JP2013219064A - Photoelectric conversion device manufacturing method - Google Patents

Photoelectric conversion device manufacturing method Download PDF

Info

Publication number
JP2013219064A
JP2013219064A JP2010176213A JP2010176213A JP2013219064A JP 2013219064 A JP2013219064 A JP 2013219064A JP 2010176213 A JP2010176213 A JP 2010176213A JP 2010176213 A JP2010176213 A JP 2010176213A JP 2013219064 A JP2013219064 A JP 2013219064A
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
power generation
laser
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010176213A
Other languages
Japanese (ja)
Inventor
Shinsaku Yamaguchi
晋作 山口
Keisuke Nakamura
恵右 仲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010176213A priority Critical patent/JP2013219064A/en
Priority to PCT/JP2011/057055 priority patent/WO2012017703A1/en
Publication of JP2013219064A publication Critical patent/JP2013219064A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To obtain a photoelectric conversion device manufacturing method which can manufacture a photoelectric conversion device excellent in photoelectric conversion properties without increasing the number of processes.SOLUTION: A photoelectric conversion device manufacturing method comprises: a first laser patterning process of partially removing a power generation layer 3 on a transparent conductive layer 2 by laser to expose the transparent conductive layer 2; a second laser patterning process of partially removing the power generation layer 3 on the transparent conductive layer 2 and a back reflection electrode layer 4 by laser to expose the transparent conductive layer 2; and a third laser patterning process of removing the transparent conductive layer 2, the power generation layer 3 and the back reflection electrode layer 4 at a peripheral part of a translucent substrate 1 by laser to expose the peripheral part of the translucent substrate 1. The photoelectric conversion device manufacturing method comprises a step of supplying a process solution 6 having a property of inactivating defects in material which forms the power generation layer 3 to a processed part by laser to remove a residue generated by the laser processing in any of the first laser patterning process, the second laser patterning process and the third laser patterning process.

Description

本発明は、レーザパターニングによる光電変換装置の製造方法に関する。   The present invention relates to a method for manufacturing a photoelectric conversion device by laser patterning.

近年、太陽電池の低コスト化、高効率化を両立するために、薄膜太陽電池の開発が精力的になされており、とりわけ多接合型薄膜太陽電池が注目されている。一般に、多接合型の薄膜太陽電池は、透光性基板を用い、透明導電層、多接合層(光電変換層、導電型層、中間層)、裏面反射電極層で構成され、レーザパターニングによって直列接続を形成した上でモジュールを作成する。   In recent years, in order to achieve both low cost and high efficiency of solar cells, thin film solar cells have been vigorously developed, and multi-junction thin film solar cells are particularly attracting attention. In general, a multi-junction thin film solar cell uses a transparent substrate, and is composed of a transparent conductive layer, a multi-junction layer (photoelectric conversion layer, conductive type layer, intermediate layer), and a back surface reflective electrode layer. Create a module after forming a connection.

レーザパターニングは、透明導電層の形成後、多接合層の形成後、裏面反射電極層の形成後に加え、モジューリング前にもパネル外周部の膜除去のため行われる。すなわち、光電変換装置の製造工程において、レーザパターニングは複数回行われる。これらのレーザパターニング処理はいずれもレーザ光に由来する熱エネルギーや光エネルギーによってパターニング部分周辺の構成層に欠陥を発生させる。各パターニング後は、処理部に生じる残渣を除去するために洗浄が施される。   Laser patterning is performed after the formation of the transparent conductive layer, after the formation of the multi-junction layer, after the formation of the back-surface reflective electrode layer, and for removing the film on the outer periphery of the panel before the modulation. That is, laser patterning is performed a plurality of times in the manufacturing process of the photoelectric conversion device. In any of these laser patterning processes, defects are generated in the constituent layers around the patterning portion by heat energy and light energy derived from laser light. After each patterning, cleaning is performed to remove residues generated in the processing unit.

また、欠陥のパッシベーションに関して、結晶Si基板に対して光を照射させながら溶液処理を施すことにより、基板表面に存在する欠陥をパッシベーションする技術が知られている(特許文献1参照)。   As for defect passivation, a technique is known in which defects existing on the surface of a substrate are passivated by performing solution treatment while irradiating light on a crystalline Si substrate (see Patent Document 1).

特許第4344861号公報Japanese Patent No. 4344861

しかしながら、上記特許文献1の手法を薄膜太陽電池の製造に適用すると、レーザパターニングの都度、残渣の除去や欠陥のパッシベーションを個別に行うこととなり、工程数が多くなるという問題があった。   However, when the method of Patent Document 1 is applied to the production of a thin film solar cell, there is a problem that the number of steps is increased because residue removal and defect passivation are performed individually each time laser patterning is performed.

本発明は、上記に鑑みてなされたものであって、光電変換特性に優れた光電変換装置を工程数の増加を招くことなく製造できる光電変換装置の製造方法を得ることを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at obtaining the manufacturing method of the photoelectric conversion apparatus which can manufacture the photoelectric conversion apparatus excellent in the photoelectric conversion characteristic, without causing the increase in the number of processes.

上述した課題を解決し、目的を達成するために、本発明は、透光性基板上に間隔を空けて複数の第1電極層を形成する工程と、透光性基板及び第1電極層の上に光電変換を行う発電層を形成する工程と、第1電極層上の発電層をレーザによって部分的に除去し、第1電極層を露出させる第1レーザパターニング工程と、第1電極層及び発電層の上に、第2電極層を形成する工程と、第1電極層上の発電層及び第2電極層をレーザによって部分的に除去し、第1電極層を露出させる第2レーザパターニング工程と、透光性基板の周縁部の第1電極層、発電層及び第2電極層をレーザによって除去し、透光性基板の周縁部を露出させる第3レーザパターニング工程とを有し、第1、第2及び第3レーザパターニング工程のいずれかにおいては、発電層を形成する材料の欠陥を不活性化させる性質を有する溶液をレーザによる加工部分に供給して、レーザによる加工によって生じる残渣を除去することを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention includes a step of forming a plurality of first electrode layers on a light-transmitting substrate at intervals, a step of forming the light-transmitting substrate and the first electrode layer. A step of forming a power generation layer for performing photoelectric conversion thereon, a first laser patterning step of partially removing the power generation layer on the first electrode layer with a laser to expose the first electrode layer, a first electrode layer, A step of forming a second electrode layer on the power generation layer, and a second laser patterning step of partially removing the power generation layer and the second electrode layer on the first electrode layer with a laser to expose the first electrode layer And a third laser patterning step of removing the first electrode layer, the power generation layer, and the second electrode layer at the peripheral portion of the translucent substrate with a laser to expose the peripheral portion of the translucent substrate, In any of the second and third laser patterning steps, Supplying a solution having a property of inactivating the defects of the material forming the layer on the working portion by the laser, and removing the resulting residue by processing with a laser.

本発明によれば、処理溶液によるパッシベーション効果によって、パターニング部分及び構成膜全体の欠陥準位が低減して太陽電池特性が向上するとともに、パターニング工程、残渣除去工程及びパターニング工程の一元化によって工程数を削減できるという効果を奏する。   According to the present invention, the passivation effect by the processing solution reduces the defect level of the patterning portion and the entire constituent film and improves the solar cell characteristics, and the number of steps can be increased by unifying the patterning step, residue removing step and patterning step. There is an effect that it can be reduced.

図1は、本発明の実施の形態に係る光電変換装置の製造方法で製造された多接合型光電変換装置の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a multi-junction photoelectric conversion device manufactured by a method for manufacturing a photoelectric conversion device according to an embodiment of the present invention. 図2は、発電領域における層構成を示す図である。FIG. 2 is a diagram illustrating a layer configuration in the power generation region. 図3は、本実施の形態に係る光電変換装置の製造方法の流れを示すフローチャートである。FIG. 3 is a flowchart showing a flow of a manufacturing method of the photoelectric conversion device according to the present embodiment. 図4は、光電変換装置の製造方法の工程図である。FIG. 4 is a process diagram of a method for manufacturing a photoelectric conversion device. 図5は、レーザパターニングを施工中の多接合型光電変換装置の断面図である。FIG. 5 is a cross-sectional view of a multi-junction photoelectric conversion device that is performing laser patterning. 図6は、処理溶液を入れた処理溶液浸漬槽内で膜面が処理溶液に接するように透光性基板を保持しつつレーザ光を照射して加工する様子を示す図である。FIG. 6 is a diagram showing a state in which processing is performed by irradiating a laser beam while holding the light-transmitting substrate so that the film surface is in contact with the processing solution in the processing solution immersion tank containing the processing solution. 図7は、実施例1、実施例2及び比較例で形成した多接合型光電変換装置の特性を示す図である。FIG. 7 is a diagram showing characteristics of the multi-junction photoelectric conversion devices formed in Example 1, Example 2, and Comparative Example.

以下に、本発明にかかる光電変換装置の製造方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a method for manufacturing a photoelectric conversion device according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態.
本発明の実施の形態に係る光電変換装置の製造方法について説明する。図1は、本発明の実施の形態に係る光電変換装置の製造方法で製造された多接合型光電変換装置の構成を示す図である。なお、構成の理解を容易とするため、図1においては封止材やバックシートの図示は省略している。多接合型光電変換装置は、透光性基板1上に透明導電層2、発電層3、裏面反射電極層4が順次積層された構造の光電変換セル10が複数設けられている。
Embodiment.
A method for manufacturing a photoelectric conversion device according to an embodiment of the present invention will be described. FIG. 1 is a diagram illustrating a configuration of a multi-junction photoelectric conversion device manufactured by a method for manufacturing a photoelectric conversion device according to an embodiment of the present invention. In addition, in order to make an understanding of a structure easy, in FIG. 1, illustration of a sealing material and a back seat | sheet is abbreviate | omitted. The multi-junction photoelectric conversion device is provided with a plurality of photoelectric conversion cells 10 having a structure in which a transparent conductive layer 2, a power generation layer 3, and a back surface reflective electrode layer 4 are sequentially laminated on a translucent substrate 1.

光電変換セル10同士の間には透明導電層2が存在しない第1の分離溝11が設けられている。また、光電変換セル10上には、発電層3が存在しない接続溝12が設けられ、透明導電層2と裏面反射電極層4とが電気的に接続されている。さらに、光電変換セル10上には、光電変換セル10を非発電領域(接続溝12が設けられた側の領域)20と発電領域30とに分断するように第2の分離溝13が設けられている。第2の分離溝13が設けられた部分は、発電層3及び裏面反射電極層4が存在しておらず、透明導電層2が露出している。このため、非発電領域20の裏面反射電極層4と発電領域30の裏面反射電極層4とは、第2の分離溝12によって電気的に分離されている。ある光電変換セル10の透明導電層2は、接続溝12及び第1の分離溝11に形成された裏面反射電極層4を介して、隣接する他の光電変換セルの裏面反射電極層4と電気的に接続されている。   A first separation groove 11 in which the transparent conductive layer 2 does not exist is provided between the photoelectric conversion cells 10. Moreover, on the photoelectric conversion cell 10, the connection groove | channel 12 in which the electric power generation layer 3 does not exist is provided, and the transparent conductive layer 2 and the back surface reflective electrode layer 4 are electrically connected. Furthermore, a second separation groove 13 is provided on the photoelectric conversion cell 10 so as to divide the photoelectric conversion cell 10 into a non-power generation region (region on the side where the connection groove 12 is provided) 20 and a power generation region 30. ing. In the portion where the second separation groove 13 is provided, the power generation layer 3 and the back surface reflective electrode layer 4 are not present, and the transparent conductive layer 2 is exposed. For this reason, the back surface reflective electrode layer 4 in the non-power generation region 20 and the back surface reflective electrode layer 4 in the power generation region 30 are electrically separated by the second separation groove 12. The transparent conductive layer 2 of a certain photoelectric conversion cell 10 is electrically connected to the back surface reflective electrode layer 4 of another adjacent photoelectric conversion cell via the back surface reflective electrode layer 4 formed in the connection groove 12 and the first separation groove 11. Connected.

図2に、発電領域30における層構成を示す。透光性基板1はガラス基板、若しくはポリイミドやポリビニルなどの耐熱性を有する光透過性樹脂又はそれらを積層したものなどを適宜用いることができるが、光透過性が高く、光電変換装置全体を構造的に支持しうるものであれば特定の材料に限定されない。   FIG. 2 shows a layer structure in the power generation region 30. As the light-transmitting substrate 1, a glass substrate, a light-transmitting resin having heat resistance such as polyimide or polyvinyl, or a laminate thereof can be used as appropriate. The material is not limited to a specific material as long as it can be supported.

第1電極層としての透明導電層2は、透光性導電材料で構成される。透光性導電材料としては、酸化錫(SnO)、酸化亜鉛(ZnO)、酸化インジウム(In)などを用いることができる。透明導電層2は、CVD法、スパッタリング法、蒸着法等の公知の成膜方法を用いて形成される。 The transparent conductive layer 2 as the first electrode layer is made of a translucent conductive material. As the light-transmitting conductive material, tin oxide (SnO 2 ), zinc oxide (ZnO), indium oxide (In 2 O 3 ), or the like can be used. The transparent conductive layer 2 is formed using a known film formation method such as a CVD method, a sputtering method, or a vapor deposition method.

発電層3は、光電変換層31、中間層32、光電変換層33及び裏側透明導電層34を備える。発電層3は、CVD法などの公知の方法を用いて形成される。発電層3の典型的な材料は、シリコンを主成分とする半導体材料(非晶質シリコンや微結晶シリコン、非晶質シリコンゲルマニウム、微結晶シリコンゲルマニウムなど)である。光電変換層31、33は、pin接合を有し、入射する光を光電変換して光起電力を発生させる。すなわち、光電変換層31及び33は、光起電力を発生させる構造単位(単位発電層)である。したがって、発電層3は単位発電層としての光電変換層31、33を、透明導電膜からなる中間層32を介して複数層積層した多接合構造を有する。   The power generation layer 3 includes a photoelectric conversion layer 31, an intermediate layer 32, a photoelectric conversion layer 33, and a back side transparent conductive layer 34. The power generation layer 3 is formed using a known method such as a CVD method. A typical material for the power generation layer 3 is a semiconductor material (such as amorphous silicon, microcrystalline silicon, amorphous silicon germanium, or microcrystalline silicon germanium) containing silicon as a main component. The photoelectric conversion layers 31 and 33 have pin junctions, and photoelectrically convert incident light to generate photovoltaic power. That is, the photoelectric conversion layers 31 and 33 are structural units (unit power generation layers) that generate photovoltaic power. Therefore, the power generation layer 3 has a multi-junction structure in which a plurality of photoelectric conversion layers 31 and 33 as unit power generation layers are stacked via an intermediate layer 32 made of a transparent conductive film.

光電変換層31は、透光性基板1側から順に、表側導電型層31a、真性半導体層31b、裏側導電型層31cが積層された構成である。また、光電変換層33は、透光性基板1側から順に、表側導電型層33a、真性半導体層33b、裏側導電型層33cが積層された構成である。光電変換層31は、相対的にバンドギャップの広い材料、例えば非晶質シリコンを用いて形成することが好ましい。また、光電変換層33は、相対的にバンドギャップの狭い材料、例えば微結晶シリコンや微結晶シリコンゲルマニウムを用いて形成することが好ましい。   The photoelectric conversion layer 31 has a configuration in which a front-side conductive type layer 31a, an intrinsic semiconductor layer 31b, and a back-side conductive type layer 31c are stacked in order from the translucent substrate 1 side. The photoelectric conversion layer 33 has a configuration in which a front-side conductive type layer 33a, an intrinsic semiconductor layer 33b, and a back-side conductive type layer 33c are stacked in this order from the light-transmitting substrate 1 side. The photoelectric conversion layer 31 is preferably formed using a material having a relatively wide band gap, for example, amorphous silicon. The photoelectric conversion layer 33 is preferably formed using a material having a relatively narrow band gap, for example, microcrystalline silicon or microcrystalline silicon germanium.

中間層32は、低屈折率を有し、所望の波長に対して光透過率又は高反射率を持ち、導電性を併せ持った薄膜である。すなわち、中間層32は、所定の波長よりも短波長の光を透光性基板1側にある光電変換層31へ反射させ、所定の波長よりも長波長の光を裏面反射電極層4側にある光電変換層33へ透過させる。これにより、中間層32は、所定の波長よりも短波長の光を光電変換層31に閉じ込める効果を奏する。   The intermediate layer 32 is a thin film having a low refractive index, light transmittance or high reflectance for a desired wavelength, and conductivity. That is, the intermediate layer 32 reflects light having a shorter wavelength than the predetermined wavelength to the photoelectric conversion layer 31 on the translucent substrate 1 side, and transmits light having a longer wavelength than the predetermined wavelength to the back surface reflective electrode layer 4 side. The light is transmitted through a certain photoelectric conversion layer 33. Thereby, the intermediate layer 32 has an effect of confining light having a shorter wavelength than the predetermined wavelength in the photoelectric conversion layer 31.

裏側透明導電層34は、光電変換層33と裏面反射電極層4との間のキャリア伝導を担う。   The back side transparent conductive layer 34 is responsible for carrier conduction between the photoelectric conversion layer 33 and the back surface reflective electrode layer 4.

なお、ここでは発電層3が、pin接合を有する光電変換層31、33を備える構成を例としたが、発電層3は、少なくとも1組のpn接合又はpin接合を有し、入射する光を光電変換して光起電力を発生させる光電変換層が2層以上積層されて構成される半導体層であれば良く、上記の構成に限定されない。光電変換層を3層以上備える場合には、全ての光電変換層の間に中間層を設けても良いし、一部の光電変換層の間にのみ中間層を設けても良い。さらに、中間層を省略した構成とすることも可能である。   Here, the power generation layer 3 has a configuration including the photoelectric conversion layers 31 and 33 having pin junctions. However, the power generation layer 3 has at least one pair of pn junctions or pin junctions and receives incident light. Any semiconductor layer may be used as long as it is formed by stacking two or more photoelectric conversion layers that generate photovoltaic power by photoelectric conversion, and is not limited to the above-described configuration. When three or more photoelectric conversion layers are provided, an intermediate layer may be provided between all the photoelectric conversion layers, or an intermediate layer may be provided only between some of the photoelectric conversion layers. Furthermore, a configuration in which the intermediate layer is omitted is also possible.

第2電極層としての裏面反射電極層4は、裏面電極として機能するとともに、発電層3で吸収されなかった光を反射して再度発電層3に戻す反射層としても機能し、光電変換効率の向上に寄与する。したがって、裏面反射電極層4は、光反射率及び導電率が高いことが好ましい。裏面反射電極層4は、銀(Ag)、アルミニウム(Al)、銅(Cu)などの金属材料で形成することができる。なお、裏面反射電極層4は、蒸着法やスパッタリング法などの公知の方法を用いて形成される。   The back surface reflective electrode layer 4 as the second electrode layer functions as a back surface electrode, and also functions as a reflective layer that reflects light that has not been absorbed by the power generation layer 3 and returns it to the power generation layer 3 again. Contributes to improvement. Therefore, it is preferable that the back surface reflective electrode layer 4 has a high light reflectance and electrical conductivity. The back surface reflective electrode layer 4 can be formed of a metal material such as silver (Ag), aluminum (Al), or copper (Cu). In addition, the back surface reflective electrode layer 4 is formed using well-known methods, such as a vapor deposition method and sputtering method.

図3は、本実施の形態に係る光電変換装置の製造方法の流れを示すフローチャートである。図4は、光電変換装置の製造方法の工程図である。まず、透光性基板1を洗浄する(図3ステップS1、図4(a))。続いて、透光性基板1の表面に透明導電層2を形成する(図3ステップS2、図4(b))。その後、透明導電層2側からレーザを照射してレーザパターニングを行い、透明電極層2の一部を除去する(図3ステップS3、図4(c))。透明電極層2が除去された部分は、最終的には分離溝11となる。   FIG. 3 is a flowchart showing a flow of a manufacturing method of the photoelectric conversion device according to the present embodiment. FIG. 4 is a process diagram of a method for manufacturing a photoelectric conversion device. First, the translucent substrate 1 is cleaned (step S1 in FIG. 3, FIG. 4A). Subsequently, the transparent conductive layer 2 is formed on the surface of the translucent substrate 1 (step S2 in FIG. 3, FIG. 4B). Thereafter, laser patterning is performed by irradiating laser from the transparent conductive layer 2 side, and a part of the transparent electrode layer 2 is removed (step S3 in FIG. 3, FIG. 4C). The portion from which the transparent electrode layer 2 has been removed finally becomes the separation groove 11.

続いて、透光性基板1及び透明導電層2の上に発電層3を形成する(図3ステップS4、図4(d))。その後、発電層3が下側となるように透光性基板1を保持し、処理液供給ノズル7で下方から処理溶液6を噴射して発電層3に供給しつつ透光性基板1側からレーザを照射してレーザパターニングを行い、発電層3の一部を除去する(図3ステップS5、図4(e))。なお、処理溶液6は、発電層3を形成する材料の欠陥を不活性化する(パッシベーションする)性質を備えている。発電層3が除去された部分は、最終的には接続溝12となる。   Subsequently, the power generation layer 3 is formed on the translucent substrate 1 and the transparent conductive layer 2 (step S4 in FIG. 3, FIG. 4D). Thereafter, the translucent substrate 1 is held so that the power generation layer 3 is on the lower side, and the processing solution 6 is sprayed from below by the processing liquid supply nozzle 7 and supplied to the power generation layer 3 from the translucent substrate 1 side. Laser patterning is performed by irradiating a laser, and a part of the power generation layer 3 is removed (step S5 in FIG. 3, FIG. 4E). The treatment solution 6 has a property of inactivating (passivating) defects in the material forming the power generation layer 3. The portion from which the power generation layer 3 is removed finally becomes the connection groove 12.

その後、透明導電層2及び発電層3の上に裏面反射電極層4を形成する(図3ステップS6、図4(f))。その後、裏面反射電極層4が下側となるように透光性基板1を保持し、処理液供給ノズル7で下方から処理溶液6を噴射して裏面反射電極層4に供給しつつ透光性基板1側からレーザを照射してレーザパターニングを行い発電層3及び裏面反射電極層4の一部を除去する(図3ステップS7、図4(g))。発電層3及び裏面反射電極層4が除去された部分は、分離溝13となる。   Thereafter, the back reflective electrode layer 4 is formed on the transparent conductive layer 2 and the power generation layer 3 (step S6 in FIG. 3, FIG. 4 (f)). Thereafter, the translucent substrate 1 is held so that the back surface reflection electrode layer 4 is on the lower side, and the processing solution 6 is sprayed from below by the processing liquid supply nozzle 7 to be supplied to the back surface reflection electrode layer 4 while being translucent. Laser patterning is performed by irradiating a laser from the substrate 1 side to remove a part of the power generation layer 3 and the back surface reflective electrode layer 4 (step S7 in FIG. 3, FIG. 4G). A portion where the power generation layer 3 and the back surface reflective electrode layer 4 are removed becomes a separation groove 13.

さらに、処理液供給ノズル7で下方から処理溶液6を噴射して裏面反射電極層4に供給しつつ透光性基板1側からレーザを照射してレーザパターニングを行い、透光性基板1の周縁部の透明導電層2、発電層3及び裏面反射電極層4を除去する(図3ステップS8、図4(h))。   Furthermore, laser patterning is performed by irradiating the laser from the translucent substrate 1 side while spraying the treatment solution 6 from below with the treatment liquid supply nozzle 7 and supplying it to the back reflective electrode layer 4. The transparent conductive layer 2, the power generation layer 3, and the back surface reflective electrode layer 4 are removed (step S8 in FIG. 3, FIG. 4H).

ステップS5、S7、S8での処理の結果、レーザパターニング部分の周辺に欠陥が生じるとともに、残渣が発生するが、処理溶液6を供給しながら処理を行うことで、欠陥のパッシベーションと残渣除去とを同時に行うことができ、光電変換特性の向上及び工程数の削減が可能となる。なお、ステップS3での処理時には半導体層である発電層3が形成されておらずパッシベーションの必要がないため、透明導電層2をレーザ加工するのみとなる。   As a result of the processing in steps S5, S7, and S8, a defect is generated around the laser patterning portion and a residue is generated. By performing the processing while supplying the processing solution 6, the passivation of the defect and the removal of the residue are performed. It can be performed at the same time, and the photoelectric conversion characteristics can be improved and the number of steps can be reduced. In addition, since the electric power generation layer 3 which is a semiconductor layer is not formed at the time of the process in step S3 and passivation is not required, the transparent conductive layer 2 is only laser processed.

パターニング後は、封止材9及びバックシート15をラミネートしてモジュールを形成する(図3ステップS9、図4(i))。   After patterning, the sealing material 9 and the back sheet 15 are laminated to form a module (step S9 in FIG. 3, FIG. 4 (i)).

レーザパターニングは、透明導電層2の形成後(図3ステップS3)、発電層3の形成後(図3ステップS5)、裏面反射電極層4の形成後(図3ステップS7)に加え、パネル外周部の膜除去(図3ステップS8)のためにも行われる。すなわち、レーザパターニングは複数回行われる。レーザパターニングには、例えばYAG(Yttrium Aluminum Garnet)レーザを用い、除去対象となる膜でのレーザの吸収率を考慮して、ステップS3、S8での処理には基本波を、ステップS5、S7での処理については第二高調波を適用する。   Laser patterning is performed after the transparent conductive layer 2 is formed (step S3 in FIG. 3), the power generation layer 3 is formed (step S5 in FIG. 3), and the back surface reflective electrode layer 4 is formed (step S7 in FIG. 3). This is also performed for film removal of the portion (step S8 in FIG. 3). That is, laser patterning is performed a plurality of times. For the laser patterning, for example, a YAG (Yttrium Aluminum Garnet) laser is used. In consideration of the absorption rate of the laser in the film to be removed, the fundamental wave is used for the processing in steps S3 and S8, and the steps S5 and S7 are used. For the above processing, the second harmonic is applied.

図5は、レーザパターニング(図3ステップS7)を施工中の多接合型光電変換装置の断面図である。図5は、膜面を下側にして透光性基板1を保持し、処理溶液吐出ノズル7から膜面に処理溶液6を噴射して供給しながらその反対側の上面側のレーザ照射口5から透光性基板1を介して膜をレーザ加工する様子を示している。パッシベーション効果を有する液体(ヨウ素メタノール溶液など)と水とを混合した溶液を処理溶液6として用い、処理溶液吐出ノズル7から噴射して処理溶液6をレーザパターニングの施工箇所へ供給する。具体的には、発電層3の主成分がシリコンであるならば、処理溶液6には、シリコンの欠陥に対してパッシベーション効果を備えるヨウ素、キンヒドロン(キノン1分子とヒドロキノン1分子からなる化合物)及びシアンのいずれかと水とを含む溶液を用いる。これらの物質は、シリコンのパッシベーション用途に用いられている公知の物質であるため、比較的容易に入手が可能である。なお、処理溶液吐出ノズル7から吐出される処理溶液6の流量や吐出角度、ノズル口径等を適宜調整することによって、残渣を容易に除去できる。すなわち、パターニング部分の周辺に生じた欠陥が処理溶液6の化学的な作用によってパッシベーションされ、残渣は処理溶液6の物理的な作用によって除去される。   FIG. 5 is a cross-sectional view of a multi-junction photoelectric conversion device that is performing laser patterning (step S7 in FIG. 3). In FIG. 5, the transparent substrate 1 is held with the film surface facing down, and the processing solution 6 is sprayed and supplied from the processing solution discharge nozzle 7 to the film surface, and the laser irradiation port 5 on the opposite upper surface side is supplied. 2 shows a state in which the film is laser processed through the translucent substrate 1. A solution obtained by mixing a liquid having a passivation effect (iodine methanol solution or the like) and water is used as the treatment solution 6 and sprayed from the treatment solution discharge nozzle 7 to supply the treatment solution 6 to a laser patterning application site. Specifically, if the main component of the power generation layer 3 is silicon, the treatment solution 6 includes iodine, quinhydrone (compound composed of one quinone molecule and one hydroquinone molecule) having a passivation effect against silicon defects, and A solution containing either cyan and water is used. Since these materials are known materials used for silicon passivation, they can be obtained relatively easily. The residue can be easily removed by appropriately adjusting the flow rate, discharge angle, nozzle diameter, and the like of the processing solution 6 discharged from the processing solution discharge nozzle 7. That is, the defect generated around the patterning portion is passivated by the chemical action of the processing solution 6, and the residue is removed by the physical action of the processing solution 6.

なお、処理溶液6を入れた処理溶液浸漬槽8内で膜面を処理溶液6に接させることも可能である。図6は、処理溶液6を入れた処理溶液浸漬槽8内で膜面が処理溶液6に接するように透光性基板1を保持し、透光性基板1を介してレーザ光を照射して加工する様子を示している。この場合には、処理溶液浸漬槽8内の処理溶液6を、振動子を用いて適宜流動又は振動させる(処理溶液浸漬槽8内に非静止状態で処理溶液6を貯留させる)ことによって残渣を容易に除去できる。   It is also possible to bring the membrane surface into contact with the processing solution 6 in the processing solution immersion tank 8 containing the processing solution 6. FIG. 6 shows a case where the translucent substrate 1 is held in the processing solution immersion tank 8 containing the processing solution 6 so that the film surface is in contact with the processing solution 6, and laser light is irradiated through the translucent substrate 1. It shows how it is processed. In this case, the residue is removed by causing the treatment solution 6 in the treatment solution immersion tank 8 to flow or vibrate as appropriate using a vibrator (the treatment solution 6 is stored in a non-stationary state in the treatment solution immersion tank 8). Easy to remove.

以下、本実施の形態に係る多接合型光電変換装置の製造方法の実施例について説明する。   Hereinafter, examples of the method for manufacturing the multi-junction photoelectric conversion device according to the present embodiment will be described.

(実施例1)
非晶質シリコンを材料とする第1光電変換層、非晶質シリコンゲルマニウムを材料とする第2光電変換層、及び微結晶シリコンを材料とする第3光電変換層の3接合と、非晶質酸化シリコンで形成された中間層と、アルミニウム添加酸化亜鉛で形成された裏側透明導電層とで発電層を構成した。なお、中間層は第1光電層変換層と第2光電変換層との間に設けた。図5に示す方式によって発電層の形成後、裏面反射電極層の形成後、モジューリング前にレーザパターニングを施して多接合型光電変換装置を形成した。
Example 1
Three junctions of a first photoelectric conversion layer made of amorphous silicon, a second photoelectric conversion layer made of amorphous silicon germanium, and a third photoelectric conversion layer made of microcrystalline silicon, and amorphous A power generation layer was composed of an intermediate layer formed of silicon oxide and a back side transparent conductive layer formed of aluminum-added zinc oxide. The intermediate layer was provided between the first photoelectric conversion layer and the second photoelectric conversion layer. A multi-junction photoelectric conversion device was formed by laser patterning after the generation of the power generation layer, the formation of the back surface reflective electrode layer, and before the modulation by the method shown in FIG.

(実施例2)
非晶質シリコンを材料とする第1光電変換層、非晶質シリコンゲルマニウムを材料とする第2光電変換層、及び微結晶シリコンを材料とする第3光電変換層の3接合と、非晶質酸化シリコンで形成された中間層と、アルミニウム添加酸化亜鉛で形成された裏側透明導電層とで発電層を構成した。なお、中間層は第1光電層変換層と第2光電変換層との間に設けた。図6に示す方式によって発電層の形成後、裏面反射電極層の形成後、モジューリング前にレーザパターニングを施して多接合型光電変換装置を形成した。なお、レーザパターニング以外の工程での作業条件は実施例1と同じとした。
(Example 2)
Three junctions of a first photoelectric conversion layer made of amorphous silicon, a second photoelectric conversion layer made of amorphous silicon germanium, and a third photoelectric conversion layer made of microcrystalline silicon, and amorphous A power generation layer was composed of an intermediate layer formed of silicon oxide and a back side transparent conductive layer formed of aluminum-added zinc oxide. The intermediate layer was provided between the first photoelectric conversion layer and the second photoelectric conversion layer. A multi-junction photoelectric conversion device was formed by laser patterning after the generation of the power generation layer, the formation of the back surface reflection electrode layer, and before the modulation, by the method shown in FIG. The working conditions in the steps other than laser patterning were the same as those in Example 1.

(比較例)
非晶質シリコンを材料とする第1光電変換層、非晶質シリコンゲルマニウムを材料とする第2光電変換層、及び微結晶シリコンを材料とする第3光電変換層の3接合と、非晶質酸化シリコンで形成された中間層と、アルミニウム添加酸化亜鉛で形成された裏側透明導電層とで発電層を構成した。なお、中間層は第1光電層変換層と第2光電変換層との間に設けた。処理溶液6を用いずに透明導電層の形成後、発電層の形成後、裏面反射電極層の形成後、モジューリング前にレーザパターニングを行った後、水洗処理のみ行って多接合型光電変換装置を形成した。
(Comparative example)
Three junctions of a first photoelectric conversion layer made of amorphous silicon, a second photoelectric conversion layer made of amorphous silicon germanium, and a third photoelectric conversion layer made of microcrystalline silicon, and amorphous A power generation layer was composed of an intermediate layer formed of silicon oxide and a back side transparent conductive layer formed of aluminum-added zinc oxide. The intermediate layer was provided between the first photoelectric conversion layer and the second photoelectric conversion layer. After forming the transparent conductive layer without using the treatment solution 6, after forming the power generation layer, after forming the back reflective electrode layer, after performing laser patterning before the modulation, only the water washing treatment is performed to perform the multi-junction photoelectric conversion device Formed.

図7に、実施例1、実施例2及び比較例で形成した多接合型光電変換装置の特性を示す。図中の数値は、比較例での値を基準として(1.00として)正規化した値である。実施例1、2ともに、曲線因子FF(Fill Factor)、並列抵抗Rsh(Shunt resistance)及び変換効率Effは比較例の値よりも大きくなっており、レーザパターニングと同時に処理溶液6を用いてパッシベーション処理を行うことによって、特性が向上することが確認された。 FIG. 7 shows the characteristics of the multijunction photoelectric conversion devices formed in Example 1, Example 2, and Comparative Example. The numerical value in the figure is a value normalized based on the value in the comparative example (as 1.00). In both Examples 1 and 2, the fill factor (FF), the parallel resistance R sh (Shunt resistance), and the conversion efficiency E ff are larger than those of the comparative example, and the processing solution 6 is used simultaneously with the laser patterning. It was confirmed that the characteristics were improved by performing the passivation treatment.

このように、本実施の形態に係る光電変換装置の製造方法は、レーザパターニング工程、残渣除去工程及びパッシベーション工程の一元化による工程数の削減が可能である。工程数の削減により、生産工程における消費エネルギーを削減し、製造段階での環境負荷の低減が可能となる。   As described above, the method for manufacturing a photoelectric conversion device according to this embodiment can reduce the number of processes by unifying the laser patterning process, the residue removal process, and the passivation process. By reducing the number of processes, it is possible to reduce energy consumption in the production process and reduce the environmental load at the manufacturing stage.

上記の実施の形態においては、多接合型光電変換装置を例として説明したが、単位発電層としての光電変換層を一層のみ備えた単接合型光電変換装置の製造工程にも本発明は適用可能である。また、上記では図3において発電層をレーザパターニングするS5、S7、S8のすべての工程で処理溶液を供給したので最も効果が高いが、処理溶液の供給をいずれかの工程のみでとしてもパッシベーション処理と残渣の除去効果が得られる。   In the above embodiment, the multi-junction photoelectric conversion device has been described as an example. However, the present invention can also be applied to a manufacturing process of a single junction photoelectric conversion device including only one photoelectric conversion layer as a unit power generation layer. It is. In the above, the treatment solution is supplied in all the steps S5, S7, and S8 for laser patterning of the power generation layer in FIG. 3, but it is most effective. And the effect of removing the residue is obtained.

以上のように、本発明にかかる光電変換装置の製造方法は、パターニング工程、残渣除去工程及びパッシベーション工程の一元化によって工程数を削減できる点で有用であり、特に、薄膜太陽電池モジュールの製造に適している。   As described above, the method for manufacturing a photoelectric conversion device according to the present invention is useful in that the number of processes can be reduced by unifying the patterning process, the residue removal process, and the passivation process, and is particularly suitable for manufacturing a thin film solar cell module. ing.

1 透光性基板
2 透明導電層
3 発電層
4 裏面反射電極層
5 レーザ照射口
6 処理溶液
7 処理溶液吐出ノズル
8 処理溶液浸漬槽
9 封止材
10 光電変換セル
11、13 分離溝
12 接続溝
15 バックシート
20 非発電領域
30 発電領域
31、33 光電変換層
31a、33a 表側導電型層
31b、33b 真性半導体層
31c、33c 裏側導電型層
32 中間層
34 裏側透明導電層
DESCRIPTION OF SYMBOLS 1 Translucent board | substrate 2 Transparent conductive layer 3 Power generation layer 4 Back surface reflective electrode layer 5 Laser irradiation port 6 Processing solution 7 Processing solution discharge nozzle 8 Processing solution immersion tank 9 Sealing material 10 Photoelectric conversion cell 11, 13 Separation groove 12 Connection groove 15 Back sheet 20 Non-power generation region 30 Power generation region 31, 33 Photoelectric conversion layer 31a, 33a Front side conductive type layer 31b, 33b Intrinsic semiconductor layer 31c, 33c Back side conductive type layer 32 Intermediate layer 34 Back side transparent conductive layer

Claims (5)

透光性基板上に間隔を空けて複数の第1電極層を形成する工程と、
前記透光性基板及び前記第1電極層の上に光電変換を行う発電層を形成する工程と、
前記第1電極層上の前記発電層をレーザによって部分的に除去し、前記第1電極層を露出させる第1レーザパターニング工程と、
前記第1電極層及び前記発電層の上に、第2電極層を形成する工程と、
前記第1電極層上の前記発電層及び前記第2電極層をレーザによって部分的に除去し、前記第1電極層を露出させる第2レーザパターニング工程と、
前記透光性基板の周縁部の前記第1電極層、前記発電層及び前記第2電極層をレーザによって除去し、前記透光性基板の周縁部を露出させる第3レーザパターニング工程とを有し、
前記第1、第2及び第3レーザパターニング工程のいずれかにおいては、前記発電層を形成する材料の欠陥を不活性化させる性質を有する溶液を前記レーザによる加工部分に供給して、前記レーザによる加工によって生じる残渣を除去することを特徴とする光電変換装置の製造方法。
Forming a plurality of first electrode layers on the light-transmitting substrate at intervals;
Forming a power generation layer for performing photoelectric conversion on the translucent substrate and the first electrode layer;
A first laser patterning step of partially removing the power generation layer on the first electrode layer with a laser to expose the first electrode layer;
Forming a second electrode layer on the first electrode layer and the power generation layer;
A second laser patterning step of partially removing the power generation layer and the second electrode layer on the first electrode layer with a laser to expose the first electrode layer;
A third laser patterning step of removing the first electrode layer, the power generation layer, and the second electrode layer at the peripheral edge of the translucent substrate with a laser to expose the peripheral edge of the translucent substrate. ,
In any of the first, second, and third laser patterning steps, a solution having a property of inactivating defects in a material forming the power generation layer is supplied to a processing portion by the laser, and the laser is used. A method for producing a photoelectric conversion device, comprising removing a residue generated by processing.
前記発電層の主成分はシリコンであり、
前記溶液は、ヨウ素、キンヒドロン及びシアンのいずれかと水とを含むことを特徴とする請求項1記載の光電変換装置の製造方法。
The main component of the power generation layer is silicon,
The method for producing a photoelectric conversion device according to claim 1, wherein the solution contains any one of iodine, quinhydrone, and cyan and water.
前記第1、第2及び第3レーザパターニング工程のいずれかにおいては、前記第1電極層が形成された面が下側となるように前記透光性基板を支持し、前記溶液を、前記レーザによる加工部分に向けて下側から噴きつけることを特徴とする請求項1又は2記載の光電変換装置の製造方法。   In any of the first, second, and third laser patterning steps, the translucent substrate is supported so that the surface on which the first electrode layer is formed is on the lower side, and the solution is applied to the laser. The method for manufacturing a photoelectric conversion device according to claim 1, wherein spraying is performed from the lower side toward the processed portion. 前記第1、第2及び第3レーザパターニング工程のいずれかにおいては、前記溶液を非静止状態で貯留する処理溶液槽内で、前記発電層を前記溶液に接させることを特徴とする請求項1又は2記載の光電変換装置の製造方法。   2. The power generation layer is brought into contact with the solution in a processing solution tank that stores the solution in a non-stationary state in any of the first, second, and third laser patterning steps. Or the manufacturing method of the photoelectric conversion apparatus of 2. 前記発電層は、導電型の異なる半導体層が積層された単位発電層を、複数層積層した多接合構造を有することを特徴とする請求項1から4のいずれか1項記載の光電変換装置の製造方法。   5. The photoelectric conversion device according to claim 1, wherein the power generation layer has a multi-junction structure in which a plurality of unit power generation layers in which semiconductor layers having different conductivity types are stacked are stacked. Production method.
JP2010176213A 2010-08-05 2010-08-05 Photoelectric conversion device manufacturing method Pending JP2013219064A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010176213A JP2013219064A (en) 2010-08-05 2010-08-05 Photoelectric conversion device manufacturing method
PCT/JP2011/057055 WO2012017703A1 (en) 2010-08-05 2011-03-23 Method for producing photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010176213A JP2013219064A (en) 2010-08-05 2010-08-05 Photoelectric conversion device manufacturing method

Publications (1)

Publication Number Publication Date
JP2013219064A true JP2013219064A (en) 2013-10-24

Family

ID=45559218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010176213A Pending JP2013219064A (en) 2010-08-05 2010-08-05 Photoelectric conversion device manufacturing method

Country Status (2)

Country Link
JP (1) JP2013219064A (en)
WO (1) WO2012017703A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043644A1 (en) * 2016-08-31 2018-03-08 京セラ株式会社 Solar cell and method of manufacturing solar cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193231A (en) * 2002-12-10 2004-07-08 Mitsubishi Electric Corp Substrate washing method
JP2005294282A (en) * 2003-10-21 2005-10-20 Texas Instruments Inc Surfactant for post cmp storage and washing
JP4344861B2 (en) * 2004-12-14 2009-10-14 独立行政法人産業技術総合研究所 Method for surface treatment of semiconductor substrate
JP2009206279A (en) * 2008-02-27 2009-09-10 Sharp Corp Thin film solar battery and method for manufacturing the same
JP4926150B2 (en) * 2008-10-21 2012-05-09 三菱電機株式会社 Thin film solar cell manufacturing method and thin film solar cell manufacturing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043644A1 (en) * 2016-08-31 2018-03-08 京セラ株式会社 Solar cell and method of manufacturing solar cell
CN109643764A (en) * 2016-08-31 2019-04-16 京瓷株式会社 The manufacturing method of solar battery and solar battery
JPWO2018043644A1 (en) * 2016-08-31 2019-06-24 京セラ株式会社 Solar cell and method of manufacturing the same
US11011718B2 (en) 2016-08-31 2021-05-18 Kyocera Corporation Solar cell and method for manufacturing solar cell
CN109643764B (en) * 2016-08-31 2023-04-04 京瓷株式会社 Solar cell and method for manufacturing solar cell

Also Published As

Publication number Publication date
WO2012017703A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
US7982127B2 (en) Thin film solar cell module of see-through type
JP5328363B2 (en) Method for manufacturing solar cell element and solar cell element
JP4194468B2 (en) Solar cell and method for manufacturing the same
WO2011115206A1 (en) Solar cell, solar cell module using solar cell, and manufacturing method for solar cell
WO2009096539A1 (en) Solar battery element and solar battery element manufacturing method
JP2006332453A (en) Thin film solar battery and method for manufacturing the same
JP6568518B2 (en) Crystalline silicon solar cell manufacturing method and crystalline silicon solar cell module manufacturing method
CN102239571B (en) Method for manufacturing thin-film photoelectric conversion device
JPWO2017078164A1 (en) Method for manufacturing crystalline silicon-based solar cell and method for manufacturing crystalline silicon-based solar cell module
JP5145456B2 (en) Solar cell module and manufacturing method thereof
US9761752B2 (en) Solar cell, solar cell module, method for manufacturing solar cell, and method for manufacturing solar cell module
CN111834470A (en) Cross-mesh electrical contact back contact heterojunction battery and assembly manufacturing method
CN104600136A (en) Manufacturing method of hetero-junction solar cell and hetero-junction solar cell
JP2014135343A (en) Photoelectric conversion element, and method of manufacturing the same
TW201131791A (en) Solar cell and method for fabricating the same
JP2013219064A (en) Photoelectric conversion device manufacturing method
WO2014050193A1 (en) Photoelectric conversion module
JP2011066213A (en) Photoelectric converter and method of manufacturing the same
JP6653696B2 (en) Photoelectric conversion element
WO2017203751A1 (en) Solar cell and method for manufacturing same, and solar cell panel
JP6013198B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
JP4173692B2 (en) Solar cell element and manufacturing method thereof
WO2013099731A1 (en) Thin-film solar cell module and method for manufacturing thin-film solar cell module
KR101484622B1 (en) Thin-film type solar cell having a current collecting electrode and fabricating method thereof
JP2013138142A (en) Thin-film solar cell module and manufacturing method of the same