JP2013223284A - Preventive maintenance device for motor - Google Patents

Preventive maintenance device for motor Download PDF

Info

Publication number
JP2013223284A
JP2013223284A JP2012091866A JP2012091866A JP2013223284A JP 2013223284 A JP2013223284 A JP 2013223284A JP 2012091866 A JP2012091866 A JP 2012091866A JP 2012091866 A JP2012091866 A JP 2012091866A JP 2013223284 A JP2013223284 A JP 2013223284A
Authority
JP
Japan
Prior art keywords
state quantity
electric motor
motor
model
preventive maintenance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012091866A
Other languages
Japanese (ja)
Inventor
Zhong Li
忠 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2012091866A priority Critical patent/JP2013223284A/en
Priority to KR1020120133528A priority patent/KR101332113B1/en
Priority to CN201310082028.XA priority patent/CN103376410B/en
Publication of JP2013223284A publication Critical patent/JP2013223284A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/02Measuring effective values, i.e. root-mean-square values
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/32Automatic controllers electric with inputs from more than one sensing element; with outputs to more than one correcting element

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a preventive maintenance device for a motor that can improve abnormality detection accuracy of the motor and perform preventive maintenance for the motor including abnormality monitoring and detection of ancillary facilities of the motor.SOLUTION: A preventive maintenance device for a motor operated on the basis of an operation amount input from a motor driving device comprises: state quantity acquiring means for acquiring a state quantity of the motor having a predetermined correlation with an operation amount; model storage means for storing a correlation model obtained by modeling a relation between the operation amount and the state quantity when the motor and ancillary facilities thereof are normal in accordance with the correlation beforehand; model state quantity calculating means for calculating the state quantity with respect to the operation amount at the time of operation of the motor in the correlation model stored by the model storage means; and abnormality detecting means for detecting abnormality of the motor and the ancillary facilities thereof by comparing the state quantity acquired by the state quantity acquiring means and the state quantity calculated by the model state quantity calculating means at the time of operation.

Description

この発明は、電動機の予防保全装置に関するものである。   The present invention relates to a preventive maintenance device for an electric motor.

プラントを構成する主な機器の1つに電動機がある。電動機はプラントにおける重要な要素であることも多く、その故障はプラント全体に影響する。そこで、プラントの運転においては、電動機に異常が生じていないか監視することにより、電動機の故障を未然に防止する(すなわち予防保全する)ことが必要である。   One of the main equipments constituting the plant is an electric motor. Electric motors are often an important factor in a plant, and the failure affects the entire plant. Therefore, in the operation of the plant, it is necessary to prevent the failure of the motor in advance (that is, preventive maintenance) by monitoring whether the motor is abnormal.

従来における電動機の異常診断方法としては、電動機の起動時における振動を検出し、この検出結果に基づいて電動機巻線のゆるみを診断するものが知られている(例えば、特許文献1参照)。   As a conventional abnormality diagnosis method for an electric motor, a method is known in which vibration at the time of starting the electric motor is detected and loosening of the electric motor winding is diagnosed based on the detection result (for example, see Patent Document 1).

特開昭60−066647号公報Japanese Patent Laid-Open No. 60-0666647

ところで、例えば製鉄所の圧延プラント等に用いられる大型の電動機には、電動機での発熱を冷却するためのユニットクーラーや、軸受に給油する軸受給油装置等の附帯設備が付属されることが多い。そして、このような電動機の附帯設備において故障が発生した場合も電動機を停止する必要があるため、電動機の本体のみならず電動機の附帯設備についても、異常が生じていないかを監視し、その故障を未然に防止することが必要である。   By the way, for example, a large motor used in a rolling mill of a steel mill or the like is often accompanied by ancillary equipment such as a unit cooler for cooling heat generated by the motor and a bearing oil supply device for supplying oil to the bearing. And even if a failure occurs in the incidental equipment of such a motor, it is necessary to stop the motor, so not only the main body of the motor but also the incidental equipment of the motor is monitored for abnormalities. It is necessary to prevent this beforehand.

しかしながら、特許文献1に示されたものにおいては、電動機の附帯設備の異常については全く考慮されておらず、電動機の附帯設備の異常監視・検出をも含めた電動機の予防保全を行うことができないという課題がある。   However, in the thing shown by patent document 1, the abnormality of the incidental equipment of an electric motor is not considered at all, and the preventive maintenance of the electric motor including abnormality monitoring and detection of the incidental equipment of an electric motor cannot be performed. There is a problem.

この発明は、このような課題を解決するためになされたもので、電動機の異常検出精度を向上することができ、附電動機の附帯設備の異常監視・検出をも含めた電動機の予防保全を行うことが可能である電動機の予防保全装置を得るものである。   The present invention has been made to solve such problems, and can improve the abnormality detection accuracy of the motor, and perform preventive maintenance of the motor including abnormality monitoring / detection of incidental equipment of the auxiliary motor. It is possible to obtain a preventive maintenance device for an electric motor that is possible.

この発明に係る電動機の予防保全装置は、電動機駆動装置から入力される操作量に基づいて動作する電動機の予防保全装置であって、前記操作量と所定の相関関係にある前記電動機の状態量を取得する状態量取得手段と、前記電動機及び前記電動機の附帯設備が正常な場合における前記操作量と前記状態量との関係を、前記相関関係に従ってモデル化した相関モデルを予め記憶するモデル記憶手段と、前記モデル記憶手段が記憶する前記相関モデルにおける、前記電動機の運転時の前記操作量に対する状態量を算出するモデル状態量算出手段と、前記運転時に前記状態量取得手段により取得した前記状態量と前記モデル状態量算出手段により算出した前記状態量とを比較することにより、前記電動機及び前記電動機の附帯設備の異常を検出する異常検出手段と、を備えた構成とする。   The preventive maintenance device for an electric motor according to the present invention is a preventive maintenance device for an electric motor that operates based on an operation amount input from an electric motor drive device, and calculates a state quantity of the motor that has a predetermined correlation with the operation amount. State quantity obtaining means for obtaining, and model storage means for preliminarily storing a correlation model obtained by modeling the relation between the manipulated variable and the state quantity when the electric motor and the incidental equipment of the electric motor are normal according to the correlation. In the correlation model stored in the model storage unit, a model state quantity calculation unit that calculates a state quantity with respect to the operation quantity during operation of the electric motor, and the state quantity acquired by the state quantity acquisition unit during operation By comparing the state quantity calculated by the model state quantity calculating means, an abnormality in the electric motor and incidental equipment of the electric motor is detected. And an abnormality detecting unit, comprising the features.

この発明に係る電動機の予防保全装置においては、電動機の異常検出精度を向上することができ、附電動機の附帯設備の異常監視・検出をも含めた電動機の予防保全を行うことが可能であるという効果を奏する。   In the preventive maintenance apparatus for an electric motor according to the present invention, the abnormality detection accuracy of the electric motor can be improved, and it is possible to perform preventive maintenance of the electric motor including abnormality monitoring / detection of incidental equipment of the auxiliary electric motor. There is an effect.

この発明の実施の形態1に係る電動機の予防保全装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the preventive maintenance apparatus of the electric motor which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る電動機及びその附帯設備の構成を示す図である。It is a figure which shows the structure of the electric motor which concerns on Embodiment 1 of this invention, and its incidental equipment. この発明の実施の形態1に係る予防保全装置の機能的構成を示すブロック図である。It is a block diagram which shows the functional structure of the preventive maintenance apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る電動機の予防保全装置の相関モデルの一例を示すグラフである。It is a graph which shows an example of the correlation model of the preventive maintenance apparatus of the electric motor which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る電動機の予防保全装置の異常判定の一例を示す図である。It is a figure which shows an example of the abnormality determination of the preventive maintenance apparatus of the electric motor which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る予防保全装置の機能的構成を示すブロック図である。It is a block diagram which shows the functional structure of the preventive maintenance apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る予防保全装置の機能的構成を示すブロック図である。It is a block diagram which shows the functional structure of the preventive maintenance apparatus which concerns on Embodiment 3 of this invention.

この発明を添付の図面に従い説明する。各図を通じて同符号は同一部分又は相当部分を示しており、その重複説明は適宜に簡略化又は省略する。   The present invention will be described with reference to the accompanying drawings. Throughout the drawings, the same reference numerals indicate the same or corresponding parts, and the overlapping description is simplified or omitted as appropriate.

実施の形態1.
図1から図5は、この発明の実施の形態1に係るもので、図1は電動機の予防保全装置の全体構成を示すブロック図、図2は電動機及びその附帯設備の構成を示す図、図3は予防保全装置の機能的構成を示すブロック図、図4は電動機の予防保全装置の相関モデルの一例を示すグラフ、図5は電動機の予防保全装置の異常判定の一例を示す図である。
Embodiment 1 FIG.
1 to FIG. 5 relate to Embodiment 1 of the present invention, FIG. 1 is a block diagram showing the overall configuration of a preventive maintenance apparatus for an electric motor, and FIG. 2 is a diagram showing the configuration of the electric motor and its auxiliary equipment, FIG. 3 is a block diagram showing a functional configuration of the preventive maintenance apparatus, FIG. 4 is a graph showing an example of a correlation model of the preventive maintenance apparatus for an electric motor, and FIG. 5 is a diagram showing an example of abnormality determination of the preventive maintenance apparatus for an electric motor.

図1において、1は、電動機である。電動機の附帯設備2が付属されている。これら電動機1及び電動機の附帯設備2について具体的な構成の一例を図2に示す。電動機1は、電動機1の内部に回転可能に設けられた回転子1b、及び、この回転子1bの中央から延設され回転子1bと一体となって回転する回転軸1aを有している。回転子1bの外周には回転子巻線1cが設けられている。そして、回転子巻線1cと対向するようにして、固定子鉄心1dに巻かれた固定子巻線1eが電動機1内に固定されて配置されている。   In FIG. 1, 1 is an electric motor. Ancillary equipment 2 for the electric motor is attached. An example of a specific configuration of the electric motor 1 and the incidental equipment 2 of the electric motor is shown in FIG. The electric motor 1 has a rotor 1b that is rotatably provided in the electric motor 1, and a rotating shaft 1a that extends from the center of the rotor 1b and rotates integrally with the rotor 1b. A rotor winding 1c is provided on the outer periphery of the rotor 1b. A stator winding 1e wound around the stator core 1d is fixed and arranged in the electric motor 1 so as to face the rotor winding 1c.

電動機1には、電動機1内部で発生した熱を冷却するための冷却ファン2a及び水冷熱交換器2bからなるユニットクーラーが設けられている。冷却ファン2aは空気を電動機1内に循環させて電動機1で発生した熱を冷却する。電動機1内に送り込まれた空気は電動機1内の熱を冷却した結果温められて温度が上昇する。電動機1内の熱を奪った空気は、水冷熱交換器2bにより冷却されて冷たい空気に戻された上で、冷却ファン2aにより再度電動機1内に送り込まれる。   The electric motor 1 is provided with a unit cooler including a cooling fan 2a and a water-cooled heat exchanger 2b for cooling the heat generated in the electric motor 1. The cooling fan 2 a circulates air in the electric motor 1 to cool the heat generated in the electric motor 1. The air sent into the electric motor 1 is warmed as a result of cooling the heat in the electric motor 1, and the temperature rises. The air deprived of heat in the electric motor 1 is cooled by the water-cooled heat exchanger 2b and returned to cold air, and then sent back into the electric motor 1 by the cooling fan 2a.

このような冷却ファン2a及び水冷熱交換器2bによる循環冷却が行われることで、電動機1は冷却され焼き付き等の不具合の発生が防止されている。なお、水冷熱交換器2bは、内部に冷却水が循環された冷却水管を備えており、空気と冷却水との間で熱交換させることで空気を冷却している。   By performing such circulating cooling by the cooling fan 2a and the water-cooled heat exchanger 2b, the electric motor 1 is cooled and occurrence of problems such as seizure is prevented. The water-cooled heat exchanger 2b includes a cooling water pipe in which cooling water is circulated, and cools the air by exchanging heat between the air and the cooling water.

また、電動機1の回転軸1a部分には、回転軸1aを回転可能に支持する軸受台2cが設置されている。この軸受台2cには、軸受に潤滑油を供給する軸受給油装置が備えられている。これらの水冷熱交換器2b、冷却ファン2a及び軸受台2c(軸受給油装置)は、電動機の附帯設備2の一例である。   In addition, a bearing stand 2c that rotatably supports the rotating shaft 1a is installed in the rotating shaft 1a portion of the electric motor 1. The bearing stand 2c is provided with a bearing oil supply device that supplies lubricating oil to the bearing. The water-cooled heat exchanger 2b, the cooling fan 2a, and the bearing stand 2c (bearing oil supply device) are an example of the auxiliary equipment 2 for the electric motor.

電動機1の動作は電動機駆動装置3により駆動される。電動機1は電動機側リモートIO盤4を介して、電動機駆動装置3は駆動装置側リモートIO盤5を介して、それぞれが通信ネットワーク6に接続されており、電動機1と電動機駆動装置3とは通信ネットワーク6を通じて相互に電気通信可能である。   The operation of the electric motor 1 is driven by the electric motor driving device 3. The electric motor 1 is connected to the communication network 6 via the electric motor side remote IO board 4 and the electric motor driving device 3 is connected to the communication network 6 via the driving apparatus side remote IO board 5, and the electric motor 1 and the electric motor driving device 3 communicate with each other. They can communicate with each other through the network 6.

電動機駆動装置3は、通信ネットワーク6を介して電動機1へと操作信号を送信する。この操作信号には電動機1の操作量に関する情報が含まれており、電動機1は受信した操作信号が指示する操作量に従って動作する。   The electric motor drive device 3 transmits an operation signal to the electric motor 1 via the communication network 6. This operation signal includes information on the operation amount of the electric motor 1, and the electric motor 1 operates according to the operation amount indicated by the received operation signal.

電動機1と電動機駆動装置3とを繋ぐ通信ネットワーク6には、予防保全装置7が接続されている。この予防保全装置7は、電動機駆動装置3から電動機1へと入力される操作信号の操作量と、この操作量と所定の相関関係にある電動機1の状態量とに基づいて、電動機1及び電動機の附帯設備2の異常の監視・検出を行うことにより電動機1の予防保全を実施するものである。   A preventive maintenance device 7 is connected to a communication network 6 that connects the electric motor 1 and the electric motor drive device 3. The preventive maintenance device 7 includes the motor 1 and the motor based on the operation amount of the operation signal input from the motor drive device 3 to the motor 1 and the state amount of the motor 1 that has a predetermined correlation with the operation amount. The preventive maintenance of the electric motor 1 is carried out by monitoring / detecting the abnormality of the incidental equipment 2 of FIG.

以下においては、電動機の附帯設備2であるユニットクーラー(冷却ファン2a及び水冷熱交換器2b)を予防保全装置7による異常の監視・検出を行う対象とした場合について説明する。   Below, the case where the unit cooler (cooling fan 2a and the water cooling heat exchanger 2b) which is the auxiliary equipment 2 of an electric motor is made into the object which monitors and detects abnormality by the preventive maintenance apparatus 7 is demonstrated.

予防保全装置7は、操作信号の操作量として負荷率、この操作量(負荷率)と所定の相関関係にある電動機1の状態量として巻線温度上昇値を用いて、ユニットクーラーの異常の監視・検出を行う。   The preventive maintenance device 7 monitors the abnormality of the unit cooler by using the load factor as the operation amount of the operation signal and the winding temperature rise value as the state amount of the motor 1 having a predetermined correlation with the operation amount (load factor). -Perform detection.

以下に負荷率と巻線温度上昇値との間に成立する所定の相関関係について説明する。
まず、負荷率Lは、定格電流値に対する現在の電流値の比率であり次の(1)式により定められる。
A predetermined correlation established between the load factor and the winding temperature rise value will be described below.
First, the load factor L is the ratio of the current value to the rated current value, and is determined by the following equation (1).

L=i(現在値)/i(定格値)×100[%] ・・・(1)   L = i (current value) / i (rated value) × 100 [%] (1)

負荷率の2乗平均平方根RMSの2乗(RMS^2)は次の(2)式で表される。   The square (RMS ^ 2) of the root mean square RMS of the load factor is expressed by the following equation (2).

RMS^2=(L1^2・t1+L2^2・t2+…+Ln^2・tn)/T ・・・(2)   RMS ^ 2 = (L1 ^ 2 · t1 + L2 ^ 2 · t2 + ... + Ln ^ 2 · tn) / T (2)

ここで、TはRMSを求める対象時間、t1、t2、…、tnはRMSを求める対象時間T内を分割したサンプリング時間、L1、L2、…、Lnは、各サンプリング時間t1、t2、…、tnのそれぞれにおける負荷率であり、T=t1+t2+…+tnである。   Here, T is a target time for obtaining RMS, t1, t2,..., Tn is a sampling time obtained by dividing the target time T for obtaining RMS, L1, L2,..., Ln is each sampling time t1, t2,. It is a load factor at each of tn, and T = t1 + t2 + ... + tn.

そして、(2)式に(1)式を代入すると次の(3)式の関係を得る。   Then, when the expression (1) is substituted into the expression (2), the relationship of the following expression (3) is obtained.

RMS^2∝i^2 ・・・(3)   RMS ^ 2∝i ^ 2 (3)

次に、巻線温度上昇値ΔTと電動機1の巻線電流値iとの関係を導く。電動機1において生じる損失の種類には、鉄損、銅損、漂遊負荷損や機械損等がある。この中でも、電動機1の巻線コイルで生じる発熱量であるところの銅損は、電動機1の損失の大部分を占めている。巻線温度上昇値ΔTは電動機1での損失に比例することから、電動機1での損失と銅損とをほぼ同一とみなすと、巻線温度上昇値ΔTは銅損すなわち電動機1の巻線コイルで生じる発熱量に比例することが分かる。   Next, the relationship between the winding temperature rise value ΔT and the winding current value i of the electric motor 1 is derived. Types of loss that occur in the electric motor 1 include iron loss, copper loss, stray load loss, mechanical loss, and the like. Among these, the copper loss, which is the amount of heat generated in the winding coil of the electric motor 1, occupies most of the loss of the electric motor 1. Since the winding temperature rise value ΔT is proportional to the loss in the electric motor 1, if the loss in the electric motor 1 and the copper loss are regarded as almost the same, the winding temperature rise value ΔT is equal to the copper loss, that is, the winding coil of the electric motor 1. It can be seen that it is proportional to the amount of heat generated at.

巻線コイルの発熱量Qは、iを巻線電流、Rを巻線抵抗、tを時間とすると次の(4)式により表される。   The heating value Q of the winding coil is expressed by the following equation (4), where i is the winding current, R is the winding resistance, and t is the time.

Q=i^2・R・t ・・・(4)   Q = i ^ 2 · R · t (4)

そして、前述した巻線温度上昇値ΔTは発熱量Qに比例することを用いると、(4)式とから巻線温度上昇値ΔTと巻線電流iとの間に次の(5)式に示す関係があることが導かれる。   Then, using the fact that the winding temperature rise value ΔT described above is proportional to the calorific value Q, the following equation (5) is obtained between the winding temperature rise value ΔT and the winding current i from the equation (4). It is derived that there is a relationship shown.

ΔT∝i^2 ・・・(5)   ΔT∝i ^ 2 (5)

そして、(3)式及び(5)式から、次の(6)式に示す関係を導くことができる。   And the relationship shown in the following equation (6) can be derived from the equations (3) and (5).

ΔT∝RMS^2 ・・・(6)   ΔT∝RMS ^ 2 (6)

このように、巻線温度上昇値ΔTは、理論上、負荷率の2乗平均平方根RMSの2乗(RMS^2)に比例しており、一方が変化するとそれに応じて他方も変化する相関的な関係にあることが分かる。   Thus, the winding temperature rise value ΔT is theoretically proportional to the square of the root mean square RMS of the load factor (RMS ^ 2), and when one changes, the other also changes accordingly. It can be seen that there is a relationship.

予防保全装置7は、電動機駆動装置3から電動機1へと送信される操作信号を通信ネットワーク6を介して取得することにより、電動機1に入力される操作量である負荷率を得ることができる。   The preventive maintenance device 7 can obtain an operation signal transmitted from the electric motor drive device 3 to the electric motor 1 via the communication network 6 to obtain a load factor that is an operation amount input to the electric motor 1.

また、電動機1の状態量の1つである巻線温度上昇値ΔTを得るため、電動機1には、巻線温度測定用測温抵抗体8及び冷媒温度測定用測温抵抗体9の2つの測温抵抗体(Resistance Temperature Detector)が取り付けられている。巻線温度測定用測温抵抗体8は、電動機1内の巻線部分の温度(排気温度)を検出するためのものであり、冷媒温度測定用測温抵抗体9はこれから電動機1内へと導入される冷媒(空気)の温度(給気温度)を検出するためのものである。   Further, in order to obtain the winding temperature rise value ΔT which is one of the state quantities of the electric motor 1, the electric motor 1 includes two temperature measuring resistors 8 for measuring the winding temperature and two temperature measuring resistors 9 for measuring the refrigerant temperature. A resistance temperature detector (Resistance Temperature Detector) is attached. The temperature measuring resistor 8 for measuring the winding temperature is for detecting the temperature (exhaust temperature) of the winding portion in the electric motor 1, and the temperature measuring resistor 9 for measuring the refrigerant temperature is now transferred into the electric motor 1. This is for detecting the temperature of the refrigerant (air) to be introduced (air supply temperature).

予防保全装置7は、巻線温度測定用測温抵抗体8により検出された排気温度及び冷媒温度測定用測温抵抗体9により検出された給気温度の2つの状態量を通信ネットワーク6を介して取得し、給気温度に対する排気温度の差を求めることにより巻線温度上昇値ΔTを算出する。なお、予防保全装置7による操作量(負荷率のRMS)の取得タイミングと状態量(巻線温度上昇値ΔT)の取得タイミングとは同期される。   The preventive maintenance device 7 transmits two state quantities of the exhaust temperature detected by the resistance temperature measuring resistor 8 for measuring the winding temperature and the supply air temperature detected by the resistance temperature measuring resistor 9 for measuring the refrigerant temperature via the communication network 6. The winding temperature rise value ΔT is calculated by obtaining the difference between the exhaust temperature and the supply air temperature. The acquisition timing of the operation amount (load factor RMS) by the preventive maintenance device 7 and the acquisition timing of the state quantity (winding temperature rise value ΔT) are synchronized.

このようにして予防保全装置7が得た操作量である負荷率のRMSと状態量である巻線温度上昇値ΔTとは、理論上、(6)式に示すような比例関係にあるので、電動機1及び電動機の附帯設備2(ユニットクーラー)が正常な状態であれば、負荷率RMSと巻線温度上昇値ΔTとは強い相関を示し、負荷率のRMSの2乗と巻線温度上昇値ΔTとは次の(7)式に示すような直線の式でモデル化することができるはずである。   Since the RMS of the load factor that is the operation amount obtained by the preventive maintenance device 7 and the winding temperature rise value ΔT that is the state amount are theoretically proportional to each other as shown in the equation (6), If the motor 1 and the auxiliary equipment 2 (unit cooler) of the motor are in a normal state, the load factor RMS and the winding temperature rise value ΔT show a strong correlation, and the square of the load factor RMS and the winding temperature rise value. ΔT can be modeled by a linear equation as shown in the following equation (7).

ΔT=k・RMS^2+c ・・・(7)   ΔT = k · RMS ^ 2 + c (7)

そこで、予防保全装置7はこのような所定の相関関係にある操作量と状態量の性質を利用して電動機1及び前記電動機の附帯設備2の異常の監視・検出を行う。この予防保全装置7の構成を図3に示す。予防保全装置7は、モデル記憶部7a、モデル状態量算出部7b、比較部7c及び報知部7dを備えている。   Therefore, the preventive maintenance device 7 monitors and detects an abnormality in the electric motor 1 and the incidental equipment 2 of the electric motor using the properties of the operation quantity and the state quantity that have such a predetermined correlation. The configuration of the preventive maintenance device 7 is shown in FIG. The preventive maintenance device 7 includes a model storage unit 7a, a model state quantity calculation unit 7b, a comparison unit 7c, and a notification unit 7d.

モデル記憶部7aは、電動機1及び電動機の附帯設備2が正常な状態における操作量及び状態量の関係をモデル化した相関モデルを予め記憶するものである。この操作量及び状態量の関係のモデル化について、これまで説明してきた負荷率のRMSと巻線温度上昇値ΔTを例にして説明する。   The model storage unit 7a stores in advance a correlation model that models the relationship between the operation amount and the state amount when the motor 1 and the incidental equipment 2 of the motor are in a normal state. The modeling of the relationship between the operation amount and the state amount will be described by taking the load factor RMS and the winding temperature increase value ΔT described so far as examples.

まず、電動機1及び電動機の附帯設備2(ユニットクーラー)の正常運転時において、一定時間の間、操作量である負荷率のRMSと状態量である巻線温度上昇値ΔTの組のデータを複数収集する。次に、収集したデータに基づき、例えば最小2乗法等の既知の回帰分析手法を用いて、(7)式における係数k及び切片cを算出し、(7)式の形で表される回帰式を求めて、正常な状態における操作量及び状態量の関係をモデル化した相関モデルを作成する。   First, during normal operation of the electric motor 1 and the auxiliary equipment 2 (unit cooler) of the electric motor, a plurality of sets of data including a load factor RMS that is an operation amount and a winding temperature rise value ΔT that is a state quantity are stored for a certain period of time. collect. Next, based on the collected data, using a known regression analysis method such as the least square method, the coefficient k and the intercept c in the equation (7) are calculated, and the regression equation expressed in the form of the equation (7) And a correlation model that models the relationship between the operation amount and the state amount in a normal state is created.

そして、こうして作成した操作量(負荷率のRMS)及び状態量(巻線温度上昇値ΔT)の相関モデルをモデル記憶部7aに記憶する。モデル記憶部7aに予め記憶される相関モデルにおける負荷率のRMSの2乗と巻線温度上昇値ΔTとの関係の一例を図4に示す。   Then, a correlation model of the manipulated variable (RMS of load factor) and the state variable (winding temperature rise value ΔT) created in this way is stored in the model storage unit 7a. FIG. 4 shows an example of the relationship between the RMS square of the load factor and the winding temperature rise value ΔT in the correlation model stored in advance in the model storage unit 7a.

電動機1及び電動機の附帯設備2の運転中においては、予防保全装置7は定期的に操作量及び状態量を取得している。そして、予防保全装置7が備えるモデル状態量算出部7bは、運転中に取得した操作量をモデル記憶部7aが記憶する相関モデルに当てはめることにより、相関モデルから予想される、電動機1及び電動機の附帯設備2が正常であればとるであろう状態量(以下、モデル状態量という)を算出する。   During the operation of the electric motor 1 and the auxiliary equipment 2 of the electric motor, the preventive maintenance device 7 periodically acquires the operation amount and the state amount. And the model state quantity calculation part 7b with which the preventive maintenance apparatus 7 is equipped applies the operation amount acquired during driving | operation to the correlation model which the model memory | storage part 7a memorize | stores, and is anticipated from a correlation model, and the motor 1 and the motor A state quantity (hereinafter referred to as a model state quantity) that will be taken if the incidental equipment 2 is normal is calculated.

これまでの負荷率のRMSと巻線温度上昇値ΔTの例でいえば、予防保全装置7は電動機1及び電動機の附帯設備2の運転中の一定期間内における負荷率のRMSの2乗を算出し、モデル状態量算出部7bは、このRMSの2乗を(7)式に代入することによりモデル状態量の巻線温度上昇値ΔTを算出する。   In the example of the conventional load factor RMS and winding temperature rise value ΔT, the preventive maintenance device 7 calculates the square of the load factor RMS within a certain period during the operation of the motor 1 and the auxiliary equipment 2 of the motor. Then, the model state quantity calculation unit 7b calculates the winding temperature increase value ΔT of the model state quantity by substituting the square of this RMS into the equation (7).

予防保全装置7が備える比較部7cは、モデル状態量算出部7bにより算出されたモデル状態量と、運転中に実際に検出された状態量とを比較して、モデル状態量に対して運転中に実際に検出された状態量が所定の基準以上離れていた場合に、電動機1や電動機の附帯設備2に異常が発生したことを検出する。   The comparison unit 7c included in the preventive maintenance device 7 compares the model state quantity calculated by the model state quantity calculation unit 7b with the state quantity actually detected during operation, and is operating with respect to the model state quantity. When the state quantity actually detected is more than a predetermined reference, it is detected that an abnormality has occurred in the motor 1 or the auxiliary equipment 2 of the motor.

この異常検出判定について、図5を参照しながら説明する。図5において、10は、回帰式(7)で表される相関モデルである。そして、この相関モデル10の直線より所定の基準だけΔT軸のプラス側に、異常検出判定に用いる閾値11が設定されている。そして、運転中に実際に検出された状態量がこの閾値11以上である場合(検出点12)には、電動機1や電動機の附帯設備2に異常が発生したことが検出される。   This abnormality detection determination will be described with reference to FIG. In FIG. 5, 10 is a correlation model represented by the regression equation (7). A threshold 11 used for abnormality detection determination is set on the plus side of the ΔT axis by a predetermined reference from the straight line of the correlation model 10. When the state quantity actually detected during operation is equal to or greater than the threshold value 11 (detection point 12), it is detected that an abnormality has occurred in the motor 1 or the auxiliary equipment 2 of the motor.

なお、ここでは、閾値11を相関モデル10の直線より所定の基準だけ上方側に設定したが、相関モデル10の直線をΔT軸のプラスの方向に所定の倍率(例えば1.5倍)で拡大したものを閾値11として設定するようにしてもよい。   Here, the threshold 11 is set above the straight line of the correlation model 10 by a predetermined reference, but the straight line of the correlation model 10 is enlarged at a predetermined magnification (for example, 1.5 times) in the positive direction of the ΔT axis. This may be set as the threshold 11.

予防保全装置7の報知部7dは、比較部7cでのモデル状態量と実際の状態量との比較により、電動機1や電動機の附帯設備2に異常が発生したことが検出された場合に、その旨を保守員等に報知するものである。この報知部7dによる報知形態としては、例えば、予防保全装置7の表示画面に表示するものとしてもよいし、ブザーや音声等を鳴動させて報知するものとしてもよい。   When the notification unit 7d of the preventive maintenance device 7 detects that an abnormality has occurred in the motor 1 or the auxiliary equipment 2 of the motor by comparing the model state quantity and the actual state quantity in the comparison unit 7c, This is to notify the maintenance staff. As a notification form by the notification unit 7d, for example, it may be displayed on the display screen of the preventive maintenance device 7, or may be notified by sounding a buzzer or voice.

このように構成された電動機の予防保全装置においては、予め電動機1及び電動機の附帯設備2が正常な状態における操作量及び状態量の関係をモデル化した相関モデルを作成する。そして、電動機1及び電動機の附帯設備2の運転中において、相関モデル上のモデル状態量と実際の状態量とを比較することにより電動機1及び電動機の附帯設備2の異常を検出する。   In the preventive maintenance device for an electric motor configured as described above, a correlation model is created in which the relationship between the operation amount and the state amount when the electric motor 1 and the auxiliary equipment 2 of the electric motor are in a normal state is modeled in advance. Then, during operation of the motor 1 and the auxiliary equipment 2 of the motor, an abnormality of the motor 1 and the auxiliary equipment 2 of the motor is detected by comparing the model state quantity on the correlation model with the actual state quantity.

ここで、一般に、操作量の変化に応じて変化してしまう状態量に基づいて異常の検出を行おうとした場合、運転中の操作量の値に応じて異常検出の基準となる状態量を変化させることでより正確な異常検出を行うことができる。しかしながら、正常な状態においてサンプリングされたデータの操作量と運転中の実際の操作量とは必ずしも一致するとは限らない。したがって、正常な状態においてサンプリングされたデータの操作量と運転中の実際の操作量とが一致していない場合には、異常検出の基準値をどのように設定すればよいのかという問題が生じる。   Here, in general, when an abnormality is detected based on a state quantity that changes in accordance with a change in the operation amount, the state quantity serving as a reference for abnormality detection is changed according to the value of the operation amount during operation. By doing so, more accurate abnormality detection can be performed. However, the amount of operation of data sampled in a normal state does not always match the actual amount of operation during operation. Therefore, when the operation amount of the data sampled in the normal state does not match the actual operation amount during driving, there arises a problem of how to set the abnormality detection reference value.

このような問題に対し、この発明に係る電動機の予防保全装置においては、正常な状態における操作量及び状態量の関係をモデル化した相関モデルを用いて異常検出の基準となる状態量を設定するため、実際の操作量に応じて適切な基準値を設定することができ、より精度の高い異常検出を実現することが可能である。   With respect to such a problem, in the preventive maintenance device for an electric motor according to the present invention, a state quantity serving as a reference for abnormality detection is set using a correlation model that models a relationship between an operation amount and a state quantity in a normal state. Therefore, an appropriate reference value can be set according to the actual operation amount, and it is possible to realize abnormality detection with higher accuracy.

また、基準値の設定に必要な正常時の操作量・状態量のデータ数についてみてみると、相関モデルを使用しない場合には、異常検出精度を高めるためには基準値の設定により多くのデータ数が必要になる。これに対して、相関モデルを使用する場合には、一定以上の相関が得られる相関モデルの作成に必要な分だけのデータ数があればよく、すなわち、より少ないデータ数でより高い精度の異常検出を実現することができる。   In addition, when looking at the number of normal operation and state data required to set the reference value, when the correlation model is not used, more data can be set by setting the reference value in order to increase the accuracy of abnormality detection. Number is needed. On the other hand, when using a correlation model, it is only necessary to have the number of data required to create a correlation model that can obtain a correlation of a certain level or more, that is, an abnormality with higher accuracy with a smaller number of data. Detection can be realized.

さらに、電動機の附帯設備2である例えばユニットクーラーについて、ユニットクーラーが備える冷却水管は、長期間使用することにより管内部に汚れが付着し、配管が徐々に詰まっていくことがある。この詰まりはユニットクーラーの冷却機能を低下させるため、最終的に電動機の故障に至るおそれがある。ところが、このような冷却水管の詰まり等のユニットクーラーの異常は、直接的に検出することが非常に困難である。   Further, for example, a unit cooler that is an auxiliary equipment 2 of an electric motor, a cooling water pipe provided in the unit cooler may be contaminated inside the pipe when used for a long time, and the pipe may be gradually clogged. Since this clogging lowers the cooling function of the unit cooler, there is a risk that the motor will eventually fail. However, it is very difficult to directly detect such abnormalities in the unit cooler as clogged cooling water pipes.

しかし、このような冷却水管の詰まり等によりユニットクーラーの冷却機能が低下すると、正常時と比較して、同じ負荷率(操作量)であっても巻線温度上昇値ΔT(状態量)が大きくなる。このため、正常時の相関モデルにおけるモデル状態量からの実際の状態量のずれを検出することで、このような電動機の附帯設備2の異常を間接的に検出することが可能である。   However, if the cooling function of the unit cooler is reduced due to such clogging of the cooling water pipe, the winding temperature rise value ΔT (state quantity) is larger than that in the normal state even at the same load factor (operation amount). Become. For this reason, it is possible to indirectly detect such an abnormality of the auxiliary equipment 2 of the motor by detecting a deviation of the actual state quantity from the model state quantity in the correlation model at the normal time.

さらにまた、ユニットクーラーの冷却水管の詰まり等のような経年的に徐々に進行する劣化に伴う異常は、発現するまでの時間が長期にわたるため、その検出が非常に困難である。しかし、正常時の相関モデルを用いて異常検出の基準を設定するようにすることで、異常検出の精度を高めることができるため、このような長期にわたり徐々に進行する劣化についても検出することが可能である。   Furthermore, abnormalities accompanying deterioration that gradually progresses over time, such as clogging of the cooling water pipe of the unit cooler, are very difficult to detect because they take a long time to appear. However, since the accuracy of abnormality detection can be improved by setting the standard for abnormality detection using the correlation model at the normal time, it is possible to detect such deterioration that gradually progresses over a long period of time. Is possible.

以上のように構成された電動機の予防保全装置は、電動機駆動装置から電動機へと入力される操作量と所定の相関関係にある電動機の状態量を取得する状態量取得手段である測温抵抗体と、電動機及び電動機の附帯設備が正常な場合における操作量と状態量との関係を、相関関係に従ってモデル化した相関モデルを予め記憶するモデル記憶手段と、モデル記憶手段が記憶する相関モデルにおける、電動機の運転時の操作量に対する状態量を算出するモデル状態量算出手段と、前記運転時に状態量取得手段により取得した状態量とモデル状態量算出手段により算出した状態量とを比較することにより、電動機及び電動機の附帯設備の異常を検出する異常検出手段である比較部と、を備えたものである。   The preventive maintenance device for an electric motor configured as described above is a resistance temperature detector that is a state quantity acquisition means for acquiring a state quantity of the electric motor having a predetermined correlation with an operation quantity input from the electric motor drive apparatus to the electric motor. In the correlation model stored in the model storage means, the model storage means that stores in advance the correlation model modeled according to the correlation, the relationship between the operation amount and the state quantity when the motor and the incidental equipment of the motor are normal, By comparing the model state quantity calculation means for calculating the state quantity with respect to the operation quantity during operation of the electric motor, the state quantity obtained by the state quantity acquisition means during the operation and the state quantity calculated by the model state quantity calculation means, And a comparison unit that is an abnormality detection means for detecting an abnormality in the electric motor and the incidental equipment of the electric motor.

このため、電動機の異常検出精度を向上することができ、附電動機の附帯設備の異常監視・検出をも含めた電動機の予防保全を行うことが可能で、電動機の附帯設備の劣化を正確に判断することができる。また、したがって、電動機の附帯設備の故障の兆候を事前に知り、その症状に応じた保守を適切に実施することができるため、プラント全体の運転に影響するような電動機の突発的な故障を未然に防止することが可能である。   Therefore, the abnormality detection accuracy of the motor can be improved, the preventive maintenance of the motor including abnormality monitoring / detection of the auxiliary equipment of the auxiliary motor can be performed, and the deterioration of the auxiliary equipment of the motor can be judged accurately. can do. In addition, therefore, it is possible to know in advance the signs of the failure of the incidental equipment of the motor, and to appropriately carry out maintenance according to the symptoms, so that sudden failure of the motor that affects the operation of the entire plant can be prevented. It is possible to prevent.

実施の形態2.
図6は、この発明の実施の形態2に係るもので、予防保全装置の機能的構成を示すブロック図である。
ここで説明する実施の形態2は、前述した実施の形態1の構成において、電動機の状態量と所定の相関関係を有する操作量以外の、当該状態量に影響を与える要素についても考慮してモデル状態量を算出するようにしたものである。
Embodiment 2. FIG.
FIG. 6 relates to Embodiment 2 of the present invention and is a block diagram showing a functional configuration of the preventive maintenance apparatus.
The second embodiment described here is a model that takes into account factors that affect the state quantity other than the operation quantity having a predetermined correlation with the state quantity of the motor in the configuration of the first embodiment described above. The state quantity is calculated.

以下、実施の形態1と同様に、例として、操作量として負荷率のRMSを、状態量として巻線温度上昇値ΔTを用いた場合について説明する。状態量である巻線温度上昇値ΔTは、操作量である負荷率(のRMS)以外にも、例えば電動機の附帯設備2であるユニットクーラーの水冷熱交換器2bにおける冷却水の温度及び流量や冷却ファン2aの風量によっても変動する。   Hereinafter, as in the case of the first embodiment, as an example, a case where the load factor RMS is used as the operation amount and the winding temperature increase value ΔT is used as the state amount will be described. The winding temperature rise value ΔT, which is the state quantity, is not limited to the load factor (RMS), which is the operation quantity, for example, It also varies depending on the air volume of the cooling fan 2a.

具体的に数値をあげて説明すると、例えば、他の運転条件が同じ前提で冷却水の温度が20度の時に巻線温度上昇値ΔTが30度であって、冷却水温度が25度の時に巻線温度上昇値ΔTが32度であった場合、冷却水温度についての補正量は+2度となる。このようにして、冷却水温度についての補正量、冷却水流量についての補正量やファン風量についての補正量を、それぞれ運転条件に応じて評価していく。   Specifically, for example, when the temperature of the cooling water is 20 ° C. under the same operating conditions, the winding temperature rise value ΔT is 30 ° C., and the cooling water temperature is 25 ° C. When the winding temperature increase value ΔT is 32 degrees, the correction amount for the cooling water temperature is +2 degrees. In this way, the correction amount for the cooling water temperature, the correction amount for the cooling water flow rate, and the correction amount for the fan air volume are evaluated according to the operating conditions.

そして、これらの補正量を、それぞれα1、α2、α3とすると、これらの補正量を補正項として取り込んだ相関モデルの回帰式は次の(8)式のようになる。   If these correction amounts are α1, α2, and α3, respectively, the regression equation of the correlation model that takes these correction amounts as correction terms is expressed by the following equation (8).

ΔT=k・RMS^2+c+α1+α2+α3 ・・・(8)   ΔT = k · RMS ^ 2 + c + α1 + α2 + α3 (8)

この実施の形態2における予防保全装置7は、異常検出の基準値の設定に用いるモデル状態量の算出に、この(8)式のような補正項を有する回帰式を用いるようにしたものである。すなわち、予防保全装置7は、図6に示すように、モデル記憶部7a、モデル状態量算出部7b、比較部7c及び報知部7dに加えて、さらに補正量記憶部7eを備えている。   The preventive maintenance device 7 according to the second embodiment uses a regression equation having a correction term such as the equation (8) for calculation of a model state quantity used for setting a reference value for abnormality detection. . That is, as shown in FIG. 6, the preventive maintenance device 7 further includes a correction amount storage unit 7e in addition to the model storage unit 7a, the model state quantity calculation unit 7b, the comparison unit 7c, and the notification unit 7d.

この補正量記憶部7eは、操作量以外の要素が状態量に与える影響(すなわち、操作量以外の要素が与える状態量の変化量)を補正量として予め記憶するものである。モデル記憶部7aが記憶する相関モデルは、実施の形態1の(7)式のように補正項を含まない形のものである。そして、モデル状態量算出部7bは、モデル記憶部7aが記憶する相関モデルにおけるモデル状態量を算出する際に、補正量記憶部7eが記憶する補正量を加味することで、(8)式に従ったモデル状態量を算出する。   The correction amount storage unit 7e stores in advance, as a correction amount, the influence of elements other than the operation amount on the state amount (that is, the amount of change in the state amount given by the element other than the operation amount). The correlation model stored in the model storage unit 7a is of a form that does not include a correction term as in the expression (7) of the first embodiment. Then, when calculating the model state quantity in the correlation model stored in the model storage unit 7a, the model state quantity calculation unit 7b takes into account the correction amount stored in the correction amount storage unit 7e, thereby obtaining the equation (8). The model state quantity is calculated accordingly.

このように、モデル状態量の算出において、操作量と状態量との相関を表す部分から、操作量以外の状態量に影響する要素を分離して補正項として扱うことにより、相関モデルの作成や、算出されたモデル状態量を用いた異常検出等の手続きは実施の形態1と同様としたまま、操作量以外の状態量に影響する要素を考慮した異常検出を行うことができる。
なお、他の構成については実施の形態1と同様であって、その詳細説明は省略する。
In this way, in the calculation of the model state quantity, it is possible to create a correlation model by separating the elements that affect the state quantity other than the manipulated variable from the part representing the correlation between the manipulated variable and the state quantity and treating them as correction terms. The abnormality detection using the calculated model state quantity can be performed in the same manner as in the first embodiment, and the abnormality detection can be performed in consideration of factors affecting the state quantity other than the operation quantity.
Other configurations are the same as those in the first embodiment, and detailed description thereof is omitted.

以上のように構成された電動機の予防保全装置は、実施の形態1の構成に加えて、操作量以外の要素が与える状態量の変化量を補正量として予め記憶する補正量記憶部をさらに備え、モデル状態量算出部は、補正量記憶部が記憶する補正量を加味して、モデル記憶部が記憶する相関モデルにおける、電動機の運転時の操作量に対する状態量を算出するものである。   In addition to the configuration of the first embodiment, the preventive maintenance device for an electric motor configured as described above further includes a correction amount storage unit that previously stores, as a correction amount, a change amount of a state amount given by an element other than the operation amount. The model state amount calculation unit calculates a state amount with respect to the operation amount during operation of the motor in the correlation model stored in the model storage unit, taking into account the correction amount stored in the correction amount storage unit.

このため、実施の形態1と同様の効果を奏することができるのに加えて、重回帰分析を用いることなく操作量以外の要素についても考慮して相関モデルを補正することができ、複雑なデータ処理を経ることなく異常検出精度をさらに向上することが可能である。   For this reason, in addition to being able to achieve the same effects as in the first embodiment, the correlation model can be corrected in consideration of elements other than the manipulated variable without using multiple regression analysis, and complex data It is possible to further improve the abnormality detection accuracy without undergoing processing.

実施の形態3.
図7は、この発明の実施の形態3に係るもので、予防保全装置の機能的構成を示すブロック図である。
ここで説明する実施の形態3は、前述した実施の形態1の構成において、モデル状態量に対して運転中に実際に検出された状態量が所定の基準以上離れた回数を計数し、一定期間内におけるこの回数が所定の回数以上となった場合に、電動機や電動機の附帯設備の異常発生を検出するようにしたものである。
Embodiment 3 FIG.
FIG. 7 is a block diagram illustrating a functional configuration of the preventive maintenance apparatus according to Embodiment 3 of the present invention.
The third embodiment described here counts the number of times that the state quantity actually detected during operation with respect to the model state quantity is more than a predetermined reference in the configuration of the first embodiment described above. When this number of times becomes equal to or greater than a predetermined number of times, the occurrence of an abnormality in the motor and its associated equipment is detected.

この実施の形態3における予防保全装置7は、図6に示すように、モデル記憶部7a、モデル状態量算出部7b、比較部7c及び報知部7dに加えて、さらに計数部7fを備えている。比較部7cは、モデル状態量算出部7bにより算出されたモデル状態量と、運転中に実際に検出された状態量とを比較し、モデル状態量に対して運転中に実際に検出された状態量が所定の基準以上離れたか否かを判定する。   As shown in FIG. 6, the preventive maintenance device 7 according to the third embodiment further includes a counting unit 7f in addition to the model storage unit 7a, the model state quantity calculation unit 7b, the comparison unit 7c, and the notification unit 7d. . The comparison unit 7c compares the model state quantity calculated by the model state quantity calculation unit 7b with the state quantity actually detected during driving, and the state actually detected during driving with respect to the model state quantity It is determined whether the amount is more than a predetermined reference.

計数部7fは、比較部7cによりモデル状態量に対して実際の状態量が所定の基準以上離れたと判定された回数を計数する。そして、この回数が一定期間の間に、所定の回数以上となった場合に、電動機1や電動機の附帯設備2の異常発生を検出する。   The counting unit 7f counts the number of times that the comparison unit 7c determines that the actual state quantity is more than a predetermined reference with respect to the model state quantity. And when this frequency | count becomes more than a predetermined frequency | count during a fixed period, abnormality generation | occurrence | production of the electric motor 1 or the incidental equipment 2 of an electric motor is detected.

報知部7dは、実施の形態1と同様、電動機1や電動機の附帯設備2に異常が発生したことが検出された場合に、その旨を画面表示や音声等により保守員等に報知する。なお、ここで、比較部7cによりモデル状態量に対して実際の状態量が所定の基準以上離れたと判定された時刻を記録しておき、この報知部7dでの報知の際に、当該時刻や回数についても画面表示等により保守員に知らせるようにしてもよい。   In the same way as in the first embodiment, the notification unit 7d notifies the maintenance staff or the like by screen display, voice, or the like when it is detected that an abnormality has occurred in the electric motor 1 or the auxiliary equipment 2 of the electric motor. Here, the time when the comparison unit 7c determines that the actual state quantity has deviated by more than a predetermined reference with respect to the model state quantity is recorded, and at the time of notification by the notification unit 7d, The number of times may be informed to maintenance personnel by screen display or the like.

以上のように構成された電動機の予防保全装置は、実施の形態1の構成において、異常検出手段である比較部及び計数部は、運転時に状態量取得手段により取得した状態量がモデル状態量算出部により算出した状態量に対して所定の基準量以上離れた回数が、一定期間内に所定の回数以上となった場合に、電動機及び電動機の附帯設備の異常を検出するようにしたものである。   In the configuration of Embodiment 1, the preventive maintenance device for an electric motor configured as described above is configured so that the comparison unit and the counting unit, which are abnormality detection units, calculate the state quantity obtained by the state quantity obtaining unit during operation as a model state quantity. The abnormality of the motor and the incidental equipment of the motor is detected when the number of times away from the predetermined reference amount with respect to the state quantity calculated by the unit becomes a predetermined number of times or more within a certain period. .

このため、実施の形態1と同様の効果を奏することができるのに加えて、さらに、異常発生の誤検出を抑制して早期かつ高精度な異常検出を実現するとともに、保守点検の適切な時期を知らせることができる。   For this reason, in addition to being able to achieve the same effects as those of the first embodiment, it is possible to suppress erroneous detection of the occurrence of abnormality and realize early and highly accurate abnormality detection, and at the appropriate time for maintenance and inspection. Can be informed.

1 電動機
1a 回転軸
1b 回転子
1c 回転子巻線
1d 固定子鉄心
1e 固定子巻線
2 電動機の附帯設備
2a 冷却ファン
2b 水冷熱交換器
2c 軸受台
3 電動機駆動装置
4 電動機側リモートIO盤
5 駆動装置側リモートIO盤
6 通信ネットワーク
7 予防保全装置
7a モデル記憶部
7b モデル状態量算出部
7c 比較部
7d 報知部
7e 補正量記憶部
7f 計数部
8 巻線温度測定用測温抵抗体
9 冷媒温度測定用測温抵抗体
10 相関モデル
11 閾値
12 検出点
DESCRIPTION OF SYMBOLS 1 Electric motor 1a Rotating shaft 1b Rotor 1c Rotor winding 1d Stator core 1e Stator winding 2 Motor incidental equipment 2a Cooling fan 2b Water-cooled heat exchanger 2c Bearing stand 3 Motor drive device 4 Motor side remote IO board 5 Drive Device side remote IO board 6 Communication network 7 Preventive maintenance device 7a Model storage unit 7b Model state quantity calculation unit 7c Comparison unit 7d Notification unit 7e Correction amount storage unit 7f Counting unit 8 Resistance temperature detector for measuring winding temperature 9 Refrigerant temperature measurement RTD 10 Correlation model 11 Threshold 12 Detection point

Claims (3)

電動機駆動装置から入力される操作量に基づいて動作する電動機の予防保全装置であって、
前記操作量と所定の相関関係にある前記電動機の状態量を取得する状態量取得手段と、
前記電動機及び前記電動機の附帯設備が正常な場合における前記操作量と前記状態量との関係を、前記相関関係に従ってモデル化した相関モデルを予め記憶するモデル記憶手段と、
前記モデル記憶手段が記憶する前記相関モデルにおける、前記電動機の運転時の前記操作量に対する状態量を算出するモデル状態量算出手段と、
前記運転時に前記状態量取得手段により取得した前記状態量と前記モデル状態量算出手段により算出した前記状態量とを比較することにより、前記電動機及び前記電動機の附帯設備の異常を検出する異常検出手段と、を備えたことを特徴とする電動機の予防保全装置。
A preventive maintenance device for an electric motor that operates based on an operation amount input from an electric motor drive device,
State quantity acquisition means for acquiring a state quantity of the electric motor having a predetermined correlation with the operation quantity;
Model storage means for storing in advance a correlation model obtained by modeling the relationship between the operation amount and the state amount when the motor and the incidental equipment of the motor are normal according to the correlation;
Model state quantity calculating means for calculating a state quantity with respect to the manipulated variable during operation of the electric motor in the correlation model stored by the model storage means;
Abnormality detection means for detecting an abnormality in the motor and the incidental equipment of the motor by comparing the state quantity acquired by the state quantity acquisition means during the operation with the state quantity calculated by the model state quantity calculation means. And a preventive maintenance device for an electric motor.
前記操作量以外の要素が与える前記状態量の変化量を補正量として予め記憶する補正量記憶手段を備え、
前記モデル状態量算出手段は、前記補正量記憶手段が記憶する前記補正量を加味して、前記モデル記憶手段が記憶する前記相関モデルにおける、前記電動機の運転時の前記操作量に対する状態量を算出することを特徴とする請求項1に記載の電動機の予防保全装置。
Correction amount storage means for preliminarily storing, as a correction amount, a change amount of the state amount given by an element other than the operation amount;
The model state quantity calculating means calculates a state quantity with respect to the manipulated variable during operation of the electric motor in the correlation model stored by the model storage means in consideration of the correction amount stored by the correction quantity storage means. The preventive maintenance apparatus for an electric motor according to claim 1.
前記異常検出手段は、前記運転時に前記状態量取得手段により取得した前記状態量が前記モデル状態量算出手段により算出した前記状態量に対して所定の基準量以上離れた回数が、一定期間内に所定の回数以上となった場合に、前記電動機及び前記電動機の附帯設備の異常を検出することを特徴とする請求項1又は請求項2のいずれかに記載の電動機の予防保全装置。   The abnormality detection means is configured so that the number of times that the state quantity acquired by the state quantity acquisition means during the operation is more than a predetermined reference amount with respect to the state quantity calculated by the model state quantity calculation means is within a certain period. 3. The preventive maintenance apparatus for an electric motor according to claim 1, wherein an abnormality of the electric motor and an incidental facility of the electric motor is detected when the predetermined number of times is exceeded.
JP2012091866A 2012-04-13 2012-04-13 Preventive maintenance device for motor Pending JP2013223284A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012091866A JP2013223284A (en) 2012-04-13 2012-04-13 Preventive maintenance device for motor
KR1020120133528A KR101332113B1 (en) 2012-04-13 2012-11-23 Apparatus for preventive maintenance of motor
CN201310082028.XA CN103376410B (en) 2012-04-13 2013-03-14 The prevention secure device of motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012091866A JP2013223284A (en) 2012-04-13 2012-04-13 Preventive maintenance device for motor

Publications (1)

Publication Number Publication Date
JP2013223284A true JP2013223284A (en) 2013-10-28

Family

ID=49461827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012091866A Pending JP2013223284A (en) 2012-04-13 2012-04-13 Preventive maintenance device for motor

Country Status (3)

Country Link
JP (1) JP2013223284A (en)
KR (1) KR101332113B1 (en)
CN (1) CN103376410B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101858951B1 (en) * 2018-02-01 2018-05-17 주식회사 프로웰 The measurement motor monitoring control apparatus and monitoring control method thereof
KR20210065027A (en) 2019-11-26 2021-06-03 후지 덴키 기기세이교 가부시끼가이샤 Diagnosis device, distribution panel, control panel, diagnosis method and machine diagnosis program
DE102022101615A1 (en) 2021-03-23 2022-09-29 Fuji Electric Co., Ltd. ENGINE ANOMALY DIAGNOSTIC DEVICE, ANOMALY DIAGNOSTIC PROCEDURE AND NON-VOLATILE STORAGE MEDIA

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018103863A1 (en) * 2016-12-09 2018-06-14 Siemens Aktiengesellschaft Method for operating an electric rotating machine, in particular a turbo generator
KR20170002137U (en) 2017-04-05 2017-06-16 김홍섭 Apparatus for checking activity state of motor using piezo-electric vibration sensor
KR20180003196U (en) 2018-08-16 2018-11-09 김홍섭 Device for measuring vibration frequency of motor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173692A (en) * 1985-01-25 1986-08-05 Toshiba Corp Malfunction monitor
JPS61207155A (en) * 1985-03-08 1986-09-13 Mitsubishi Electric Corp Generating set
JPS6258851A (en) * 1985-05-22 1987-03-14 Nippon Steel Corp Controlling method for air quantity of cooling fan for motor
JPH0350932U (en) * 1989-09-25 1991-05-17
JPH0654572A (en) * 1992-07-31 1994-02-25 Omron Corp Heat protection apparatus for motor
JPH0698590A (en) * 1992-09-16 1994-04-08 Hitachi Ltd Thermal protection apparatus for vehicle driving motor
JP2004096888A (en) * 2002-08-30 2004-03-25 Toyota Motor Corp Rotor failure detection system
JP2004100525A (en) * 2002-09-06 2004-04-02 Honda Motor Co Ltd Device for estimating temperature of electric motor
JP2005284405A (en) * 2004-03-26 2005-10-13 Matsushita Electric Works Ltd Abnormality diagnosis apparatus
US20080094231A1 (en) * 2005-02-02 2008-04-24 Siemens Aktiengesellschaft Monitoring the Bearing Temperature of an Electrical Machine
JP2009077456A (en) * 2007-08-31 2009-04-09 Mk Seiko Co Ltd Method of preventing overheat of motor and motor-driven scissors employing the same
EP2088410A1 (en) * 2008-02-07 2009-08-12 Hitachi, Ltd. Rotary electric machine
JP2009303365A (en) * 2008-06-12 2009-12-24 Hitachi Constr Mach Co Ltd Protection device of electric motor and electromotive hydraulic excavator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2743642B1 (en) * 1996-01-11 1999-05-21 Toshiba Kk METHOD AND APPARATUS FOR DIAGNOSING ABNORMALITIES OF A SYSTEM
KR100957909B1 (en) * 2003-07-04 2010-05-13 주식회사 포스코 Apparatus for detecting the fault of short ring of motor
JP2005188956A (en) * 2003-12-24 2005-07-14 Mitsubishi Electric Corp Motor abnormality detection device and electrical equipment provided with the same
KR100740630B1 (en) * 2005-10-31 2007-07-18 재단법인 포항산업과학연구원 Diagnostic method and apparatus for rotor of induction motor
GB0526274D0 (en) * 2005-12-23 2006-02-01 Trw Ltd Electric motor control
US8306778B2 (en) * 2008-12-23 2012-11-06 Embraer S.A. Prognostics and health monitoring for electro-mechanical systems and components
JP2011065506A (en) * 2009-09-18 2011-03-31 Toshiba Mitsubishi-Electric Industrial System Corp Device and method for preventive maintenance of electric motor
KR20110033624A (en) * 2009-09-25 2011-03-31 주식회사 만도 Electronic parking brake system and method of controlling the same
CN202003011U (en) * 2011-01-21 2011-10-05 安徽泰坦联成能源技术有限公司 Device for monitoring and fault diagnosis of motor abnormity

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173692A (en) * 1985-01-25 1986-08-05 Toshiba Corp Malfunction monitor
JPS61207155A (en) * 1985-03-08 1986-09-13 Mitsubishi Electric Corp Generating set
JPS6258851A (en) * 1985-05-22 1987-03-14 Nippon Steel Corp Controlling method for air quantity of cooling fan for motor
JPH0350932U (en) * 1989-09-25 1991-05-17
JPH0654572A (en) * 1992-07-31 1994-02-25 Omron Corp Heat protection apparatus for motor
JPH0698590A (en) * 1992-09-16 1994-04-08 Hitachi Ltd Thermal protection apparatus for vehicle driving motor
JP2004096888A (en) * 2002-08-30 2004-03-25 Toyota Motor Corp Rotor failure detection system
JP2004100525A (en) * 2002-09-06 2004-04-02 Honda Motor Co Ltd Device for estimating temperature of electric motor
JP2005284405A (en) * 2004-03-26 2005-10-13 Matsushita Electric Works Ltd Abnormality diagnosis apparatus
US20080094231A1 (en) * 2005-02-02 2008-04-24 Siemens Aktiengesellschaft Monitoring the Bearing Temperature of an Electrical Machine
JP2008528901A (en) * 2005-02-02 2008-07-31 シーメンス アクチエンゲゼルシヤフト Monitoring of electrical machine bearing temperature
JP2009077456A (en) * 2007-08-31 2009-04-09 Mk Seiko Co Ltd Method of preventing overheat of motor and motor-driven scissors employing the same
EP2088410A1 (en) * 2008-02-07 2009-08-12 Hitachi, Ltd. Rotary electric machine
JP2009303365A (en) * 2008-06-12 2009-12-24 Hitachi Constr Mach Co Ltd Protection device of electric motor and electromotive hydraulic excavator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101858951B1 (en) * 2018-02-01 2018-05-17 주식회사 프로웰 The measurement motor monitoring control apparatus and monitoring control method thereof
KR20210065027A (en) 2019-11-26 2021-06-03 후지 덴키 기기세이교 가부시끼가이샤 Diagnosis device, distribution panel, control panel, diagnosis method and machine diagnosis program
DE102022101615A1 (en) 2021-03-23 2022-09-29 Fuji Electric Co., Ltd. ENGINE ANOMALY DIAGNOSTIC DEVICE, ANOMALY DIAGNOSTIC PROCEDURE AND NON-VOLATILE STORAGE MEDIA

Also Published As

Publication number Publication date
CN103376410A (en) 2013-10-30
CN103376410B (en) 2015-11-18
KR101332113B1 (en) 2013-11-21
KR20130115977A (en) 2013-10-22

Similar Documents

Publication Publication Date Title
KR101332113B1 (en) Apparatus for preventive maintenance of motor
EP2372882B1 (en) Stator coil coolant flow reduction monitoring
KR101279669B1 (en) Apparatus for planning maintenance of electric motor
JP6469980B2 (en) Failure diagnosis system and failure diagnosis method
WO2014041971A1 (en) Monitoring device, monitoring method, program, and recording medium
CN111033253A (en) Water quality diagnosis system, power station, and water quality diagnosis method
JP7035842B2 (en) Monitoring system
EP3419162A1 (en) Electrical signature analysis of electrical rotating machines
JP7044686B2 (en) Rotating machine temperature monitoring system and temperature monitoring method
JP2011065506A (en) Device and method for preventive maintenance of electric motor
CN112983570B (en) Correlation-based steam turbine bearing temperature high jump machine symptom capturing method and device
JP2005315564A (en) Air-conditioner malfunction detecting device and its method
JP2013152624A (en) Diagnostic system and diagnostic method
JP2018077634A (en) Plant facility deterioration diagnostic device
JP5893535B2 (en) Electric motor preventive maintenance device, electric motor preventive maintenance method, and electric motor preventive maintenance system
JP6147205B2 (en) Meter data confirmation device and meter data confirmation method
US11415156B2 (en) Method for monitoring the condition of a hydraulic system of a metal forming plant and condition-monitoring device
JP2005214631A (en) State monitoring/maintaining device and method
JP4001099B2 (en) Distributed power supply vibration diagnosis system
JPH06315247A (en) Refrigerant temperature monitoring system for rotating electric machine
Singh et al. Condition Monitoring of Variable Speed Drives
JP7485473B1 (en) Generator cooler performance monitoring device
Balakrishna et al. Power system asset management using advanced protection relays
Bonnett et al. Benchmarking electric motors before they fail
Sasic et al. Integrated generator rotor and stator winding condition monitoring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160705