリウムアルミニウムガーネットから選ばれる酸化物であり、酸化物の平均粒径が1〜60μmであり、該酸化物粉末の最表面から100nmまでの炭素濃度が0.5〜50wt%であることを特徴とする半導体製造装置用酸化物溶射用粒子。
2.酸化物が酸化イットリウムであることを特徴とする1の半導体製造装置用酸化物溶射用粒子。
3.基材の表面に溶射被膜を形成してなる半導体製造装置用部材の前記溶射被膜の形成に用いる酸化物溶射用粒子の製造方法であって、平均粒径1〜60μmの酸化イットリウム希土類酸化物およびイットリウムアルミニウムガーネットから選ばれる酸化物粒子表面を脂肪酸および/または脂肪酸化合物で処理して前記酸化物粒子表面に脂肪酸被膜を形成し、この際、前記脂肪酸を前記酸化物粒子の重量に対して0.05〜5wt%用いて、酸化物粉末の最表面から100nmまでの炭素濃度が0.5〜50wt%である酸化物溶射用粒子を得ることを特徴とする半導体製造装置用酸化物溶射用粒子の製造方法。
4.脂肪酸を0.1〜3wt%用いることを特徴とする3の酸化物溶射用粒子の製造方法。
5.化物と脂肪酸を混合し0.1〜2時間撹拌後、20〜50℃で乾燥させたことを特徴とする3または4の酸化物溶射用粒子の製造方法。
6.化物が酸化イットリウムであることを特徴とする3〜5のいずれかの酸化物溶射用粒子の製造方法。
7.基材と、この基材表面に1または2の酸化物溶射用粒子を溶射してなる被膜と、を備えてなる半導体製造装置用部材。
【0009】
以下、本発明についてさらに詳しく説明する。
本発明に係る酸化物溶射用粒子は、表面に脂肪酸被膜および/または脂肪酸化合物被膜を有することを特徴とする。
このような酸化物溶射用粒子は、表面に脂肪酸被膜および/または脂肪酸化合物被膜を有しているため、表面撥水性を有するとともに、大気中の水分の吸着を抑止できることとなる。このため、一般的に酸化物溶射用粒子等に見られる、吸着水による粉体の流動性の低下を防止できるとともに、該被膜が潤滑剤の役割を果たし、流動性が改善されることとなる。
【0010】
また、該被膜を有する結果、粒子内部の炭素濃度よりも表面の炭素濃度が高くなるが、酸化物溶射用粒子の最表面から100nmまでの炭素濃度が0.5〜50wt%、特に1〜30wt%であることが好ましい。この炭素濃度は、後に詳述する製法において、脂肪酸使用量を酸化物重量に対して0.05〜5wt%の範囲にすることで、適宜調整することができる。
なお、上記炭素濃度は、例えば、XPS等でエッチングしながら分析定量することで測定することができる。
【0011】
本発明における溶射用粒子を構成する酸化物としては、Y希土類元素およびイットリウムアルミニウムガーネットから選ばれる1種もしくは2種以上の酸化物、またはこれらの各元素の複合酸化物を用いることができる。特に、Yもしくは希土類元素であるEu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luの酸化物、またはこれらの複合酸化物を用いることが好ましい。
上記酸化物の形状は、特に限定されるものではなく、例えば、球状、角状、鱗片状のものを用いることができる。
【0012】
また、上記酸化物溶射用粒子の平均粒径は、特に限定されるものではないが、例えば、0.1〜100μmのものを好適に用いることができる。本発明の酸化物溶射用粒子は、粒径が小さい場合においても流動性に優れるという特徴を有しているため、特に、平均粒径1〜60μmのものを用いることが好ましい。
【0013】
上記脂肪酸被膜を構成する脂肪酸としては、特に限定はなく、例えば、炭素数5〜20の脂肪酸を用いることができる。作業性および流動性等を考慮すると、炭素数10〜20の脂肪酸を用いることが好ましい。これらの中でも、特に、飽和脂肪酸が好ましく、例えば、ステアリン酸、ラウリン酸等を好適に用いることができる。これらの脂肪酸は、1種単独でまたは2以上を混合して用いることができる。また、脂肪酸化合物としては、該脂肪酸の塩等が挙げられる。
なお、脂肪酸中にアルカリ金属元素、アルカリ土類金属元素を含まないものが好適である。
【0014】
また、上記酸化物溶射用粒子は、当該溶射用粒子を溶射してなる被膜を高純度にし、有色斑点の発生を防止するとともに、当該被膜を有する溶射部材に十分な耐食性を付与することを考慮すると、鉄族元素(Fe,Ni,Co等)、アルカリ金属元素(Na,K等)、およびアルカリ土類金属元素(Mg,Ca等)の総量が酸化物換算で20ppm以下であることが好ましい。
なお、鉄族元素、アルカリ金属元素、アルカリ土類金属元素の測定は、酸化物溶射用粒子を酸分解した後、ICP分光分析(誘導結合高周波プラズマ分光分析)で測定したものである。
【0015】
上記酸化物溶射用粒子の製造方法は、特に限定されるものではなく、▲1▼原料となる酸化物粒子を直接脂肪酸で処理して脂肪酸被膜および/または脂肪酸化合物被膜を形成する方法、▲2▼脂肪酸を有機溶媒に溶解してなる溶液と、酸化物粒子とを混合した後、有機溶媒を留去して酸化物粒子表面に脂肪酸被膜および/または脂肪酸化合物被膜を形成する方法等を用いることができる。
この際、脂肪酸を酸化物粒子の重量に対して0.05〜5wt%、特に0.1〜3wt%用いることが好ましい。
なお、脂肪酸、酸化物粒子を構成する酸化物については、先に述べたものと同様のものを用いることができる。
【0016】
ここで、脂肪酸量が0.05%未満であると、得られる溶射用粒子の流動性が低下する虞があり、該粒子を用いてなる溶射被膜表面が平滑性に劣る場合があるとともに、特に10μm以下の小粒径の場合には、フィーダーにかからない虞がある。一方、脂肪酸量が5wt%を超えると、被膜中に余剰炭素が残留してしまい、耐食性が悪くなる虞があるとともに、炭素単体が残り溶射被膜上に斑点が生じる虞がある。
【0017】
上記▲2▼の方法を採用する場合に、使用可能な有機溶媒としては、脂肪酸を溶解可能なものであれば、特に限定はなく、例えば、メタノール、エタノール等のアルコール系溶媒、ヘキサン等の脂肪族炭化水素系溶媒、トルエン等の芳香族炭化水素系溶媒を用いることができる。
また、有機溶媒を留去する方法としては、特に限定はなく、公知の種々の溶媒留去法を用いることができ、例えば、室温〜100℃程度で揮発させる方法、常圧または減圧蒸留する方法、噴霧乾燥法、流動床乾燥法等を用いることができる。
【0018】
上記▲2▼の方法の具体例を挙げると、ステアリン酸等の脂肪酸を酸化物粒子の重量に対して0.05〜5wt%の範囲となる量(例えば、0.05〜5g)を、エタノール等の有機溶媒に混合溶解した溶液中に、酸化物粒子(例えば、100g)を添加する。得られた混合溶液を、0.1〜2時間撹拌後、20〜50℃で乾燥させて有機溶媒を留去し、表面に脂肪酸被膜および/または脂肪酸化合物被膜を有する酸化物溶射用粒子を得ることができる。
【0019】
本発明に係る溶射部材は、基材と、この基材表面に上述の酸化物溶射用粒子を溶射してなる被膜と、を備えることを特徴とする。
ここで、基材としては、特に限定はなく、金属、合金、セラミックス、ガラス等を用いることができ、具体的には、Al、Ni、Cr、Zn、Zr、およびこれらの合金、アルミナ、窒化アルミ、窒化珪素、炭化珪素、石英ガラス、ジルコニア等が挙げられる。
【0020】
上記基材表面の溶射被膜の厚さは50〜500μmが好ましく、より好ましくは150〜300μmである。被膜の厚さが50μm未満であると、当該被膜を有する溶射部材を耐食性部材として使用する場合、わずかの腐食で交換する必要が生じる虞がある。一方、被膜の厚さが500μmを超えると、厚すぎて被膜内部での剥離が生じやすくなる虞がある。
【0021】
また、溶射部材の用途によって異なるが、被膜の表面粗さが60μm以下であることが好ましく、より好ましくは40μm以下である。表面粗さが60μmを超えると、溶射部材の使用時における発塵の原因となる虞があるとともに、例えば、半導体製造プロセスにおけるプラズマプロセス用部材に使用した場合には、プラズマ接触面積が大きくなるため、耐食性が悪くなる虞があり、腐食の進行によりパーティクルが発生する虞がある。
すなわち、被膜の表面粗さを60μm以下とすることで、良好な耐食性が得られるとともに、膜表面に付着したパーティクルが少なくなる。したがって、腐食性ガス雰囲気下においても腐食が起こりにくく、当該溶射部材を耐食性部材として好適に使用することができる。
【0022】
本発明の溶射部材は、基材表面に、上述の酸化物溶射用粒子をプラズマ溶射または減圧プラズマ溶射等にて被膜を形成することで得ることができる。ここで、プラズマガスとしては、特に限定されるものではなく、窒素/水素、アルゴン/水素、アルゴン/ヘリウム、アルゴン/窒素等を用いることができる。
なお、溶射条件等については、特に限定はなく、基材、酸化物溶射用粒子等の具体的材質、得られる溶射部材の用途等に応じて適宜設定すればよい。
【0023】
本発明の溶射部材においても、被膜中の鉄族元素、アルカリ金属元素、アルカリ土類金属元素の総量が酸化物換算で20ppm以下であることが好ましいが、これは上述した各元素の総量が20ppm以下の酸化物溶射用粒子を用いることで達成できる。
すなわち、鉄族元素、アルカリ金属元素、アルカリ土類金属元素の総量が酸化物換算で20ppm以上混入している溶射用粒子を用いて被膜を形成した場合、被膜には溶射用粒子に混入しているだけの鉄族元素、アルカリ金属元素、アルカリ土類金属元素がそのまま混入することになるが、上述のような酸化物溶射用粒子を用いることで、このような問題は生じないこととなる。
【0024】
また、溶射部材の被膜中における上記各金属元素の総量が、酸化物換算で20ppm以下であれば、汚染が少ないため、当該溶射部材を高純度であることが要求される装置にも問題なく使用することができる。具体的には、液晶製造装置用部材、半導体製造装置用部材等として好適に使用することができる。
【0025】
【実施例】
以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は、下記の実施例に限定されるものではない。
【0026】
参考例1]
ステアリン酸0.5gをエタノール200ml中に混合溶解した溶液中に、酸化アルミニウムの粉末(平均粒径50μm)100gを添加し、20分間撹拌後、50℃で乾燥させて表面にステアリン酸被膜を有する酸化物溶射用粒子を得た。
得られた酸化物溶射用粒子を金属Inに埋込みした測定試料を用い、XPS(AXIS−HSi、島津KRATOS製)にて最表面から100nmまでの炭素濃度を測定した。具体的には、試料の測定領域を200×600μmエリアとし、照射X線としてMgを用い、最表面からArガスで200×600μmのエリアの測定領域を削りながら、深さ100μmまでの炭素濃度を調べ、最表面から100μmまでの平均炭素濃度を算出した。その結果を表1に示す。
また、得られた酸化物溶射用粒子について、JIS−Z2504−1979に準拠した方法で、流動性を評価した。具体的には、漏斗の底部に栓をし、酸化物溶射用粒子50gを上記漏斗内に入れ、底部の栓を外すと同時に振動数60Hzで振幅0.4mmの振動を与え、粒子の全量が流下するのに要する秒数をn=5で測定した。測定結果の平均値を表1に示す。
【0027】
[実施例
ステアリン酸2.0gをエタノール200ml中に混合溶解した溶液中に、酸化イットリウムの造粒紛(平均粒径32μm)100gを添加し、20分間撹拌後、50℃で乾燥させて表面にステアリン酸被膜を有する酸化物溶射用粒子を得た。
得られた酸化物溶射用粒子について、参考例1と同様にして、炭素濃度測定、流動性試験を行った。結果を表1に示す。
【0028】
[実施例
ステアリン酸0.2gを用いた以外は、実施例と同様にして、表面にステアリン酸被膜を有する酸化物溶射用粒子を得た。
得られた酸化物溶射用粒子について、参考例1と同様の流動性試験を行った。結果を表1に示す。
【0029】
[実施例
ステアリン酸0.02gを用いた以外は、実施例と同様にして、表面にステアリン酸被膜を有する酸化物溶射用粒子を得た。
得られた酸化物溶射用粒子について、参考例1と同様の流動性試験を行った。結果を表1に示す。
【0030】
[実施例
ステアリン酸2.0gをエタノール200ml中に混合溶解した溶液中に、酸化イットリウムの球状粉(平均粒径5μm)100gを添加し、20分間撹拌後、50℃で乾燥させて表面にステアリン酸被膜を有する酸化物溶射用粒子を得た。
得られた酸化物溶射用粒子について、参考例1と同様の流動性試験を行った。結果を表1に示す。
【0031】
[実施例
ステアリン酸0.2gを用いた以外は、実施例と同様にして、表面にステアリン酸被膜を有する酸化物溶射用粒子を得た。
得られた酸化物溶射用粒子について、参考例1と同様の流動性試験を行った。結果を表1に示す。
【0032】
[実施例
ステアリン酸0.02gを用いた以外は、実施例と同様にして、表面にステアリン酸被膜を有する酸化物溶射用粒子を得た。
得られた酸化物溶射用粒子について、参考例1と同様の流動性試験を行った。結果を表1に示す。
【0033】
[実施例
イットリウムアルミニウムガーネット(YAG)の造粒粉(平均粒径40μm)100gを用いた以外は、参考例1と同様にして酸化物溶射用粒子を得た。
得られた酸化物溶射用粒子について、参考例1と同様にして、炭素濃度測定、流動性試験を行った。結果を表1に示す。
【0034】
[実施例
ステアリン酸1.0gおよび酸化イットリウムの超微粉(平均粒径0.5μm)50gを用いた以外は、参考例1と同様にして酸化物溶射用粒子を得た。
得られた酸化物溶射用粒子について、粒子の使用量を10g、振動振幅を0.8mmにした以外は、参考例1と同様にして流動性試験を行った。結果を表1に示す。
【0035】
[比較例1]
ステアリン酸を用いない以外は、参考例1と同様にして酸化物溶射用粒子を得た。
得られた酸化物溶射用粒子について、参考例1と同様にして、炭素濃度測定、流動性試験を行った。結果を表1に示す。
【0036】
[比較例2]
ステアリン酸を用いない以外は、実施例と同様にして酸化物溶射用粒子を得た。
得られた酸化物溶射用粒子について、参考例1と同様の流動性試験を行った。結果を表1に示す。
【0037】
[比較例3]
ステアリン酸を用いない以外は、実施例と同様にして酸化物溶射用粒子を得た。
得られた酸化物溶射用粒子について、参考例1と同様の流動性試験を行った。結果を表1に示す。
【0038】
[比較例4]
ステアリン酸を用いない以外は、実施例と同様にして酸化物溶射用粒子を得た。
得られた酸化物溶射用粒子について、参考例1と同様の流動性試験を行った。結果を表1に示す。
【0039】
[比較例5]
ステアリン酸を用いない以外は、実施例と同様にして酸化物溶射用粒子を得た。
得られた酸化物溶射用粒子について、実施例と同様の流動性試験を行った。結果を表1に示す。
【0040】
【表1】

Figure 0004650598
【0041】
表1に示されるように、実施例1〜で得られた各酸化物溶射用粒子は、その表面にステアリン酸被膜を有しているため、表面の平滑性に優れており、それぞれ対応する比較例の粒子よりも流動性に優れていることがわかる。特に、平均粒径0.5μmという超微粉の場合でも、良好な流動性を示していることがわかる(実施例参照)。
【0042】
[実施例
実施例で得られた酸化物溶射用粒子を用い、アルミニウム製基材上にアルゴン・水素ガスを用いて該粒子をプラズマ溶射して厚さ215μmの溶射被膜を形成した。
得られた被膜の表面粗さRaを、JIS B0601に準拠した方法により測定したところ、5μmと極めて平滑であった。
【0043】
【発明の効果】
以上に述べたように、本発明によれば、表面に脂肪酸被膜および/または脂肪酸化合物被膜を有する酸化物溶射用粒子であるから、粒径が小さい場合であっても流動性を良好なものとすることができる。したがって、該溶射用粒子を基材上に溶射することで、表面研磨加工を施さなくとも、滑らかで凹凸のない溶射被膜を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a particle for oxide spraying for a semiconductor manufacturing apparatus , a manufacturing method thereof, and a member for a semiconductor manufacturing apparatus using the particle.
[0002]
[Background Art and Problems to be Solved by the Invention]
2. Description of the Related Art Conventionally, a coating is formed by spraying a metal oxide on metal, ceramics or the like to impart heat resistance, wear resistance, and corrosion resistance.
As a manufacturing method of the particles for thermal spraying for forming such a thermal spray coating, (1) The raw material is melted in an electric furnace, cooled and solidified, and then pulverized by a pulverizer, and then classified to adjust the particle size. A method of obtaining pulverized powder, (2) A method of obtaining a sintered pulverized powder by adjusting the particle size by pulverizing with a pulverizer after the raw material is sintered, and then classifying, (3) Adding the raw material powder to an organic binder A method of obtaining a granulated powder by adjusting the particle size by slurrying, granulating using a spray-drying type granulator, firing, and optionally classifying, (4) Powder by crystallization precipitation from solution Examples of the method are as follows.
[0003]
In addition, the characteristics required for the particles for thermal spraying are as follows: (1) the material can be stably and quantitatively supplied up to the plasma flame or flame flame during spraying, and (2) during the thermal spraying (in plasma flame or flame flame). ) It is required that the particle shape does not collapse, and (3) the particles are completely melted during spraying (in a plasma flame or flame flame).
[0004]
By the way, since the supply of the above-mentioned spraying particles is supplied to the spraying gun through a thin flow path such as a transfer tube, whether or not the spraying can be stably and quantitatively supplied depends on the powder physical properties of the spraying particles. It will be significantly affected by liquidity.
However, the thermal spray particles produced by the conventional production method generally deteriorate in fluidity as the particle size is reduced. Therefore, when a sprayed coating is formed using the small particle size particles, it is often difficult to supply the powder, and even if the powder can be supplied, the supply is intermittent. Thus, there is a drawback that a film having the above cannot be obtained, and problems arise in corrosion resistance, abrasion resistance, film strength, and the like.
[0005]
Corrosion resistance, wear resistance, strength, etc. of such a sprayed coating are closely related to the substrate as a substrate, but the corrosion resistance is strongly dependent on the surface state of the sprayed coating in particular, so there are few irregularities, A coating having a smooth surface is preferred. For this reason, in general, a surface polishing finish or the like is applied after spraying to smooth the surface.
However, when surface polishing is performed, there is a possibility that polishing waste may remain in the voids in the sprayed coating, and thus, for example, there is a problem in applications that require particle free, such as semiconductor manufacturing equipment. Accordingly, there has been a demand for the development of thermal spray particles that can provide a coating film having a smooth surface state without unevenness even without surface polishing.
[0006]
The present invention has been made in view of such circumstances, and is excellent in fluidity even in the case of a small particle diameter, and for a semiconductor manufacturing apparatus that provides a sprayed coating that is smooth and has no irregularities without being subjected to surface polishing . It is an object of the present invention to provide particles for oxide spraying, a method for producing the same, and a member for a semiconductor manufacturing apparatus using the particles.
[0007]
Means for Solving the Problem and Embodiment of the Invention
As a result of intensive investigations to achieve the above object, the inventors of the present invention have formed a fatty acid coating and / or a fatty acid compound coating on the surface of the particles for oxide spraying. However, it is excellent in fluidity, and the coating surface formed by spraying the thermal spray particles is found to be smoother and higher in purity than the conventional ones, and has excellent adhesion and corrosion resistance. In doing so, it was found that by controlling the amount of fatty acid to be used within a predetermined range, particles for oxide spraying having a good fatty acid coating and / or fatty acid compound coating were obtained, and the present invention was completed.
[0008]
That is, the present invention provides the following particles for oxide spraying for a semiconductor manufacturing apparatus, a manufacturing method thereof, and a member for a semiconductor manufacturing apparatus.
1. Particles for thermal spraying oxide used for forming the thermal spray coating of a member for a semiconductor manufacturing apparatus formed by forming a thermal spray coating on the surface of a base material, the surface of which has a fatty acid coating and / or a fatty acid compound coating, yttrium oxide , rare earth It is an oxide selected from oxide and yttrium aluminum garnet , the average particle size of the oxide is 1 to 60 μm, and the carbon concentration from the outermost surface of the oxide powder to 100 nm is 0.5 to 50 wt% Oxide spraying particles for semiconductor manufacturing equipment characterized by the above.
2. 1. The oxide spraying particle for semiconductor manufacturing apparatus according to 1, wherein the oxide is yttrium oxide.
3. A method for producing particles for thermal spraying of oxide used for forming a thermal spray coating of a member for a semiconductor manufacturing apparatus in which a thermal spray coating is formed on the surface of a base material, comprising yttrium oxide and rare earth oxide having an average particle size of 1 to 60 μm And the surface of the oxide particles selected from yttrium aluminum garnet are treated with a fatty acid and / or a fatty acid compound to form a fatty acid film on the surface of the oxide particles. Particles for thermal spraying of oxide for semiconductor manufacturing apparatus, characterized in that the carbon concentration from the outermost surface of the oxide powder to 100 nm is 0.5-50 wt% by using 0.05 to 5 wt% Manufacturing method.
4). 3. The method for producing particles for oxide spraying according to 3, wherein 0.1 to 3 wt% of fatty acid is used.
5. After stirring a mixture of oxides and fatty 0.1-2 hours, 3 or 4 method of manufacturing an oxide particles for thermal spraying of, wherein the drying at 20 to 50 ° C..
6). Method of any of the oxide particles for thermal spraying of 3-5, wherein the oxides are yttrium oxide.
7). A member for a semiconductor manufacturing apparatus, comprising: a base material; and a coating formed by spraying one or two particles for oxide spraying on the surface of the base material.
[0009]
Hereinafter, the present invention will be described in more detail.
The particles for oxide spraying according to the present invention have a fatty acid coating and / or a fatty acid compound coating on the surface.
Since such oxide spray particles have a fatty acid film and / or a fatty acid compound film on the surface, they have surface water repellency and can suppress adsorption of moisture in the atmosphere. Therefore, it is possible to prevent a decrease in powder fluidity due to adsorbed water generally found in oxide spray particles and the like, and the film serves as a lubricant and fluidity is improved. .
[0010]
Further, as a result of having the coating film, the carbon concentration on the surface becomes higher than the carbon concentration inside the particle, but the carbon concentration from the outermost surface of the oxide spraying particle to 100 nm is 0.5 to 50 wt%, particularly 1 to 30 wt. % Is preferred. This carbon concentration can be appropriately adjusted by setting the amount of fatty acid used in the range of 0.05 to 5 wt% with respect to the oxide weight in the production method described in detail later.
In addition, the said carbon concentration can be measured by analyzing and quantifying, for example, etching with XPS etc.
[0011]
As the oxide constituting the particles for thermal spraying in the present invention, one or more oxides selected from Y 2 , rare earth elements and yttrium aluminum garnet , or composite oxides of these elements can be used. In particular, it is preferable to use oxides of Y or rare earth elements such as Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, or composite oxides thereof.
The shape of the oxide is not particularly limited, and for example, a spherical shape, a square shape, or a scale shape can be used.
[0012]
Moreover, the average particle diameter of the particles for oxide spraying is not particularly limited. For example, those having a particle diameter of 0.1 to 100 μm can be suitably used. Since the particles for oxide spraying of the present invention are characterized by excellent fluidity even when the particle size is small, it is particularly preferable to use particles having an average particle size of 1 to 60 μm.
[0013]
There is no limitation in particular as a fatty acid which comprises the said fatty-acid film, For example, a C5-C20 fatty acid can be used. Considering workability and fluidity, it is preferable to use a fatty acid having 10 to 20 carbon atoms. Among these, saturated fatty acids are particularly preferable, and for example, stearic acid, lauric acid, and the like can be suitably used. These fatty acids can be used individually by 1 type or in mixture of 2 or more. Examples of the fatty acid compound include salts of the fatty acid.
It is preferable that the fatty acid does not contain an alkali metal element or an alkaline earth metal element.
[0014]
In addition, the oxide spray particles take into consideration that the coating formed by spraying the spray particles has high purity, prevents the occurrence of colored spots, and provides sufficient corrosion resistance to the sprayed member having the coating. Then, the total amount of iron group elements (Fe, Ni, Co, etc.), alkali metal elements (Na, K, etc.), and alkaline earth metal elements (Mg, Ca, etc.) is preferably 20 ppm or less in terms of oxides. .
The iron group element, alkali metal element, and alkaline earth metal element were measured by ICP spectroscopic analysis (inductively coupled high-frequency plasma spectroscopic analysis) after acid-decomposing the oxide spray particles.
[0015]
The method for producing the particles for oxide spraying is not particularly limited. (1) A method in which the raw material oxide particles are directly treated with a fatty acid to form a fatty acid film and / or a fatty acid compound film, (2) ▼ After mixing a solution obtained by dissolving a fatty acid in an organic solvent and the oxide particles, the method of forming a fatty acid film and / or a fatty acid compound film on the surface of the oxide particles by distilling off the organic solvent is used. Can do.
At this time, it is preferable to use a fatty acid in an amount of 0.05 to 5 wt%, particularly 0.1 to 3 wt% with respect to the weight of the oxide particles.
In addition, about the oxide which comprises a fatty acid and an oxide particle, the thing similar to what was described previously can be used.
[0016]
Here, if the amount of fatty acid is less than 0.05%, the fluidity of the obtained thermal spraying particles may be lowered, and the surface of the thermal spray coating using the particles may be inferior in smoothness. In the case of a small particle size of 10 μm or less, the feeder may not be applied. On the other hand, if the amount of fatty acid exceeds 5 wt%, surplus carbon remains in the coating, which may deteriorate the corrosion resistance, and carbon may remain and spots may occur on the sprayed coating.
[0017]
When employing the above method (2), the organic solvent that can be used is not particularly limited as long as it can dissolve fatty acids. For example, alcohol solvents such as methanol and ethanol, fats such as hexane, and the like. Aromatic hydrocarbon solvents such as aromatic hydrocarbon solvents and toluene can be used.
Further, the method for distilling off the organic solvent is not particularly limited, and various known solvent distilling methods can be used, for example, a method of volatilizing at room temperature to about 100 ° C., a method of distillation at normal pressure or reduced pressure Spray drying method, fluidized bed drying method and the like can be used.
[0018]
As a specific example of the method (2), an amount of fatty acid such as stearic acid in the range of 0.05 to 5 wt% with respect to the weight of the oxide particles (for example, 0.05 to 5 g) is added to ethanol. Oxide particles (for example, 100 g) are added to a solution mixed and dissolved in an organic solvent. The obtained mixed solution is stirred for 0.1 to 2 hours and then dried at 20 to 50 ° C. to distill off the organic solvent to obtain oxide spray particles having a fatty acid film and / or a fatty acid compound film on the surface. be able to.
[0019]
The thermal spray member according to the present invention includes a base material and a coating formed by spraying the above-described oxide spray particles on the surface of the base material.
Here, the substrate is not particularly limited, and metals, alloys, ceramics, glass and the like can be used. Specifically, Al, Ni, Cr, Zn, Zr, and alloys thereof, alumina, nitriding Aluminum, silicon nitride, silicon carbide, quartz glass, zirconia, and the like can be given.
[0020]
The thickness of the thermal spray coating on the substrate surface is preferably 50 to 500 μm, more preferably 150 to 300 μm. When the thickness of the coating is less than 50 μm, when a thermal spray member having the coating is used as a corrosion-resistant member, it may be necessary to replace it with a slight corrosion. On the other hand, when the thickness of the coating exceeds 500 μm, there is a possibility that peeling inside the coating tends to occur because it is too thick.
[0021]
Moreover, although it changes with uses of a thermal spray member, it is preferable that the surface roughness of a film is 60 micrometers or less, More preferably, it is 40 micrometers or less. If the surface roughness exceeds 60 μm, it may cause dust generation when the sprayed member is used. For example, when used for a plasma process member in a semiconductor manufacturing process, the plasma contact area increases. Corrosion resistance may be deteriorated, and particles may be generated due to the progress of corrosion.
That is, when the surface roughness of the coating is 60 μm or less, good corrosion resistance is obtained and particles attached to the film surface are reduced. Therefore, corrosion hardly occurs even in a corrosive gas atmosphere, and the sprayed member can be suitably used as a corrosion-resistant member.
[0022]
The thermal spray member of the present invention can be obtained by forming a film on the surface of the substrate by plasma spraying or reduced pressure plasma spraying of the above-mentioned oxide spraying particles. Here, the plasma gas is not particularly limited, and nitrogen / hydrogen, argon / hydrogen, argon / helium, argon / nitrogen, or the like can be used.
The spraying conditions and the like are not particularly limited, and may be set as appropriate according to the specific material such as the base material and oxide spray particles, the use of the obtained sprayed member, and the like.
[0023]
Also in the thermal spray member of the present invention, the total amount of the iron group element, alkali metal element, and alkaline earth metal element in the coating is preferably 20 ppm or less in terms of oxide, but this is because the total amount of each element described above is 20 ppm. This can be achieved by using the following particles for oxide spraying.
That is, when a coating is formed using thermal spraying particles in which the total amount of iron group elements, alkali metal elements, and alkaline earth metal elements is 20 ppm or more in terms of oxides, the coating is mixed with thermal spraying particles. Although only iron group elements, alkali metal elements, and alkaline earth metal elements are mixed as they are, such problems are not caused by using the above-mentioned particles for oxide spraying.
[0024]
In addition, if the total amount of each metal element in the coating of the thermal spray member is 20 ppm or less in terms of oxide, the contamination is less, so that the thermal spray member can be used without any problem for an apparatus that is required to have high purity. can do. Specifically, it can be suitably used as a member for a liquid crystal manufacturing apparatus, a member for a semiconductor manufacturing apparatus, or the like.
[0025]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example.
[0026]
[ Reference Example 1]
100 g of aluminum oxide powder (average particle size 50 μm) is added to a solution obtained by mixing and dissolving 0.5 g of stearic acid in 200 ml of ethanol, stirred for 20 minutes, and then dried at 50 ° C. to have a stearic acid film on the surface. Oxide spray particles were obtained.
Using the measurement sample in which the obtained particles for oxide spraying were embedded in metal In, the carbon concentration from the outermost surface to 100 nm was measured by XPS (AXIS-HSi, manufactured by Shimadzu KRATOS). Specifically, the measurement area of the sample is 200 × 600 μm area, Mg is used as the irradiation X-ray, and the carbon concentration up to 100 μm in depth is obtained while cutting the measurement area of the 200 × 600 μm area with Ar gas from the outermost surface. The average carbon concentration from the outermost surface to 100 μm was calculated. The results are shown in Table 1.
Moreover, about the obtained particle | grains for oxide spraying, fluidity | liquidity was evaluated by the method based on JIS-Z2504-1979. Specifically, the bottom of the funnel is plugged, 50 g of the oxide spray particles are put into the funnel, the bottom plug is removed, and at the same time, vibration is applied at a frequency of 60 Hz and an amplitude of 0.4 mm. The number of seconds required to flow down was measured at n = 5. Table 1 shows the average value of the measurement results.
[0027]
[Example 1 ]
100 g of yttrium oxide granulated powder (average particle size 32 μm) is added to a solution in which 2.0 g of stearic acid is mixed and dissolved in 200 ml of ethanol, stirred for 20 minutes, and then dried at 50 ° C. to form a stearic acid coating on the surface. Oxide spray particles having the following were obtained.
The obtained oxide spray particles were subjected to carbon concentration measurement and fluidity test in the same manner as in Reference Example 1. The results are shown in Table 1.
[0028]
[Example 2 ]
Oxide spray particles having a stearic acid coating on the surface were obtained in the same manner as in Example 1 except that 0.2 g of stearic acid was used.
The obtained oxide spray particles were subjected to the same fluidity test as in Reference Example 1. The results are shown in Table 1.
[0029]
[Example 3 ]
Oxide spray particles having a stearic acid coating on the surface were obtained in the same manner as in Example 1 except that 0.02 g of stearic acid was used.
The obtained oxide spray particles were subjected to the same fluidity test as in Reference Example 1. The results are shown in Table 1.
[0030]
[Example 4 ]
100 g of spherical powder of yttrium oxide (average particle size 5 μm) is added to a solution in which 2.0 g of stearic acid is mixed and dissolved in 200 ml of ethanol, stirred for 20 minutes, and then dried at 50 ° C. to form a stearic acid film on the surface. Particles for oxide spraying were obtained.
The obtained oxide spray particles were subjected to the same fluidity test as in Reference Example 1. The results are shown in Table 1.
[0031]
[Example 5 ]
Oxide spray particles having a stearic acid coating on the surface were obtained in the same manner as in Example 4 except that 0.2 g of stearic acid was used.
The obtained oxide spray particles were subjected to the same fluidity test as in Reference Example 1. The results are shown in Table 1.
[0032]
[Example 6 ]
Oxide spray particles having a stearic acid coating on the surface were obtained in the same manner as in Example 4 except that 0.02 g of stearic acid was used.
The obtained oxide spray particles were subjected to the same fluidity test as in Reference Example 1. The results are shown in Table 1.
[0033]
[Example 7]
Oxide spray particles were obtained in the same manner as in Reference Example 1 except that 100 g of granulated powder (average particle size 40 μm) of yttrium aluminum garnet (YAG) was used.
The obtained oxide spray particles were subjected to carbon concentration measurement and fluidity test in the same manner as in Reference Example 1. The results are shown in Table 1.
[0034]
[Example 8 ]
Oxide spray particles were obtained in the same manner as in Reference Example 1 except that 1.0 g of stearic acid and 50 g of yttrium oxide ultrafine powder (average particle size 0.5 μm) were used.
The obtained oxide spray particles were subjected to a fluidity test in the same manner as in Reference Example 1 except that the amount of particles used was 10 g and the vibration amplitude was 0.8 mm. The results are shown in Table 1.
[0035]
[Comparative Example 1]
Oxide spray particles were obtained in the same manner as in Reference Example 1 except that stearic acid was not used.
The obtained oxide spray particles were subjected to carbon concentration measurement and fluidity test in the same manner as in Reference Example 1. The results are shown in Table 1.
[0036]
[Comparative Example 2]
Oxide spray particles were obtained in the same manner as in Example 1 except that stearic acid was not used.
The obtained oxide spray particles were subjected to the same fluidity test as in Reference Example 1. The results are shown in Table 1.
[0037]
[Comparative Example 3]
Oxide spray particles were obtained in the same manner as in Example 4 except that stearic acid was not used.
The obtained oxide spray particles were subjected to the same fluidity test as in Reference Example 1. The results are shown in Table 1.
[0038]
[Comparative Example 4]
Oxide spray particles were obtained in the same manner as in Example 7 except that stearic acid was not used.
The obtained oxide spray particles were subjected to the same fluidity test as in Reference Example 1. The results are shown in Table 1.
[0039]
[Comparative Example 5]
Oxide spray particles were obtained in the same manner as in Example 8 except that stearic acid was not used.
The obtained oxide spray particles were subjected to the same fluidity test as in Example 8 . The results are shown in Table 1.
[0040]
[Table 1]
Figure 0004650598
[0041]
As shown in Table 1, each of the particles for oxide spraying obtained in Examples 1 to 8 has a stearic acid coating on the surface thereof, and thus has excellent surface smoothness and corresponds to each. It can be seen that the fluidity is superior to the particles of the comparative example. In particular, it can be seen that even in the case of an ultrafine powder having an average particle size of 0.5 μm, good fluidity is exhibited (see Example 8 ).
[0042]
[Example 9 ]
Using the particles for oxide spraying obtained in Example 5 , plasma spraying of the particles was performed on an aluminum substrate using argon / hydrogen gas to form a sprayed coating having a thickness of 215 μm.
When the surface roughness Ra of the obtained coating film was measured by a method based on JIS B0601, it was very smooth as 5 μm.
[0043]
【The invention's effect】
As described above, according to the present invention, since the particles are oxide spray particles having a fatty acid coating and / or a fatty acid compound coating on the surface, the fluidity is good even when the particle size is small. can do. Therefore, by spraying the particles for thermal spraying on the base material, it is possible to obtain a sprayed coating that is smooth and has no unevenness without performing surface polishing.

Claims (7)

基材の表面に溶射被膜を形成してなる半導体製造装置用部材の前記溶射被膜の形成に用いる酸化物溶射用粒子であって、表面に脂肪酸被膜および/または脂肪酸化合物被膜を有する酸化イットリウム希土類酸化物およびイットリウムアルミニウムガーネットから選ばれる酸化物であり、酸化物の平均粒径が1〜60μmであり、該酸化物粉末の最表面から100nmまでの炭素濃度が0.5〜50wt%であることを特徴とする半導体製造装置用酸化物溶射用粒子。Particles for thermal spraying oxide used for forming the thermal spray coating of a member for a semiconductor manufacturing apparatus formed by forming a thermal spray coating on the surface of a base material, the surface of which has a fatty acid coating and / or a fatty acid compound coating, yttrium oxide , rare earth It is an oxide selected from oxide and yttrium aluminum garnet , the average particle size of the oxide is 1 to 60 μm, and the carbon concentration from the outermost surface of the oxide powder to 100 nm is 0.5 to 50 wt% Particles for oxide spraying for semiconductor manufacturing equipment characterized by 酸化物が酸化イットリウムであることを特徴とする請求項1記載の半導体製造装置用酸化物溶射用粒子。  The oxide spray particles for a semiconductor manufacturing apparatus according to claim 1, wherein the oxide is yttrium oxide. 基材の表面に溶射被膜を形成してなる半導体製造装置用部材の前記溶射被膜の形成に用いる酸化物溶射用粒子の製造方法であって、平均粒径1〜60μmの酸化イットリウム希土類酸化物およびイットリウムアルミニウムガーネットから選ばれる酸化物粒子表面を脂肪酸および/または脂肪酸化合物で処理して前記酸化物粒子表面に脂肪酸被膜を形成し、この際、前記脂肪酸を前記酸化物粒子の重量に対して0.05〜5wt%用いて、酸化物粉末の最表面から100nmまでの炭素濃度が0.5〜50wt%である酸化物溶射用粒子を得ることを特徴とする半導体製造装置用酸化物溶射用粒子の製造方法。A method for producing particles for thermal spraying oxide used for forming a thermal spray coating of a member for a semiconductor manufacturing apparatus in which a thermal spray coating is formed on the surface of a base material, comprising yttrium oxide and rare earth oxide having an average particle size of 1 to 60 μm The surface of the oxide particles selected from yttrium aluminum garnet is treated with a fatty acid and / or a fatty acid compound to form a fatty acid film on the surface of the oxide particles. Particles for thermal spraying of oxide for semiconductor manufacturing equipment, characterized in that the carbon concentration from the outermost surface of the oxide powder to 100 nm is 0.5 to 50 wt% by using 0.05 to 5 wt% Manufacturing method. 脂肪酸を0.1〜3wt%用いることを特徴とする請求項3記載の酸化物溶射用粒子の製造方法。  4. The method for producing particles for oxide spraying according to claim 3, wherein 0.1 to 3 wt% of fatty acid is used. 化物と脂肪酸を混合し、0.1〜2時間撹拌後、20〜50℃で乾燥させたことを特徴とする請求項3または4記載の酸化物溶射用粒子の製造方法。Mixed oxides with fatty acids, after stirring for 0.1 to 2 hours, The process according to claim 3 or 4 oxide particles for thermal spraying of, wherein the drying at 20 to 50 ° C.. 化物が酸化イットリウムであることを特徴とする請求項3〜5のいずれか1項記載の酸化物溶射用粒子の製造方法。Method of manufacturing an oxide particles for thermal spraying according to any one of claims 3-5, wherein the oxides are yttrium oxide. 基材と、この基材表面に請求項1または2に記載の酸化物溶射用粒子を溶射してなる被膜と、を備えてなる半導体製造装置用部材。  A member for a semiconductor manufacturing apparatus, comprising: a base material; and a coating formed by spraying the oxide spraying particles according to claim 1 on the surface of the base material.
JP2001136440A 2001-05-07 2001-05-07 Particles for oxide spraying for semiconductor manufacturing apparatus, manufacturing method thereof, and member for semiconductor manufacturing apparatus Expired - Fee Related JP4650598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001136440A JP4650598B2 (en) 2001-05-07 2001-05-07 Particles for oxide spraying for semiconductor manufacturing apparatus, manufacturing method thereof, and member for semiconductor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001136440A JP4650598B2 (en) 2001-05-07 2001-05-07 Particles for oxide spraying for semiconductor manufacturing apparatus, manufacturing method thereof, and member for semiconductor manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2002332559A JP2002332559A (en) 2002-11-22
JP4650598B2 true JP4650598B2 (en) 2011-03-16

Family

ID=18983716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001136440A Expired - Fee Related JP4650598B2 (en) 2001-05-07 2001-05-07 Particles for oxide spraying for semiconductor manufacturing apparatus, manufacturing method thereof, and member for semiconductor manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4650598B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101168422B1 (en) 2002-11-20 2012-07-25 신에쓰 가가꾸 고교 가부시끼가이샤 Making Method of Heat Resistant Coated Member
JP2004190056A (en) * 2002-12-09 2004-07-08 Shin Etsu Chem Co Ltd Heat-resistant coated member
JP4606121B2 (en) * 2004-01-29 2011-01-05 京セラ株式会社 Corrosion-resistant film laminated corrosion-resistant member and manufacturing method thereof
KR101226120B1 (en) * 2004-10-26 2013-01-24 쿄세라 코포레이션 Corrosion resistance member, and method for manufacturing the same
JP2006144094A (en) * 2004-11-22 2006-06-08 Fujimi Inc Powder for thermal spraying, and manufacturing method therefor
JP4601497B2 (en) * 2005-06-28 2010-12-22 電気化学工業株式会社 Spherical alumina powder, production method and use thereof
JP6659872B2 (en) * 2016-09-08 2020-03-04 セウォン ハードフェイシング カンパニー リミテッドSewon Hard Facing Co.,Ltd. High fluidity thermal spraying particles and method for producing the same
JP2021102546A (en) 2019-12-24 2021-07-15 日本イットリウム株式会社 Corrosion-resistant material for semiconductor-fabricating apparatus
CN115612969A (en) * 2022-11-01 2023-01-17 苏州众芯联电子材料有限公司 Compact yttrium oxide coating and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230684A (en) * 1986-03-29 1987-10-09 日本化学工業株式会社 Manufacture of glass coated inorganic formed body
JPH05330826A (en) * 1992-05-29 1993-12-14 Tosoh Corp Zirconia powder composition
JPH0665707A (en) * 1992-08-19 1994-03-08 Tosoh Corp Zirconia powder for thermal spraying
JPH0985105A (en) * 1995-09-25 1997-03-31 Toshiba Corp Formation of functional thermal spray coating film, production of catalyst and functional powder for thermal spraying
JPH09272820A (en) * 1996-04-02 1997-10-21 Nippon Kayaku Co Ltd Epoxy resin-based powder coating
JPH09278551A (en) * 1996-04-12 1997-10-28 Nippon Steel Corp Flame-spraying material for furnace and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230684A (en) * 1986-03-29 1987-10-09 日本化学工業株式会社 Manufacture of glass coated inorganic formed body
JPH05330826A (en) * 1992-05-29 1993-12-14 Tosoh Corp Zirconia powder composition
JPH0665707A (en) * 1992-08-19 1994-03-08 Tosoh Corp Zirconia powder for thermal spraying
JPH0985105A (en) * 1995-09-25 1997-03-31 Toshiba Corp Formation of functional thermal spray coating film, production of catalyst and functional powder for thermal spraying
JPH09272820A (en) * 1996-04-02 1997-10-21 Nippon Kayaku Co Ltd Epoxy resin-based powder coating
JPH09278551A (en) * 1996-04-12 1997-10-28 Nippon Steel Corp Flame-spraying material for furnace and its production

Also Published As

Publication number Publication date
JP2002332559A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
JP4044348B2 (en) Spherical particles for thermal spraying and thermal spraying member
EP1239055B1 (en) Thermal spray spherical particles, and sprayed components
US7837967B2 (en) Thermal spray powder and method for forming thermal spray coating
JP2824189B2 (en) Powder supply composition for refractory oxide coating formation, method of use and product
US20150096462A1 (en) Thermal spray material and process for preparing same
JP2002080954A (en) Thermal-spraying powder and thermal-sprayed film
JP4650598B2 (en) Particles for oxide spraying for semiconductor manufacturing apparatus, manufacturing method thereof, and member for semiconductor manufacturing apparatus
JP2006037238A (en) Method for producing spherical particle for thermal spraying
JP4231990B2 (en) Rare earth oxide spray particles and method for producing the same, thermal spray member and corrosion resistant member
CN114045455B (en) Yttrium thermal spray coating film using yttrium particle powder and method for producing same
JP2004300555A (en) Thermal spraying powder, and method for forming thermal sprayed film using he same
JP3523216B2 (en) Rare earth-containing compound particles for thermal spraying, thermal spraying member sprayed with the same
JP4273292B2 (en) Thermal spray particles and thermal spray member using the particles
JP2006152408A (en) Powder for thermal spraying, thermal spraying method, and thermal-sprayed film
CN114059000A (en) Yttrium-based particle powder for thermal spraying, yttrium-based particles, and methods for producing these
JP6926095B2 (en) Material for thermal spraying
US20060110320A1 (en) Thermal spraying powder and manufacturing method thereof
CN114044674B (en) Yttrium-based particle powder for thermal spraying, method for producing same, and thermal spraying film
Zhao et al. Phase composition, structural, and plasma erosion properties of ceramic coating prepared by suspension plasma spraying
JP4273920B2 (en) Cerium oxide particles and production method by multi-stage firing
JPH0665706A (en) Ziconia powder for thermal spraying
JP2005097747A (en) Thermal-spraying powder and thermal-sprayed film
JP2007081218A (en) Member for vacuum device
JP3127582B2 (en) Zirconia granulated dry powder for thermal spraying
JP2002332558A (en) Spherical particle for thermal spraying, its manufacturing method, and spray coated member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101130

R150 Certificate of patent or registration of utility model

Ref document number: 4650598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees