JP2013221204A - Clad tube made of aluminum alloy for braze-joining and heat exchanger to which the clad tube made of aluminum alloy is applied - Google Patents

Clad tube made of aluminum alloy for braze-joining and heat exchanger to which the clad tube made of aluminum alloy is applied Download PDF

Info

Publication number
JP2013221204A
JP2013221204A JP2012095211A JP2012095211A JP2013221204A JP 2013221204 A JP2013221204 A JP 2013221204A JP 2012095211 A JP2012095211 A JP 2012095211A JP 2012095211 A JP2012095211 A JP 2012095211A JP 2013221204 A JP2013221204 A JP 2013221204A
Authority
JP
Japan
Prior art keywords
aluminum alloy
tube
clad
core material
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012095211A
Other languages
Japanese (ja)
Other versions
JP5885572B2 (en
Inventor
Yoshiyuki Otani
良行 大谷
Koichi Yamaguchi
浩一 山口
Satoshi Wakakuri
聡史 若栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2012095211A priority Critical patent/JP5885572B2/en
Publication of JP2013221204A publication Critical patent/JP2013221204A/en
Application granted granted Critical
Publication of JP5885572B2 publication Critical patent/JP5885572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To disclose a clad tube made of an aluminum alloy for braze-joining that can achieve both the corrosion resistance of a tube and the corrosion resistance of a joint, and is excellent in hairpin bendability.SOLUTION: In a clad tube made of an aluminum alloy for braze-joining that includes a core material made of an aluminum alloy and a skin material made of an aluminum alloy clad on the outer surface of the core material, and is joined with other members by brazing, the core material is composed of an aluminum alloy containing 0.8-1.8% by mass Mn, 0.4-0.8% by mass Cu and 0.2% by mass or less Si, the balance being aluminum and inevitable impurities, and the skin material is composed of an aluminum alloy containing 0.5-1.5% by mass Zn, the balance being aluminum and inevitable impurities. Further, the clad tube made of an aluminum alloy for braze-joining is characterized in that the average cross-sectional crystal grain size of the core material is 150 μm or less.

Description

本発明は、他の部材とろう付によって接合されるアルミニウム合金製クラッド管に関する。特に家庭用空気調和機、業務用空気調和機、ヒートポンプ式給湯機等に用いられるクロスフィン型熱交換器の伝熱管に好適な、ろう付接合用アルミニウム合金製クラッド管に関するものである。   The present invention relates to an aluminum alloy clad tube joined to another member by brazing. In particular, the present invention relates to an aluminum alloy clad tube for brazing joining, which is suitable for a heat transfer tube of a cross fin type heat exchanger used for a domestic air conditioner, a commercial air conditioner, a heat pump type hot water heater or the like.

家庭用空気調和機、業務用空気調和機、ヒートポンプ式給湯機等に一般的に用いられるクロスフィン型熱交換器(フィンアンドチューブ型熱交換器ともいう)においては、アルミニウム放熱フィンが接合された伝熱管が使用されている。このアルミニウム放熱フィン付き伝熱管の製造にあたっては、開口されたアルミニウム放熱フィンの挿通孔内に伝熱管を挿通し、伝熱管の径を拡管加工して伝熱管外周面をアルミニウム放熱フィンの挿通孔に密着させている。この拡管加工は、伝熱管の内部にその内径より大きい外径を有する拡管用マンドレルを押し込む工程が一般的である。そして、その後アルミニウム放熱フィンと一体となった伝熱管はヘアピン状に曲げ加工され、別途U字状に曲げた伝熱管(U字管)をトーチろう付けにより接合して熱交換器の主要部が完成される。以上のクロスフィン型熱交換器の製造工程は、非特許文献1に詳細が記載されている。   Aluminum fins are joined in cross fin type heat exchangers (also called fin-and-tube heat exchangers) commonly used in home air conditioners, commercial air conditioners, heat pump water heaters, etc. Heat transfer tubes are used. When manufacturing this heat transfer tube with aluminum heat radiation fins, insert the heat transfer tube into the open hole of the aluminum heat radiation fin, expand the diameter of the heat transfer tube, and use the outer surface of the heat transfer tube as the insertion hole of the aluminum heat radiation fin. It is in close contact. This tube expansion process is generally a step of pushing a tube expansion mandrel having an outer diameter larger than its inner diameter into the heat transfer tube. After that, the heat transfer tube integrated with the aluminum radiation fin is bent into a hairpin shape, and a heat transfer tube (U-shaped tube) bent into a U-shape is joined by torch brazing to make the main part of the heat exchanger Completed. Details of the manufacturing process of the above cross fin type heat exchanger are described in Non-Patent Document 1.

クロスフィン型熱交換器に用いられる伝熱管には、これまで主に銅や銅合金等の銅系材料が使用されてきたが、材料費低減や軽量化の要求に対応するため、アルミニウムやアルミニウム合金等のアルミニウム系材料(以下、アルミニウム合金と呼ぶ。)を使用することが検討されている。   Conventionally, copper-based materials such as copper and copper alloys have been used for heat transfer tubes used in cross-fin type heat exchangers, but aluminum and aluminum have been used to meet demands for reducing material costs and weight. The use of aluminum-based materials such as alloys (hereinafter referred to as aluminum alloys) has been studied.

アルミニウム合金をクロスフィン型熱交換器用の伝熱管に適用する際に留意すべき点としてその耐食性改善が挙げられる。アルミニウム合金は、銅系材料に比較して耐食性に劣ることから、伝熱管の耐久性・信頼性確保の観点から耐食性改善がまず要求される。そして、このアルミニウム合金製伝熱管の耐食性改善の方策として、クラッド管の適用が提案されている。例えば、特許文献1及び2では、伝熱管を2層構造とし、管の内側の層となる芯材にAl−Mn系合金を使用し、芯材の外表面層には皮材としてAl−Zn系合金をクラッドしたクラッド管が提案されている。このアルミニウム合金製クラッド管では、皮材が犠牲防食層として作用し、芯材の腐食を抑制する。   When aluminum alloy is applied to a heat transfer tube for a cross fin heat exchanger, attention should be paid to improvement of its corrosion resistance. Since aluminum alloys are inferior in corrosion resistance compared to copper-based materials, improvement in corrosion resistance is first required from the viewpoint of ensuring the durability and reliability of heat transfer tubes. As a measure for improving the corrosion resistance of the aluminum alloy heat transfer tube, the application of a clad tube has been proposed. For example, in Patent Documents 1 and 2, the heat transfer tube has a two-layer structure, an Al-Mn alloy is used for the core material that is the inner layer of the tube, and the outer surface layer of the core material is Al-Zn as a skin material. A clad tube clad with an alloy is proposed. In this aluminum alloy clad tube, the skin material acts as a sacrificial anticorrosion layer, and suppresses the corrosion of the core material.

しかし、熱交換器用の伝熱管としての耐食性の改善を追及するならば、クラッド管の素材(母材)の耐食性に加えて、ろう付け接合部の耐食性低下の可能性も考慮すべきである。上記の通り、熱交換器製造にあたっては、伝熱管を他の部材にろう付け接合することが多い。ろう付け接合部では、クラッド管が高温に加熱されると共にろう材との接触による組成変動が生じ耐食性が損なわれる可能性がある。上記従来のアルミニウム合金製クラッド管は、この接合部の耐食性確保に関して十分な考察がなされていない。   However, if the improvement of corrosion resistance as a heat transfer tube for a heat exchanger is pursued, in addition to the corrosion resistance of the material (base material) of the clad tube, the possibility of a decrease in the corrosion resistance of the brazed joint should be considered. As described above, in manufacturing the heat exchanger, the heat transfer tube is often brazed and joined to another member. In the brazed joint, the clad tube is heated to a high temperature, and compositional variation due to contact with the brazing material may occur, thereby impairing corrosion resistance. The conventional aluminum alloy clad tube has not been sufficiently considered for ensuring the corrosion resistance of the joint.

また、上記したように、クロスフィン型熱交換器の伝熱管は、フィンを密着させた後にヘアピン曲げ加工される。従って、耐食性に加えて加工性も要求される。従来のアルミニウム合金製クラッド管は、この加工性についての検討が不十分であり、加工の際に曲げ部で破断する場合があった。尚、アルミニウム合金製クラッド管の加工性改善に関する先行技術として特許文献3では、皮材として、JIS3003にZnを添加した合金を用いることで拡管加工性の改善の検討が行われている。しかし、この先行技術は拡管加工性の改善に関するものであり、接合部の耐食性を考慮するものではない。   Further, as described above, the heat transfer tube of the cross fin type heat exchanger is subjected to hairpin bending after the fins are brought into close contact with each other. Accordingly, workability is required in addition to corrosion resistance. The conventional aluminum alloy clad pipe has not been sufficiently examined about the workability, and sometimes breaks at the bending portion during the processing. As a prior art for improving the workability of an aluminum alloy clad pipe, Patent Document 3 discusses improvement of pipe expansion workability by using an alloy obtained by adding Zn to JIS3003 as a skin material. However, this prior art relates to the improvement of pipe expansion workability and does not consider the corrosion resistance of the joint.

特開2011−85290号公報JP 2011-85290 A 特開1998−46312号公報JP 1998-46312 A 特開2008−267714号公報JP 2008-267714 A

「伝熱促進管の開発にたずさわって」伊藤正昭:伝熱、42、174(2003年)、p31−40、社団法人日本伝熱学会発行“Involved in the development of heat transfer promotion tubes” Masaaki Ito: Heat transfer, 42, 174 (2003), p31-40, published by The Japan Heat Transfer Society

本発明は上記事情に鑑みてなされたものであり、ろう付け接合されるアルミニウム合金製クラッド管について、素材(母材)の耐食性と接合部の耐食性とを両立することができ、更にヘアピン曲げ等の加工に際して加工性に優れたものを提供することを目的とする。   The present invention has been made in view of the above circumstances, and for an aluminum alloy clad tube to be brazed, both the corrosion resistance of the material (base material) and the corrosion resistance of the joint can be achieved, and further, hairpin bending, etc. It aims at providing the thing which was excellent in workability at the time of processing.

本発明者らは、アルミニウム合金製クラッド管に関して様々な検討を重ね、芯材のヘアピン曲げ加工性改善のために、その合金成分を特定の種類及び含有量にすることによって加工性に優れた材料が提供可能であることを見出した。そして、この芯材の合金成分を考慮しつつ、犠牲防食層となる皮材のZn分布を特定の範囲にすることによって、管素材の耐食性と接合部の耐食性とを両立することができるとして本発明を見出した。   The present inventors have made various studies on an aluminum alloy clad tube, and in order to improve the hairpin bending workability of the core material, the material has excellent workability by making the alloy component a specific type and content. Found that can be provided. Then, considering the alloy component of the core material, the corrosion resistance of the pipe material and the corrosion resistance of the joint can be made compatible by making the Zn distribution of the skin material serving as the sacrificial anticorrosive layer into a specific range. Invented.

即ち、本発明は、アルミニウム合金からなる芯材と、前記芯材の外表面にクラッドされたアルミニウム合金からなる皮材とからなり、他の部材とろう付により接合されるろう付接合用アルミニウム合金製クラッド管において、前記芯材は、Mn:0.8〜1.8mass%、Cu:0.4〜0.8mass%、Si:0.2mass%以下を含有し、残部アルミニウム及び不可避不純物からなるアルミニウム合金よりなり、前記皮材は、Zn:0.5〜1.5mass%を含有し、残部アルミニウム及び不可避不純物からなるアルミニウム合金よりなり、 更に、前記芯材の断面平均結晶粒径が150μm以下であることを特徴とするろう付接合用アルミニウム合金製クラッド管である。   That is, the present invention comprises a core material made of an aluminum alloy and a skin material made of an aluminum alloy clad on the outer surface of the core material, and is joined to other members by brazing. In the clad tube, the core material contains Mn: 0.8 to 1.8 mass%, Cu: 0.4 to 0.8 mass%, Si: 0.2 mass% or less, and the balance aluminum and inevitable impurities. It is made of an aluminum alloy, and the skin material is made of an aluminum alloy containing Zn: 0.5 to 1.5 mass%, the balance being aluminum and inevitable impurities, and the core material has a cross-sectional average crystal grain size of 150 μm or less. It is a clad tube made of aluminum alloy for brazing joining, characterized by being.

以下、本発明に係るアルミニウム合金製クラッド管を構成する芯材及び皮材について詳細に説明する。尚、本願明細書において合金組成を示す「%」とはmass%(質量%)を意味する。   Hereinafter, the core material and the skin material constituting the aluminum alloy clad pipe according to the present invention will be described in detail. In the present specification, “%” indicating the alloy composition means mass% (mass%).

芯材は、上記の通り、Mn、Cu、Siの含有量を所定範囲とし残部アルミニウムからなるアルミニウム合金である。まず、Mnは、3000系合金(Al−Mn系合金)において強度を向上させる主要な添加元素であり、アルミニウム中に固溶しつつ一部析出して強度を付与する効果を有する。Mnは、その添加量が0.8%より少ないと伝熱管としての強度を不十分とする。一方、1.8%より多いと強度向上効果が飽和する上、粗大な金属間化合物の量が多くなり管の製造工程において割れ等の不具合が発生しやすくなる。従って、Mn添加量は0.8〜1.8%の範囲とする。更に好ましい範囲は1.0〜1.5%である。   As described above, the core material is an aluminum alloy made of the remaining aluminum with the contents of Mn, Cu, and Si within a predetermined range. First, Mn is a main additive element for improving strength in a 3000 series alloy (Al-Mn series alloy), and has an effect of precipitating a part while being dissolved in aluminum and imparting strength. If the amount of Mn added is less than 0.8%, the strength as a heat transfer tube will be insufficient. On the other hand, if it exceeds 1.8%, the effect of improving the strength is saturated, and the amount of coarse intermetallic compound increases, so that defects such as cracks are likely to occur in the manufacturing process of the tube. Therefore, the amount of Mn added is in the range of 0.8 to 1.8%. A more preferable range is 1.0 to 1.5%.

Cuは、アルミニウム中に固溶して強度をさらに向上させる効果を有し、かつ加工性を阻害しない元素である。さらに、Cuは電極電位を貴にする働きがある。ここで、本発明のようなZnを含むアルミニウム合金を皮材として備えるクラッド管では、芯材中にCuが存在することで、皮材と芯材との孔食電位差を大きくすることができ、芯材に対する犠牲防食作用を高めることができる。Cuは、その添加量が0.3%より少ないと強度が不十分であり拡管工程の際に溝潰れを防止できず、更に、孔食電位の貴化が不十分となり犠牲防食作用が低くなる。一方、Cuが0.8%より多いと管製造時の押出性、抽伸性が悪化するだけでなく、素材の耐食性が低下る。そこで、Cu添加量は0.3〜0.8%の範囲とする。更に好ましい範囲は0.4〜0.6%である。   Cu is an element that has an effect of further improving strength by solid solution in aluminum and does not impair workability. Further, Cu serves to make the electrode potential noble. Here, in the clad tube provided with an aluminum alloy containing Zn as a skin material as in the present invention, the presence of Cu in the core material can increase the pitting corrosion potential difference between the skin material and the core material, The sacrificial anticorrosive action for the core material can be enhanced. When Cu is added in an amount less than 0.3%, the strength is insufficient and the crushing of the groove cannot be prevented during the tube expansion process, and the sacrificial anticorrosive action is lowered due to insufficient pitting potential. . On the other hand, if the Cu content is more than 0.8%, not only the extrudability and drawability at the time of pipe production deteriorate, but also the corrosion resistance of the material decreases. Therefore, the Cu addition amount is set to a range of 0.3 to 0.8%. A more preferable range is 0.4 to 0.6%.

Siは、Al−Mn−Cu系合金に含有させるとAl−Mn−Si系又はAl−Mn−Si−Cu系の金属間化合物を形成し、強度を向上させる効果を有する。一方、これらの金属間化合物は再結晶を阻害する役割となり、再結晶時に結晶粒を粗大化させる傾向が生じる。そして、Siの添加量が0.2%を超えると、この結晶粒粗大化が生じやすくなり、後述する平均結晶粒径の上限(150μm)を超える可能性が生じ、ヘアピン曲げ加工の際の肌荒れ、破断の原因になる。そこで、Siの添加量は0.2%以下とする。好ましいSi濃度の範囲は0.1%以下である。尚、Si含有量の下限値については、0.02%とするのが好ましい。Siはアルミニウム合金中に不可避的に存在する元素であるため、0.02%未満に規制することは材料製造コストの増加という工業量産上の悪影響を考慮したものである。   When Si is contained in an Al-Mn-Cu alloy, it forms an Al-Mn-Si-based or Al-Mn-Si-Cu-based intermetallic compound, and has the effect of improving strength. On the other hand, these intermetallic compounds have a role of inhibiting recrystallization, and tend to coarsen crystal grains during recrystallization. And when the addition amount of Si exceeds 0.2%, this crystal grain coarsening is likely to occur, and there is a possibility of exceeding the upper limit (150 μm) of the average crystal grain size described later, and rough skin during the hairpin bending process. Cause breakage. Therefore, the addition amount of Si is set to 0.2% or less. A preferable Si concentration range is 0.1% or less. In addition, about the lower limit of Si content, it is preferable to set it as 0.02%. Since Si is an element that is unavoidably present in the aluminum alloy, restricting it to less than 0.02% takes into consideration the adverse effect on industrial mass production, which is an increase in material manufacturing cost.

芯材となるアルミニウム合金についての不純物としては、Fe、Mg、Zn等があるが、これらはFe:0.6%以下、Mg:0.2%以下、Zn:0.3%以下であれば本発明の効果を阻害するものではない。   Impurities for the aluminum alloy as the core material include Fe, Mg, Zn, etc., but these are Fe: 0.6% or less, Mg: 0.2% or less, and Zn: 0.3% or less. The effect of the present invention is not inhibited.

また、Ti、Cr、Zrは鋳塊組織を均一微細化する効果があるので含有しても良い。但し、これらの含有量が0.2%を超えると巨大金属間化合物を形成したり押出性が低下したりするので、その含有量は0.2%以下であることが好ましい。この範囲であれば、本実施形態における伝熱管の効果を阻害するものではない。なおこの含有量は、0〜0.1%であってもよく、0〜0.05%であってもよい。   Further, Ti, Cr, and Zr may be contained because they have an effect of uniformly refining the ingot structure. However, if the content of these exceeds 0.2%, a giant intermetallic compound is formed or the extrudability is lowered. Therefore, the content is preferably 0.2% or less. If it is this range, the effect of the heat exchanger tube in this embodiment will not be inhibited. This content may be 0 to 0.1% or 0 to 0.05%.

以上説明した組成範囲を有するアルミニウム合金からなる芯材は、その断面組織において、平均結晶粒径150μm以下であることが必要である。芯材の結晶粒径を規定するのは、ヘアピン曲げ加工の際の肌荒れ、破断を防止するためである。また、粗大な結晶粒は応力腐食割れの原因ともなる。この芯材の結晶粒径の制御については、上記の通りSi含有量の規制(0.2%以下)に加えて、後述する焼鈍軟化処理までのリダクションを90%以上に設定することが必要である。尚、この平均結晶粒径の測定においては、断面組織観察を行い交線法により、管の厚さ方向及び円周方向の2方向に基づくのが好ましい。   The core material made of the aluminum alloy having the composition range described above needs to have an average crystal grain size of 150 μm or less in the cross-sectional structure. The reason for defining the crystal grain size of the core material is to prevent rough skin and breakage during hairpin bending. In addition, coarse crystal grains cause stress corrosion cracking. Regarding the control of the crystal grain size of the core material, in addition to the regulation of the Si content (0.2% or less) as described above, it is necessary to set the reduction until the annealing softening process described later to 90% or more. is there. The average crystal grain size is preferably measured based on two directions of the tube thickness direction and the circumferential direction by observing the cross-sectional structure and using the intersection method.

次に、本発明に係るアルミニウム合金製クラッド管の皮材について説明する。皮材は、Zn含有量を規制したAl−Zn合金適用し、芯材よりも孔食電位を卑として犠牲防食作用を発揮させて芯材を防食し、管材の耐久寿命を向上させる作用を有する。   Next, the skin material of the clad pipe made of aluminum alloy according to the present invention will be described. The skin material is applied with an Al-Zn alloy with a regulated Zn content, has a pitting corrosion potential lower than that of the core material, exerts a sacrificial anticorrosive action, prevents the core material, and has an effect of improving the durable life of the pipe material. .

ここで、Znは皮材となるアルミニウム合金の自然電極電位を下げて(卑にして)犠牲陽極として作用させて、伝熱管の耐食性を向上させる。その添加量が0.5%未満では芯材との電位差が不十分となり犠牲防食の効果が得られないことから、0.5%以上のZnが必要である。一方、1.5%を超えると、接合部でZnが濃縮し接合部の耐食性が劣化する。したがって、Zn添加量は0.5〜1.5%の範囲とする。更に好ましい範囲は0.7〜1.0%である。   Here, Zn lowers the natural electrode potential of the aluminum alloy serving as a skin material (base) and acts as a sacrificial anode to improve the corrosion resistance of the heat transfer tube. If the amount added is less than 0.5%, the potential difference from the core material is insufficient and the effect of sacrificial corrosion protection cannot be obtained, so 0.5% or more of Zn is required. On the other hand, if it exceeds 1.5%, Zn is concentrated at the joint and the corrosion resistance of the joint is deteriorated. Therefore, the Zn addition amount is in the range of 0.5 to 1.5%. A more preferable range is 0.7 to 1.0%.

皮材となるアルミニウム合金の不純物としては、Si、Fe、Cu、Mn等があるが、これらはSi:0.5%以下、Fe:0.6%以下、Cu:0.2%以下、Mn:0.8%以下であれば本発明の効果を阻害するものではない。   Examples of impurities in the aluminum alloy used as a skin material include Si, Fe, Cu, and Mn. These are Si: 0.5% or less, Fe: 0.6% or less, Cu: 0.2% or less, Mn : If it is 0.8% or less, the effect of this invention is not inhibited.

また、芯材の場合と同様、皮材となるアルミニウム合金Ti、Cr、Zrは鋳塊組織を均一微細化する効果があるので含有しても良いが0.2%を超えると巨大金属間化合物を形成したり押出性が低下したりするので、その含有量は0.2%以下であることが好ましい。この範囲であれば、本実施形態における伝熱管の効果を阻害するものではない。なおこの含有量は、0〜0.1%であってもよく、0〜0.05%であってもよい。   As in the case of the core material, the aluminum alloy Ti, Cr, Zr as the skin material may be contained because it has the effect of uniformly refining the ingot structure. In other words, the content is preferably 0.2% or less. If it is this range, the effect of the heat exchanger tube in this embodiment will not be inhibited. This content may be 0 to 0.1% or 0 to 0.05%.

皮材となるアルミニウム合金の断面組織に関しては、芯材と異なり必須の条件はないが、皮材は平均結晶粒径が50μm以上であるものが好ましい。皮材の平均結晶粒径が50μm未満と微細になると、ろう付接合時の溶融ろうによって皮材が著しく浸食され、局部的に減肉し、耐圧強度の低下を招くおそれがあるからである。   There are no essential conditions regarding the cross-sectional structure of the aluminum alloy as the skin material, unlike the core material, but the skin material preferably has an average crystal grain size of 50 μm or more. This is because if the average crystal grain size of the skin material is as fine as less than 50 μm, the skin material is significantly eroded by the molten brazing at the time of brazing joining, and the thickness of the skin material is locally reduced, leading to a decrease in pressure strength.

皮材の厚さは、特に限定されるものではないが、クラッド管の全肉厚に対し、5〜30%とするのが好ましい。皮材は犠牲防食層という消耗領域であるからこれが5%未満となると、熱交換器として使用可能な有効期間が不十分となるからだである。一方、皮材の厚さをクラッド管の全肉厚に対し30%を超えて設定すると伝熱管の強度が低いものとなる。   The thickness of the skin material is not particularly limited, but is preferably 5 to 30% with respect to the total thickness of the clad tube. This is because the skin material is a consumable region called a sacrificial anticorrosive layer, and if it is less than 5%, the effective period that can be used as a heat exchanger becomes insufficient. On the other hand, if the thickness of the skin material is set to exceed 30% with respect to the total thickness of the clad tube, the strength of the heat transfer tube becomes low.

本発明の適用が好適な熱交換器用の伝熱管として、例えば、一般家庭向け空気調和機用の熱交換器のU字管が挙げられる。その寸法は、例えば、外径φ4.0〜φ9.54mm、底肉厚0.3〜0.6mm程度の小径薄肉管である。そこで、このような小径薄肉のクラッド管を製造する際には、各種のアルミニウム合金のうち、適度な強度を有すると共に小径薄肉管に加工するための加工性に比較的優れている合金(例えば、Al−Mn系のA3003合金(Al−1.0〜1.5%Mn−0.05〜0.20%Cu合金))をベースとして選択し、添加元素調整するのが好ましい。このようにすることで、結晶粒の微細化と強度を向上させヘアピン曲げ加工時の割れを防止できる。そして、犠牲防食層としてAl−Zn系合金の濃度を適正化することで好適なアルミニウム合金製クラッド管を得ることができる。   As a heat exchanger tube for a heat exchanger that is suitable for application of the present invention, for example, a U-shaped tube of a heat exchanger for an air conditioner for general households can be cited. The dimensions are, for example, a small-diameter thin tube having an outer diameter of φ4.0 to φ9.54 mm and a bottom thickness of about 0.3 to 0.6 mm. Therefore, when manufacturing such a small-diameter thin-walled cladding tube, among various aluminum alloys, an alloy having an appropriate strength and relatively excellent workability for processing into a small-diameter thin-walled tube (for example, It is preferable to select an Al-Mn-based A3003 alloy (Al-1.0 to 1.5% Mn-0.05 to 0.20% Cu alloy) as a base and adjust the additive elements. By doing in this way, refinement | miniaturization and the intensity | strength of a crystal grain can be improved, and the crack at the time of a hairpin bending process can be prevented. A suitable aluminum alloy clad tube can be obtained by optimizing the concentration of the Al—Zn alloy as the sacrificial anticorrosive layer.

次に、本発明に係るアルミニウム合金製クラッド管の製造方法について説明する。本発明に係るアルミニウム合金製クラッド管の製造方法としては、芯材となるアルミニウム合金(Al−Mn−Cu系合金)の円筒状ビレットに、皮材となるアルニム合金(Al−Zn系合金)の円筒状ビレットを組み合わせて2層中空ビレットを製造し、これを押出し加工して2層クラッド押出管を得て適宜に加工する工程が挙げられる。   Next, the manufacturing method of the aluminum alloy clad pipe according to the present invention will be described. The aluminum alloy clad pipe manufacturing method according to the present invention includes an aluminum alloy (Al-Mn-Cu alloy) cylindrical billet as a core material and an aluminum alloy (Al-Zn alloy) as a skin material. A step of producing a two-layer hollow billet by combining cylindrical billets and extruding the cylindrical billet to obtain a two-layer clad extruded tube and appropriately processing it may be mentioned.

例えば、芯材となるアルミニウム合金の円筒状ビレットの外側に皮材となるアルミニウム合金の板材を円筒状に曲げ被せた組み合わせビレットを作製し、これを加熱炉により350〜600℃に加熱し均質化処理を行って2層中空ビレットを製造する。その後、間接押出機等によってビレットを押出し加工することで2層クラッド押出管を得る。次いで、この2層クラッド押出管を所定の外径、肉厚に抽伸加工することにより本発明に係る2層クラッド管を製造することができる。尚、前記抽伸加工は、生産性の高いドローブロック式連続抽伸機を使用することが望ましい。   For example, a billet made of aluminum alloy plate material, which is a skin material, is bent outside the cylindrical billet of aluminum alloy, which is a core material, and is heated to 350-600 ° C in a heating furnace to homogenize. The treatment is performed to produce a two-layer hollow billet. Thereafter, the billet is extruded by an indirect extruder or the like to obtain a two-layer clad extruded tube. Next, the two-layer clad tube according to the present invention can be manufactured by drawing the two-layer clad extruded tube to a predetermined outer diameter and thickness. The drawing process preferably uses a draw block type continuous drawing machine with high productivity.

また、皮材となるアルミニウム合金の円筒状ビレットを350〜600℃に加熱し、その内側に芯材となるアルミニウム合金の円筒状の中空ビレットを焼嵌めして得られる2層中空ビレットを製造後、押出し加工して2層クラッド押出管を得ても良い。そして、その後同様に抽伸加工を施して本発明に係る2層クラッド管を製造することができる。   Further, after manufacturing a two-layer hollow billet obtained by heating an aluminum alloy cylindrical billet as a skin material to 350 to 600 ° C. and shrink-fitting an aluminum alloy cylindrical billet inside as a core material Alternatively, a two-layer clad extruded tube may be obtained by extrusion. Then, the two-layer clad tube according to the present invention can be manufactured by drawing in the same manner.

更に、上記の2層クラッド押出管を経て製造する工程の他、シート材の溶接加工により本発明に係るアルミニウム合金製クラッド管を製造することも可能である。この場合、芯材となるアルミニウム合金のシートの片面側に皮材となるアルミ合金のシートをクラッド圧延した2層クラッドシートと製造し、この2層クラッドシートを管状にロール成形してから突合せ面を溶接し2層クラッドの電縫管とすることで本発明に係る2層クラッド管を製造することができる。   Furthermore, in addition to the process of manufacturing through the above two-layer clad extruded tube, the aluminum alloy clad tube according to the present invention can be manufactured by welding the sheet material. In this case, a two-layer clad sheet obtained by clad rolling an aluminum alloy sheet serving as a skin material on one side of an aluminum alloy sheet serving as a core material is manufactured. Is welded to form a two-layer clad electro-sewn tube, the two-layer clad tube according to the present invention can be manufactured.

上記各方法により形成した2層クラッド管に対しては機械的特性の調整を目的として、焼鈍軟化処理を施す。その場合、焼鈍温度は300〜400℃、時間は2〜8時間とすることが工業上好ましい。そして、冷間抽伸加工から焼鈍軟化処理の段階より前のリダクションは90%以上に設定することが必要である。上記したように、本願発明では芯材の平均結晶粒径を150μm以下とすることが必要であり、これは芯材の組成に加えて最終焼鈍までの冷間加工によるリダクション(加工率)の影響を受けるからである。但し、焼鈍前のリダクションが99.995%を超えると皮材の結晶粒径が微細になりすぎてしまうおそれがある。   The two-layer clad tube formed by the above methods is subjected to annealing softening for the purpose of adjusting the mechanical characteristics. In that case, it is industrially preferable that the annealing temperature is 300 to 400 ° C. and the time is 2 to 8 hours. And it is necessary to set the reduction before the stage of cold drawing to annealing softening to 90% or more. As described above, in the present invention, the average crystal grain size of the core material is required to be 150 μm or less, which is the influence of reduction (processing rate) due to cold working until the final annealing in addition to the composition of the core material. Because it receives. However, if the reduction before annealing exceeds 99.995%, the crystal grain size of the skin material may become too fine.

本発明のろう付接合用アルミニウム合金製クラッド管は、ヘアピン曲げ加工時に割れの発生を抑制することができ加工性に優れる。そして、管自体の耐食性と接合部の両方の耐食性に優れるという効果も有する。   The clad tube made of aluminum alloy for brazing according to the present invention can suppress the occurrence of cracking during hairpin bending and is excellent in workability. And it also has the effect that it is excellent in the corrosion resistance of both pipe | tube itself and the corrosion resistance of a junction part.

本発明に係るアルミニウム合金製クラッド管は、熱交換器用の部材である伝熱管として好適であり、加工性に優れると共に他の部材と接合可能である。熱交換器は、その内部に冷媒を流通させる流路を備える機器であり、この流路に前記のようにして得られる接合体を適用することで耐食性、信頼性に優れた熱交換器を得ることができる。   The aluminum alloy clad tube according to the present invention is suitable as a heat transfer tube which is a member for a heat exchanger, is excellent in workability and can be joined to other members. The heat exchanger is a device having a flow path for circulating a refrigerant therein, and a heat exchanger having excellent corrosion resistance and reliability is obtained by applying the joined body obtained as described above to the flow path. be able to.

以下、本発明の実施の形態について説明する。本実施形態では、皮材及び芯材となるアルミニウム合金として、各種組成の合金を設定して2層クラッド管を製造し、その加工性、強度、耐食性を評価した。   Embodiments of the present invention will be described below. In the present embodiment, as the aluminum alloy used as the skin material and the core material, alloys of various compositions were set to produce a two-layer clad tube, and its workability, strength, and corrosion resistance were evaluated.

まず、連続鋳造により、皮材として表1に示す組成のアルミニウム合金の板材を鋳造した。その一方、芯材として表2に組成の示すアルミニウム合金の円筒状ビレットを用意した。そして、表3の組み合わせで組み合わせビレットを作製し、間接押出法により外径φ47mm、肉厚3.5mmの2層クラッド押出管を得た。次に、2層クラッド押出管について、ドローブロック式連続抽伸機により抽伸加工を施し、360℃で2時間の焼鈍軟化処理を施し、外径φ5〜10mm、肉厚0.1〜2mmのアルミニウム合金クラッド管を完成した。表2には、各アルミニウム合金クラッド管の抽伸加工から焼鈍軟化処理前までのリダクションを記載している。   First, an aluminum alloy plate having the composition shown in Table 1 was cast as a skin material by continuous casting. On the other hand, an aluminum alloy cylindrical billet having a composition shown in Table 2 was prepared as a core material. And the combination billet was produced by the combination of Table 3, and the two-layer clad extruded tube with an outer diameter of 47 mm and a wall thickness of 3.5 mm was obtained by an indirect extrusion method. Next, the two-layer clad extruded tube is subjected to drawing by a draw block type continuous drawing machine, subjected to annealing softening treatment at 360 ° C. for 2 hours, and an aluminum alloy having an outer diameter of 5 to 10 mm and a wall thickness of 0.1 to 2 mm. A clad tube was completed. Table 2 shows the reduction of each aluminum alloy clad pipe from drawing to pre-annealing softening.

Figure 2013221204
Figure 2013221204

Figure 2013221204
Figure 2013221204

Figure 2013221204
Figure 2013221204

これらのクラッド管を100mmに2本切り出し、一方に後述するヘアピン曲げ加工を施した後もう一方の管とつき合わせ、Al−12%Siリングろうを用いて、トーチろう付により接合し、供試材を完成させた。そして、製造した各実施例及び比較例のアルミニウム合金製クラッド管について特性を評価するために、次の測定・試験を行った。   Two of these clad tubes are cut out to 100 mm, one is subjected to a hairpin bending process, which will be described later, and then joined to the other tube, and joined by torch brazing using an Al-12% Si ring brazing. Finished the material. And in order to evaluate a characteristic about the manufactured aluminum alloy clad pipe of each example and a comparative example, the following measurement and a test were done.

(a)平均結晶粒径の測定
アルミニウム合金クラッド管について、ろう付の非熱影響部からミクロ組織観察用試験片を切出し、平均結晶粒径の測定を実施した。平均結晶粒径の測定は、交線法を用いて、管の厚さ方向及び円周方向の2方向で実施してその平均値を求めた。
(A) Measurement of average crystal grain size With respect to the aluminum alloy clad tube, a specimen for microstructural observation was cut out from the non-heat-affected zone of brazing, and the average crystal grain size was measured. Measurement of the average crystal grain size was carried out in two directions of the tube thickness direction and the circumferential direction using an intersection method, and the average value was obtained.

(b)ヘアピン曲げ加工性の評価
φ10mmのアルミニウム合金クラッド管を曲げピッチ16mmのヘアピン曲げ加工を行った。曲げ加工後の表面を目視で観察し、表面の割れ発生の有無の確認を行った。このとき、クラッド管を各10個用意し、下記の基準に従って評価した。○:10個全てに割れ発生がない。△:1〜9個のみ割れ発生がない。×:10個全てに割れ発生がある。
(B) Evaluation of hairpin bending workability An aluminum alloy clad tube with a diameter of 10 mm was subjected to hairpin bending work with a bending pitch of 16 mm. The surface after bending was visually observed to confirm the presence or absence of surface cracking. At this time, 10 clad tubes were prepared and evaluated according to the following criteria. ○: No cracks occurred in all 10 pieces. Δ: Only 1 to 9 cracks are not generated. X: Cracking occurred in all 10 pieces.

(c)引張強度測定
アルミニウム合金クラッド管接合体の強度を測定するため、JIS Z2241に準じて引張試験を実施し、引張強度を測定した。ここで測定される強度は、管自身の強度と接合部の強度の低い方の値である。
(C) Tensile strength measurement In order to measure the strength of the aluminum alloy clad tube assembly, a tensile test was carried out in accordance with JIS Z2241, and the tensile strength was measured. The strength measured here is the lower of the strength of the tube itself and the strength of the joint.

(d)耐食性の評価
耐食性を評価するために、アルミニウム合金クラッド管接合体についてJIS Z8681に準じCASS試験を1500時間行った。試験後、供試材の表面腐食生成物を除去して、管の腐食状況を観察した。この観察は、クラッド管の腐食と接合部の双方について行った。このとき、それぞれについてアルミニウム合金クラッド管接合体を各10個用意し、下記の基準に従って評価した。クラッド管直線部、クラッド管曲げ部の腐食、○:10個全てに貫通孔がない。△:2〜9個のみ貫通孔がない。×:9〜10個に貫通孔がある。接合部の腐食、○:10個全てに優先腐食が発生しない。△:2〜9個のみ優先腐食が発生しない。×:9〜10個に優先腐食が発生。
(D) Evaluation of corrosion resistance In order to evaluate corrosion resistance, a CASS test was conducted for 1500 hours in accordance with JIS Z8681 for aluminum alloy clad pipe joined bodies. After the test, the surface corrosion products of the test material were removed and the corrosion status of the tube was observed. This observation was made for both corrosion and joints of the clad tube. At this time, 10 aluminum alloy clad pipe assemblies were prepared for each, and evaluated according to the following criteria. Corrosion of clad tube straight portion and clad tube bent portion, ○: There are no through holes in all 10 pieces. (Triangle | delta): There is no through-hole only 2-9 pieces. X: There are 9 to 10 through holes. Corrosion of joints, ○: Preferential corrosion does not occur in all 10 pieces. Δ: Preferential corrosion does not occur for only 2 to 9 pieces. X: Preferential corrosion occurred in 9 to 10 pieces.

以上の各種測定結果、評価結果について得られた結果を表4に示す。   Table 4 shows the results obtained for the above various measurement results and evaluation results.

Figure 2013221204
Figure 2013221204

表4に示す評価結果について説明する。実施例であるC1〜C16は芯材、皮材であるアルミニウム合金の組成が本発明の範囲内にあるものであるが、ヘアピン曲げ加工性、接合体の強度及び耐食性の全てにおいて優れている。   The evaluation results shown in Table 4 will be described. Although C1-C16 which is an Example is a thing with the composition of the aluminum alloy which is a core material and a skin material in the range of this invention, it is excellent in all in hairpin bending workability, the intensity | strength of a joined body, and corrosion resistance.

そして、比較例の結果を考慮しつつ詳細に検討すると、まず、芯材となるアルミニウム合金の組成についてみると、本発明規定の成分範囲に対し、C19はMnが不足し、C22はCuが不足する。そのため、クラッド管の強度が低くなっている。また、C20はMnが過剰であり、C21はCuが過剰となっている。そのため、加工性が悪化し抽伸加工時に抽伸切れが発生し、管を製造することが出来なかった。   Then, considering the results of the comparative example in detail, first, regarding the composition of the aluminum alloy as the core material, C19 is deficient in Mn and C22 is deficient in Cu relative to the component range defined in the present invention. To do. For this reason, the strength of the clad tube is low. Further, C20 is excessive in Mn, and C21 is excessive in Cu. For this reason, the workability deteriorated and a drawing break occurred during the drawing process, and the tube could not be manufactured.

また、皮材となるアルミニウム合金の組成についてみると、C17は本発明規定の成分範囲に対しZn濃度が低く、クラッド管に貫通孔が発生した。また、C18はZn濃度が高いため接合部の優先腐食が発生した。   Further, regarding the composition of the aluminum alloy as the skin material, C17 had a lower Zn concentration than the component range defined in the present invention, and a through-hole was generated in the cladding tube. Further, since C18 has a high Zn concentration, preferential corrosion of the joint occurred.

更に、芯材の結晶粒径についてみると、C23は芯材のSi濃度が高く、平均結晶粒径が150μmを超えている。そのため、ヘアピン曲げ加工時に割れが発生した。さらに、この割れ部分を除去し耐食性を評価したところ応力腐食割れによる貫通が発生したため耐食性も劣っていた。   Further, regarding the crystal grain size of the core material, C23 has a high Si concentration in the core material, and the average crystal grain size exceeds 150 μm. Therefore, cracks occurred during the hairpin bending process. Furthermore, when the crack portion was removed and the corrosion resistance was evaluated, the corrosion resistance was inferior because penetration due to stress corrosion cracking occurred.

尚、C24は、抽伸加工から焼鈍までリダクションが少ないため、平均結晶粒径が150μmを超えており、ヘアピン曲げ加工時に割れが発生した。更に、この割れ部分を除去し耐食性を評価したところ、応力腐食割れによる貫通が発生したため耐食性も劣っていた。   In C24, since the reduction from drawing to annealing was small, the average crystal grain size exceeded 150 μm, and cracking occurred during hairpin bending. Further, when this cracked portion was removed and the corrosion resistance was evaluated, the corrosion resistance was inferior because penetration due to stress corrosion cracking occurred.

以上の検討から、耐食性と加工性の双方の確保のためには、芯材と皮材の双方について構成するアルミニウム合金の組成を厳密に規定する必要があるといえる。尚、C16は、芯材の結晶粒が微細でヘアピン曲げ加工時に割れも発生せず耐食性も良好であるが、Si量が極端に低いため、これを製造するためには製造コストが高くなることが懸念される。但し、Si量をここまで低減して結晶粒を微細にしなくとも十分な加工性、強度を得ることができることが他の実施例から確認できるので、芯材の組成設定については本発明の規定範囲内であればコスト等に応じて自由に制御できるといえる。   From the above examination, it can be said that in order to ensure both corrosion resistance and workability, it is necessary to strictly define the composition of the aluminum alloy that constitutes both the core material and the skin material. C16 has fine core crystal grains and does not generate cracks during hairpin bending and has good corrosion resistance. However, since the amount of Si is extremely low, the production cost is high to produce this. Is concerned. However, since it can be confirmed from other examples that sufficient workability and strength can be obtained without reducing the Si amount so far and making the crystal grains finer, the composition range of the core material is defined in the scope of the present invention. If it is within, it can be said that it can be freely controlled according to the cost.

本発明に係るろう付接合用アルミニウム合金製クラッド管は、加工性が優れ伝熱管製造の際のヘアピン曲げ加工における割れの発生を抑制されている。また、耐食性も良好であり、接合部においても耐食性が確保されている。本発明は、家庭用・業務用の空気調和機等に用いられるクロスフィン型熱交換器の伝熱管に好適であり、これらの冷媒流路の寿命・信頼性確保を図ることができる。
The aluminum alloy clad tube for brazing joint according to the present invention has excellent workability and suppresses the occurrence of cracks in hairpin bending during the production of heat transfer tubes. Moreover, the corrosion resistance is also good, and the corrosion resistance is also secured at the joint. INDUSTRIAL APPLICABILITY The present invention is suitable for heat transfer tubes of cross fin type heat exchangers used for home and commercial air conditioners and the like, and it is possible to ensure the life and reliability of these refrigerant flow paths.

Claims (4)

アルミニウム合金からなる芯材と、前記芯材の外表面にクラッドされたアルミニウム合金からなる皮材とからなり、他の部材とろう付により接合されるろう付接合用アルミニウム合金製クラッド管において、
前記芯材は、Mn:0.8〜1.8mass%、Cu:0.4〜0.8mass%、Si:0.2mass%以下を含有し、残部アルミニウム及び不可避不純物からなるアルミニウム合金よりなり、
前記皮材は、Zn:0.5〜1.5mass%を含有し、残部アルミニウム及び不可避不純物からなるアルミニウム合金よりなり、
更に、前記芯材の断面平均結晶粒径が150μm以下であることを特徴とするろう付接合用アルミニウム合金製クラッド管。
In a clad pipe made of aluminum alloy for brazing, which is composed of a core material made of an aluminum alloy and a skin material made of an aluminum alloy clad on the outer surface of the core material, and is joined by brazing to other members.
The core material is made of an aluminum alloy containing Mn: 0.8 to 1.8 mass%, Cu: 0.4 to 0.8 mass%, Si: 0.2 mass% or less, and the balance aluminum and inevitable impurities,
The skin material contains Zn: 0.5 to 1.5 mass%, and is made of an aluminum alloy composed of the balance aluminum and inevitable impurities,
Furthermore, the aluminum alloy clad tube for brazing joining, wherein the core material has a cross-sectional average crystal grain size of 150 μm or less.
皮材の断面平均結晶粒径が50μm以上である、請求項1に記載のろう付接合用アルミニウム合金製クラッド管   The clad tube made of aluminum alloy for brazing according to claim 1, wherein the skin material has an average crystal grain size of 50 µm or more. 請求項1又は請求項2に記載のろう付接合用アルミニウム合金製クラッド管を用いた接合体。   A joined body using the aluminum alloy clad tube for brazing joining according to claim 1 or 2. 内部に冷媒が流通する管状流路を備える熱交換器であって、前記管状流路の少なくとも一部に請求項3記載の接合体を用いる熱交換器。
It is a heat exchanger provided with the tubular flow path through which a refrigerant | coolant distribute | circulates, Comprising: The heat exchanger using the conjugate | zygote of Claim 3 for at least one part of the said tubular flow path.
JP2012095211A 2012-04-19 2012-04-19 Aluminum alloy clad tube for brazing and heat exchanger applying the aluminum alloy clad tube Active JP5885572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012095211A JP5885572B2 (en) 2012-04-19 2012-04-19 Aluminum alloy clad tube for brazing and heat exchanger applying the aluminum alloy clad tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012095211A JP5885572B2 (en) 2012-04-19 2012-04-19 Aluminum alloy clad tube for brazing and heat exchanger applying the aluminum alloy clad tube

Publications (2)

Publication Number Publication Date
JP2013221204A true JP2013221204A (en) 2013-10-28
JP5885572B2 JP5885572B2 (en) 2016-03-15

Family

ID=49592407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012095211A Active JP5885572B2 (en) 2012-04-19 2012-04-19 Aluminum alloy clad tube for brazing and heat exchanger applying the aluminum alloy clad tube

Country Status (1)

Country Link
JP (1) JP5885572B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195239A (en) * 1987-02-10 1988-08-12 Furukawa Alum Co Ltd Aluminum-alloy brazing sheet
JPH01195257A (en) * 1988-01-29 1989-08-07 Furukawa Alum Co Ltd Aluminum alloy cladded material having excellent corrosion resistance
JPH08291353A (en) * 1995-04-18 1996-11-05 Furukawa Electric Co Ltd:The Aluminum alloy brazing sheet bar excellent in resistance weldability
JPH1046312A (en) * 1996-08-06 1998-02-17 Furukawa Electric Co Ltd:The Drawn tube excellent in corrosion resistance, and its manufacture
JP2001340989A (en) * 2000-05-31 2001-12-11 Kobe Steel Ltd Aluminum alloy blazing sheet having superior formability and its manufacturing method
JP2011085290A (en) * 2009-10-14 2011-04-28 Furukawa-Sky Aluminum Corp Heat exchanger, and pipe material and fin material for the heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195239A (en) * 1987-02-10 1988-08-12 Furukawa Alum Co Ltd Aluminum-alloy brazing sheet
JPH01195257A (en) * 1988-01-29 1989-08-07 Furukawa Alum Co Ltd Aluminum alloy cladded material having excellent corrosion resistance
JPH08291353A (en) * 1995-04-18 1996-11-05 Furukawa Electric Co Ltd:The Aluminum alloy brazing sheet bar excellent in resistance weldability
JPH1046312A (en) * 1996-08-06 1998-02-17 Furukawa Electric Co Ltd:The Drawn tube excellent in corrosion resistance, and its manufacture
JP2001340989A (en) * 2000-05-31 2001-12-11 Kobe Steel Ltd Aluminum alloy blazing sheet having superior formability and its manufacturing method
JP2011085290A (en) * 2009-10-14 2011-04-28 Furukawa-Sky Aluminum Corp Heat exchanger, and pipe material and fin material for the heat exchanger

Also Published As

Publication number Publication date
JP5885572B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
US9976201B2 (en) Aluminum-alloy clad material and production method therefor, and heat exchanger using said aluminum-alloy clad material and production method therefor
JP6106748B2 (en) Aluminum alloy brazing sheet and method for producing the same
US9976200B2 (en) Cladded aluminum-alloy material and production method therefor, and heat exchanger using said cladded aluminum-alloy material and production method therefor
JP2007152422A (en) Method for producing aluminum alloy brazing sheet
JP6105561B2 (en) Aluminum alloy inner surface grooved heat transfer tube
JP2007152421A (en) Aluminum alloy brazing sheet
JP2006274313A (en) Copper alloy tube for heat exchanger and manufacturing method therefor
EP3374123A1 (en) Brazing sheet and production method
JP5836695B2 (en) Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing
JP2014114475A (en) Aluminum alloy brazing sheet, method of producing the same, and heat exchanger employing the aluminum alloy brazing sheet
JP2010106345A (en) Brazing sheet of aluminum alloy for heat exchanger
JP6758281B2 (en) Aluminum alloy brazing sheet fin material for heat exchanger and its manufacturing method
JP2010185646A (en) Aluminum alloy extruded tube for fin tube type heat exchanger for air conditioner
CN112955281A (en) Aluminum alloy brazing sheet and method for producing same
JP5916314B2 (en) Extruded pipe members such as aluminum alloy tanks for heat exchangers
JP5498213B2 (en) Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability
JP2008111143A (en) Aluminum alloy brazing sheet and manufacturing method therefor
JP6034727B2 (en) High strength copper alloy tube
JP5885572B2 (en) Aluminum alloy clad tube for brazing and heat exchanger applying the aluminum alloy clad tube
JP2011012327A (en) Brazing sheet having excellent brazability, and method for producing the brazing sheet
JP5499300B2 (en) Copper alloy tube for heat exchanger
JP5602707B2 (en) High strength copper tube with excellent strength after brazing
JP2015101754A (en) High strength steel alloy tube
JP4424569B2 (en) High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same
JP5792696B2 (en) High strength copper alloy tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160209

R150 Certificate of patent or registration of utility model

Ref document number: 5885572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

S633 Written request for registration of reclamation of name

Free format text: JAPANESE INTERMEDIATE CODE: R313633

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250