JP2013221843A - Failure detection device and failure detection method for multiaxial three-phase servo motor - Google Patents

Failure detection device and failure detection method for multiaxial three-phase servo motor Download PDF

Info

Publication number
JP2013221843A
JP2013221843A JP2012093283A JP2012093283A JP2013221843A JP 2013221843 A JP2013221843 A JP 2013221843A JP 2012093283 A JP2012093283 A JP 2012093283A JP 2012093283 A JP2012093283 A JP 2012093283A JP 2013221843 A JP2013221843 A JP 2013221843A
Authority
JP
Japan
Prior art keywords
phase
failure detection
servo motor
unit
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012093283A
Other languages
Japanese (ja)
Other versions
JP5535266B2 (en
Inventor
Kazuo Ohashi
一夫 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Engineering Co Ltd
Original Assignee
Mitsubishi Electric Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Engineering Co Ltd filed Critical Mitsubishi Electric Engineering Co Ltd
Priority to JP2012093283A priority Critical patent/JP5535266B2/en
Publication of JP2013221843A publication Critical patent/JP2013221843A/en
Application granted granted Critical
Publication of JP5535266B2 publication Critical patent/JP5535266B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a failure detection device and a failure detection method for a multiaxial three-phase servo motor, which require no A/D converter, and perform failure detection for respective three-phase servo motors with a small number of components, and moreover enable correct failure determination in the failure detection.SOLUTION: One electric conduction detection circuit part (330) is used for applying a DC voltage between winding circuits of respective three-phase servo motors and the earth, and failure detection of the three-phase servo motors is performed based on current flowing through the electric conduction detection circuit part (330).

Description

本発明は、部品点数の増加を抑制しつつ、高精度に三相サーボモータの故障検出を行うための多軸三相サーボモータ用の故障検出装置および故障検出方法に関するものである。   The present invention relates to a failure detection apparatus and a failure detection method for a multi-axis three-phase servomotor for detecting a failure of a three-phase servomotor with high accuracy while suppressing an increase in the number of parts.

三相サーボモータの故障を検出する方法として、三相の相電圧の瞬時値と相電流の瞬時値を用いる従来技術が知られている(例えば、特許文献1)。   As a method for detecting a failure of a three-phase servo motor, a conventional technique using an instantaneous value of a three-phase phase voltage and an instantaneous value of a phase current is known (for example, Patent Document 1).

特許文献1に示されたような三相インバータの故障検出装置は、三相インバータにおける三相の相電圧の瞬時値と相電流の瞬時値について、サンプルホールド回路および検出対象切換部を介して、A/D変換器によってアナログ値からデジタル値に変換する。   The fault detection device for a three-phase inverter as shown in Patent Document 1 is configured to provide an instantaneous value of a three-phase phase voltage and an instantaneous value of a phase current in a three-phase inverter via a sample hold circuit and a detection target switching unit. An analog value is converted into a digital value by an A / D converter.

次に、マイクロプロセッサによって、デジタル値に変換後の各相の相電圧の加算値および相電流の加算値を算出する。そして、それぞれの加算値が0付近の場合は、「正常」と判断し、0付近から逸脱する場合は、「異常」と判断することにより故障検出を行っている。   Next, the addition value of the phase voltage and the addition value of the phase current of each phase after conversion into a digital value are calculated by the microprocessor. When each added value is close to 0, it is determined as “normal”, and when it deviates from near 0, it is determined as “abnormal” to detect a failure.

特許第2902455号公報Japanese Patent No. 2902455

しかしながら、従来技術には以下のような課題がある。
特許文献1に示されたような故障検出装置は、矩形状のインバータ出力電圧波形を計測するために、高速かつ高精度なA/D変換器が必要となる。さらに、複数のサーボモータを組み合わせたシステムにおいて、それぞれのモータ毎に故障検出回路が必要であったため、部品構成が多数必要であった。この結果、装置コストが高くなってしまうという問題があった。
However, the prior art has the following problems.
The failure detection apparatus as shown in Patent Document 1 requires a high-speed and high-precision A / D converter in order to measure a rectangular inverter output voltage waveform. Furthermore, in a system in which a plurality of servo motors are combined, a failure detection circuit is required for each motor, so a large number of component configurations are required. As a result, there has been a problem that the apparatus cost becomes high.

また、複数のサーボモータを組み合わせたシステムでは、誘導電流または漏れ電流などの影響により、正確な故障判定ができない、あるいは受電変圧器の中性点が非接地または高抵抗接地である場合には、正確な故障判定ができないといった信頼性の問題もあった。   Also, in a system that combines multiple servo motors, due to the influence of induced current or leakage current, accurate failure determination cannot be performed, or when the neutral point of the receiving transformer is ungrounded or high resistance grounding, There was also a problem of reliability that an accurate failure judgment could not be made.

本発明は、前記のような課題を解決するためになされたものであり、A/D変換器を必要とせず、少ない部品構成により故障検出を行い、さらに故障検出において、正確な故障判定を行うことができる多軸三相サーボモータ用の故障検出装置および故障検出方法を得ることを目的とする。   The present invention has been made to solve the above-described problems, and does not require an A / D converter, detects a failure with a small number of components, and further performs an accurate failure determination in the failure detection. An object of the present invention is to obtain a failure detection apparatus and failure detection method for a multi-axis three-phase servo motor.

本発明における多軸三相サーボモータ用の故障検出装置は、複数台の三相サーボモータの故障検出を1台で行う多軸三相サーボモータ用の故障検出装置であって、故障検出対象である三相サーボモータの巻線回路に対して故障診断用の直流電圧を印加するための直流電源と、直流電圧を印加した際に巻線回路に所定値以上の電流が流れるか否かを検出する電流検出部とを有する通電検出回路部と、通電検出回路部と複数台の三相サーボモータのそれぞれの巻線回路との間に接続され、外部からの切り換え指令に基づいて、それぞれの巻線回路の中から直流電圧を印加する巻線回路を選択切り換え可能とする検出対象切換部と、三相サーボモータの故障検出を行う際に、複数台の三相サーボモータのそれぞれの駆動出力部の運転を停止させた後、複数台の三相サーボモータの中から故障検出対象である三相サーボモータを特定するために、検出対象切換部に対して切り換え指令を出力し、電流検出部の測定結果に基づいて、故障検出対象である三相サーボモータの巻線回路に所定値以上の電流が流れたと判断した場合には、故障検出対象である三相サーボモータで地絡故障が発生したと判断する故障判定部とを備えるものである。   The failure detection device for a multi-axis three-phase servo motor according to the present invention is a failure detection device for a multi-axis three-phase servo motor that performs failure detection of a plurality of three-phase servo motors with a single device. A DC power supply for applying a DC voltage for fault diagnosis to the winding circuit of a certain three-phase servo motor, and detecting whether a current exceeding a predetermined value flows through the winding circuit when a DC voltage is applied Are connected between the energization detection circuit unit and the winding circuit of each of the plurality of three-phase servo motors, and based on the switching command from the outside, A detection target switching unit that enables selection and switching of a winding circuit to which a DC voltage is applied from among the line circuits, and each drive output unit of a plurality of three-phase servo motors when detecting a failure of a three-phase servo motor After stopping the operation In order to identify the three-phase servo motor that is the target of failure detection from multiple three-phase servo motors, a switching command is output to the detection target switching unit, and failure detection is performed based on the measurement results of the current detection unit. A failure determination unit that determines that a ground fault has occurred in the three-phase servo motor that is a failure detection target when it is determined that a current of a predetermined value or more has flowed through the winding circuit of the target three-phase servo motor. It is to be prepared.

また、本発明における故障検出方法は、複数台の三相サーボモータの故障検出を1台で行う多軸三相サーボモータ用の故障検出装置で実行される故障検出方法であって、複数台の三相サーボモータのそれぞれの駆動出力部の運転を停止させる第1ステップと、複数台の三相サーボモータのそれぞれの巻線回路の中から、故障検出対象である三相サーボモータの巻線回路を選択切り換えすることで、選択した巻線回路に故障診断用の直流電圧を印加する第2ステップと、直流電圧を印加した際に巻線回路に所定値以上の電流が流れるか否かを検出する第3ステップと、第3ステップによる検出結果に基づいて、故障検出対象である三相サーボモータの巻線回路に所定値以上の電流が流れたと判断した場合には、故障検出対象である三相サーボモータで地絡故障が発生したと判断する第4ステップとを備えるものである。   The failure detection method according to the present invention is a failure detection method executed by a failure detection apparatus for a multi-axis three-phase servo motor that performs failure detection of a plurality of three-phase servo motors by one unit. The first step of stopping the operation of each drive output unit of the three-phase servo motor, and the winding circuit of the three-phase servo motor that is a failure detection target from among the respective winding circuits of the plurality of three-phase servo motors The second step of applying a DC voltage for fault diagnosis to the selected winding circuit and the detection of whether or not a current of a predetermined value or more flows through the winding circuit when the DC voltage is applied. If it is determined that a current greater than or equal to a predetermined value has flowed through the winding circuit of the three-phase servo motor that is the failure detection target based on the detection result of the third step and the third step, Phase servo motor In which and a fourth step of determining a ground fault occurs in data.

本発明における多軸三相サーボモータ用の故障検出装置および故障検出方法によれば、1つの通電検出回路部を用いて、それぞれの三相サーボモータの巻線回路と大地間に直流電圧を印加し、通電検出回路部に流れる電流によって故障検出を行うことにより、A/D変換器を必要とせず、少ない部品構成により故障検出を行うことができ、さらに、正確な故障判定を行うことができる多軸三相サーボモータ用の故障検出装置および故障検出方法を得ることができる。   According to the failure detection apparatus and the failure detection method for a multi-axis three-phase servo motor in the present invention, a DC voltage is applied between the winding circuit of each three-phase servo motor and the ground using one energization detection circuit unit. In addition, by performing failure detection using the current flowing through the energization detection circuit unit, it is possible to perform failure detection with a small number of components without requiring an A / D converter, and to perform accurate failure determination. A failure detection apparatus and failure detection method for a multi-axis three-phase servomotor can be obtained.

本発明の実施の形態1における三相サーボモータ用の故障検出装置をシステムに適用するときの構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram when applying the failure detection apparatus for three-phase servomotors in Embodiment 1 of this invention to a system. 本発明の実施の形態2における三相サーボモータ用の故障検出装置を1台の三相サーボモータによるシステムに適用するときの構成図である。It is a block diagram when applying the failure detection apparatus for a three-phase servo motor in Embodiment 2 of the present invention to a system using one three-phase servo motor. 本発明の実施の形態3における通電検出回路部の構成図である。It is a block diagram of the electricity supply detection circuit part in Embodiment 3 of this invention. 本発明の実施の形態4における通電検出回路部の構成図である。It is a block diagram of the electricity supply detection circuit part in Embodiment 4 of this invention.

以下、本発明の多軸三相サーボモータ用の故障検出装置および故障検出方法の好適な実施の形態につき図面を用いて説明する。   Hereinafter, preferred embodiments of a failure detection apparatus and failure detection method for a multi-axis three-phase servo motor according to the present invention will be described with reference to the drawings.

実施の形態1.
図1は、本発明の実施の形態1における三相サーボモータ用の故障検出装置をシステムに適用するときの構成図である。この図1は、8台の三相サーボモータを駆動するシステムに1台の故障検出装置を適用した場合の構成を例示しているものである。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram when a failure detection apparatus for a three-phase servo motor according to Embodiment 1 of the present invention is applied to a system. FIG. 1 shows an example of a configuration in which one failure detection device is applied to a system that drives eight three-phase servo motors.

この図1におけるシステムは、三相サーボモータ用の駆動出力部(三相インバータ部)100、三相サーボモータ部200、および故障検出装置300から構成される。   The system in FIG. 1 includes a drive output unit (three-phase inverter unit) 100 for a three-phase servo motor, a three-phase servo motor unit 200, and a failure detection device 300.

駆動出力部100は、図示するように8台の三相サーボモータのそれぞれに対応する駆動出力回路101〜108を有する。また、三相サーボモータ部200は、三相サーボモータ201〜208を有する。   The drive output unit 100 includes drive output circuits 101 to 108 corresponding to each of the eight three-phase servo motors as illustrated. The three-phase servo motor unit 200 includes three-phase servo motors 201 to 208.

故障検出装置300は、高電圧隔離回路部310、検出対象切換部320、通電検出回路部330、および故障判定部340を備える。通電検出回路部330は、直流電源331および電流検出部332を有する。   The failure detection apparatus 300 includes a high voltage isolation circuit unit 310, a detection target switching unit 320, an energization detection circuit unit 330, and a failure determination unit 340. The energization detection circuit unit 330 includes a DC power source 331 and a current detection unit 332.

高電圧隔離回路部310は、図示するように、三相サーボモータ201〜208のそれぞれを一括して開閉可能な回路開閉部311〜318を有する。また、検出対象切換部320は、三相サーボモータ201〜208のそれぞれを個別に選択可能な回路選択部321〜328を有する。   The high voltage isolation circuit unit 310 includes circuit open / close units 311 to 318 that can open and close each of the three-phase servo motors 201 to 208 as illustrated. In addition, the detection target switching unit 320 includes circuit selection units 321 to 328 that can individually select the three-phase servomotors 201 to 208, respectively.

高電圧隔離回路部310は、図示するように、三相サーボモータ部200と検出対象切換部320との間に設置されている。そして、高電圧隔離回路部310は、必要に応じて、これらの接続または切り離しを行う。   The high voltage isolation circuit unit 310 is installed between the three-phase servo motor unit 200 and the detection target switching unit 320 as illustrated. The high voltage isolation circuit unit 310 connects or disconnects them as necessary.

検出対象切換部320は、三相サーボモータ部200内の故障検出対象である三相サーボモータを、三相サーボモータ201〜208の中から1つ選択するために、故障判定部340からの切り換え指令に応じて、選択切り換えする。   The detection target switching unit 320 switches from the failure determination unit 340 to select one of the three-phase servomotors 201 to 208 as the three-phase servomotor that is the target of failure detection in the three-phase servomotor unit 200. Select and switch according to the command.

通電検出回路部330は、選択した1つの三相サーボモータに対して、直流電源331によって三相サーボモータの巻線回路と大地間に故障診断用の直流電圧を印加する。そして、電流検出部332は、直流電圧印加時において、巻線回路に所定値以上の電流が流れるか否か検出する。   The energization detection circuit unit 330 applies a DC voltage for fault diagnosis between the winding circuit of the three-phase servo motor and the ground by the DC power source 331 with respect to one selected three-phase servo motor. The current detection unit 332 detects whether or not a current of a predetermined value or more flows through the winding circuit when a DC voltage is applied.

故障判定部340は、駆動制御部(図示せず)による駆動出力部100の駆動出力停止、高電圧隔離回路部310による開閉、検出対象切換部320による選択、および通電検出回路部330による直流電圧印加、電流検出のそれぞれを制御することにより、三相サーボモータ部200内のそれぞれの三相サーボモータ201〜208の故障判定を行う。   The failure determination unit 340 stops driving output of the driving output unit 100 by a driving control unit (not shown), opens and closes by the high voltage isolation circuit unit 310, selection by the detection target switching unit 320, and DC voltage by the energization detection circuit unit 330. By controlling each of the application and current detection, failure determination of each of the three-phase servomotors 201 to 208 in the three-phase servomotor unit 200 is performed.

ここで、本実施の形態1における多軸三相サーボモータ用の故障検出装置は、従来技術と比較して、以下の技術的特徴を有す。   Here, the failure detection apparatus for the multi-axis three-phase servo motor in the first embodiment has the following technical features as compared with the prior art.

[第1の技術的特徴]コスト面での優位性
本実施の形態1における故障検出装置300は、高速かつ高精度なA/D変換器を必要としない。さらに、図1で例示したように、故障検出装置300内に検出対象切換部320を備えることにより、通電検出回路部330(故障検出回路)は、システム全体として1つ備えるだけでよい。従って、部品構成を最小限に抑えることができる。この結果、従来技術と比較して、コスト面で優位である。
[First Technical Feature] Superiority in Cost The failure detection apparatus 300 according to the first embodiment does not require a high-speed and high-precision A / D converter. Furthermore, as illustrated in FIG. 1, by providing the detection target switching unit 320 in the failure detection device 300, only one energization detection circuit unit 330 (failure detection circuit) may be provided as the entire system. Accordingly, the component configuration can be minimized. As a result, it is superior in cost compared with the prior art.

[第2の技術的特徴]高信頼性
本実施の形態1における故障検出装置300は、三相サーボモータの巻線回路と大地間に直流電圧を印加し、通電検出回路部330に流れる電流によって故障判定を行っている。このため、誘導電流または漏れ電流などの影響を受けず、受電変圧器の中性点が非接地または高抵抗接地である場合においても正確な故障判定を行うことができる。この結果、従来技術と比較して、信頼性の高いシステムを実現できる。
[Second Technical Feature] High Reliability The failure detection apparatus 300 according to the first embodiment applies a DC voltage between the winding circuit of the three-phase servomotor and the ground, and the current flowing through the energization detection circuit unit 330 Failure is being judged. For this reason, even when the neutral point of the power receiving transformer is ungrounded or high-resistance grounded without being affected by an induced current or a leakage current, an accurate failure determination can be performed. As a result, a highly reliable system can be realized as compared with the prior art.

次に、故障検出装置300が三相サーボモータの故障検出を行う一連の動作について、具体的に説明する。なお、ここでは、通電検出回路部330内の電流検出部332が小型継電器333から構成される場合について述べる。   Next, a series of operations in which the failure detection apparatus 300 detects a failure of the three-phase servo motor will be specifically described. Here, a case where the current detection unit 332 in the energization detection circuit unit 330 is configured by a small relay 333 will be described.

はじめに、故障検出装置300内の故障判定部340は、駆動制御部(図示せず)に駆動出力部100の運転を停止させる。この場合、駆動出力部100のインバータ出力回路のすべてのゲートは、オフ状態となり、三相サーボモータ部200内のそれぞれの三相サーボモータ201〜208への出力電圧は、0Vとなる。   First, the failure determination unit 340 in the failure detection apparatus 300 causes the drive control unit (not shown) to stop the operation of the drive output unit 100. In this case, all the gates of the inverter output circuit of the drive output unit 100 are turned off, and the output voltage to each of the three-phase servomotors 201 to 208 in the three-phase servomotor unit 200 is 0V.

次に、故障判定部340は、高電圧隔離回路部310内の回路開閉部311〜318を一括して閉状態にすることによって、三相サーボモータ部200と検出対象切換部320との間を接続する。   Next, the failure determination unit 340 closes the circuit open / close units 311 to 318 in the high voltage isolation circuit unit 310 in a closed state so that a gap between the three-phase servo motor unit 200 and the detection target switching unit 320 is established. Connecting.

なお、駆動出力部100が運転中の場合には、矩形上の高電圧の駆動電圧から通電検出回路部330を保護するために、高電圧隔離回路部310内の回路開閉部311〜318は、一括して開状態となっている。すなわち、三相サーボモータ部200と検出対象切換部320との間は、切り離されている。   In addition, when the drive output unit 100 is in operation, the circuit open / close units 311 to 318 in the high voltage isolation circuit unit 310 are provided to protect the energization detection circuit unit 330 from a rectangular high voltage drive voltage. It is open all at once. That is, the three-phase servo motor unit 200 and the detection target switching unit 320 are disconnected.

次に、故障判定部340は、三相サーボモータ部200内の故障検出を行う三相サーボモータを選択するために、故障検出を行う三相サーボモータに対応する検出対象切換部320内の回路選択部321〜328のいずれか1つを選択して閉状態にする。   Next, in order to select the three-phase servo motor that performs failure detection in the three-phase servo motor unit 200, the failure determination unit 340 is a circuit in the detection target switching unit 320 corresponding to the three-phase servo motor that performs failure detection. Any one of the selectors 321 to 328 is selected and closed.

故障検出を行う三相サーボモータに対応する回路選択部を閉状態にすると、故障検出対象である三相サーボモータと通電検出回路部330間が接続され、故障判定を行うことができる。   When the circuit selection unit corresponding to the three-phase servo motor that performs failure detection is closed, the three-phase servo motor that is a failure detection target and the energization detection circuit unit 330 are connected, and failure determination can be performed.

そして、故障判定部340は、故障検出を行う三相サーボモータに対応する回路選択部を順次、閉状態にする(選択切り換えする)ことによって、システム内の全ての三相サーボモータの故障判定を、1台で行うことができる。   Then, the failure determination unit 340 sequentially closes (selects and switches) the circuit selection unit corresponding to the three-phase servo motor that performs failure detection, thereby determining the failure determination of all three-phase servo motors in the system. This can be done with one unit.

次に、1番目の三相サーボモータ201の故障判定を行う場合を例にして、具体的な故障検出方法について説明する。なお、2番目以降の三相サーボモータ(三相サーボモータ202〜208)についても、同様に行うことができる。   Next, a specific failure detection method will be described with reference to an example in which failure determination of the first three-phase servomotor 201 is performed. The same applies to the second and subsequent three-phase servo motors (three-phase servo motors 202 to 208).

はじめに、故障判定部340は、故障検出を行うために、駆動制御部(図示せず)に駆動出力部100の運転を停止させ、高電圧隔離回路部310内の回路開閉部311〜318を一括して閉状態とする。それから、故障判定部340は、1番目の三相サーボモータ201に対応する回路選択部321のみを閉状態にする。このとき、他の回路選択部322〜328は、開状態である。   First, the failure determination unit 340 causes a drive control unit (not shown) to stop the operation of the drive output unit 100 to detect the failure, and collects the circuit open / close units 311 to 318 in the high voltage isolation circuit unit 310 collectively. To the closed state. Then, the failure determination unit 340 closes only the circuit selection unit 321 corresponding to the first three-phase servomotor 201. At this time, the other circuit selection units 322 to 328 are in an open state.

これにより、三相サーボモータ201と通電検出回路部330間は、接続されたことになる。そして、三相サーボモータ201と大地間において、通電検出回路部330内の直流電源331によって、直流電圧が印加される。   As a result, the three-phase servo motor 201 and the energization detection circuit unit 330 are connected. A DC voltage is applied between the three-phase servo motor 201 and the ground by the DC power source 331 in the energization detection circuit unit 330.

また、通電検出回路部330内の小型継電器333は、直流電圧の印加によって、通電検出回路部330に所定値以上の電流(例えば、10mA程度)が流れる場合、オン状態となり、流れない場合、オフ状態となる。   Further, the small relay 333 in the energization detection circuit unit 330 is turned on when a current of a predetermined value or more (for example, about 10 mA) flows through the energization detection circuit unit 330 by application of a DC voltage, and is turned off when it does not flow. It becomes a state.

直流電圧印加時に、三相サーボモータ201の巻線回路または配線の一部がフレーム等に短絡している場合、巻線回路または配線の一部、フレーム等、大地を経由して回路が形成されるため、通電検出回路部330内に所定値以上の電流が流れ、小型継電器333は、オン状態となる。   If a part of the winding circuit or wiring of the three-phase servo motor 201 is short-circuited to the frame or the like when a DC voltage is applied, a circuit is formed via the ground, such as a part of the winding circuit or wiring, the frame, or the like. Therefore, a current of a predetermined value or more flows in the energization detection circuit unit 330, and the small relay 333 is turned on.

従って、故障判定部340は、小型継電器333がオン状態の場合、三相サーボモータ201に、地絡等の故障が発生していると判断できるとともに、警告を発することができる。なお、この警告は、故障と判断された三相サーボモータ201を保護するため、通常の運転が行われないように知らせるものである。   Therefore, the failure determination unit 340 can determine that a failure such as a ground fault has occurred in the three-phase servo motor 201 and issue a warning when the small relay 333 is on. This warning is for notifying that the normal operation is not performed in order to protect the three-phase servo motor 201 determined to be malfunctioning.

一方、直流電圧印加時に、三相サーボモータ201に、地絡等の故障が発生していない場合、通電検出回路部330内には所定値以上の電流が流れず、小型継電器333は、オフ状態となる。従って、故障判定部340は、小型継電器333がオフ状態の場合、三相サーボモータ201は、正常であると判断する。   On the other hand, if a fault such as a ground fault has not occurred in the three-phase servo motor 201 when a DC voltage is applied, a current exceeding a predetermined value does not flow in the energization detection circuit unit 330, and the small relay 333 is in an OFF state. It becomes. Therefore, the failure determination unit 340 determines that the three-phase servo motor 201 is normal when the small relay 333 is in the off state.

なお、三相サーボモータ201の巻線回路は、インダクタンスを持っているが、直流電圧が印加されるため、回路内のインピーダンスは、ほぼ0オームとなる。従って、故障判定部340は、巻線回路のインダクタンスに影響されることはなく、三相のいずれの巻線で地絡等の故障が起こっても、電流値に応じて正確な故障判定を行うことができる。   The winding circuit of the three-phase servo motor 201 has inductance, but since a DC voltage is applied, the impedance in the circuit is almost 0 ohms. Therefore, the failure determination unit 340 is not affected by the inductance of the winding circuit, and performs an accurate failure determination according to the current value even if a failure such as a ground fault occurs in any of the three-phase windings. be able to.

なお、故障判定部340は、1番目の三相サーボモータ201の故障判定を行った後、同様に、2番目以降の三相サーボモータ202〜208に対応する回路選択部322〜328のみを順次、閉状態にしていくことにより、全ての三相サーボモータ201〜208に対する故障判定を、1台で行うことができる。   In addition, after the failure determination unit 340 determines the failure of the first three-phase servomotor 201, only the circuit selection units 322 to 328 corresponding to the second and subsequent three-phase servomotors 202 to 208 are sequentially sequentially changed. By making the closed state, it is possible to make a failure determination for all the three-phase servomotors 201 to 208 with one unit.

故障判定部340は、このようにして三相サーボモータ部200内の全ての三相サーボモータ201〜208を故障判定した後、高電圧隔離回路部310内の回路開閉部311〜318を一括して開状態にする。この結果、三相サーボモータ部200と検出対象切換部320との間は切り離される。その後、正常判定された三相サーボモータは、対応する駆動出力回路101〜108による通常運転が可能となる。   The failure determination unit 340 determines the failure of all the three-phase servo motors 201 to 208 in the three-phase servo motor unit 200 in this way, and then collectively sets the circuit open / close units 311 to 318 in the high voltage isolation circuit unit 310. Open. As a result, the three-phase servo motor unit 200 and the detection target switching unit 320 are disconnected. Thereafter, the three-phase servo motor determined to be normal can be normally operated by the corresponding drive output circuits 101 to 108.

以上のように、本発明の実施の形態1によれば、複数の三相サーボモータを組み合わせたシステムにおいては、検出対象切換部による選択切換を行うことで、システム全体として、通電検出回路部を1つ備えるだけでよい。さらに、三相サーボモータの巻線回路と大地間に直流電圧を印加し、通電検出回路部に流れる電流によって、故障判定を行うことができる。   As described above, according to the first embodiment of the present invention, in a system in which a plurality of three-phase servo motors are combined, the energization detection circuit unit is configured as a whole system by performing selection switching by the detection target switching unit. You only need one. Furthermore, it is possible to make a failure determination by applying a DC voltage between the winding circuit of the three-phase servo motor and the ground and using a current flowing through the energization detection circuit unit.

これにより、高速かつ高精度なA/D変換器を必要とせず、部品構成を最小限に抑えることができる。さらに、誘導電流または漏れ電流などの影響を受けず、受電変圧器の中性点が非接地または高抵抗接地である場合においても正確な故障判定を行うことができる。   Thereby, a high-speed and highly accurate A / D converter is not required, and the component configuration can be minimized. Furthermore, an accurate failure determination can be made even when the neutral point of the power receiving transformer is ungrounded or high-resistance grounded without being affected by an induced current or a leakage current.

なお、本実施の形態1では、故障検出装置300は、高電圧隔離回路部310を備えずとも同様の効果を得ることができる。また、電流検出部332を構成する機器として、回路内に流れる所定値以上の電流を検出する機器ならば、小型継電器333以外の別の機器を用いてもよい。   In the first embodiment, the failure detection apparatus 300 can obtain the same effect without the high voltage isolation circuit unit 310. In addition, as a device constituting the current detection unit 332, another device other than the small relay 333 may be used as long as it is a device that detects a current exceeding a predetermined value flowing in the circuit.

実施の形態2.
先の実施の形態1では、複数の三相サーボモータを組み合わせたシステム(大規模システム)に適用する故障検出装置300について説明した。これに対して、本発明の実施の形態2では、1台の三相サーボモータによるシステム(小規模システム)に適用する故障検出装置300について説明する。
Embodiment 2. FIG.
In the first embodiment, the failure detection apparatus 300 applied to a system (large-scale system) in which a plurality of three-phase servo motors are combined has been described. On the other hand, in Embodiment 2 of the present invention, a failure detection apparatus 300 applied to a system (small system) using one three-phase servo motor will be described.

図2は、本発明の実施の形態2における三相サーボモータ用の故障検出装置300を1台の三相サーボモータによるシステムに適用するときの構成図である。この図2におけるシステムは、駆動出力部100、三相サーボモータ部200、および故障検出装置300から構成される。   FIG. 2 is a configuration diagram when the failure detection apparatus 300 for a three-phase servo motor in Embodiment 2 of the present invention is applied to a system using one three-phase servo motor. The system in FIG. 2 includes a drive output unit 100, a three-phase servo motor unit 200, and a failure detection device 300.

駆動出力部100は、図示するように、1つの駆動出力回路101を有す。また、三相サーボモータ部200は、1つの駆動出力回路101によって駆動される1台の三相サーボモータ201を有す。   The drive output unit 100 has one drive output circuit 101 as shown in the figure. The three-phase servo motor unit 200 has a single three-phase servo motor 201 driven by one drive output circuit 101.

故障検出装置300は、高電圧隔離回路部310、通電検出回路部330、および故障判定部340を備える。高電圧隔離回路部310は、図示するように、三相サーボモータ201に対応する回路開閉部311を有しており、1回路に限定されている。なお、通電検出回路部330は、先の実施の形態1と同様に、直流電源331および小型継電器333を有する。   The failure detection apparatus 300 includes a high voltage isolation circuit unit 310, an energization detection circuit unit 330, and a failure determination unit 340. As shown in the figure, the high voltage isolation circuit unit 310 includes a circuit opening / closing unit 311 corresponding to the three-phase servo motor 201 and is limited to one circuit. In addition, the energization detection circuit unit 330 includes a DC power source 331 and a small relay 333 as in the first embodiment.

また、先の実施の形態1とは異なり、検出対象切換部320が具備されていない。すなわち、この図2における故障検出装置300は、1台の三相サーボモータによるシステムに適用されるため、検出対象切換部320を備えなくても、高電圧隔離回路部310だけを備えていることで、同様の効果を得ることができる。なお、三相サーボモータ201の故障検出を行う一連の動作については、先の実施の形態1と同様のため、説明を省略する。   Further, unlike the first embodiment, the detection target switching unit 320 is not provided. That is, since the failure detection apparatus 300 in FIG. 2 is applied to a system using a single three-phase servo motor, the failure detection apparatus 300 includes only the high voltage isolation circuit unit 310 without including the detection target switching unit 320. Thus, the same effect can be obtained. Since a series of operations for detecting a failure of the three-phase servo motor 201 is the same as that in the first embodiment, the description thereof is omitted.

また、1台の三相サーボモータによるシステムの場合には、故障検出装置300内において、さらに検出対象切換部320による切換がないため、短時間に簡単に故障を検出することができる。   Further, in the case of a system using a single three-phase servomotor, since there is no switching by the detection target switching unit 320 in the failure detection apparatus 300, a failure can be detected easily in a short time.

以上のように、本発明の実施の形態2によれば、1台の三相サーボモータによるシステムにおいて、故障検出装置内の回路開閉部を1回路に限定し、さらに検出対象切換部を備えずに故障判定を行うことができる。これにより、構成部品を削減することができ、さらに検出対象切換部の動作時間が省略されるため、短時間に簡単に正確な故障判定を行うことができる。   As described above, according to the second embodiment of the present invention, in the system using one three-phase servo motor, the circuit open / close unit in the failure detection apparatus is limited to one circuit, and further, the detection target switching unit is not provided. It is possible to make a failure determination. As a result, the number of components can be reduced, and the operation time of the detection target switching unit is omitted, so that accurate failure determination can be performed easily in a short time.

なお、本実施の形態2では、故障検出装置300は、回路開閉部を1回路に限定した高電圧隔離回路部310の代わりに、回路選択部を1回路に限定した検出対象切換部320を備えても同様の効果を得ることができる。   In the second embodiment, the failure detection apparatus 300 includes a detection target switching unit 320 in which the circuit selection unit is limited to one circuit instead of the high voltage isolation circuit unit 310 in which the circuit opening / closing unit is limited to one circuit. However, the same effect can be obtained.

実施の形態3.
先の実施の形態1、2では、小型継電器333を有する通電検出回路部330を用いた故障検出方法について説明した。これに対して、本発明の実施の形態3では、先の実施の形態1、2とは異なる構成の通電検出回路部330を備えた故障検出装置300について説明する。
Embodiment 3 FIG.
In the first and second embodiments, the failure detection method using the energization detection circuit unit 330 having the small relay 333 has been described. On the other hand, in the third embodiment of the present invention, a failure detection apparatus 300 including an energization detection circuit unit 330 having a configuration different from those of the first and second embodiments will be described.

図3は、本発明の実施の形態3における通電検出回路部330の構成図である。この図3における通電検出回路部330は、先の図1、2における通電検出回路部330と同様に、直流電源331を備えるとともに、小型継電器333の代わりに、シャント抵抗334および電流測定器335を備える。   FIG. 3 is a configuration diagram of the energization detection circuit unit 330 according to the third embodiment of the present invention. The energization detection circuit unit 330 in FIG. 3 includes a DC power source 331 as well as the energization detection circuit unit 330 in FIGS. 1 and 2, and includes a shunt resistor 334 and a current measuring device 335 in place of the small relay 333. Prepare.

また、通電検出回路部330内のシャント抵抗334は、検出対象切換部320と直流電源331との間に直列に挿入されており、電流測定器335は、シャント抵抗334に流れる電流値を測定する。   The shunt resistor 334 in the energization detection circuit unit 330 is inserted in series between the detection target switching unit 320 and the DC power source 331, and the current measuring device 335 measures the value of the current flowing through the shunt resistor 334. .

次に、図3における通電検出回路部330を備えた故障検出装置300について、説明する。なお、本実施の形態3における故障検出装置300は、先の図1、2における故障検出装置300の通電検出回路部330の構成が異なっており、その他の各部の構成は、同じである。   Next, the failure detection apparatus 300 including the energization detection circuit unit 330 in FIG. 3 will be described. The failure detection apparatus 300 according to the third embodiment is different in the configuration of the energization detection circuit unit 330 of the failure detection apparatus 300 in FIGS. 1 and 2, and the other components are the same.

従って、ここでは、本実施の形態3における通電検出回路部330の動作を中心に説明する。本実施の形態3における多軸三相サーボモータ用の故障検出装置300は、回路内の電流値の経時変化を計測することにより故障判定を行うという技術的特徴を有す。   Therefore, here, the operation of the energization detection circuit unit 330 according to the third embodiment will be mainly described. The failure detection apparatus 300 for a multi-axis three-phase servo motor according to the third embodiment has a technical feature of performing failure determination by measuring a change in current value in a circuit with time.

すなわち、先の実施の形態1、2における通電検出回路部330では、小型継電器333の2値(オン状態・オフ状態)を検出することにより、回路内に所定値以上の電流が流れるか否かを確認し、三相サーボモータの故障判定を行っていた。   That is, in the energization detection circuit unit 330 in the first and second embodiments, whether or not a current of a predetermined value or more flows in the circuit by detecting the binary value (on state / off state) of the small relay 333. The failure was determined for the three-phase servo motor.

これに対して、本実施の形態3のおける通電検出回路部330は、回路内の電流値を正確に計測し、回路内に流れる電流値の経時変化を確認することによって、三相サーボモータの故障判定を、より高精度に行うことができる。   On the other hand, the energization detection circuit unit 330 according to the third embodiment accurately measures the current value in the circuit and confirms the change with time of the current value flowing in the circuit, so that the three-phase servo motor Failure determination can be performed with higher accuracy.

例えば、1週間毎の電流値を計測し、計測したデータに対して、経過時間を横軸に、電流値を縦軸にしてデータをプロットする。このようにして得られるグラフの形状によって、1週間毎に電流値の大きさが経時的にどのように変化しているか確認することができ、三相サーボモータの経時的な状態が分かる。   For example, the current value is measured every week, and the data is plotted with the elapsed time on the horizontal axis and the current value on the vertical axis for the measured data. The shape of the graph thus obtained makes it possible to check how the current value changes over time every week, and the state of the three-phase servo motor with time can be understood.

また、三相サーボモータの故障を判断する基準として、例えば、グラフ内のデータを直線近似することによって得られる傾きが一定値以上になった場合、または電流値が所定の閾値以上になった場合に、故障判定部340は、通電検出回路部330による経時的な計測結果に基づいて地絡故障が発生したか否かを判断することができる。   In addition, as a criterion for judging a failure of a three-phase servo motor, for example, when the slope obtained by linear approximation of the data in the graph becomes a certain value or more, or when the current value becomes more than a predetermined threshold value In addition, the failure determination unit 340 can determine whether or not a ground fault has occurred based on the measurement results over time by the energization detection circuit unit 330.

以上のように、本発明の実施の形態3によれば、小型継電器の代わりに、シャント抵抗および電流測定器を有した通電検出回路部を備え、回路内に流れる電流値の経時変化を確認することで、故障検出を行っている。これにより、小型継電器のオン・オフ状態に基づいて故障検出を行っていた先の実施の形態1、2の場合と比較して、より高精度な故障検出が可能となり、三相サーボモータが停止するといった重大事故の前に、異常状態を判断することができる。   As described above, according to the third embodiment of the present invention, an energization detection circuit unit having a shunt resistor and a current measuring device is provided instead of the small relay, and a change with time of the current value flowing in the circuit is confirmed. Therefore, failure detection is performed. This makes it possible to detect a failure with higher accuracy and stop the three-phase servo motor compared to the first and second embodiments where the failure was detected based on the ON / OFF state of the small relay. An abnormal condition can be determined before a serious accident.

実施の形態4.
先の実施の形態3では、シャント抵抗334および電流測定器335を有した通電検出回路部330を備えた故障検出装置300について説明した。これに対して、本発明の実施の形態4では、先の実施の形態3とは異なる構成の通電検出回路部330を備えた故障検出装置300について説明する。
Embodiment 4 FIG.
In the third embodiment, the failure detection apparatus 300 including the energization detection circuit unit 330 including the shunt resistor 334 and the current measuring device 335 has been described. On the other hand, in the fourth embodiment of the present invention, a failure detection apparatus 300 including an energization detection circuit unit 330 having a configuration different from that of the third embodiment will be described.

図4は、本発明の実施の形態4における通電検出回路部330の構成図である。この図4における通電検出回路部330は、先の図3における通電検出回路部330と同様に、直流電源331、シャント抵抗334および電流測定器335を備えるとともに、さらに、交流電源336を備える。   FIG. 4 is a configuration diagram of the energization detection circuit unit 330 according to the fourth embodiment of the present invention. 4 includes a DC power source 331, a shunt resistor 334, and a current measuring device 335, as well as an AC power source 336, in the same manner as the energization detection circuit unit 330 in FIG.

次に、図4における通電検出回路部330を備えた故障検出装置300について、説明する。なお、本実施の形態4における故障検出装置300は、先の図3における故障検出装置300の通電検出回路部330の構成が異なっており、その他の各部の構成は、同じである。   Next, the failure detection apparatus 300 including the energization detection circuit unit 330 in FIG. 4 will be described. The failure detection apparatus 300 according to the fourth embodiment is different in the configuration of the energization detection circuit unit 330 of the failure detection apparatus 300 in FIG. 3, and the other components are the same.

従って、ここでは、本実施の形態4における通電検出回路部330の動作を中心に説明する。本実施の形態4における三相サーボモータ用の故障検出装置300は、交流電源336をさらに備えることで、直流電流に交流電流を重畳し、三相サーボモータの巻線回路のインダクタンスを加味することにより、故障判定を行う点を技術的特徴としている。   Therefore, here, the operation of the energization detection circuit unit 330 according to the fourth embodiment will be mainly described. The failure detection apparatus 300 for a three-phase servo motor in the fourth embodiment further includes an AC power source 336, so that the AC current is superimposed on the DC current and the inductance of the winding circuit of the three-phase servo motor is taken into account. Therefore, the technical feature is that the failure determination is performed.

本実施の形態4のおける通電検出回路部330では、回路内の電流値を正確に計測し、回路内に流れる電流値の経時変化を確認することにより、故障判定を、より高精度に行うことができる。さらに、三相サーボモータの巻線回路のインダクタンスを加味することにより、巻線のどの位置でフレームに地絡したかを、推定することができる。   In the energization detection circuit unit 330 according to the fourth embodiment, the current value in the circuit is accurately measured, and the time-dependent change of the current value flowing in the circuit is confirmed, so that the failure determination is performed with higher accuracy. Can do. Further, by taking into account the inductance of the winding circuit of the three-phase servo motor, it is possible to estimate at which position of the winding the ground has occurred in the frame.

例えば、故障検出対象である三相サーボモータの巻線回路のU相と大地間に電圧を印加する場合を考える。この場合、回路内において直流電流値と交流電流の実効値(以下では、交流電流値と称す)の大きさがほぼ等しい場合には、U相が、フレームに地絡していると判断できる。   For example, consider a case where a voltage is applied between the U phase of the winding circuit of a three-phase servo motor that is a failure detection target and the ground. In this case, if the magnitudes of the DC current value and the effective value of the AC current (hereinafter referred to as AC current values) are substantially equal in the circuit, it can be determined that the U phase is grounded in the frame.

また、回路内において直流電流値の方が交流電流値より大きく、交流電流値がU相におけるインダクタンスにより低減されたような値である場合には、中性点部分またはU相とV相の接続部付近で地絡していると判断できる。   In the circuit, when the direct current value is larger than the alternating current value and the alternating current value is reduced by the inductance in the U phase, the neutral point portion or the connection between the U phase and the V phase It can be judged that there is a ground fault near the club.

このように、直流電流値と交流電流値との大きさを比較することで、巻線回路のどの位置でフレームに地絡しているか(地絡故障の発生場所)を推定することができる   In this way, by comparing the magnitudes of the direct current value and the alternating current value, it is possible to estimate at which position of the winding circuit the ground is in the frame (location of occurrence of the ground fault).

なお、直流電圧と交流電圧を重畳した電圧を巻線回路のU相と大地間に印加して、電流測定器335を用いて回路内の電流を計測することにより、故障判定部340は、一度に交流電流値と直流電流値の計測結果を読み取ることが可能となる。この結果、システム全体として、構成部品を削減することができる。   Note that the failure determination unit 340 is configured to apply the voltage obtained by superimposing the DC voltage and the AC voltage between the U phase and the ground of the winding circuit and measure the current in the circuit using the current measuring device 335. It becomes possible to read the measurement result of the alternating current value and the direct current value. As a result, component parts can be reduced as a whole system.

なお、三相サーボモータの巻線回路のV相またはW相と大地間に電圧を印加する場合においても、同様の効果を得ることができる。   The same effect can be obtained when a voltage is applied between the V phase or W phase of the winding circuit of the three-phase servomotor and the ground.

以上のように、本発明の実施の形態4によれば、直流電源に加えて交流電源を備えた通電検出回路部を用いて、回路内を流れる直流電流値と交流電流値とを比較することで、故障検出を行っている。これにより、地絡故障の有無に加え、巻線回路のどの位置でフレームに地絡しているかを推定することができる。   As described above, according to the fourth embodiment of the present invention, the value of the direct current flowing in the circuit is compared with the value of the alternating current using the energization detection circuit unit provided with the alternating current power supply in addition to the direct current power supply. And fault detection is performed. Thereby, in addition to the presence or absence of a ground fault, it is possible to estimate at which position of the winding circuit the ground is in the frame.

100 駆動出力部、101〜108 駆動出力回路、200 三相サーボモータ部、201〜208 三相サーボモータ、300 故障検出装置、310 高電圧隔離回路部、311〜318 回路開閉部、320 検出対象切換部、321〜328 回路選択部、330 通電検出回路部、331 直流電源、332 電流検出部、333 小型継電器、334 シャント抵抗、335 電流測定器、336 交流電源、340 故障判定部。   DESCRIPTION OF SYMBOLS 100 Drive output part, 101-108 Drive output circuit, 200 Three-phase servo motor part, 201-208 Three-phase servo motor, 300 Fault detection device, 310 High voltage isolation circuit part, 311-318 Circuit opening / closing part, 320 Detection object switching Unit, 321-328 circuit selection unit, 330 energization detection circuit unit, 331 DC power supply, 332 current detection unit, 333 small relay, 334 shunt resistance, 335 current measurement device, 336 AC power supply, 340 failure determination unit.

Claims (6)

複数台の三相サーボモータの故障検出を1台で行う多軸三相サーボモータ用の故障検出装置であって、
故障検出対象である三相サーボモータの巻線回路に対して故障診断用の直流電圧を印加するための直流電源と、前記直流電圧を印加した際に前記巻線回路に所定値以上の電流が流れるか否かを検出する電流検出部とを有する通電検出回路部と、
前記通電検出回路部と前記複数台の三相サーボモータのそれぞれの巻線回路との間に接続され、外部からの切り換え指令に基づいて、前記それぞれの巻線回路の中から前記直流電圧を印加する巻線回路を選択切り換え可能とする検出対象切換部と、
前記三相サーボモータの故障検出を行う際に、前記複数台の三相サーボモータのそれぞれの駆動出力部の運転を停止させた後、前記複数台の三相サーボモータの中から故障検出対象である三相サーボモータを特定するために、前記検出対象切換部に対して前記切り換え指令を出力し、前記電流検出部の測定結果に基づいて、前記故障検出対象である三相サーボモータの巻線回路に所定値以上の電流が流れたと判断した場合には、前記故障検出対象である三相サーボモータで地絡故障が発生したと判断する故障判定部と
を備えることを特徴とする多軸三相サーボモータ用の故障検出装置。
A failure detection device for a multi-axis three-phase servo motor that detects a failure of a plurality of three-phase servo motors with one unit,
A DC power source for applying a DC voltage for fault diagnosis to the winding circuit of the three-phase servo motor that is a fault detection target, and when the DC voltage is applied, a current of a predetermined value or more is applied to the winding circuit. An energization detection circuit unit having a current detection unit for detecting whether or not to flow;
Connected between the energization detection circuit unit and the respective winding circuits of the three-phase servo motors, and applies the DC voltage from the respective winding circuits based on an external switching command. A detection target switching unit that enables selective switching of a winding circuit to be performed;
When detecting the failure of the three-phase servo motor, after stopping the operation of the drive output unit of each of the plurality of three-phase servo motors, a failure detection target is selected from the plurality of three-phase servo motors. In order to identify a certain three-phase servomotor, the switching command is output to the detection target switching unit, and the winding of the three-phase servomotor that is the fault detection target based on the measurement result of the current detection unit A multi-axis three-way motor, comprising: a failure determination unit that determines that a ground fault has occurred in the three-phase servomotor that is the target of failure detection when it is determined that a current of a predetermined value or more has flowed through the circuit. Fault detection device for phase servo motor.
請求項1に記載の多軸三相サーボモータ用の故障検出装置において、
前記電流検出部は、前記直流電圧を印加した際に前記巻線回路に所定値以上の電流が流れることでオン状態となる小型継電器で構成され、
前記故障判定部は、前記小型継電器が前記オン状態となった場合には、前記故障検出対象である三相サーボモータで地絡故障が発生したと判断する
ことを特徴とする多軸三相サーボモータ用の故障検出装置。
In the failure detection apparatus for a multi-axis three-phase servo motor according to claim 1,
The current detection unit is configured by a small relay that is turned on when a current of a predetermined value or more flows through the winding circuit when the DC voltage is applied,
The failure determination unit determines that a ground fault has occurred in the three-phase servomotor that is the failure detection target when the small relay is in the on state. Failure detection device for motors.
請求項1に記載の多軸三相サーボモータ用の故障検出装置において、
前記電流検出部は、前記検出対象切換部と前記直流電源との間に直列に挿入されたシャント抵抗と、前記シャント抵抗に流れる電流値を測定する電流測定器から構成され、
前記故障判定部は、前記電流測定器で測定された直流電流値の大きさおよび経時的な変化に応じて前記故障検出対象である三相サーボモータで地絡故障が発生したか否かを判断する
ことを特徴とする多軸三相サーボモータ用の故障検出装置。
In the failure detection apparatus for a multi-axis three-phase servo motor according to claim 1,
The current detection unit includes a shunt resistor inserted in series between the detection target switching unit and the DC power source, and a current measuring device that measures a current value flowing through the shunt resistor,
The failure determination unit determines whether or not a ground fault has occurred in the three-phase servomotor that is the target of failure detection according to the magnitude of the DC current value measured by the current measuring instrument and the change over time. A failure detection device for a multi-axis three-phase servo motor characterized by:
請求項3に記載の多軸三相サーボモータ用の故障検出装置において、
前記通電検出回路部は、前記故障検出対象である三相サーボモータの巻線回路に対して前記故障診断用の直流電圧と重畳させた交流電圧を印加するための交流電源をさらに備え、
前記故障判定部は、前記電流測定器によって計測された交流電流の実効値と前記直流電流値との大きさを比較することにより、前記地絡故障の発生場所の推定を行う
ことを特徴とする多軸三相サーボモータ用の故障検出装置。
In the failure detection apparatus for a multi-axis three-phase servo motor according to claim 3,
The energization detection circuit unit further includes an AC power source for applying an AC voltage superimposed on the DC voltage for failure diagnosis to the winding circuit of the three-phase servo motor that is the target of failure detection,
The failure determination unit estimates the location of occurrence of the ground fault by comparing the effective value of the alternating current measured by the current measuring device and the magnitude of the direct current value. Failure detection device for multi-axis three-phase servo motor.
請求項1ないし4の何れか1項に記載の多軸三相サーボモータ用の故障検出装置において、
前記検出対象切換部と前記複数台の三相サーボモータのそれぞれの巻線回路との間に接続され、前記三相サーボモータの故障検出を行う際には一括して閉状態となり、前記三相サーボモータが通常運転中は、一括して開状態となる高電圧隔離回路部をさらに備える
ことを特徴とする多軸三相サーボモータ用の故障検出装置。
In the failure detection apparatus for a multi-axis three-phase servomotor according to any one of claims 1 to 4,
It is connected between the detection target switching unit and the respective winding circuits of the plurality of three-phase servo motors, and when the failure detection of the three-phase servo motor is performed, it is collectively closed and the three-phase A failure detection apparatus for a multi-axis three-phase servo motor, further comprising a high voltage isolation circuit section that is collectively opened during normal operation of the servo motor.
複数台の三相サーボモータの故障検出を1台で行う多軸三相サーボモータ用の故障検出装置で実行される故障検出方法であって、
前記複数台の三相サーボモータのそれぞれの駆動出力部の運転を停止させる第1ステップと、
前記複数台の三相サーボモータのそれぞれの巻線回路の中から、故障検出対象である三相サーボモータの巻線回路を選択切り換えすることで、選択した巻線回路に故障診断用の直流電圧を印加する第2ステップと、
前記直流電圧を印加した際に前記巻線回路に所定値以上の電流が流れるか否かを検出する第3ステップと、
前記第3ステップによる検出結果に基づいて、前記故障検出対象である三相サーボモータの巻線回路に所定値以上の電流が流れたと判断した場合には、前記故障検出対象である三相サーボモータで地絡故障が発生したと判断する第4ステップと
を備えることを特徴とする故障検出方法。
A failure detection method executed by a failure detection apparatus for a multi-axis three-phase servo motor that performs failure detection of a plurality of three-phase servo motors by one unit,
A first step of stopping operation of each drive output unit of the plurality of three-phase servomotors;
By selecting and switching the winding circuit of the three-phase servo motor that is the target of failure detection from among the respective winding circuits of the plurality of three-phase servo motors, a DC voltage for fault diagnosis is selected in the selected winding circuit. A second step of applying
A third step of detecting whether a current of a predetermined value or more flows through the winding circuit when the DC voltage is applied;
If it is determined that a current of a predetermined value or more has flowed through the winding circuit of the three-phase servomotor that is the failure detection target based on the detection result of the third step, the three-phase servomotor that is the failure detection target And a fourth step of determining that a ground fault has occurred.
JP2012093283A 2012-04-16 2012-04-16 Fault detection device and fault detection method for multi-axis three-phase servo motor Expired - Fee Related JP5535266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012093283A JP5535266B2 (en) 2012-04-16 2012-04-16 Fault detection device and fault detection method for multi-axis three-phase servo motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012093283A JP5535266B2 (en) 2012-04-16 2012-04-16 Fault detection device and fault detection method for multi-axis three-phase servo motor

Publications (2)

Publication Number Publication Date
JP2013221843A true JP2013221843A (en) 2013-10-28
JP5535266B2 JP5535266B2 (en) 2014-07-02

Family

ID=49592908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012093283A Expired - Fee Related JP5535266B2 (en) 2012-04-16 2012-04-16 Fault detection device and fault detection method for multi-axis three-phase servo motor

Country Status (1)

Country Link
JP (1) JP5535266B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6353598B1 (en) * 2017-11-27 2018-07-04 株式会社小田原エンジニアリング Wire flaw detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532477U (en) * 1978-08-23 1980-03-01
JPH02309263A (en) * 1989-05-24 1990-12-25 Hitachi Elevator Eng & Service Co Ltd Insulation resistance measuring apparatus
JPH0614978U (en) * 1992-07-30 1994-02-25 株式会社島津製作所 Electric actuator with starter
JP2002071768A (en) * 2000-06-14 2002-03-12 Nissan Motor Co Ltd Insulating-property inspection apparatus for motor
JP2004251689A (en) * 2003-02-19 2004-09-09 Apisute:Kk Three-phase induction motor insulation deterioration monitoring apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532477U (en) * 1978-08-23 1980-03-01
JPH02309263A (en) * 1989-05-24 1990-12-25 Hitachi Elevator Eng & Service Co Ltd Insulation resistance measuring apparatus
JPH0614978U (en) * 1992-07-30 1994-02-25 株式会社島津製作所 Electric actuator with starter
JP2002071768A (en) * 2000-06-14 2002-03-12 Nissan Motor Co Ltd Insulating-property inspection apparatus for motor
JP2004251689A (en) * 2003-02-19 2004-09-09 Apisute:Kk Three-phase induction motor insulation deterioration monitoring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6353598B1 (en) * 2017-11-27 2018-07-04 株式会社小田原エンジニアリング Wire flaw detector
JP2019095390A (en) * 2017-11-27 2019-06-20 株式会社小田原エンジニアリング Electric wire flaw detector

Also Published As

Publication number Publication date
JP5535266B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
CN101499773B (en) Motor control system including electrical insulation deterioration detecting system
JP5606387B2 (en) Motor control apparatus and motor insulation deterioration detection method
US7355436B2 (en) Method for error detection in a drive mechanism
US9291678B2 (en) Method and controller for an electric motor with switch testing
CN103091596B (en) Balancing double-switching circuit and insulation detection device and method based on the same
JP2012233826A5 (en)
CN103941114B (en) The self checking method of automobile permanent magnet synchronous motor system power module and current sensor
EP2506408A2 (en) Ground scheme identification method
KR101818916B1 (en) Fault diagnosis apparatus, system and method of permanent magnet motor
US20180123497A1 (en) Method for emulating a three-phase electric motor using a load emulator, and a corresponding load emulator
US9694686B2 (en) Multifunctional monitoring of electrical systems
KR101893174B1 (en) System and method for localizing multiple open-switch faults in inverter
WO2017122309A1 (en) Electric motor control device
TW201807425A (en) Motor control apparatus
US20190044429A1 (en) Fault Detection
JP6131940B2 (en) Inverter failure detection method and inverter inspection device
JP5535266B2 (en) Fault detection device and fault detection method for multi-axis three-phase servo motor
JP6643519B1 (en) Motor control device and its insulation resistance detection method
JP5369818B2 (en) Inverter device failure detection method
CN114448266A (en) Inverter system having motor insulation inspection function
JP7386145B2 (en) Motor control device with protection function for insulation resistance detection section and its protection method
EP3599716B1 (en) Fault isolation for pulse width modulated three phase motor systems
EP2857851B1 (en) A device for diagnosing the condition of a fuse or a contact in a contactor and electromechanical assembly comprising such a diagnosing device
JP2017093196A (en) Inverter controller and short-circuit inspection method for motor
JP2019178872A (en) Fault locator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140422

R150 Certificate of patent or registration of utility model

Ref document number: 5535266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees