JP2013219251A - 光電変換装置およびその製造方法 - Google Patents

光電変換装置およびその製造方法 Download PDF

Info

Publication number
JP2013219251A
JP2013219251A JP2012089623A JP2012089623A JP2013219251A JP 2013219251 A JP2013219251 A JP 2013219251A JP 2012089623 A JP2012089623 A JP 2012089623A JP 2012089623 A JP2012089623 A JP 2012089623A JP 2013219251 A JP2013219251 A JP 2013219251A
Authority
JP
Japan
Prior art keywords
tab
photoelectric conversion
laminated
surface side
collector electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012089623A
Other languages
English (en)
Inventor
Hirofumi Konishi
博文 小西
Atsushi Fujita
藤田  淳
Atsufumi Inoue
敦文 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012089623A priority Critical patent/JP2013219251A/ja
Publication of JP2013219251A publication Critical patent/JP2013219251A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】光電変換セル同士がタブにより電気的且つ機械的に接続された光電変換装置において、タブ接続に起因した光電変換セルの反り、割れや電極剥がれが抑制された、信頼性、光電変換効率、歩留まりに優れた光電変換装置およびその製造方法を得ること。
【解決手段】タブにより太陽電池セルC同士が電気的且つ機械的に接続された光電変換装置であって、前記タブは、2層以上のタブ(101、102)が積層された積層領域を有する積層タブ10であり、前記光電変換セルCの表面に形成された集電極に前記積層タブの前記積層領域が電気的且つ機械的に接続され、前記積層タブ10と前記太陽電池セルCとを接続する前記積層領域は、前記2層以上のタブ(101、102)同士が部分的に接合されている。
【選択図】図3

Description

本発明は、光電変換装置およびその製造方法に関する。
近年、光電変換装置として、単結晶シリコンや多結晶シリコン等の結晶系半導体を用いた太陽電池の研究および実用化が盛んに行なわれている。結晶系シリコン太陽電池は、通常、複数枚の太陽電池セルが直列あるいは並列に電気的に接続された太陽電池モジュールとして使用される。
このとき、太陽電池セル同士は、各太陽電池セルの集電極におけるバスバー部に銅箔等の導電性部材(以降、タブと表記する)を半田付けすることによって接続される。ここで、集電極は太陽電池セルに入射する光を遮るため、その面積を極力小さくすることが好ましい。集電極の面積を小さくするためには集電極の幅を細くすることが有効である。この場合は、集電極の狭幅化に合わせてタブの幅も狭くするとともに、タブの電気抵抗が高くならないようにタブを厚くする必要がある。
しかしながら、タブを厚くすると、太陽電池セル上のバスバーへタブ接続するための熱処理において、タブと太陽電池セルとの線膨張係数の違いによる反り応力が発生し、太陽電池セルの反り、太陽電池セルの割れ、電極剥がれなどが発生する。特に、太陽電池セルの基板厚さが薄いほどこの問題が顕著となり、太陽電池セルの信頼性、光電変換効率、歩留まりが低下する、という問題があった。
そこで、太陽電池セルのバスバー部に接続するタブを厚くすることに起因して発生する太陽電池セルの反り、太陽電池セルの割れ、電極剥がれなどの問題に対処した太陽電池装置が提案されている(たとえば、特許文献1参照)。特許文献1で提案されている太陽電池装置は、複数の太陽電池セルを2層以上に積層されたタブで電気的且つ機械的に接続された太陽電池装置において、前記太陽電池セルの集電極と接する第1のタブを第1の接着剤で接合し、その上に重ねて第2のタブを第1の接着剤より接着加工温度の低い第2の接着剤で接合したものである。
このような特許文献1に開示された太陽電池装置によれば、第2の接着剤として第1の接着剤よりも接着加工温度が低いものを用いたことにより、第2のタブを接着するときの加熱温度を第1のタブを接着するときの加熱温度より低い温度にできる。このため、第1の接着剤が再び溶解することなく第2のタブの接着を完了できる。したがって、加熱−冷却による反り応力の発生は、第1のタブの接着時、第2のタブの接着時と、おおよそ分かれた作用とみることができ、積層した厚いタブを各接着時には薄いタブとして扱うことができるため、太陽電池セルの反りをより小さくして、太陽電池セルの割れを解消するものである。
特開2005−252062号公報
しかしながら、上記特許文献1の技術によれば、第2の接着剤には第1の接着剤よりも接着加工温度が低いものを用いることから、従来一般の接着剤と比較して第2の接着剤の接着加工温度を低くするか、第1の接着剤の接着加工温度を高くする必要がある。ここで、第2の接着剤の接着加工温度を従来の接着剤の接着加工温度よりも低くする場合には、接着部の機械的電気的な信頼性が低下する虞がある。また、第1の接着剤の接着加工温度を高くする場合には、太陽電池セル種にも因るがプロセス温度の上昇によって太陽電池セルの性能が低下する可能性がある。
本発明は、上記に鑑みてなされたものであって、光電変換セル同士がタブにより電気的且つ機械的に接続された光電変換装置において、タブ接続に起因した光電変換セルの反り、割れや電極剥がれが抑制された、信頼性、光電変換効率、歩留まりに優れた光電変換装置およびその製造方法を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明にかかる光電変換装置は、タブにより光電変換セル同士が電気的且つ機械的に接続された光電変換装置であって、前記タブは、2層以上のタブが積層された積層領域を有する積層タブであり、前記光電変換セルの表面に形成された集電極に前記積層タブの前記積層領域が電気的且つ機械的に接続され、前記積層タブと前記光電変換セルとを接続する前記積層領域は、前記2層以上のタブ同士が部分的に接合されていること、を特徴とする。
本発明によれば、タブの機械的電気的な信頼性を損なうことなく、さらに光電変換セルの性能を低下させることもなく、タブ接続時にタブに発生する反り応力を緩和させることができ、光電変換セルの反りや割れ、電極剥がれが防止された、信頼性、光電変換効率および歩留まりに優れた光電変換装置が得られる、という効果を奏する。
図1は、本発明の実施の形態にかかる光電変換装置である太陽電池モジュールの概略構成を示す断面図である。 図2は、本発明の実施の形態にかかる太陽電池セルの概略構成を示す平面図であり、受光面側から見た上面図である。 図3は、本発明の実施の形態における受光面側バス電極と積層タブとの接続状態を模式的に示す断面図である。 図4は、本発明の実施の形態における受光面側バス電極と積層タブとの接続状態を模式的に示す断面図である。 図5は、本発明の実施の形態にかかる積層タブにおいて2枚のタブの一部の領域同士が連続的に接合される場合の、一方のタブの接合面を示す要部平面図である。
以下に、本発明にかかる光電変換装置およびその製造方法の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。
実施の形態
図1は、本発明の実施の形態にかかる光電変換装置である太陽電池モジュールの概略構成を示す断面図である。実施の形態にかかる太陽電池モジュールは、隣接する光電変換セルである太陽電池セルC同士が該太陽電池セルCの面方向において所定の距離だけ離間して電気的に直列接続されている。太陽電池セルCの面方向において各太陽電池セルCの大きさは均一とされており、各太陽電池セルCの面積は均等とされている。そして、隣接する太陽電池セルC同士は、銅箔等の導電性部材(タブ)が積層された積層導電性部材である積層タブ10をそれぞれの電極に半田付けすることによって電気的且つ機械的に接続されている。
太陽電池セルCは、n型領域とp型領域とを有し、n型領域とp型領域との界面部分で半導体接合部が形成されている。また、太陽電池セルCは、pn接合特性を改善するために単結晶シリコン基板上に実質的に真性なi型非晶質シリコン層が形成されたヘテロ接合を有する。すなわち、太陽電池セルCは、n型単結晶シリコン基板1の一面側(受光面側)に、i型非晶質シリコン層2とp型非晶質シリコン層3と受光面側ITO層4と受光面側集電極5とがこの順で形成され、n型単結晶シリコン基板1の他面側(受光面と反対側の裏面側)に、i型非晶質シリコン層6とn型非晶質シリコン層7と裏面側ITO層8と裏面側集電極9とがこの順で形成されている。
n型単結晶シリコン基板1は、厚みは50〜300μm程度であり、1辺が125mmのほぼ正方形形状である。i型非晶質シリコン層2とp型非晶質シリコン層3と受光面側ITO層4とは、n型単結晶シリコン基板1の受光面側の全面に積層形成されている。同様に、i型非晶質シリコン層6とn型非晶質シリコン層7と裏面側ITO層8とは、n型単結晶シリコン基板1の裏面側の全面に積層形成されている。
図2は、実施の形態にかかる太陽電池セルCの概略構成を示す平面図であり、受光面側から見た上面図である。受光面側集電極5は、フィンガー部とバスバー部とを有し、バスバー部に積層タブ10が接続される。すなわち、受光面側集電極5は、長尺細長の受光面側フィンガー電極5Fが受光面側ITO層4の全域にわたって略平行に複数並べて設けられ、この受光面側フィンガー電極5Fと導通する受光面側バス電極5Bが該受光面側フィンガー電極5Fと略直交するように設けられており、それぞれ底面部において受光面側ITO層4に電気的に接続している。そして、この受光面側バス電極5Bの上面に、積層タブ10が接続される。このような受光面側集電極5は、例えば、銀粉末、エポキシ樹脂、ウレタン樹脂、および溶剤などからなるペーストをスクリーン印刷したのち、数百度以下の温度で硬化させることにより形成される。
受光面側フィンガー電極5Fは、例えば0.1mm程度の幅で50本程度が一定の間隔で略平行に配置されて、太陽電池セルCの内部で発電した電気を集電する。また、受光面側バス電極5Bは、例えば2mm程度の幅を有するとともに太陽電池セル1枚当たりに3本が略平行に配置され、受光面側フィンガー電極5Fで集電した電気を外部に取り出す。そして、受光面側フィンガー電極5Fと受光面側バス電極5Bとにより、櫛形を呈する第1電極である受光面側集電極5が構成される。ここで、受光面側集電極5は、太陽電池セルCに入射する太陽光を遮ってしまうため、可能なかぎり面積を小さくすることが発電効率向上の観点で好ましく、細線化されている。
裏面側集電極9は、図示しないが、受光面側集電極5と同様にフィンガー部とバスバー部とを有し、バスバー部に積層タブ10が接続される。すなわち、裏面側集電極9は、長尺細長の裏面側フィンガー電極9Fが裏面側ITO層8の全域にわたって略平行に複数並べて設けられ、この裏面側フィンガー電極9Fと導通する裏面側バス電極9Bが該裏面側フィンガー電極9Fと略直交するように設けられており、それぞれ底面部において裏面側ITO層8に電気的に接続している。そして、この裏面側バス電極9Bの上面に積層タブ10が接続される。このような裏面側集電極9は、例えば、銀粉末、エポキシ樹脂、ウレタン樹脂、および溶剤などからなるペーストをスクリーン印刷したのち、数百度以下の温度で硬化させることにより形成される。
裏面側フィンガー電極9Fは、例えば0.1mm程度の幅で100本程度が一定の間隔で略平行に配置されて、太陽電池セルCの内部で発電した電気を集電する。また、裏面側バス電極9Bは、例えば2mm程度の幅を有するとともに太陽電池セル1枚当たりに3本が略平行に配置され、裏面側フィンガー電極9Fで集電した電気を外部に取り出す。そして、裏面側フィンガー電極9Fと裏面側バス電極9Bとにより、櫛形を呈する第2電極である裏面側集電極9が構成される。ここで、裏面側集電極9では受光面積の減少を考慮しなくてもよいことから、裏面側集電極9の面積は受光面側集電極5の面積よりも広くすることができる。つまり、裏面側集電極9は、受光面側集電極5と比較して、例えばバスバー電極の幅を広くしたり、フィンガーの本数を増やしたりすることができる。
つぎに、上記のように構成された実施の形態にかかる太陽電池モジュールの製造方法について説明する。まず、公知の方法により複数の太陽電池セルCを作製する。つぎに、隣接する太陽電池セルCにおける一方の太陽電池セルCの受光面側集電極5の受光面側バス電極5Bに積層タブ10の一端側を接続し、他方の太陽電池セルCの裏面側集電極9の裏面側バス電極9Bに該積層タブ10の他端側を接続することにより、太陽電池セルC同士を直列に接続する。
受光面側バス電極5Bへの積層タブ10の接続は、表面に半田が塗布された積層タブ10を受光面側バス電極5Bの上面に接触させ、半田の溶融温度以上に加熱することにより、受光面側バス電極5Bへ積層タブ10を半田付けすることによって行われる。裏面側バス電極9Bへの積層タブ10の接続も、受光面側バス電極5Bの場合と同様に行われる。本実施の形態では、溶融温度が約220℃のSn/Ag/Cuからなる半田が塗布された、銅箔からなる積層タブ10を受光面側バス電極5Bの上面に接触させ、ホットエアーまたは赤外線ランプで220〜280℃程度に加熱することにより、受光面側バス電極5Bへ積層タブ10を接続する。また、裏面側バス電極9Bへの積層タブ10の接続も、受光面側バス電極5Bの場合と同様に行われる。
ここで、受光面側の集電極は太陽電池セルに入射する光を遮るため、その面積を極力小さくすることが好ましい。集電極の面積を小さくするためには集電極の幅を細くすることが有効である。この場合は、集電極の狭幅化に合わせてタブの幅も狭くするとともに、タブの電気抵抗が高くならないようにタブを厚くする必要がある。
しかしながら、タブを厚くすると、太陽電池セル上のバスバー電極にタブを接続するための熱処理において、銅箔からなるタブとシリコン単結晶との線膨張係数の違いに起因して引っ張り応力(反り応力)が発生することにより、太陽電池セルの反り、太陽電池セルの割れや電極剥がれなどが発生するという問題があった。
この反り応力は、シリコン基板が薄くなるほど、またタブが厚くなるほど大きくなる。そこでタブを薄くすると、タブの断面積が小さくなりタブの電気抵抗が高くなる、という問題があった。一方、タブの断面積を増やすためにタブの幅を大きくすると、太陽電池セルへの光入射量が低下する、という問題があった。
そこで、本実施の形態では、従来の一般的なタブよりも薄い複数のタブを積層して、タブ同士を電気的且つ機械的に部分的に接合した積層タブ10を用いる。これにより、積層タブ10における個々のタブ同士が電気的且つ機械的に接合されていない部分によって、受光面側バス電極5Bおよび裏面側バス電極9Bへのタブ接続時に積層タブ10に発生する引っ張り応力(反り応力)を緩和することができるため、太陽電池セルの反り、太陽電池セルの割れや電極剥がれ発生を抑制、防止することができる。これにより、太陽電池セルCの信頼性、光電変換効率、歩留まりの低下を抑制、防止することが可能となる。従来の一般的なタブの厚みは、たとえば0.15mm程度である。
本実施の形態では、幅2mm、厚さ0.08mmのタブ101およびタブ102を、予め電気的且つ機械的に接合した積層タブ10を用いて、一方の太陽電池セルCの受光面側バス電極5Bと他方の太陽電池セルCの裏面側バス電極9Bとの接合を行う。図3は、本実施の形態における受光面側バス電極5Bと積層タブ10との接続状態を模式的に示す断面図である。図3に示したように、積層タブ10においてタブ101およびタブ102は全面が接合されているわけではなく、積層タブ10の長手方向において1〜50mm程度の間隔でタブ間接合部10Aで部分的に接合され、タブ間接合部10Aの積層タブ10の長手方向における長さはおおよそ0.5〜50mmである。また、隣接するタブ間接合部10A間の領域は、タブ101とタブ102とが接合されないタブ間非接合部10Bとされる。
隣接するタブ間接合部10A同士の間隔が1mmよりも短い場合には、積層タブ10にかかる反り応力を緩和できない。隣接するタブ間接合部10A同士の間隔が50mmよりも長い場合には、受光面側バス電極5Bまたは裏面側バス電極9Bとの接合が不完全になる場合がある。また、タブ間接合部10Aの長さが0.5mmよりも短い場合にはタブ同士が剥がれやすくなり、タブ間接合部10Aの長さが50mmよりも長い場合には、積層タブ10にかかる反り応力を十分に緩和することができない。
本実施の形態では、タブ間接合部10Aの間隔を5mm、タブ間接合部10Aの長さを2mmとする。タブ101とタブ102との接合には、たとえばスポット溶接を用いることができるが、タブ101とタブ102との間で部分的に電気的かつ機械的に接合を形成できる手法であれば特に限定されない。例えば図4に示すようにタブ間接合部10AをSn/Ag/Cu等の半田で形成してもよく、また熱圧着により接着可能な導電性フィルム(導電性接着剤)等を用いてタブ間接合部10Aを形成してもよい。また、積層タブ10が太陽電池セルCの集電極と接着される際の接着加工温度以上の接着加工温度を有する導電性接着剤を用いてタブ間接合部10Aを形成してもよい。このように、溶接または導電性接着剤を用いることにより、積層タブ10を構成する個々のタブ同士のタブ間接合部10Aにおいて機械的電気的に高い信頼性が得られる。
このような積層タブ10を一方の太陽電池セルCの受光面側バス電極5Bに接続するには、積層タブ10の一方の面(タブ101側)の全面に上記のSn/Ag/Cu半田を塗布し、該積層タブ10の半田塗布面を太陽電池セルCの受光面側バス電極5B上に密着させて赤外線ランプで加熱することにより、受光面側バス電極5Bと積層タブ10との接合する。
このとき、受光面側バス電極5Bと実質的に接合しているタブは、2本の接合されたタブ101およびタブ102のうちの1本(タブ101)である。積層タブ10の実質的な厚さを従来の1層からなるタブと同じにした場合でも、タブ101およびタブ102の個々のタブの厚さは従来のタブよりも薄くできるため、積層タブ10に発生する反り応力を低減することができる。さらに、2枚のタブ(タブ101およびタブ102)は電気的に接合されているので、積層タブ10の実質的な断面積は従来のタブと同等にすることができ、積層タブ10の電気抵抗が高くなることもない。すなわち、本実施の形態にかかる太陽電池モジュールは、複数の太陽電池セルを1層からなるタブを用いて接合する場合と比較して、2層のタブを部分的に電気的且つ機械的に接合した積層タブ10を用いることにより該積層タブ10を構成する個々のタブの厚さを半分以下程度に低減できることに特徴がある。
また、積層タブ10を他方の太陽電池セルCの裏面側バス電極9B上に接合する場合も、上述した受光面側バス電極5B上に積層タブ10を接合する場合と同様にして接続が行われ、同様の効果が得られる。
上述した実施の形態では、本発明の実施の形態を1つの半導体光電変換層を有する太陽電池を例にとって説明したが、本発明はこれに限定されるものではなく、本発明の目的を逸脱しない限り任意の形態とすることができる。例えば、上述した実施の形態では、積層タブ10を構成する個々のタブ同士の接合において、積層タブ10の長手方向の全長において接合部10Aと非接合部10Bとを交互に繰り返し形成したが、図5に示すように各タブの幅方向における一部の領域同士のみを連続的に接合してもよい。図5は、本実施の形態にかかる積層タブ10において2枚のタブの一部の領域同士が連続的に接合される場合の、一方のタブの接合面を示す要部平面図である。この場合のタブの接合面には、図5に示すように、積層タブ10の幅方向において、2枚のタブ同士が接合されるタブ間接合部10Cと、2枚のタブ同士が接合されないタブ間非接合部10Dとが構成される。そして、タブ間接合部10Cは、積層タブ10の長手方向の全長において形成される。
また、上記においては、2本以上のタブを接合させる際に用いる個々のタブ(タブ101およびタブ102)の幅、厚さはそれぞれ2mm、0.08mmとしたが、個々のタブの厚さや形状や材料等は太陽電池セルCの種類や、太陽電池セルCの接続数によって変更してもよく、積層タブ10を流れる電流量に応じて変更してもよい。積層タブ10を構成する個々のタブの厚さや形状や材料等を変更させる場合、たとえば、積層タブ10が厚み方向の中心を基準に対称ではない場合は、互いにタブ接続される太陽電池セルCの間でタブをねじって反転させることが好ましい。接続される太陽電池セルC同士の間で積層タブ10を反転させることにより、該積層タブ10により接続される2つの太陽電池セルCにおいて、一方の太陽電池セルCの受光面側バス電極5Bと他方の太陽電池セルCの裏面側バス電極9Bとに対して積層タブ10における同じ面が接続する。これにより、積層タブ10を構成する個々のタブの厚さや形状や材料等を変更しても、積層タブ10と受光面側バス電極5Bとの接合部と、積層タブ10と裏面側バス電極9Bとの接合部と、を同じ構造にすることができ、一方の太陽電池セルCと積層タブ10との接続条件と、他方の太陽電池セルCと積層タブ10との接続条件を同じにすることができる。
すなわち、常に積層タブ10の同一面が受光面側バス電極5Bおよび裏面側バス電極9Bと接合されることにより、積層タブ10を構成する個々のタブの厚さ、形状、材料等が互いに異なる場合にも、積層タブ10と太陽電池セルCとの接合特性を一定に保つことができる。これにより、積層タブ10を構成する個々のタブにおいて、積層タブ10と太陽電池セルCとの接続に起因した応力緩和用にはより薄いタブを、導電用には厚いタブを用いることもでき、積層数低減、プロセス簡便化、積層構造多様化などが可能となる。
また、上記の実施の形態においては、タブ同士の接合部10Aを積層タブ10の長手方向に延在する線状形状としたが、任意または規則的に配置された島状形状としてもよい。また、積層タブ10の長手方向に対して、タブ同士の接合部10Aは不均一な形状・間隔で形成されてもよい。
また、上記の実施の形態においては、2本のタブを部分的に接合して積層タブ10を構成したが、3本以上のタブを部分的に接合して積層タブ10を構成してもよい。また、幅の異なるタブ同士、厚さの異なるタブ同士、形状の異なるタブ同士、またはこれらの条件がそれぞれ任意に選択されたタブ同士を接合して積層タブを構成してもよい。
また、上記の実施の形態においては、積層タブ10を構成するタブの材料として銅箔を用いたが、タブの材料は電気抵抗が低いものであればよく、ニッケル、アルミ、銀、錫、インジウム、鉄、金、あるいはこれらを混合したものであっても同様の効果が得られる。また、積層タブ10は、異なる材料からなるタブ同士が接合されていてもよい。
また、上記の実施の形態においては、積層タブ10を用いて一方の太陽電池セルCの受光面側バス電極5Bと他方の太陽電池セルCの裏面側バス電極9Bとの接合を行う場合について示したが、積層タブ10は太陽電池セルCの受光面側の集電極にのみに接続する形態としてもよい。太陽電池セルCの裏面側の集電極の面積は光電変換効率に対して影響が小さいので、集電極に接続するタブおよびバスバー部の幅を広くすることもできる。例えば、太陽電池セルCの受光面側の集電極には積層タブ10を、太陽電池セルCの裏面側の集電極には従来のタブをそれぞれ接合し、これらのタブ同士を電気的且つ機械的に接続すれば、上述した積層タブ10による効果が得られるとともに、タブにかかるコストを低減することができる。また、太陽電池セルCの受光面側の集電極に接合する部分のみに積層タブ10の構成を適用したタブを構成することも可能である。
また、上記の実施の形態においては、太陽電池セルC同士を直列に接続する場合について示したが、積層タブ10により太陽電池セルC同士を並列に接続してもよい。
また、上記の実施の形態においては、太陽電池セルCの主たる発電層としてn型単結晶シリコン基板を用いる場合について示しているが、主たる発電層としての基板は単結晶シリコン基板に限定されず多結晶シリコン基板でもよく、またn型ではなくp型であってもよい。
また、上記の実施の形態においては、太陽電池セルとしてヘテロ接合型の太陽電池セルを例に説明したが、太陽電池セルには例えば結晶系等の公知の太陽電池セルを用いることができる。結晶系太陽電池セルとしては、例えば単結晶シリコン太陽電池セル、多結晶シリコン太陽電池セルなどが挙げられるが、これに限定されるものではない。
また、上記の実施の形態においては、結晶シリコンを有する光電変換装置を例に説明しているが、例えば、p型またはn型の半導体膜上に透明導電膜や集電極が形成された薄膜太陽電池セル同士が電気的且つ機械的に接続された光電変換装置等にも適用できる。
また、上記の実施の形態においては、理解の容易のため2つの太陽電池セルC同士を電気的且つ機械的に接続する場合について示したが、実際にはより多数の太陽電池セルC同士が接続されて使用される。
上述したように、本実施の形態においては、2つの太陽電池セルC同士が、2層のタブが積層されて部分的に接続された積層タブ10により電気的且つ機械的に接続されることにより、太陽電池セルCの集電極と積層タブ10との間の反り応力を低減することができる。これにより、シャドーロスや電気抵抗損失の低減のためにタブの細線化や厚膜化が図られた場合等においても、タブの断面積を所望の値以上に保持したまま、タブ接続時に発生する反り応力を緩和させることができ、太陽電池セルCの反りや割れ、電極剥がれを防止することができる。
したがって、本実施の形態によれば、タブ同士の機械的電気的な信頼性を損なうことなく、さらに太陽電池セルの性能を低下させることもなく、タブ接続時にタブに発生する反り応力を緩和させることができ、タブによるシャドーロスや電気抵抗損失を抑制つつ、太陽電池セルの反りや割れ、電極剥がれが防止された、信頼性、光電変換効率および歩留まりに優れた太陽電池モジュールが実現できる。
なお、積層タブ10は、2層以上のタブが積層された積層領域を少なくとも一部に有し、この積層領域が太陽電池セルCの集電極に接続して太陽電池セルC同士を電気的且つ機械的に接続すればよい。この場合、少なくとも積層領域において2層以上のタブ同士が
積層タブ10の長手方向において部分的に接合されていればよい。
以下、本発明を実施例に基づいて具体的に説明するが、本発明はその趣旨を越えない限り以下の実施例に限定されるものではない。
実施例1.
実施例1では、2枚のタブをスポット溶接した積層タブを用いた太陽電池モジュールを作製した。まず、結晶系半導体基板として、約1Ω・cmの抵抗率と約100μmの厚みとを有するとともに、基板表面に(100)面を有するn型単結晶シリコン(c−Si)基板1を用意した。n型c−Si基板1を洗浄した後、アルカリ溶液を用いたエッチングにより、n型c−Si基板1の表面に数μmから数十μmの高さを有する光閉じ込めのためのピラミッド状凹凸を形成した。
次に、このn型c−Si基板1を真空チャンバへ導入し、200℃での加熱を実施して、基板表面に付着した水分を極力除去した。その後、真空チャンバ内に水素(H)ガスを導入し、プラズマ放電を行ってn型c−Si基板1の基板表面のクリーニングを実施した。
次に、基板温度を約150℃とし、シラン(SiH)ガスおよび水素(H)ガスを真空チャンバ内に導入して、RFプラズマCVD法により、約5nmの厚みを有する実質的に真性のi型非晶質シリコン(a−Si:H)層2をn型c−Si基板1の一面側に形成した。続いて、シラン(SiH)ガス、水素(H)ガス、およびドーピングガスとしてジボラン(B)ガスを真空チャンバ内に導入して、RFプラズマCVD法により、約5nmの厚みを有するp型非晶質シリコン(a−Si:H)層3をi型a−Si:H層2上に形成した。
次に、p型a−Si:H層3上に、スパッタリング法によりSnOを添加したIn層を形成して、約100nmの厚みを有する受光面側ITO層4を形成した。
次に、基板温度を約150℃とし、シラン(SiH)ガスおよび水素(H)ガスを真空チャンバ内に導入して、RFプラズマCVD法により、約5nmの厚みを有する実質的に真性のi型非晶質シリコン(a−Si:H)層6をn型c−Si基板1の他面側に形成した。続いて、シラン(SiH)ガス、水素(H)ガス、およびドーピングガスとしてホスフィン(PH)ガスを真空チャンバ内に導入して、RFプラズマCVD法により、約20nmの厚みを有するn型非晶質シリコン(a−Si:H)層7をi型a−Si:H層6上に形成した。
次に、n型a−Si:H層7上に、スパッタリング法によりSnOを添加したIn層を形成して、約100nmの厚みを有する裏面側ITO層8を形成した。
続いて、受光面側ITO層4の上面の所定領域にスクリーン印刷法により銀ペーストから成る櫛型の受光面側集電極5を形成し、裏面側ITO層8の上面の所定領域にスクリーン印刷法により銀ペーストから成る櫛型の裏面側集電極9を形成した。
次に、真空チャンバへアルゴン(Ar)ガスを導入し、約200℃の基板温度において、約2時間の加熱処理をn型c−Si基板1に実施した。以上の工程を実施することにより、複数の太陽電池セルCを作製した。
一方、幅が2mm、厚みが0.08mmの銅箔を2枚接触させ、スポット溶接によって電気的且つ機械的に接合させて積層タブ10を作製した。このとき、積層タブ10の長さ方向において、2mmの接合部10Aと5mmの非接合部10Bとを交互に形成した。その後、積層タブ10の片側全面にはSn/Ag/Cuからなる半田を塗布した。
次に、接続する太陽電池セルCのうちの一方の太陽電池セルCの受光面側の受光面側バス電極5B上に、該受光面側バス電極5Bに半田塗布面が接するように積層タブ10を接触させ、赤外線ランプにより250℃程度に加熱して、太陽電池セルCの受光面側バス電極5Bに積層タブ10を接続した。
続いて、接続する太陽電池セルCのうちの他方の太陽電池セルCの裏面側バス電極9B上に、該裏面側バス電極9Bに半田塗布面が接するように積層タブ10を接触させ、赤外線ランプにより250℃程度に加熱して、太陽電池セルCの裏面側バス電極9Bに積層タブ10を接続した。以上の工程を実施して複数の太陽電池セルC同士を電気的且つ機械的に接続することにより、実施例1にかかる太陽電池モジュールを作製した。
実施例2.
実施例2では、2枚のタブを半田接合した積層タブを用いた太陽電池モジュールを作製した。実施例2にかかる太陽電池モジュールは、実施例1にかかる太陽電池モジュールと比較して、2枚のタブをあらかじめ接合して積層タブ10を作製する際に半田接合を用いるという点のみが異なり、これ以外は全て実施例1と同一の条件を用いて太陽電池モジュールを作製した。
実施例2では、幅が2mm、厚みが0.08mmの2枚の銅箔のうち、一方の銅箔の片面に幅2mmのSn/Ag/Cu半田を5mm間隔で配置した後、半田を挟み込むように2枚の銅箔を接触させた状態で赤外線ランプ加熱を実施して、2枚の銅箔が接合した積層タブ10を作製した。そして、この積層タブ10を用いて複数の太陽電池セルC同士を電気的且つ機械的に接続することにより、実施例2にかかる太陽電池モジュールを作製した。
比較例
比較例では、2枚以上のタブを接合していないタブを用いた太陽電池モジュールを作製した。比較例にかかる太陽電池モジュールは、実施例1および実施例2にかかる太陽電池モジュールと比較して、2枚以上のタブをを接合させたタブを使用しないという点のみが異なり、これ以外は全て実施例1および実施例2と同一の条件を用いて太陽電池モジュールを作製した。
比較例では、タブとして、幅が2mm、厚みが0.15mmの銅箔を使用した。そして、このタブを用いて複数の太陽電池セルC同士を電気的且つ機械的に接続することにより、比較例にかかる太陽電池モジュールを作製した。
次に、作製した実施例1、実施例2、比較例にかかる太陽電池モジュールのうち受光面側バス電極5Bおよび裏面側バス電極9Bにタブが接続された太陽電池セルCのセル特性を評価した。
実施例1にかかる太陽電池モジュールのうち受光面側バス電極5Bおよび裏面側バス電極9Bに積層タブ10が接続された太陽電池セルCのセル特性を評価した結果、光電変換効率(η)は21.5%、短絡電流密度(Jsc)は38.3mA/cm、開放端電圧(Voc)は0.71V、フィルファクター(FF)は0.79であった。太陽電池セルCの外観を確認したところ、セルの割れや反り、電極剥がれは認められなかった。
実施例2にかかる太陽電池モジュールのうち受光面側バス電極5Bおよび裏面側バス電極9Bに積層タブ10が接続された太陽電池セルCのセル特性を評価した結果、光電変換効率(η)は20.8%、短絡電流密度(Jsc)は37.9mA/cm、開放端電圧(Voc)は0.712V、フィルファクター(FF)は0.77であった。太陽電池セルCの外観を確認したところ、セルの割れや反り、電極剥がれは認められなかった。
比較例にかかる太陽電池モジュールのうち受光面側バス電極5Bおよび裏面側バス電極9Bにタブが接続された太陽電池セルCのセル特性を評価した結果、光電変換効率(η)は18.9%、短絡電流密度(Jsc)は37.5mA/cm、開放端電圧(Voc)は0.68V、フィルファクター(FF)は0.74であった。太陽電池セルの外観を確認したところ、受光面側集電極の周辺部において電極剥がれが認められた。
以上の実施例1、実施例2、および比較例のセル特性評価および外観確認の結果より、複数のタブが積層されて部分的に接合された積層タブ10を用いて太陽電池セル間を電気的及び機械的に接続することにより、タブの断面積を所望の値以上に保持したまま、タブ接続時に発生する反り応力を緩和させることができる。これにより、太陽電池セルの反りや割れ、電極剥がれを防止することができ、高光電変換効率を有する太陽電池モジュールを作製できることが確認された。
以上のように、本発明にかかる光電変換装置は、光電変換セル同士がタブにより電気的且つ機械的に接続された光電変換装置の信頼性、光電変換効率、歩留まりの向上に有用である。
1 n型単結晶シリコン基板
2 i型非晶質シリコン層
3 p型非晶質シリコン層
4 受光面側ITO層
5 受光面側集電極
5B 受光面側バス電極
5F 受光面側フィンガー電極
6 i型非晶質シリコン層
7 n型非晶質シリコン層
8 裏面側ITO層
9 裏面側集電極
9B 裏面側バス電極
9F 裏面側フィンガー電極
10 積層タブ
10A タブ間接合部
10B タブ間非接合部
10C タブ間接合部
10D タブ間非接合部
C 太陽電池セル

Claims (10)

  1. タブにより光電変換セル同士が電気的且つ機械的に接続された光電変換装置であって、
    前記タブは、2層以上のタブが積層された積層領域を有する積層タブであり、
    前記光電変換セルの表面に形成された集電極に前記積層タブの前記積層領域が電気的且つ機械的に接続され、
    前記積層タブと前記光電変換セルとを接続する前記積層領域は、前記2層以上のタブ同士が部分的に接合されていること、
    を特徴とする光電変換装置。
  2. 前記積層タブの前記積層領域が、前記光電変換セルの受光面側の表面に形成された前記集電極に接続されていること、
    を特徴とする請求項1に記載の光電変換装置。
  3. 前記積層タブにおける一端側の前記積層領域が、一方の前記光電変換セルの受光面側の表面に形成された前記集電極に接続され、
    前記積層タブにおける他端側の前記積層領域が、他方の前記光電変換セルの裏面側の表面に形成された前記集電極に接続されていること、
    を特徴とする請求項2に記載の光電変換装置。
  4. 前記積層タブは、前記一方の光電変換セルと前記他方の光電変換セルとの間でねじれて反転され、前記一方の光電変換セルの受光面側の表面に形成された前記集電極と前記他方の光電変換セルの裏面側の表面に形成された前記集電極とに前記積層タブにおける同一面が接続されていること、
    を特徴とする請求項3に記載の光電変換装置。
  5. 前記積層タブは、前記積層されたタブ同士が、溶接、導電性フィルム、または前記積層タブと前記集電極とを接合する接着材の接着加工温度以上の接着加工温度を有する導電性接着剤のいずれか1つにより接合されていること、
    を特徴とする請求項1〜4のいずれか1つに記載の光電変換装置。
  6. タブにより光電変換セル同士が電気的且つ機械的に接続された光電変換装置の製造方法であって、
    2層以上のタブ同士を積層して前記タブ同士を部分的に接合することにより、タブ同士が部分的に接合された積層領域を有する積層タブを形成する工程と、
    一方の前記光電変換セルの表面に形成された集電極に前記積層タブの一端側の前記積層領域を電気的且つ機械的に接続する工程と、
    他方の前記光電変換セルの表面に形成された集電極に前記積層タブの他端側の前記積層領域を電気的且つ機械的に接続する工程と、
    を含むことを特徴とする光電変換装置の製造方法。
  7. 前記積層タブの前記積層領域を、前記光電変換セルの受光面側の表面に形成された前記集電極に接続すること、
    を特徴とする請求項6に記載の光電変換装置の製造方法。
  8. 前記積層タブにおける一端側の前記積層領域を、一方の前記光電変換セルの受光面側の表面に形成された前記集電極に接続し、
    前記積層タブにおける他端側の前記積層領域を、他方の前記光電変換セルの裏面側の表面に形成された前記集電極に接続すること、
    を特徴とする請求項7に記載の光電変換装置の製造方法。
  9. 前記積層タブを、前記一方の光電変換セルと前記他方の光電変換セルとの間でねじって反転させ、前記一方の光電変換セルの受光面側の表面に形成された前記集電極と前記他方の光電変換セルの裏面側の表面に形成された前記集電極とに前記積層タブにおける同一面を接続すること、
    を特徴とする請求項8に記載の光電変換装置の製造方法。
  10. 前記積層されたタブ同士が、溶接、導電性フィルム、または前記積層タブと前記集電極とを接合する接着材の接着加工温度以上の接着加工温度を有する導電性接着剤のいずれか1つにより接合されること、
    を特徴とする請求項6〜9のいずれか1つに記載の光電変換装置の製造方法。
JP2012089623A 2012-04-10 2012-04-10 光電変換装置およびその製造方法 Pending JP2013219251A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012089623A JP2013219251A (ja) 2012-04-10 2012-04-10 光電変換装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012089623A JP2013219251A (ja) 2012-04-10 2012-04-10 光電変換装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2013219251A true JP2013219251A (ja) 2013-10-24

Family

ID=49591013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012089623A Pending JP2013219251A (ja) 2012-04-10 2012-04-10 光電変換装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP2013219251A (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073706A (ja) * 2004-09-01 2006-03-16 Kyocera Corp 太陽電池モジュール
JP2008294383A (ja) * 2006-10-13 2008-12-04 Hitachi Chem Co Ltd 太陽電池セルの接続方法及び太陽電池モジュール
US20090318037A1 (en) * 2006-10-20 2009-12-24 Harry Wirth Cell Connector For Electronically Contacting Planar Power Sources, And Use Thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073706A (ja) * 2004-09-01 2006-03-16 Kyocera Corp 太陽電池モジュール
JP2008294383A (ja) * 2006-10-13 2008-12-04 Hitachi Chem Co Ltd 太陽電池セルの接続方法及び太陽電池モジュール
US20090318037A1 (en) * 2006-10-20 2009-12-24 Harry Wirth Cell Connector For Electronically Contacting Planar Power Sources, And Use Thereof

Similar Documents

Publication Publication Date Title
JP5171490B2 (ja) 集積型薄膜太陽電池
JP5014503B2 (ja) 太陽電池セル及び太陽電池モジュール
US20150194552A1 (en) Solar cell module and method for manufacturing the solar cell module
JP2008135655A (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、及び太陽電池セル
JP2005252062A (ja) 太陽電池装置
JP2008159895A (ja) 太陽電池セル及び太陽電池モジュール
JP5739076B2 (ja) 太陽電池モジュール及びその製造方法
JP2012074414A (ja) 太陽電池モジュール及びその製造方法
WO2017177726A1 (zh) 一种太阳能电池模组及其制备方法和组件、系统
WO2012117765A1 (ja) 太陽電池モジュール
JP6291003B2 (ja) 太陽電池及び太陽電池モジュール
JP2010239167A (ja) 太陽電池モジュール
JP2013161822A (ja) 太陽電池およびその製造方法、太陽電池モジュール
JP2015207598A (ja) 太陽電池モジュール、太陽電池およびこれに用いられる素子間接続体
CN110690308A (zh) 一种背接触异质结太阳能电池及其模组
JP2010050350A (ja) 太陽電池モジュール及び太陽電池
JP5174226B2 (ja) 太陽電池モジュール
JP2008252051A (ja) 太陽電池モジュール
JP5376873B2 (ja) 集積型薄膜太陽電池
JP5014502B2 (ja) 太陽電池セルの製造方法及び太陽電池モジュールの製造方法
JP5174972B2 (ja) 薄膜太陽電池モジュールおよびその製造方法
JP2013219251A (ja) 光電変換装置およびその製造方法
JP5709784B2 (ja) 太陽電池セルおよび太陽電池モジュール
JP6602242B2 (ja) 太陽電池モジュール
JP2013030627A (ja) 光電変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151201