JP2013218831A - Conductive metal paste - Google Patents

Conductive metal paste Download PDF

Info

Publication number
JP2013218831A
JP2013218831A JP2012086956A JP2012086956A JP2013218831A JP 2013218831 A JP2013218831 A JP 2013218831A JP 2012086956 A JP2012086956 A JP 2012086956A JP 2012086956 A JP2012086956 A JP 2012086956A JP 2013218831 A JP2013218831 A JP 2013218831A
Authority
JP
Japan
Prior art keywords
conductive metal
fine particles
paste
metal paste
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012086956A
Other languages
Japanese (ja)
Other versions
JP5976368B2 (en
Inventor
Natsuki Hashimoto
夏樹 橋本
Masato Osawa
正人 大澤
Yoshiaki Hayashi
義明 林
Keisuke Kanazawa
圭祐 金澤
Susumu Sakio
進 崎尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2012086956A priority Critical patent/JP5976368B2/en
Publication of JP2013218831A publication Critical patent/JP2013218831A/en
Application granted granted Critical
Publication of JP5976368B2 publication Critical patent/JP5976368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a conductive metal paste capable of suppressing generation of dripping and bleeding even when the conductive metal paste is thickly coated on a substrate surface having fine irregularities.SOLUTION: A conductive metal paste of the present invention includes: a low polar solvent comprising hydrocarbon; a metal fine particle having a surface coated with a dispersant; and a polyimide varnish for bleeding prevention. The conductive metal paste includes silica having at least one of an OH group and an alkyl group, as a rheology control agent.

Description

本発明は、導電性金属ペーストに関し、特に、スクリーン印刷法にて金属配線を形成するために利用されるものに関する。   The present invention relates to a conductive metal paste, and particularly relates to a paste used for forming a metal wiring by a screen printing method.

電子デバイスの製造工程において金属配線や導電膜の形成に所謂スクリーン印刷法を用いることが従来から知られている。スクリーン印刷法では、ガラスやシリコン等からなる基板と対向させてスクリーン版を配置し、このスクリーン版に形成された開口パターンを介して基板表面に導電性金属ペーストを塗布することで、基板表面に開口パターンに対応した導電性金属ペーストが印刷される。そして、この印刷した導電性金属ペーストを焼成することで、導電性金属ペーストの金属微粒子表面を被覆する分散剤が脱離して金属微粒子同士が焼結して導電性を有する金属配線が得られる。   Conventionally, it is known to use a so-called screen printing method for forming a metal wiring or a conductive film in a manufacturing process of an electronic device. In the screen printing method, a screen plate is placed facing a substrate made of glass, silicon, or the like, and a conductive metal paste is applied to the substrate surface through an opening pattern formed in the screen plate. A conductive metal paste corresponding to the opening pattern is printed. Then, by firing the printed conductive metal paste, the dispersing agent that covers the surface of the metal fine particles of the conductive metal paste is detached, and the metal fine particles are sintered together to obtain a conductive metal wiring.

ところで、近年では、電子デバイスの性能向上のため、金属配線の更なる低抵抗化が求められている。金属配線の更なる低抵抗化を図る方法は、例えば特許文献1で知られている。このものでは、金属固形分として金属微粒子と金属フィラーとの双方を含み、垂れや滲みを防止するワニス状樹脂を更に含む導電性金属ペーストを用い、この導電性金属ペーストを基板表面に、例えば1μm以上の厚さで塗布するようにしている。上記導電性金属ペーストを1μm以上の厚さで塗布するような場合、その基板表面状態によっては、例えば数μm程度の段差や溝のような微細な凹凸を有する場合には、垂れや滲みを完全に防止できない。このことから、上記ワニス状樹脂のような添加剤の添加量を増やすことが考えられる。   By the way, in recent years, in order to improve the performance of electronic devices, further reduction in resistance of metal wiring is required. A method for further reducing the resistance of metal wiring is known, for example, from Patent Document 1. In this case, a conductive metal paste containing both metal fine particles and a metal filler as a metal solid content and further containing a varnish-like resin that prevents dripping and bleeding is used, and this conductive metal paste is applied to the substrate surface, for example, 1 μm. It is made to apply with the above thickness. When the conductive metal paste is applied with a thickness of 1 μm or more, depending on the substrate surface condition, for example, when there are fine irregularities such as steps or grooves of about several μm, dripping and bleeding are completely eliminated. Cannot be prevented. From this, it is conceivable to increase the amount of additive such as the varnish-like resin.

ここで、一般に、高い粘度を有する極性溶媒を用い、添加剤の添加量を増やすと、導電性金属ペーストの粘度が高くなり、基板表面に導電性金属ペーストを均一に塗布できない。他方、金属固形分濃度を低くすれば、導電性金属ペーストの粘度を低くできるが、焼成後の金属配線の厚さが薄くなる。そこで、金属固形分濃度を高く維持したまま、添加剤の添加量を増やすためには、極性溶媒よりも粘度が低い低極性溶媒を用いることが効果的である。然し、上記ワニス状樹脂のような添加剤は、通常、極性を有するものが多く、このように極性を有する添加剤は低極性溶媒中に十分に溶解させることが困難である。このため、微細な凹凸を有する基板表面に導電性金属ペーストを厚く塗布したときに垂れや滲みの発生を確実に抑制することができないという問題がある。   Here, generally, when a polar solvent having a high viscosity is used and the amount of additive added is increased, the viscosity of the conductive metal paste increases, and the conductive metal paste cannot be uniformly applied to the substrate surface. On the other hand, if the metal solid content concentration is lowered, the viscosity of the conductive metal paste can be lowered, but the thickness of the metal wiring after firing is reduced. Therefore, in order to increase the additive amount while maintaining the metal solid content concentration high, it is effective to use a low polarity solvent having a viscosity lower than that of the polar solvent. However, many additives such as the varnish-like resin are usually polar, and it is difficult to sufficiently dissolve such polar additives in a low-polar solvent. For this reason, there is a problem that dripping and bleeding cannot be reliably suppressed when the conductive metal paste is thickly applied to the substrate surface having fine irregularities.

国際公開第2002/035554号International Publication No. 2002/035554

本発明は、以上の点に鑑み、微細な凹凸を有する基板表面に導電性金属ペーストを厚く塗布したときでも垂れや滲みの発生を確実に抑制できる導電性金属ペーストを提供することをその課題とするものである。   In view of the above points, the present invention has an object to provide a conductive metal paste that can reliably suppress the occurrence of sagging and bleeding even when the conductive metal paste is thickly applied to a substrate surface having fine irregularities. To do.

上記課題を解決するために、本発明の導電性金属ペーストは、低極性溶媒と、表面が分散剤で被覆された金属微粒子と、ポリイミドワニスとを含む導電性金属ペーストにおいて、レオロジーコントロール剤として親水基及び疎水基の少なくとも何れか一方を有するシリカを含むことを特徴とする。   In order to solve the above problems, the conductive metal paste of the present invention is a hydrophilic metal as a rheology control agent in a conductive metal paste comprising a low polarity solvent, metal fine particles coated with a dispersant on the surface, and a polyimide varnish. And silica having at least one of a group and a hydrophobic group.

本発明によれば、溶媒として極性溶媒よりも粘度が低い低極性溶媒を用いるため、金属固形分たる金属微粒子の濃度を高く維持したままで、ポリイミドワニスの添加量を増やしても、導電性金属ペーストを均一に塗布できる。ここで、ポリイミドワニスは極性を有するため、ポリイミドワニスを低極性溶媒に十分に溶解させることが困難である。   According to the present invention, a low polarity solvent having a lower viscosity than that of a polar solvent is used as a solvent. Therefore, even when the amount of added polyimide varnish is increased while maintaining a high concentration of metal fine particles as a metal solid, a conductive metal The paste can be applied uniformly. Here, since the polyimide varnish has polarity, it is difficult to sufficiently dissolve the polyimide varnish in the low polarity solvent.

そこで、本発明の導電性金属ペーストには、レオロジーコントロール剤としてOH基及びアルキル基の少なくとも一方を有するシリカを更に含ませている。このシリカのアルキル基の一部は、シリカの酸素とアルコキシ基を形成し、空気中の水分と容易に反応してOH基となる。OH基を有するシリカ分子同士は、低極性溶媒中において、水素結合により網目状のネットワークを形成する。これにより、導電性金属ペーストにチキソトロピック性が付与されると共に、金属微粒子の沈降が防止される(金属微粒子の高い分散安定性が得られる)。このようにネットワークを形成したシリカ分子の間に、極性を有するポリイミドワニスが入り込む。低極性溶媒にシリカ分子のネットワークを形成しておけば、ポリイミドワニスを十分に溶解させることができるため、微細な凹凸を有する基板表面に導電性金属ペーストを厚く塗布しても、垂れや滲みの発生を確実に抑制することができる。そして、上記の如く金属微粒子の濃度を高く維持できるという効果と相俟って厚膜の金属配線を形成でき、金属配線の低抵抗化を実現できる。   Therefore, the conductive metal paste of the present invention further contains silica having at least one of an OH group and an alkyl group as a rheology control agent. A part of the alkyl group of the silica forms an oxygen group and an alkoxy group of the silica, and easily reacts with moisture in the air to become an OH group. Silica molecules having an OH group form a network network by hydrogen bonding in a low polarity solvent. Thereby, thixotropic property is imparted to the conductive metal paste, and precipitation of the metal fine particles is prevented (high dispersion stability of the metal fine particles is obtained). A polar polyimide varnish enters between the silica molecules forming the network. If a network of silica molecules is formed in a low-polarity solvent, the polyimide varnish can be sufficiently dissolved. Therefore, even if a conductive metal paste is applied thickly on a substrate surface with fine irregularities, dripping or bleeding may occur. Generation | occurrence | production can be suppressed reliably. Further, combined with the effect that the concentration of the metal fine particles can be kept high as described above, a thick metal wiring can be formed, and the resistance of the metal wiring can be reduced.

尚、金属微粒子としては、その平均粒子径が1nm〜50nmの範囲内であるものを用いることができる。平均粒子径が1nm未満になると、比表面積が増大することに伴い、金属微粒子表面を被覆する分散剤の量が増大するため、焼成時に分散剤の脱離が不十分になり、金属配線の抵抗値が高くなるという不具合が生じる。一方、平均粒子径が50nmを超えると、導電性金属ペースト中の金属微粒子の分散性が低下するという不具合がある。   As the metal fine particles, those having an average particle diameter in the range of 1 nm to 50 nm can be used. When the average particle size is less than 1 nm, the specific surface area increases, and the amount of the dispersant covering the surface of the metal fine particles increases. The trouble that a value becomes high arises. On the other hand, when the average particle diameter exceeds 50 nm, there is a problem that the dispersibility of the metal fine particles in the conductive metal paste is lowered.

本発明において、前記ポリイミドワニスとしてイミド閉環したものを用いれば、低極性溶媒に対するポリイミドワニスの溶解性を更に高めることができてよい。   In the present invention, if the polyimide varnish is imide ring-closed, the solubility of the polyimide varnish in the low polarity solvent may be further enhanced.

本発明において、ポリアミドを更に含ませることが好ましい。これによれば、ポリアミドが金属微粒子に架橋して、チキソトロピック性を一層高めることができる。導電性金属ペーストを高速で塗布する場合でも、垂れや滲みを防止することができる。   In the present invention, it is preferable to further include polyamide. According to this, the polyamide crosslinks to the metal fine particles, and the thixotropic property can be further enhanced. Even when the conductive metal paste is applied at high speed, dripping and bleeding can be prevented.

尚、金属微粒子表面を被覆する分散剤として、炭素数6〜18の脂肪酸および脂肪酸部分の炭素数6〜18の脂肪族アミンのうち少なくとも何れか一方を用いることが好ましい。炭素数6未満の脂肪酸や脂肪酸部分の炭素数6未満の脂肪族アミンでは、導電性金属ペースト中での金属微粒子の分散性が低下するという不具合が生じる。一方、炭素数19以上の脂肪酸や脂肪酸部分の炭素数19以上の脂肪族アミンでは、焼成時に金属微粒子表面からの脂肪酸や脂肪族アミンの脱離が不十分となり、焼成後の金属配線の抵抗が高くなる(導電性が低下する)という不具合が生じる。   In addition, as a dispersing agent which coat | covers the metal fine particle surface, it is preferable to use at least any one among a C6-C18 fatty acid and a C6-C18 aliphatic amine of a fatty-acid part. In the case of fatty acids having less than 6 carbon atoms or aliphatic amines having less than 6 carbon atoms in the fatty acid portion, there is a problem that the dispersibility of the metal fine particles in the conductive metal paste is reduced. On the other hand, in fatty acids having 19 or more carbon atoms and aliphatic amines having 19 or more carbon atoms in the fatty acid portion, the elimination of fatty acids and aliphatic amines from the surface of the metal fine particles becomes insufficient during firing, and the resistance of the metal wiring after firing is reduced. There is a problem that it becomes high (conductivity decreases).

本発明において、低極性溶媒としては、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、トルエン、キシレン、シクロドデカン、シクロドデセン、オクチルベンゼン、ドデシルベンゼンから選ばれる少なくとも1種の液状炭化水素を単独でまたは組み合わせて用いることができる。   In the present invention, as the low polarity solvent, at least one liquid hydrocarbon selected from octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, toluene, xylene, cyclododecane, cyclododecene, octylbenzene, and dodecylbenzene is used alone. Or in combination.

本発明において、平均粒子径が1〜20μmである金属フィラーを更に含ませてもよい。この場合、金属フィラーと金属微粒子との総和を100重量%とすると、金属フィラーの比率を50〜95重量%の範囲内とすることが好ましい。金属フィラーの比率が50重量%未満では、スクリーン印刷により得られる金属配線の膜厚を厚くすることが困難となるという不具合、さらには、金属配線の膜厚を厚くすることができても、焼成時に金属微粒子表面からの分散剤の脱離が不十分となり、焼成後の金属配線の抵抗が高くなるという不具合が生じる。一方、金属フィラーの比率が95重量%を超えると、金属微粒子を介した金属フィラー同士の焼結が不十分となり、焼成後の金属配線の抵抗が高くなるという不具合が生じる。   In the present invention, a metal filler having an average particle diameter of 1 to 20 μm may be further included. In this case, when the total of the metal filler and the metal fine particles is 100% by weight, the ratio of the metal filler is preferably in the range of 50 to 95% by weight. If the ratio of the metal filler is less than 50% by weight, it is difficult to increase the thickness of the metal wiring obtained by screen printing. Furthermore, even if the thickness of the metal wiring can be increased, firing is performed. Occasionally, the detachment of the dispersant from the surface of the metal fine particles becomes insufficient, resulting in a problem that the resistance of the metal wiring after firing becomes high. On the other hand, if the ratio of the metal filler exceeds 95% by weight, there is a problem that the sintering of the metal fillers through the metal fine particles becomes insufficient and the resistance of the metal wiring after firing becomes high.

本発明において、金属微粒子の表面にシランカップリング剤を吸着させることが好ましい。シランカップリング剤としては、アミノアルキルトリアルコキシシランを用いることができる。これによれば、焼成後の金属配線と基板表面との間の密着性を更に向上させることができる。   In the present invention, it is preferable to adsorb a silane coupling agent on the surface of the metal fine particles. As the silane coupling agent, aminoalkyltrialkoxysilane can be used. According to this, the adhesiveness between the metal wiring after baking and the substrate surface can be further improved.

本発明において用いられる金属は、Ag、Au、Cu、Ni、Pd、In、Sn、Rh、Ru、Pt、In及びSnから選択された少なくとも1種の金属又はこれらの金属の少なくとも2種からなる合金であり、目的・用途に応じて適宜選択することができる。   The metal used in the present invention is composed of at least one metal selected from Ag, Au, Cu, Ni, Pd, In, Sn, Rh, Ru, Pt, In, and Sn, or at least two of these metals. It is an alloy and can be appropriately selected depending on the purpose and application.

以下、本発明の実施形態の導電性金属ペーストについて、Agペーストを例に説明する。本実施形態のAgペーストは、低極性溶媒と、表面が分散剤で被覆されたAg微粒子と、垂れや滲み防止用の添加剤としてのポリイミドワニスと、レオロジーコントロール剤としてのOH基及びアルキル基の少なくとも何れか一方を有するシリカとを含む。   Hereinafter, the conductive metal paste according to the embodiment of the present invention will be described using an Ag paste as an example. The Ag paste of this embodiment comprises a low polarity solvent, Ag fine particles coated with a dispersant on the surface, a polyimide varnish as an additive for preventing sagging and bleeding, and an OH group and an alkyl group as a rheology control agent. And silica having at least one of them.

Ag微粒子としては、その平均粒子径が1nm〜50nmの範囲内であるものを用いることができる。市販の製品の商品名としては、例えば、Ag1T(株式会社アルバック製)を挙げることができる。平均粒子径が1nm未満になると、比表面積が増大してAg微粒子表面を被覆する分散剤の量が増大するため、焼成時に分散剤の脱離が不十分になり、Ag配線の抵抗値が高くなるという不具合が生じる。一方、平均粒子径が50nmを超えると、Agペースト中のAg微粒子の分散性が低下するという不具合が生じる。   As the Ag fine particles, those having an average particle diameter in the range of 1 nm to 50 nm can be used. As a brand name of a commercial product, Ag1T (made by ULVAC, Inc.) can be mentioned, for example. When the average particle diameter is less than 1 nm, the specific surface area increases and the amount of the dispersant covering the surface of the Ag fine particles increases, so that the detachment of the dispersant becomes insufficient during firing, and the resistance value of the Ag wiring is high. The trouble that becomes. On the other hand, when the average particle diameter exceeds 50 nm, there arises a problem that the dispersibility of Ag fine particles in the Ag paste is lowered.

Ag微粒子表面を被覆する分散剤としては、炭素数6〜18の脂肪酸および脂肪酸部分の炭素数6〜18の脂肪族アミンの少なくともいずれか一方を用いることが好ましい。炭素数6未満の脂肪酸や脂肪酸部分の炭素数6未満の脂肪族アミンでは、Agペースト中でのAg微粒子の分散性が低下するという不具合が生じる。一方、炭素数19以上の脂肪酸や脂肪酸部分の炭素数19以上の脂肪族アミンでは、焼成時にAg微粒子表面からの脂肪酸や脂肪族アミンの脱離が不十分となり、Ag配線膜の抵抗値が高くなるという不具合が生じる。   As the dispersant for coating the Ag fine particle surface, it is preferable to use at least one of a fatty acid having 6 to 18 carbon atoms and an aliphatic amine having 6 to 18 carbon atoms in the fatty acid portion. In the case of fatty acids having less than 6 carbon atoms or aliphatic amines having less than 6 carbon atoms in the fatty acid portion, there is a problem that the dispersibility of Ag fine particles in the Ag paste is lowered. On the other hand, in fatty acids having 19 or more carbon atoms and aliphatic amines having 19 or more carbon atoms in the fatty acid portion, the elimination of fatty acids and aliphatic amines from the surface of Ag fine particles becomes insufficient during firing, and the resistance value of the Ag wiring film is high. The trouble that becomes.

脂肪酸としては、例えば、カルボン酸を用いることができる。具体的には、炭素数6のヘキサン酸、ネオヘキサン酸、2−エチル酪酸;炭素数7のヘプタン酸、2−メチルヘキサン酸、シクロヘキサンカルボン酸;炭素数8のオクタン酸、ネオオクタン酸;炭素数9のノナン酸;炭素数10のデカン酸、ネオデカン酸;炭素数11のウンデカン酸;炭素数12のドデカン酸;炭素数14のテトラデカン酸;炭素数16のパルミチン酸;及び炭素数18のステアリン酸、オレイン酸、リノール酸、リノレン酸から選択された少なくとも1種を用いることが好ましい。   As the fatty acid, for example, carboxylic acid can be used. Specifically, C6 hexanoic acid, neohexanoic acid, 2-ethylbutyric acid; C7 heptanoic acid, 2-methylhexanoic acid, cyclohexanecarboxylic acid; C8 octanoic acid, neooctanoic acid; 9 nonanoic acids; 10 decanoic acids, neodecanoic acids; 11 carbon undecanoic acids; 12 carbons dodecanoic acids; 14 carbons tetradecanoic acids; 16 carbons palmitic acid; and 18 carbons stearic acid It is preferable to use at least one selected from oleic acid, linoleic acid, and linolenic acid.

脂肪族アミンとしては、炭素数6のヘキシルアミン、シクロヘキシルアミン、アニリン;炭素数7のヘプチルアミン;炭素数8のオクチルアミン、2−エチルヘキシルアミン;炭素数9のノニルアミン;炭素数10のデシルアミン;炭素数12のドデシルアミン;及び炭素数14のテトラドデシルアミンから選択された少なくとも1種を好ましく用いることができる。   Examples of aliphatic amines include hexylamine, cyclohexylamine, and aniline having 6 carbon atoms; heptylamine having 7 carbon atoms; octylamine having 8 carbon atoms; 2-ethylhexylamine; nonylamine having 9 carbon atoms; decylamine having 10 carbon atoms; At least one selected from dodecylamine having 12 carbon atoms and tetradodecylamine having 14 carbon atoms can be preferably used.

ポリイミドワニスとしては、イミド閉環したもの(例えば閉環率が40%以上のもの)を用いることが好ましい。これによれば、低極性溶媒に対するポリイミドワニスの溶解性を更に高めることができる。また、ポリイミドワニスは、耐熱性に優れるため、塗布したAgペーストを例えば200℃以上の温度で焼成しても劣化しない。   As the polyimide varnish, it is preferable to use a imide ring closed ring (for example, a ring closing rate of 40% or more). According to this, the solubility of the polyimide varnish with respect to a low polarity solvent can further be improved. Moreover, since the polyimide varnish is excellent in heat resistance, it does not deteriorate even if the applied Ag paste is baked at a temperature of 200 ° C. or higher, for example.

シリカとしては、例えばOH基を有する親水性シリカ、アルキル基を有する疎水性シリカ、OH基とアルキル基の双方を有するシリカから選択された少なくとも1種を単独でまたは組み合わせて用いることができる。尚、シリカのアルキル基の一部は、シリカの酸素とアルコキシ基を形成し、空気中の水分と容易に反応してOH基となる。OH基を有するシリカ分子同士は、低極性溶媒中において、後述の如く水素結合により網目状のネットワークを形成し、導電性金属ペーストにチキソトロピック性を付与する。   As the silica, for example, at least one selected from hydrophilic silica having an OH group, hydrophobic silica having an alkyl group, and silica having both an OH group and an alkyl group can be used alone or in combination. A part of the alkyl group of silica forms an oxygen group and an alkoxy group of silica, and easily reacts with moisture in the air to form an OH group. Silica molecules having OH groups form a network network by hydrogen bonding as described later in a low polarity solvent, and impart thixotropic properties to the conductive metal paste.

また、Ag微粒子の表面にシランカップリング剤を吸着させることが好ましい。シランカップリング剤としては、例えば、アミノプロピルトリメトキシシラン等のアミノプロピルトリエトキシシランのようなアミノ基及びアルコキシ基を有するものを用いることができる。これによれば、塗布したAgペーストを焼成する際に、アルコキシ基が加水分解してOH基となり、このOH基の脱水縮合により基板表面に対する優れた密着性が得られる一方で、アミノ基は金属表面と強く結合する。その結果、焼成後の金属配線と基板表面との間で優れた密着性が得られる。更に、このようにアミノ基が金属表面と強く結合することで、ポリイミドワニスによる作用と相俟って、Agペーストの垂れや滲みを効果的に防止できる。   Moreover, it is preferable to adsorb | suck a silane coupling agent to the surface of Ag microparticles | fine-particles. As the silane coupling agent, for example, those having an amino group and an alkoxy group such as aminopropyltriethoxysilane such as aminopropyltrimethoxysilane can be used. According to this, when the applied Ag paste is baked, the alkoxy group is hydrolyzed to become an OH group, and the dehydration condensation of the OH group provides excellent adhesion to the substrate surface, while the amino group is a metal Bonds strongly with the surface. As a result, excellent adhesion can be obtained between the metal wiring after firing and the substrate surface. Furthermore, since the amino group is strongly bonded to the metal surface in this way, it is possible to effectively prevent dripping and bleeding of the Ag paste in combination with the action of the polyimide varnish.

低極性溶媒としては、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、トルエン、キシレン、シクロドデカン、シクロドデセン、オクチルベンゼン、ドデシルベンゼンから選ばれる少なくとも1種の液状炭化水素を用いることができる。   As the low polarity solvent, at least one liquid hydrocarbon selected from octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, toluene, xylene, cyclododecane, cyclododecene, octylbenzene, and dodecylbenzene can be used.

本実施形態のAgペーストは、平均粒子径が1μm〜20μmの範囲内であるAgフィラーを更に含むことができる。この場合、Ag微粒子とAgフィラーとの総和を100重量%とすると、Agフィラーの比率を50〜95重量%の範囲内とすることが好ましい。Agフィラーの比率が50重量%未満(Ag微粒子の比率が50重量%以上)では、スクリーン印刷により得られるAg配線の膜厚を例えば10μm以上に厚くすることが困難となる場合がある。また、Ag配線の膜厚を厚くすることができたとしても、焼成時にAg微粒子表面からの分散剤の脱離が不十分となり、焼成後のAg配線の抵抗が高くなる場合がある。一方、Agフィラーの比率が95重量%を超えると(Ag微粒子の比率が5重量%以下では)、Ag微粒子を介したAgフィラー同士の焼結が不十分となり、焼成後のAg配線の抵抗が高くなるという不具合が生じる。   The Ag paste of the present embodiment can further include an Ag filler having an average particle diameter in the range of 1 μm to 20 μm. In this case, when the total of the Ag fine particles and the Ag filler is 100% by weight, the ratio of the Ag filler is preferably in the range of 50 to 95% by weight. If the Ag filler ratio is less than 50 wt% (the Ag fine particle ratio is 50 wt% or more), it may be difficult to increase the thickness of the Ag wiring obtained by screen printing to, for example, 10 μm or more. Further, even if the thickness of the Ag wiring can be increased, desorption of the dispersant from the surface of the Ag fine particles becomes insufficient during firing, and the resistance of the Ag wiring after firing may increase. On the other hand, when the ratio of Ag filler exceeds 95% by weight (when the ratio of Ag fine particles is 5% by weight or less), the sintering of Ag fillers through Ag fine particles becomes insufficient, and the resistance of Ag wiring after firing becomes low. The trouble of becoming high arises.

本実施形態のAgペーストに、ポリアミドを更に含ませることができる。このポリアミドがAg微粒子に架橋することで、Agペーストにチキソトロピック性が付与されるため、上記シリカの作用と相俟って、Agペーストのチキソトロピック性を高めることができる。ポリアミドとしては、例えば、二塩基酸とジアミンとの重縮合、二塩基酸誘導体またはダイマー酸とジアミンとの重縮合、ラクタムの開環重合等の公知の方法で合成される少なくとも1種のポリアミドワックスを単独でまたは組み合わせて用いることができる。市販の製品の商品名としては、例えば、DISPARLON 3900EF(楠本化成株式会社製)を挙げることができる。   Polyamide can further be included in the Ag paste of this embodiment. This polyamide crosslinks to the Ag fine particles to impart thixotropic properties to the Ag paste. Therefore, combined with the action of the silica, the thixotropic properties of the Ag paste can be enhanced. As the polyamide, for example, at least one kind of polyamide wax synthesized by a known method such as polycondensation of dibasic acid and diamine, polycondensation of dibasic acid derivative or dimer acid and diamine, ring-opening polymerization of lactam, etc. Can be used alone or in combination. As a brand name of a commercial product, DISPARLON 3900EF (made by Enomoto Kasei Co., Ltd.) can be mentioned, for example.

金属としては、上記Agの他に、例えば、Au、Cu、Ni、Pd、Rh、Ru、Pt、In及びSnから選択された少なくとも1種の金属又はこれらの金属の少なくとも2種からなる合金を、目的や用途に応じて適宜選択することができる。以下、導電性金属ペーストの製造方法について、Agペーストを製造する場合を例に説明する。   As the metal, in addition to the above Ag, for example, at least one metal selected from Au, Cu, Ni, Pd, Rh, Ru, Pt, In and Sn, or an alloy composed of at least two of these metals is used. Depending on the purpose and application, it can be appropriately selected. Hereinafter, a method for producing a conductive metal paste will be described by taking an example of producing an Ag paste as an example.

先ず、平均粒子径が1nm〜50nmのAg微粒子の分散液をガラス製容器に収容し、エバポレータを用いてトルエン等の溶媒を除去する。これにより、表面が上記脂肪酸部分の炭素数6〜18の脂肪酸および炭素数6〜18の脂肪族アミンの少なくともいずれか一方で被覆されたAg微粒子を得る。   First, a dispersion liquid of Ag fine particles having an average particle diameter of 1 nm to 50 nm is placed in a glass container, and a solvent such as toluene is removed using an evaporator. As a result, Ag fine particles whose surface is coated with at least one of the fatty acid having 6 to 18 carbon atoms and the aliphatic amine having 6 to 18 carbon atoms in the fatty acid portion are obtained.

なお、Ag微粒子表面にシランカップリング剤を吸着させる場合には、平均粒子径が1nm〜50nmのAg微粒子に、シランカップリング剤を加えて攪拌する。そして、この攪拌したものにアセトン等の極性溶媒を加えてAg微粒子を沈降させ、その上澄み液をデカンテーションなどにより流出させる(以降、この作業を「洗浄工程」という)。この洗浄工程を複数回繰り返し、溶媒を除去して、シランカップリング剤が表面に吸着したAg微粒子を得る。   In addition, when making a silane coupling agent adsorb | suck to Ag fine particle surface, a silane coupling agent is added and stirred to Ag fine particle with an average particle diameter of 1 nm-50 nm. Then, a polar solvent such as acetone is added to the agitated material to precipitate Ag fine particles, and the supernatant liquid is discharged by decantation or the like (hereinafter, this operation is referred to as “cleaning step”). This washing process is repeated a plurality of times, the solvent is removed, and Ag fine particles having the silane coupling agent adsorbed on the surface are obtained.

次に、上記Ag微粒子と、OH基又はアルキル基を有するシリカと、イミド閉環したポリイミドワニスと、炭化水素からなる低極性溶媒とを所定の割合で配合する。この場合、Ag微粒子の割合は60〜90重量%、シリカの割合は0.2〜1重量%、ポリイミドワニスの割合は0.5〜3重量%、低極性溶媒の割合は5〜30重量%の範囲内とすることが好ましい。そして、上記配合したものを3本ロールミルにより混練することで、Agペーストが得られる。   Next, the Ag fine particles, silica having an OH group or alkyl group, polyimide varnish with imide ring closure, and a low polarity solvent made of hydrocarbon are blended at a predetermined ratio. In this case, the proportion of Ag fine particles is 60 to 90% by weight, the proportion of silica is 0.2 to 1% by weight, the proportion of polyimide varnish is 0.5 to 3% by weight, and the proportion of low polarity solvent is 5 to 30% by weight. It is preferable to be within the range. Then, an Ag paste is obtained by kneading the above blended material with a three-roll mill.

尚、Ag固形分として、上記Ag微粒子と共に平均粒子径1〜20μmのAgフィラーを配合してもよい。この場合、AgフィラーとAg微粒子との総和を100重量%とすると、Agフィラーの割合は50〜95重量%の範囲内とすることが好ましい。また、ポリアミドを0.3〜4重量%の割合で配合して、Agペーストのチキソトロピック性を更に高めるようにしてもよい。   In addition, you may mix | blend Ag filler with an average particle diameter of 1-20 micrometers with said Ag microparticles | fine-particles as Ag solid content. In this case, when the total of the Ag filler and the Ag fine particles is 100% by weight, the ratio of the Ag filler is preferably in the range of 50 to 95% by weight. Further, polyamide may be blended at a ratio of 0.3 to 4% by weight to further enhance the thixotropic property of the Ag paste.

以上説明した実施形態のAgペーストは、溶媒として極性溶媒よりも粘度が低い低極性溶媒を用いるため、Ag固形分濃度(Ag微粒子及びAgフィラーの濃度)を高く維持したまま、ポリイミドワニスの添加量を増やしても、Agペーストの印刷性が低下することがない。ここで、ポリイミドワニスは極性を有するため、微細な凹凸を有する基板表面に厚く塗布したときに十分な滲み防止効果が得られる量のポリイミドワニスを低極性溶媒に溶解させることが難しい。   Since the Ag paste of the embodiment described above uses a low polarity solvent having a viscosity lower than that of the polar solvent as a solvent, the addition amount of the polyimide varnish while keeping the Ag solid content concentration (concentration of Ag fine particles and Ag filler) high. Even if it increases, the printability of Ag paste does not fall. Here, since the polyimide varnish has polarity, it is difficult to dissolve in a low-polarity solvent an amount of the polyimide varnish that can provide a sufficient bleeding prevention effect when thickly applied to a substrate surface having fine irregularities.

そこで、本実施形態のAgペーストには、レオロジーコントロール剤としてOH基及びアルキル基の少なくとも一方を有するシリカを更に含ませている。シリカのアルキル基の一部は、シリカの酸素とアルコキシ基を形成し、空気中の水分と容易に反応してOH基となる。OH基を有するシリカ分子同士は、低極性溶媒中において、水素結合により網目状のネットワークを形成する。これにより、Agペーストにチキソトロピック性が付与されると共に、Ag微粒子の沈降が防止される(Ag微粒子の分散安定性が高い)。ポリイミドワニスは極性を有するため、低極性溶媒中に孤立して存在するのではなく、網目状のネットワークを形成したシリカ分子の間に入り込む。低極性溶媒に十分な量のシリカ分子のネットワークを形成しておけば(シリカ分子間の空間を確保しておけば)、低極性溶媒に対するポリイミドワニスの添加量を増やすことができるため、微細な凹凸を有する基板表面に導電性金属ペーストを厚く塗布しても、垂れや滲みの発生を抑制することができる。そして、上記Ag固形分濃度を高く維持したままポリイミドワニスの添加量を増やすことができるという効果と相俟って、焼成後のAg配線の厚さを厚くでき、配線幅の細いAg配線の低抵抗化を実現することができる。   Therefore, the Ag paste of this embodiment further contains silica having at least one of an OH group and an alkyl group as a rheology control agent. A part of the alkyl group of silica forms an alkoxy group with oxygen of silica, and easily reacts with moisture in the air to become an OH group. Silica molecules having an OH group form a network network by hydrogen bonding in a low polarity solvent. As a result, thixotropic properties are imparted to the Ag paste, and settling of Ag fine particles is prevented (the dispersion stability of Ag fine particles is high). Since the polyimide varnish has polarity, it does not exist in a low-polarity solvent in isolation, but enters between silica molecules forming a network network. If a sufficient amount of silica molecule network is formed in the low polarity solvent (if the space between the silica molecules is secured), the amount of the polyimide varnish added to the low polarity solvent can be increased. Even if the conductive metal paste is applied thickly on the uneven substrate surface, the occurrence of dripping or bleeding can be suppressed. Combined with the effect of increasing the amount of addition of the polyimide varnish while keeping the Ag solid content concentration high, the thickness of the Ag wiring after firing can be increased, and the Ag wiring having a narrow wiring width can be reduced. Resistance can be realized.

以下、本発明の実施例について説明する。
(実施例1)
平均粒子径4nmのAg微粒子(株式会社アルバック製の商品名「Agナノメタルインク」)100gに、アミノアルキルトリアルコキシシラン10gを加え、25℃にて12時間撹拌した。これにアセトン500gを加えてAg微粒子を沈降させ、上澄み液をデカンテーションなどにより流出させる「洗浄工程」を複数回繰り返し、アミノアルキルトリアルコキシシランが表面に吸着したAg微粒子(以下「Ag微粒子1」という)を得た。Ag微粒子1を10重量部、平均粒子径3μmのAgフィラー(福田金属箔粉工業製の商品名「シルコート」)を90重量部、アルキル基を有する疎水性シリカ(日本アエロジル製の商品名「AEROSIL R972」)を0.4重量部、イミド閉環したポリイミドワニス(荒川化学製の商品名「コンポセラン H802」)を2.66重量部、及びドデシルベンゼンを17重量部配合した。そして、この配合したものを3本ロールミルにより混練してAgペーストを得た。得られたAgペーストをスクリーン印刷法により微細な凹凸のある(数μm程度の段差や溝を有する)ガラス基板表面に線幅100μmで塗布して印刷し、230℃で30分焼成した。印刷されたAgペーストには垂れや滲みが見られなかった。焼成後のAg配線について碁盤の目テープ剥離試験を行った結果、Ag配線の剥離は全く見られず、ガラス基板に対して優れた密着性が得られることが確認された。焼成後のAg配線の膜厚は24.6μm、線幅は124μm、比抵抗は7.9μΩ・cmであった。これによれば、Ag配線の低抵抗化を実現できることが確認された。
Examples of the present invention will be described below.
Example 1
10 g of aminoalkyltrialkoxysilane was added to 100 g of Ag fine particles having an average particle diameter of 4 nm (trade name “Ag nanometal ink” manufactured by ULVAC, Inc.), and the mixture was stirred at 25 ° C. for 12 hours. To this, 500 g of acetone is added to precipitate the Ag fine particles, and the “washing step” in which the supernatant is discharged by decantation or the like is repeated a plurality of times to obtain Ag fine particles with aminoalkyltrialkoxysilane adsorbed on the surface (hereinafter “Ag fine particles 1”). I got). 10 parts by weight of Ag fine particles 1, 90 parts by weight of Ag filler having an average particle diameter of 3 μm (trade name “Silcoat” manufactured by Fukuda Metal Foil Powder Industries), and hydrophobic silica having an alkyl group (trade name “AEROSIL” manufactured by Nippon Aerosil) R972 ") was mixed with 0.4 parts by weight, imide ring-closed polyimide varnish (trade name" COMPOCERAN H802 "manufactured by Arakawa Chemical Co., Ltd.) 2.66 parts by weight, and dodecylbenzene 17 parts by weight. And what was mix | blended was knead | mixed with a 3 roll mill, and Ag paste was obtained. The obtained Ag paste was applied onto a glass substrate surface having fine irregularities (having steps and grooves of about several μm) with a line width of 100 μm by screen printing, printed, and baked at 230 ° C. for 30 minutes. No sagging or bleeding was observed in the printed Ag paste. As a result of performing a grid eye tape peeling test on the fired Ag wiring, it was confirmed that no peeling of the Ag wiring was seen and excellent adhesion to the glass substrate was obtained. The thickness of the Ag wiring after firing was 24.6 μm, the line width was 124 μm, and the specific resistance was 7.9 μΩ · cm. According to this, it was confirmed that the resistance of the Ag wiring can be reduced.

(実施例2)
上記実施例1で得たAg微粒子1を10重量部、平均粒子径3μmのAgフィラー(福田金属箔粉工業製の商品名「シルコート」)を90重量部、少なくともアルキル基を有する疎水性シリカ(日本アエロジル製の商品名「AEROSIL R976」)を0.4重量部、イミド閉環したポリイミドワニス(荒川化学製の商品名「コンポセラン H802」)を2.66重量部、及びドデシルベンゼンを17重量部配合した。そして、上記実施例1と同様に、配合したものを3本ロールミルにより混練してAgペーストを得て、このAgペーストをスクリーン印刷法により微細な凹凸のあるガラス基板表面に線幅100μmで塗布して印刷し、230℃で30分焼成した。印刷されたAgペーストには垂れや滲みが見られなかった。焼成後のAg配線は、ガラス基板に対して優れた密着性を持ち、膜厚は23.2μm、線幅は128μm、比抵抗は7.9μΩ・cmであり、Ag配線の低抵抗化を実現できることが確認された。
(Example 2)
10 parts by weight of the Ag fine particles 1 obtained in Example 1 above, 90 parts by weight of Ag filler having an average particle diameter of 3 μm (trade name “Silcoat” manufactured by Fukuda Metal Foil Powder Industry), and hydrophobic silica having at least an alkyl group ( 0.4 parts by weight of Nippon Aerosil brand name “AEROSIL R976”), 2.66 parts by weight of polyimide varnish with imide ring closure (trade name “Composeran H802” by Arakawa Chemical) and 17 parts by weight of dodecylbenzene did. Then, in the same manner as in Example 1 above, the blended material was kneaded by a three-roll mill to obtain an Ag paste, and this Ag paste was applied to a glass substrate surface having fine irregularities by a screen printing method with a line width of 100 μm. Printed and baked at 230 ° C. for 30 minutes. No sagging or bleeding was observed in the printed Ag paste. After firing, the Ag wiring has excellent adhesion to the glass substrate, with a film thickness of 23.2 μm, line width of 128 μm, and specific resistance of 7.9 μΩ · cm, realizing low resistance of the Ag wiring. It was confirmed that it was possible.

(実施例3)
上記実施例1で得たAg微粒子1を10重量部、平均粒子径3μmのAgフィラー(福田金属箔粉工業製の商品名「シルコート」)を90重量部、少なくともOH基を有する親水性シリカ(日本アエロジル製の商品名「AEROSIL 200」)を0.4重量部、イミド閉環したポリイミドワニス(荒川化学製コンポセラン H802)を2.66重量部、及びドデシルベンゼンを17重量部配合した。そして、上記実施例1と同様に、配合したものを3本ロールミルにより混練してAgペーストを得て、このAgペーストをスクリーン印刷法により微細な凹凸のあるガラス基板表面に線幅100μmで塗布して印刷し、230℃で30分焼成した。印刷されたAgペーストには垂れや滲みが見られなかった。焼成後のAg配線は、ガラス基板に対して優れた密着性を持ち、膜厚は21.0μm、線幅は130μm、比抵抗は8.3μΩ・cmであり、Ag配線の低抵抗化を実現できることが確認された。
(Example 3)
10 parts by weight of the Ag fine particles 1 obtained in Example 1 above, 90 parts by weight of an Ag filler (trade name “Silcoat” manufactured by Fukuda Metal Foil Powder Industry) having an average particle diameter of 3 μm, and hydrophilic silica having at least OH groups ( 0.4 parts by weight of Nippon Aerosil brand name “AEROSIL 200”, 2.66 parts by weight of polyimide varnish with imide ring closure (composeran H802 manufactured by Arakawa Chemical) and 17 parts by weight of dodecylbenzene were blended. Then, in the same manner as in Example 1 above, the blended material was kneaded by a three-roll mill to obtain an Ag paste, and this Ag paste was applied to a glass substrate surface having fine irregularities by a screen printing method with a line width of 100 μm. Printed and baked at 230 ° C. for 30 minutes. No sagging or bleeding was observed in the printed Ag paste. The Ag wiring after firing has excellent adhesion to the glass substrate, the film thickness is 21.0μm, the line width is 130μm, and the specific resistance is 8.3μΩ · cm, which realizes low resistance of Ag wiring. It was confirmed that it was possible.

(実施例4)
上記実施例1で得たAg微粒子1を10重量部、平均粒子径3μmのAgフィラー(福田金属箔粉工業製の商品名「シルコート」)を90重量部、アルキル基を有する疎水性シリカ(日本アエロジル製の商品名「AEROSIL R976」)を0.4重量部、OH基を有する親水性シリカ(日本アエロジル製の商品名「AEROSIL 200」)を0.4重量部、イミド閉環したポリイミドワニス(荒川化学製の商品名「コンポセラン H802」)を2.66重量部、及びドデシルベンゼンを17重量部配合した。そして、上記実施例1と同様に、配合したものを3本ロールミルにより混練してAgペーストを得て、このAgペーストをスクリーン印刷法により微細な凹凸のあるガラス基板表面に線幅100μmで塗布して印刷し、230℃で30分焼成した。印刷されたAgペーストには垂れや滲みが見られなかった。焼成後のAg配線は、ガラス基板に対して優れた密着性を持ち、膜厚は20.0μm、線幅は129μm、比抵抗は13.3μΩ・cmであり、配線幅の細いAg配線の低抵抗化を実現できることが確認された。
Example 4
10 parts by weight of Ag fine particles 1 obtained in Example 1 above, 90 parts by weight of Ag filler (trade name “Silcoat” manufactured by Fukuda Metal Foil Powder Industry) with an average particle diameter of 3 μm, and hydrophobic silica having an alkyl group (Japan) 0.4 part by weight of Aerosil product name “AEROSIL R976”, 0.4 part by weight of hydrophilic silica having an OH group (trade name “AEROSIL 200” made by Nippon Aerosil), imide ring-closed polyimide varnish (Arakawa) 2.66 parts by weight of chemical trade name “COMPOCELAN H802”) and 17 parts by weight of dodecylbenzene were blended. Then, in the same manner as in Example 1 above, the blended material was kneaded by a three-roll mill to obtain an Ag paste, and this Ag paste was applied to a glass substrate surface having fine irregularities by a screen printing method with a line width of 100 μm. Printed and baked at 230 ° C. for 30 minutes. No sagging or bleeding was observed in the printed Ag paste. The fired Ag wiring has excellent adhesion to the glass substrate, the film thickness is 20.0 μm, the line width is 129 μm, the specific resistance is 13.3 μΩ · cm, and the Ag wiring with a narrow wiring width is low. It was confirmed that resistance can be realized.

次に、上記実施例に対する比較例について説明する。
(比較例1)
平均粒子径4nmのAg微粒子(アルバック製の商品名「Agナノメタルインク」)100gに、アセトン500gを加えてAg微粒子を沈降させ、上澄み液をデカンテーションなどにより流出させる「洗浄工程」を複数回繰り返し、Ag微粒子(以下「Ag微粒子2」という)を得た。Ag微粒子2を10重量部、平均粒子径3μmのAgフィラー(福田金属箔粉工業製の商品名「シルコート」)を90重量部、及びドデシルベンゼンを19重量部配合した。そして、この配合したものを3本ロールミルにより混練してAgペーストを得た。得られたAgペーストを用いてスクリーン印刷法により微細な凹凸のあるガラス基板表面に線幅100μmで塗布して印刷し、230℃で30分焼成した。上記実施例とは異なり、印刷されたAgペーストは垂れや滲みが顕著に発生していた。焼成後のAg配線について碁盤の目テープ剥離試験を行ったところ、Ag配線の全面が剥離した。また、焼成後のAg配線の膜厚は11μm、線幅は180μm、比抵抗は23μΩ・cmであった。これによれば、上記実施例に比べてAg配線の比抵抗が大幅に増大して低抵抗化を実現できないことが判った。
Next, a comparative example for the above embodiment will be described.
(Comparative Example 1)
Repeated “cleaning step” multiple times, adding 500 g of acetone to 100 g of Ag fine particles with an average particle size of 4 nm (trade name “Ag Nanometal Ink” manufactured by ULVAC) to precipitate the Ag fine particles and draining the supernatant liquid by decantation or the like. , Ag fine particles (hereinafter referred to as “Ag fine particles 2”) were obtained. 10 parts by weight of Ag fine particles 2, 90 parts by weight of an Ag filler having an average particle diameter of 3 μm (trade name “Silcoat” manufactured by Fukuda Metal Foil Powder Industry), and 19 parts by weight of dodecylbenzene were blended. And what was mix | blended was knead | mixed with a 3 roll mill, and Ag paste was obtained. The obtained Ag paste was applied onto a glass substrate surface having fine irregularities by screen printing with a line width of 100 μm, printed, and baked at 230 ° C. for 30 minutes. Unlike the above examples, the printed Ag paste had noticeably dripping and bleeding. When the Ag tape after firing was subjected to a grid tape peeling test on the grid, the entire surface of the Ag wiring was peeled off. The film thickness of the Ag wiring after firing was 11 μm, the line width was 180 μm, and the specific resistance was 23 μΩ · cm. According to this, it has been found that the specific resistance of the Ag wiring is significantly increased as compared with the above-described embodiment, so that the low resistance cannot be realized.

Claims (7)

低極性溶媒と、表面が分散剤で被覆された金属微粒子と、ポリイミドワニスとを含む導電性金属ペーストであって、
レオロジーコントロール剤としてOH基及びアルキル基の少なくとも何れか一方を有するシリカを含むことを特徴とする導電性金属ペースト。
A conductive metal paste comprising a low polarity solvent, metal fine particles coated with a dispersant on the surface, and a polyimide varnish,
A conductive metal paste comprising silica having at least one of an OH group and an alkyl group as a rheology control agent.
前記ポリイミドワニスがイミド閉環したものであることを特徴とする請求項1記載の導電性金属ペースト。   The conductive metal paste according to claim 1, wherein the polyimide varnish is imide ring-closed. ポリアミドを更に含むことを特徴とする請求項1または2記載の導電性金属ペースト。   The conductive metal paste according to claim 1, further comprising polyamide. 前記低極性溶媒は、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、トルエン、キシレン、シクロドデカン、シクロドデセン、オクチルベンゼン、ドデシルベンゼンから選ばれる少なくとも1種の液状炭化水素からなることを特徴とする請求項1〜3のいずれか1項に記載の導電性金属ペースト。   The low-polarity solvent is composed of at least one liquid hydrocarbon selected from octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, toluene, xylene, cyclododecane, cyclododecene, octylbenzene, and dodecylbenzene. The conductive metal paste according to any one of claims 1 to 3. 平均粒子径が1〜20μmである金属フィラーを更に含むことを特徴とする請求項1〜4記載の導電性金属ペースト。   The conductive metal paste according to claim 1, further comprising a metal filler having an average particle diameter of 1 to 20 μm. 前記金属フィラーと前記金属微粒子との総和を100重量%とした場合に、前記金属フィラーが50〜95重量%の範囲内であることを特徴とする請求項5記載の導電性金属ペースト。   The conductive metal paste according to claim 5, wherein the metal filler is in the range of 50 to 95% by weight when the total of the metal filler and the metal fine particles is 100% by weight. 前記金属微粒子の表面にシランカップリング剤が吸着していることを特徴とする請求項1〜6のいずれか1項に記載の導電性金属ペースト。
The conductive metal paste according to any one of claims 1 to 6, wherein a silane coupling agent is adsorbed on the surface of the metal fine particles.
JP2012086956A 2012-04-06 2012-04-06 Conductive metal paste Active JP5976368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012086956A JP5976368B2 (en) 2012-04-06 2012-04-06 Conductive metal paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012086956A JP5976368B2 (en) 2012-04-06 2012-04-06 Conductive metal paste

Publications (2)

Publication Number Publication Date
JP2013218831A true JP2013218831A (en) 2013-10-24
JP5976368B2 JP5976368B2 (en) 2016-08-23

Family

ID=49590733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012086956A Active JP5976368B2 (en) 2012-04-06 2012-04-06 Conductive metal paste

Country Status (1)

Country Link
JP (1) JP5976368B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188419A (en) * 2015-03-30 2016-11-04 新日鉄住金化学株式会社 Nickel particle composition, joint material and joint method using the same
JP2020145294A (en) * 2019-03-05 2020-09-10 株式会社アルバック Method of forming conductive metal paste and metal wiring
US11935702B2 (en) 2020-12-11 2024-03-19 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component and conductive paste for resin electrode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179651A (en) * 1983-03-31 1984-10-12 Nitto Electric Ind Co Ltd Heat-resistant, electrically conductive paste composition
JPH02155113A (en) * 1988-12-06 1990-06-14 Mitsui Toatsu Chem Inc Conductive silver paste
JP2001279192A (en) * 2000-03-30 2001-10-10 Sliontec Corp Electrically conductive pressure-sensitive adhesive tape/ sheet having no substrate and its manufacturing method
WO2002035554A1 (en) * 2000-10-25 2002-05-02 Harima Chemicals, Inc. Electroconductive metal paste and method for production thereof
WO2005116152A1 (en) * 2004-05-27 2005-12-08 Pi R & D Co., Ltd Block copolymerized polyimide ink composition for printing
JP2007246897A (en) * 2006-02-15 2007-09-27 Hitachi Chem Co Ltd Heat-resistant resin paste, method for producing heat-resistant resin paste and semiconductor device having insulation film or protection film derived from heat-resistant resin paste

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179651A (en) * 1983-03-31 1984-10-12 Nitto Electric Ind Co Ltd Heat-resistant, electrically conductive paste composition
JPH02155113A (en) * 1988-12-06 1990-06-14 Mitsui Toatsu Chem Inc Conductive silver paste
JP2001279192A (en) * 2000-03-30 2001-10-10 Sliontec Corp Electrically conductive pressure-sensitive adhesive tape/ sheet having no substrate and its manufacturing method
WO2002035554A1 (en) * 2000-10-25 2002-05-02 Harima Chemicals, Inc. Electroconductive metal paste and method for production thereof
WO2005116152A1 (en) * 2004-05-27 2005-12-08 Pi R & D Co., Ltd Block copolymerized polyimide ink composition for printing
JP2007246897A (en) * 2006-02-15 2007-09-27 Hitachi Chem Co Ltd Heat-resistant resin paste, method for producing heat-resistant resin paste and semiconductor device having insulation film or protection film derived from heat-resistant resin paste

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188419A (en) * 2015-03-30 2016-11-04 新日鉄住金化学株式会社 Nickel particle composition, joint material and joint method using the same
JP2020145294A (en) * 2019-03-05 2020-09-10 株式会社アルバック Method of forming conductive metal paste and metal wiring
US11935702B2 (en) 2020-12-11 2024-03-19 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component and conductive paste for resin electrode

Also Published As

Publication number Publication date
JP5976368B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP6491753B2 (en) Metal paste excellent in low-temperature sinterability and method for producing the metal paste
KR102158290B1 (en) Binding material, binding body, and binding method
JP4821396B2 (en) Conductive composition and method for forming conductive film
TW201503983A (en) Composition for bonding metals
JPWO2002035554A1 (en) Conductive metal paste and method for producing the same
JP2012182111A (en) Conductive metal paste composition and manufacturing method thereof
TWI696509B (en) Copper-containing particles, composition for forming conductor, method of producing conductor, conductor and electronic component
JP6736782B2 (en) Composition for bonding
JP2012144796A (en) Method of manufacturing silver nanoparticle, silver nanoparticle and silver ink
JP7262059B2 (en) Method for producing silver nanoparticles with wide particle size distribution and silver nanoparticles
JP5934561B2 (en) Conductive metal paste
JP5976368B2 (en) Conductive metal paste
JP2012174480A (en) Bonding paste and method for bonding semiconductor element and substrate together
JP2016145299A (en) Conductive material and conductor using it
JP6884692B2 (en) Copper powder and conductive composition containing it
CN108349008B (en) Composition for bonding and electronic component bonded body
TWI690946B (en) Conductive paste
JP6414085B2 (en) Method for producing metal nanoparticles
TW201615785A (en) Bonding composition
TW201911989A (en) Method for producing metal bonded laminate
JP5976367B2 (en) Conductive metal paste
JP2017101307A (en) Copper-containing particle, conductor forming composition, method for producing conductor, conductor and electronic component
JP6838462B2 (en) Compositions for forming conductors, conductors and methods for manufacturing them, laminates and devices
JP2012246560A (en) Method of manufacturing silver-containing nanoparticle, silver-containing nanoparticle, and silver coating composition
JP5934560B2 (en) Conductive metal paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160720

R150 Certificate of patent or registration of utility model

Ref document number: 5976368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250