JP6838462B2 - Compositions for forming conductors, conductors and methods for manufacturing them, laminates and devices - Google Patents

Compositions for forming conductors, conductors and methods for manufacturing them, laminates and devices Download PDF

Info

Publication number
JP6838462B2
JP6838462B2 JP2017068618A JP2017068618A JP6838462B2 JP 6838462 B2 JP6838462 B2 JP 6838462B2 JP 2017068618 A JP2017068618 A JP 2017068618A JP 2017068618 A JP2017068618 A JP 2017068618A JP 6838462 B2 JP6838462 B2 JP 6838462B2
Authority
JP
Japan
Prior art keywords
copper
conductor
mass
containing particles
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017068618A
Other languages
Japanese (ja)
Other versions
JP2018170227A (en
Inventor
禎宏 小川
禎宏 小川
航介 浦島
航介 浦島
元気 米倉
元気 米倉
納堂 高明
高明 納堂
龍史 明比
龍史 明比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2017068618A priority Critical patent/JP6838462B2/en
Publication of JP2018170227A publication Critical patent/JP2018170227A/en
Application granted granted Critical
Publication of JP6838462B2 publication Critical patent/JP6838462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、導体形成用組成物、導体及びその製造方法、積層体並びに装置に関する。 The present invention relates to a composition for forming a conductor, a conductor and a method for producing the conductor, a laminate, and an apparatus.

金属パターンの形成方法として、銅等の金属粒子を含むインク、ペースト等の導電材料をインクジェット印刷、スクリーン印刷等により基材上に金属を含む層を形成する工程と、導電材料を加熱して金属粒子を焼結させ、導電性を発現させる導体化工程とを含む、いわゆるプリンテッドエレクトロニクス法が知られている。導電材料に含まれる金属粒子としては、例えば、金属の酸化を抑制して保存性を高めるために表面に被覆材としての有機物を付着させたものが知られている(例えば、特許文献1及び特許文献2参照)。 As a method for forming a metal pattern, a step of forming a layer containing metal on a substrate by inkjet printing, screen printing, or the like of an ink containing metal particles such as copper or a conductive material such as a paste, and a step of heating the conductive material to metal A so-called printed electronics method is known, which includes a step of forming a conductor by sintering particles to develop conductivity. As the metal particles contained in the conductive material, for example, those in which an organic substance as a coating material is adhered to the surface in order to suppress oxidation of the metal and improve storage stability are known (for example, Patent Document 1 and Patent). Reference 2).

特開2012−072418号公報Japanese Unexamined Patent Publication No. 2012-0272418 特開2014−148732号公報Japanese Unexamined Patent Publication No. 2014-148732

しかし、金属粒子を焼結して形成された導体は、基材の種類によっては充分な接着力が得られず、基材から剥離してしまい装置の欠陥となってしまう場合がある。近年用いられている基材の材質は、樹脂、金属、セラミック、ガラス、無機フィラー含有樹脂等と多様化しつつあり、中でも、セラミック、ガラス、無機フィラー含有樹脂等の、無機材料を含む基材に対する導体の接着性の向上が課題となっている。 However, depending on the type of the base material, the conductor formed by sintering the metal particles may not have sufficient adhesive strength and may peel off from the base material, resulting in a defect of the device. Materials of base materials used in recent years are diversifying into resins, metals, ceramics, glass, resins containing inorganic fillers, etc. Among them, for base materials containing inorganic materials such as ceramics, glass, resins containing inorganic fillers, etc. Improving the adhesiveness of conductors has become an issue.

基材に対する導体の接着力を向上させる方法としては、金属粒子を含むペースト等の導体形成用組成物に樹脂成分を添加する方法が挙げられる。しかし、絶縁性である樹脂成分の添加は、金属粒子の焼結を阻害して充分な導電性の発現を妨げる傾向にある。このため、基材に対する接着性と導体の導電性とを両立することは困難であった。さらに、低温(例えば、200℃以下)で金属粒子を焼結させて導体を形成すると、樹脂成分の添加が少量であっても著しく導電性を損なう場合がある。 Examples of the method for improving the adhesive force of the conductor to the base material include a method of adding a resin component to a conductor-forming composition such as a paste containing metal particles. However, the addition of an insulating resin component tends to inhibit the sintering of metal particles and prevent the development of sufficient conductivity. For this reason, it has been difficult to achieve both adhesiveness to the base material and conductivity of the conductor. Further, when metal particles are sintered at a low temperature (for example, 200 ° C. or lower) to form a conductor, the conductivity may be significantly impaired even if a small amount of resin component is added.

本発明は、上記事情に鑑みてなされたものであり、基材との接着性及び導電性に優れる導体を形成可能な導体形成用組成物を提供することを主な目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a conductor-forming composition capable of forming a conductor having excellent adhesiveness and conductivity to a base material.

本発明は、下記[1]〜[4]に示す導体形成用組成物、下記[5]及び[6]に示す導体の製造方法、下記[7]に示す導体、下記[8]に示す積層体、並びに下記[9]に示す装置を提供する。 The present invention relates to the conductor-forming compositions shown in the following [1] to [4], the method for producing the conductors shown in the following [5] and [6], the conductor shown in the following [7], and the lamination shown in the following [8]. The body and the device shown in the following [9] are provided.

[1]銅含有粒子と、ウレタン結合を有する樹脂と、シランカップリング剤と、を含有し、ウレタン結合を有する樹脂の含有量が、銅含有粒子100質量部に対して3.0質量部〜15.0質量部である、導体形成用組成物。
[2]シランカップリング剤の含有量が、銅含有粒子100質量部に対して0.25質量部〜4.0質量部である、[1]に記載の導体形成用組成物。
[3]ウレタン結合を有する樹脂が、アルコキシシリル基及びシラノール基からなる群より選択される少なくとも1つの基を有する、[1]又は[2]に記載の導体形成用組成物。
[4]銅含有粒子が、銅を含むコア粒子と、コア粒子の表面の少なくとも一部を被覆する有機物と、を有する、[1]〜[3]のいずれかに記載の導体形成用組成物。
[5][1]〜[4]のいずれかに記載の導体形成用組成物を加熱して、焼結体を得る工程を備える、導体の製造方法。
[6]焼結体上に、めっき層を形成する工程をさらに備える、[5]に記載の導体の製造方法。
[7][1]〜[4]のいずれかに記載の導体形成用組成物を焼結してなる焼結体を含む、導体。
[8]基材と、基材上に設けられた、[7]に記載の導体と、を備える、積層体。
[9][7]に記載の導体を備える、装置。
[1] The content of the resin containing the copper-containing particles, the resin having a urethane bond, and the silane coupling agent and having the urethane bond is 3.0 parts by mass to 100 parts by mass with respect to 100 parts by mass of the copper-containing particles. A composition for forming a conductor, which is 15.0 parts by mass.
[2] The conductor-forming composition according to [1], wherein the content of the silane coupling agent is 0.25 parts by mass to 4.0 parts by mass with respect to 100 parts by mass of the copper-containing particles.
[3] The composition for forming a conductor according to [1] or [2], wherein the resin having a urethane bond has at least one group selected from the group consisting of an alkoxysilyl group and a silanol group.
[4] The composition for forming a conductor according to any one of [1] to [3], wherein the copper-containing particles include core particles containing copper and an organic substance that covers at least a part of the surface of the core particles. ..
[5] A method for producing a conductor, comprising a step of heating the conductor-forming composition according to any one of [1] to [4] to obtain a sintered body.
[6] The method for producing a conductor according to [5], further comprising a step of forming a plating layer on the sintered body.
[7] A conductor comprising a sintered body obtained by sintering the conductor-forming composition according to any one of [1] to [4].
[8] A laminate comprising a base material and the conductor according to [7] provided on the base material.
[9] An apparatus comprising the conductor according to [7].

本発明によれば、基材との接着性及び導電性に優れる導体を形成可能な導体形成用組成物が提供される。また、このような導体形成用組成物を用いた導体及びその製造方法、導体、積層体並びに装置が提供される。 According to the present invention, there is provided a conductor forming composition capable of forming a conductor having excellent adhesiveness and conductivity to a base material. Further, a conductor using such a conductor-forming composition, a method for producing the conductor, a conductor, a laminate, and an apparatus are provided.

製造例1で合成した銅含有粒子の透過型電子顕微鏡像である。6 is a transmission electron microscope image of the copper-containing particles synthesized in Production Example 1.

以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to the numerical values and their ranges, and does not limit the present invention.

本明細書において、「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。 In the present specification, the term "process" refers to a process that is independent of other processes, and even if the process cannot be clearly distinguished from other processes, if the purpose of the process is achieved, the process is also included. included.

本明細書において、「〜」を用いて示された数値範囲には、「〜」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。 In the present specification, the numerical range indicated by using "~" includes the numerical values before and after "~" as the minimum value and the maximum value, respectively.

本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. Good. Further, in the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.

本明細書において、組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。 In the present specification, the content rate or content of each component in the composition is the plurality of types present in the composition unless otherwise specified, when a plurality of substances corresponding to the respective components are present in the composition. Means the total content or content of the substances in.

本明細書において、組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。 In the present specification, the particle size of each component in the composition refers to the particle size of each component in the composition when a plurality of particles corresponding to each component are present in the composition, unless otherwise specified. Means the value for the mixture.

本明細書において、「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている状態に加え、当該領域の一部にのみ形成されている状態も含まれる。 In the present specification, the term "layer" or "membrane" refers to a part of the region in addition to the state formed in the entire region when the region in which the layer or the membrane exists is observed. The state formed only in is also included.

本明細書において、「積層」は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。 In the present specification, "lamination" means stacking layers, and two or more layers may be bonded or two or more layers may be detachable.

本明細書において、「導体化」とは、金属含有粒子を融着させて導体に変化させることを意味する。「導体」は、導電性を有する物体をいい、より具体的には体積抵抗率が2000mΩ・cm以下である物体をいう。本明細書において、導体の体積抵抗率は、4端針面抵抗測定器で測定した面抵抗値と、非接触表面・層断面形状計測システム(商品名:VertScan、株式会社菱化システム)から求めた膜厚とから計算される値である。「導体」との語には、導電性を有する物体に、導電性を有する層(例えば、めっき層)を備えたものも含まれる。 As used herein, "conductorization" means fusing metal-containing particles into a conductor. The “conductor” refers to an object having conductivity, and more specifically, an object having a volume resistivity of 2000 mΩ · cm or less. In the present specification, the volume resistivity of the conductor is obtained from the surface resistivity value measured by the four-ended needle surface resistance measuring device and the non-contact surface / layer cross-sectional shape measurement system (trade name: VertScan, Ryoka System Co., Ltd.). It is a value calculated from the thickness of the film. The term "conductor" also includes a conductive object provided with a conductive layer (for example, a plating layer).

本明細書において、導体形成用組成物が「焼結」された状態、すなわち「焼結体」には、ウレタン結合を有する樹脂及びシランカップリング剤の一部又は全部が残存したまま、銅含有粒子が完全に又は部分的に融け合って一体化(融着)している状態、又は銅含有粒子が融合せずに接触しているのみの状態のいずれもが含まれる。 In the present specification, the conductor-forming composition is "sintered", that is, the "sintered body" contains copper while a part or all of the resin having a urethane bond and the silane coupling agent remains. This includes either a state in which the particles are completely or partially fused and integrated (fused), or a state in which the copper-containing particles are not fused and are only in contact with each other.

<導体形成用組成物>
本実施形態の導体形成用組成物は、銅含有粒子と、ウレタン結合を有する樹脂と、シランカップリング剤と、を含有する。ウレタン結合を有する樹脂の含有量は、銅含有粒子100質量部に対して3.0質量部〜15.0質量部である。導体形成用組成物として具体的には、導電塗料、導電ペースト、導電インク等が挙げられる。
<Conductor forming composition>
The conductor-forming composition of the present embodiment contains copper-containing particles, a resin having a urethane bond, and a silane coupling agent. The content of the resin having a urethane bond is 3.0 parts by mass to 15.0 parts by mass with respect to 100 parts by mass of the copper-containing particles. Specific examples of the conductor forming composition include conductive paints, conductive pastes, and conductive inks.

[銅含有粒子]
銅含有粒子は、少なくとも金属銅を含み、必要に応じてその他の物質を含んでもよい。その他の物質としては、金、銀、白金、錫、ニッケル等の金属又はこれらの金属元素を含む化合物、有機物、酸化銅、塩化銅などを挙げることができる。導電性により優れる導体を形成する観点から、銅含有粒子中の銅の含有率は、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。
[Copper-containing particles]
The copper-containing particles contain at least metallic copper and may contain other substances as needed. Examples of other substances include metals such as gold, silver, platinum, tin and nickel, compounds containing these metal elements, organic substances, copper oxide, copper chloride and the like. From the viewpoint of forming a conductor having better conductivity, the content of copper in the copper-containing particles is preferably 50% by mass or more, more preferably 60% by mass or more, and more preferably 70% by mass or more. Is even more preferable.

銅含有粒子の大きさは、特に制限されないが、低温での焼結性の観点から、長軸の長さが50nm以下である銅含有粒子(以下、「小径粒子」という場合がある。)の割合が55個数%以下であることが好ましい。 The size of the copper-containing particles is not particularly limited, but from the viewpoint of sinterability at low temperatures, copper-containing particles having a major axis length of 50 nm or less (hereinafter, may be referred to as “small diameter particles”). The ratio is preferably 55% by number or less.

本明細書において、銅含有粒子の長軸は、銅含有粒子に外接し、互いに平行である二平面の間の距離が最大となるように選ばれる二平面間の距離を意味する。本明細書において、長軸の長さが50nm以下である銅含有粒子の割合は、無作為に選択される200個の銅含有粒子中に占める割合である。例えば、長軸の長さが50nm以下である銅含有粒子が200個中に110個である場合は、長軸の長さが50nm以下である銅含有粒子の割合は55個数%である。 As used herein, the major axis of the copper-containing particles means the distance between the two planes circumscribing the copper-containing particles and selected so that the distance between the two planes parallel to each other is maximized. In the present specification, the proportion of copper-containing particles having a major axis length of 50 nm or less is the proportion of 200 randomly selected copper-containing particles. For example, when the number of copper-containing particles having a major axis length of 50 nm or less is 110 out of 200, the proportion of copper-containing particles having a major axis length of 50 nm or less is 55% by number.

低温での焼結性の観点から、長軸の長さが50nm以下である銅含有粒子の割合は、50個数%以下であることが好ましく、35個数%以下であることがより好ましく、20個数%以下であることがさらに好ましい。 From the viewpoint of sinterability at low temperature, the proportion of copper-containing particles having a major axis length of 50 nm or less is preferably 50% by number or less, more preferably 35% by number or less, and 20 or less. It is more preferably less than or equal to%.

低温での焼結性の観点から、長軸の長さが70nm以上である銅含有粒子の割合は、30個数%以上であることが好ましく、50個数%以上であることがより好ましく、60個数%以上であることがさらに好ましい。本明細書において、長軸の長さが70nm以上である銅含有粒子の割合は、無作為に選択される200個の銅含有粒子に占める割合を意味する。 From the viewpoint of sinterability at low temperature, the proportion of copper-containing particles having a major axis length of 70 nm or more is preferably 30% by number or more, more preferably 50% by number or more, and 60 or more. It is more preferably% or more. As used herein, the proportion of copper-containing particles having a major axis length of 70 nm or more means a proportion of 200 randomly selected copper-containing particles.

低温での焼結性の観点から、銅含有粒子の長軸の長さの平均値は、55nm以上であることが好ましく、70nm以上であることがより好ましく、90nm以上であることがさらに好ましい。本明細書において、長軸の長さの平均値は、無作為に選択される200個の銅含有粒子について測定した長軸の長さの算術平均値を意味する。 From the viewpoint of sinterability at low temperature, the average value of the length of the major axis of the copper-containing particles is preferably 55 nm or more, more preferably 70 nm or more, and further preferably 90 nm or more. As used herein, the mean length of the major axis means the arithmetic mean of the length of the major axis measured for 200 randomly selected copper-containing particles.

低温での焼結性の観点から、銅含有粒子の長軸の長さの平均値は、500nm以下であることが好ましく、300nm以下であることがより好ましく、200nm以下であることがさらに好ましい。 From the viewpoint of sinterability at low temperature, the average value of the length of the major axis of the copper-containing particles is preferably 500 nm or less, more preferably 300 nm or less, and further preferably 200 nm or less.

低温での焼結性の観点から、長軸の長さが最長である銅含有粒子(以下、「最大径粒子」という場合がある。)は、その長軸の長さが500nm以下であることが好ましく、300nm以下であることがより好ましく、250nm以下であることがさらに好ましい。本明細書において、最大径粒子の長軸の長さは、無作為に選択される200個の銅含有粒子中で長軸の長さが最長である銅含有粒子の長軸の長さを意味する。 From the viewpoint of sinterability at low temperature, copper-containing particles having the longest major axis length (hereinafter, may be referred to as "maximum diameter particles") have a major axis length of 500 nm or less. Is more preferable, and it is more preferably 300 nm or less, and further preferably 250 nm or less. As used herein, the length of the major axis of the maximum diameter particles means the length of the major axis of the copper-containing particles having the longest major axis length among the 200 randomly selected copper-containing particles. To do.

低温での焼結性の観点から、長軸の長さが最短である銅含有粒子(以下、「最小径粒子」という場合がある。)は、その長軸の長さが5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることがさらに好ましい。本明細書において、最小径粒子の長軸の長さは、無作為に選択される200個の銅含有粒子中で長軸の長さが最短である銅含有粒子の長軸の長さを意味する。 From the viewpoint of sinterability at low temperature, copper-containing particles having the shortest major axis length (hereinafter, may be referred to as "minimum diameter particles") have a major axis length of 5 nm or more. Is more preferable, and it is more preferably 8 nm or more, and further preferably 10 nm or more. As used herein, the length of the major axis of the smallest diameter particle means the length of the major axis of the copper-containing particle having the shortest major axis length among 200 randomly selected copper-containing particles. To do.

銅含有粒子の長軸の長さは、例えば、後述する銅含有粒子の製造方法における原材料の種類、原材料を混合する際の温度、反応時間、反応温度、洗浄工程、洗浄溶媒等の条件を調節することによって行うことができる。 The length of the major axis of the copper-containing particles adjusts the conditions such as the type of raw material in the method for producing copper-containing particles described later, the temperature at which the raw materials are mixed, the reaction time, the reaction temperature, the washing step, and the washing solvent. Can be done by doing.

銅含有粒子の長軸と短軸との比(長軸/短軸)であるアスペクト比の平均値は、1.0〜8.0であることが好ましく、1.1〜6.0であることがより好ましく、1.2〜3.0であることがさらに好ましい。本明細書においてアスペクト比の平均値は、無作為に選択される200個の銅含有粒子の長軸の算術平均値と短軸の算術平均値をそれぞれ求め、得られた長軸の算術平均値を短軸の算術平均値で除して得られる値である。銅含有粒子の短軸とは、銅含有粒子に外接し、互いに平行である二平面の間の距離が最小となるように選ばれる二平面間の距離を意味する。 The average value of the aspect ratio, which is the ratio of the major axis to the minor axis (major axis / minor axis) of the copper-containing particles, is preferably 1.0 to 8.0, and is preferably 1.1 to 6.0. More preferably, it is more preferably 1.2 to 3.0. In the present specification, the mean value of the aspect ratio is obtained by calculating the long-axis arithmetic mean value and the short-axis arithmetic mean value of 200 randomly selected copper-containing particles, respectively, and obtaining the long-axis arithmetic mean value. Is a value obtained by dividing by the arithmetic mean value on the short axis. The minor axis of the copper-containing particles means the distance between the two planes circumscribing the copper-containing particles and selected so that the distance between the two planes parallel to each other is minimized.

銅含有粒子のアスペクト比の調節は、例えば、後述する銅含有粒子の製造方法において使用される脂肪酸の炭素数等の条件を調節することによって行うことができる。 The aspect ratio of the copper-containing particles can be adjusted, for example, by adjusting the conditions such as the carbon number of the fatty acid used in the method for producing the copper-containing particles described later.

銅含有粒子の長軸及び短軸の長さは、電子顕微鏡による観察等の公知の方法により、測定することができる。電子顕微鏡で観察する場合の倍率は、特に制限されないが、例えば、20倍〜50000倍とすることができる。なお、電子顕微鏡像から無作為に銅含有粒子を選択する際には、粒子径が3nm未満である銅含有粒子は測定対象から除外する。 The lengths of the major axis and the minor axis of the copper-containing particles can be measured by a known method such as observation with an electron microscope. The magnification when observing with an electron microscope is not particularly limited, but can be, for example, 20 times to 50,000 times. When randomly selecting copper-containing particles from the electron microscope image, copper-containing particles having a particle diameter of less than 3 nm are excluded from the measurement target.

低温での焼結を促進する観点から、銅含有粒子は表面に凹凸を有する銅含有粒子を含むことが好ましい。より具体的には、円形度の平均値が0.70〜0.99であることがより好ましい。円形度は、4π×S/Lで表される値であり、S及びLは、それぞれ測定対象粒子の電子顕微鏡(二次元像)における当該粒子の面積及び周囲(外周)の長さである。円形度は、画像処理ソフトを用いて電子顕微鏡像を解析することにより求めることができ、円形度の平均値は、任意に選択した200個の銅含有粒子について測定した円形度の平均値とする。 From the viewpoint of promoting sintering at a low temperature, the copper-containing particles preferably contain copper-containing particles having irregularities on the surface. More specifically, it is more preferable that the average value of the circularity is 0.70 to 0.99. The circularity is a value represented by 4π × S / L 2 , and S and L are the area and the circumference (outer circumference) of the particle to be measured in an electron microscope (two-dimensional image), respectively. .. The circularity can be obtained by analyzing an electron microscope image using image processing software, and the average value of the circularity is the average value of the circularity measured for 200 arbitrarily selected copper-containing particles. ..

銅含有粒子が表面に凹凸を有する銅含有粒子を含むことで低温での焼結が促進される理由は明らかではないが、銅含有粒子の表面に凹凸が存在することによりいわゆるナノサイズ効果による融点低下が生じ、低温での焼結性が促進されると推測される。 It is not clear why the copper-containing particles contain copper-containing particles having irregularities on the surface to promote sintering at low temperature, but the presence of irregularities on the surface of the copper-containing particles causes the melting point due to the so-called nanosize effect. It is presumed that the decrease will occur and the sinterability at low temperature will be promoted.

銅含有粒子の形状は、特に制限されずに、球状、長粒状、扁平状、繊維状等の形状から導体形成用組成物の用途にあわせて選択できる。導体形成用組成物を印刷法に適用する場合は、銅含有粒子の形状は球状又は長粒状である(具体的には、例えば、アスペクト比の平均値が1.5〜8.0である)と、混合物の粘度の調整が容易であるために好ましい。 The shape of the copper-containing particles is not particularly limited, and can be selected from shapes such as spherical, long-granular, flat, and fibrous according to the use of the conductor-forming composition. When the conductor-forming composition is applied to the printing method, the shape of the copper-containing particles is spherical or long-granular (specifically, for example, the average value of the aspect ratio is 1.5 to 8.0). It is preferable because the viscosity of the mixture can be easily adjusted.

保存性の観点から、銅含有粒子は、銅を含むコア粒子と、コア粒子の表面の少なくとも一部を被覆する有機物と、を備えることが好ましい。このような銅含有粒子は、有機物が保護材としての役割を果たし、コア粒子の酸化が抑制される傾向にある。このため、大気中で長期保存した後も低温での良好な焼結性が維持される傾向にある。なお、有機物は銅含有粒子を焼結させる際の加熱により、熱分解又は揮発して、完全に又は部分的に消失する。 From the viewpoint of storage stability, the copper-containing particles preferably include core particles containing copper and an organic substance that covers at least a part of the surface of the core particles. In such copper-containing particles, the organic substance plays a role as a protective material, and the oxidation of the core particles tends to be suppressed. Therefore, good sinterability at low temperature tends to be maintained even after long-term storage in the atmosphere. The organic matter is thermally decomposed or volatilized by heating when the copper-containing particles are sintered, and completely or partially disappears.

コア粒子の表面の少なくとも一部を被覆する有機物は、アルキルアミンに由来する有機物を含むことが好ましい。コア粒子が有機物又はアルキルアミンで被覆されていることは、窒素雰囲気下で有機物又はアルキルアミンが熱分解又は揮発する温度以上の温度で銅含有粒子を加熱し、加熱前後の質量を比較することによって確認することができる。 The organic substance that covers at least a part of the surface of the core particles preferably contains an organic substance derived from an alkylamine. The fact that the core particles are coated with an organic substance or alkylamine is obtained by heating the copper-containing particles at a temperature higher than the temperature at which the organic substance or alkylamine thermally decomposes or volatilizes in a nitrogen atmosphere, and comparing the masses before and after heating. You can check.

コア粒子の表面の少なくとも一部を被覆する有機物は、その割合がコア粒子及び有機物の合計に対して0.1質量%〜20質量%であることが好ましい。有機物の割合が0.1質量%以上であると、充分な耐酸化性が得られる傾向にある。有機物の割合が20質量%以下であると、低温での焼結性が良好となる傾向にある。コア粒子及び有機物の合計に対する有機物の割合は0.3質量%〜10質量%であることがより好ましく、0.5質量%〜5質量%であることがさらに好ましい。 The proportion of the organic matter covering at least a part of the surface of the core particles is preferably 0.1% by mass to 20% by mass with respect to the total of the core particles and the organic matter. When the proportion of organic matter is 0.1% by mass or more, sufficient oxidation resistance tends to be obtained. When the proportion of organic matter is 20% by mass or less, the sinterability at low temperature tends to be good. The ratio of the organic matter to the total of the core particles and the organic matter is more preferably 0.3% by mass to 10% by mass, and further preferably 0.5% by mass to 5% by mass.

コア粒子は、少なくとも金属銅を含み、必要に応じてその他の物質を含んでもよい。その他の物質としては、金、銀、白金、錫、ニッケル等の金属又はこれらの金属元素を含む化合物、後述する脂肪酸銅、還元性化合物又はアルキルアミンに由来する有機物であってコア粒子の内部に入り込んでいる有機物、酸化銅、塩化銅などを挙げることができる。導電性により優れる導体を形成する観点から、コア粒子中の銅の含有率は50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。 The core particles contain at least metallic copper and may optionally contain other materials. Other substances include metals such as gold, silver, platinum, tin, and nickel, compounds containing these metal elements, fatty acid copper, reducing compounds, or organic substances derived from alkylamine, which will be described later, inside the core particles. Examples include organic substances, copper oxide, and copper chloride that have entered. From the viewpoint of forming a conductor having better conductivity, the content of copper in the core particles is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more. preferable.

銅含有粒子は、コア粒子の表面の少なくとも一部が有機物によって被覆されているために、大気中で保存しても銅の酸化が抑制されており、酸化物の含有率が小さい傾向にある。例えば、銅含有粒子中の酸化物の含有率が5質量%以下であってもよい。銅含有粒子中の酸化物の含有率は、例えばXRD(X−ray diffraction、X線回折)によって測定することができる。 Since at least a part of the surface of the core particles of the copper-containing particles is covered with an organic substance, the oxidation of copper is suppressed even when stored in the atmosphere, and the oxide content tends to be small. For example, the content of oxides in the copper-containing particles may be 5% by mass or less. The content of oxides in the copper-containing particles can be measured by, for example, XRD (X-ray diffraction, X-ray diffraction).

(銅含有粒子の製造方法)
銅含有粒子の製造方法は特に制限されない。例えば、銅含有粒子は脂肪酸と銅との金属塩と、還元性化合物と、アルキルアミンと、を含む組成物を加熱撹拌する工程を有する方法によって製造される。前記方法は、必要に応じて加熱撹拌工程後の遠心分離工程、洗浄工程等の工程を有していてもよい。
(Manufacturing method of copper-containing particles)
The method for producing the copper-containing particles is not particularly limited. For example, copper-containing particles are produced by a method comprising a step of heating and stirring a composition containing a metal salt of a fatty acid and copper, a reducing compound, and an alkylamine. The method may include steps such as a centrifugation step and a washing step after the heating and stirring step, if necessary.

上記方法は、銅前駆体として、脂肪酸と銅との金属塩を使用するものである。これにより、銅前駆体としてシュウ酸銀等を用いる特許文献1に記載の方法と比較して、より沸点の低い(すなわち、分子量の小さい)アルキルアミンを反応媒として使用することが可能になると考えられる。その結果、得られる銅含有粒子においてコア粒子の表面に存在する有機物がより熱分解又は揮発し易いものとなり、銅含有粒子を焼結(融着)させて導体に変化させることを低温で実施することがより容易になると考えられる。 The above method uses a metal salt of fatty acid and copper as a copper precursor. It is considered that this makes it possible to use an alkylamine having a lower boiling point (that is, a smaller molecular weight) as a reaction medium as compared with the method described in Patent Document 1 in which silver oxalate or the like is used as a copper precursor. Be done. As a result, in the obtained copper-containing particles, the organic matter existing on the surface of the core particles becomes more easily thermally decomposed or volatilized, and the copper-containing particles are sintered (fused) and changed into a conductor at a low temperature. Will be easier.

(脂肪酸)
脂肪酸は、RCOOHで表される1価のカルボン酸(Rは鎖状の炭化水素基であり、直鎖状であっても分岐を有していてもよい)である。脂肪酸は、飽和脂肪酸又は不飽和脂肪酸のいずれであってもよい。コア粒子を効率的に被覆して酸化を抑制する観点から、直鎖状の飽和脂肪酸が好ましい。脂肪酸は1種を単独で用いても、2種以上を併用してもよい。
(fatty acid)
The fatty acid is a monovalent carboxylic acid represented by RCOOH (R is a chain hydrocarbon group, which may be linear or branched). The fatty acid may be either a saturated fatty acid or an unsaturated fatty acid. Linear saturated fatty acids are preferred from the viewpoint of efficiently coating core particles and suppressing oxidation. One type of fatty acid may be used alone, or two or more types may be used in combination.

脂肪酸の炭素数は、9以下であることが好ましい。炭素数が9以下である飽和脂肪酸としては、酢酸(炭素数2)、プロピオン酸(炭素数3)、酪酸及びイソ酪酸(炭素数4)、吉草酸及びイソ吉草酸(炭素数5)、カプロン酸(炭素数6)、エナント酸及びイソエナント酸(炭素数7)、カプリル酸、イソカプリル酸及びイソカプロン酸(炭素数8)、ノナン酸及びイソノナン酸(炭素数9)等を挙げることができる。炭素数が9以下である不飽和脂肪酸としては、例えば、上記の飽和脂肪酸の炭化水素基中に1つ以上の二重結合を有するものを挙げることができる。 The number of carbon atoms of the fatty acid is preferably 9 or less. Examples of saturated fatty acids having 9 or less carbon atoms include acetic acid (2 carbon atoms), propionic acid (3 carbon atoms), butyric acid and isobutyric acid (4 carbon atoms), valeric acid and isovaleric acid (5 carbon atoms), and caproic acid. Examples thereof include acids (6 carbon atoms), enanthic acid and isoenanthic acid (7 carbon atoms), caprylic acid, isocaprylic acid and isocaproic acid (8 carbon atoms), nonanoic acid and isononanoic acid (9 carbon atoms). Examples of unsaturated fatty acids having 9 or less carbon atoms include those having one or more double bonds in the hydrocarbon groups of the above-mentioned saturated fatty acids.

脂肪酸の種類は、銅含有粒子の分散媒への分散性、融着性等の性質に影響しうる。このため、銅含有粒子の用途に応じて脂肪酸の種類を選択することが好ましい。粒子形状の均一化の観点から、炭素数が5〜9である脂肪酸と、炭素数が4以下である脂肪酸とを併用することが好ましい。例えば、炭素数が9であるノナン酸と、炭素数が2である酢酸とを併用することが好ましい。炭素数が5〜9である脂肪酸と炭素数が4以下である脂肪酸とを併用する場合の比率は、特に制限されない。 The type of fatty acid can affect properties such as dispersibility of copper-containing particles in a dispersion medium and fusion property. Therefore, it is preferable to select the type of fatty acid according to the use of the copper-containing particles. From the viewpoint of homogenizing the particle shape, it is preferable to use a fatty acid having 5 to 9 carbon atoms and a fatty acid having 4 or less carbon atoms in combination. For example, it is preferable to use nonanoic acid having 9 carbon atoms and acetic acid having 2 carbon atoms in combination. The ratio when the fatty acid having 5 to 9 carbon atoms and the fatty acid having 4 or less carbon atoms are used in combination is not particularly limited.

脂肪酸と銅との塩化合物(脂肪酸銅)を得る方法は特に制限されない。例えば、水酸化銅と脂肪酸とを溶媒中で混合することで得てもよく、市販されている脂肪酸銅を用いてもよい。あるいは、水酸化銅、脂肪酸及び還元性化合物を溶媒中で混合することで、脂肪酸銅の生成と、脂肪酸銅と還元性化合物との間で形成される錯体の生成とを同じ工程中で行ってもよい。 The method for obtaining a salt compound of fatty acid and copper (fatty acid copper) is not particularly limited. For example, it may be obtained by mixing copper hydroxide and a fatty acid in a solvent, or commercially available fatty acid copper may be used. Alternatively, by mixing copper hydroxide, a fatty acid and a reducing compound in a solvent, the formation of the fatty acid copper and the formation of the complex formed between the fatty acid copper and the reducing compound are carried out in the same step. May be good.

(還元性化合物)
還元性化合物は、脂肪酸銅と混合した際に両化合物間で錯体等の複合化合物を形成していると考えられる。これにより、還元性化合物が脂肪酸銅中の銅イオンに対する電子のドナーとなり、銅イオンの還元が生じ易いなり、錯体を形成していない状態の脂肪酸銅よりも自発的な熱分解による銅原子の遊離が生じ易くなると考えられる。還元性化合物は1種を単独で用いても、2種以上を併用してもよい。
(Reducing compound)
It is considered that the reducing compound forms a complex compound such as a complex between the two compounds when mixed with the fatty acid copper. As a result, the reducing compound becomes a donor of electrons to the copper ions in the fatty acid copper, and the reduction of the copper ions is likely to occur, and the copper atoms are liberated by spontaneous thermal decomposition as compared with the fatty acid copper in the uncomplexed state. Is likely to occur. One type of reducing compound may be used alone, or two or more types may be used in combination.

還元性化合物として具体的には、ヒドラジン、ヒドラジン誘導体、塩酸ヒドラジン、硫酸ヒドラジン、抱水ヒドラジン等のヒドラジン化合物、ヒドロキシルアミン、ヒドロキシルアミン誘導体等のヒドロキシルアミン化合物、水素化ホウ素ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、次亜リン酸ナトリウム等のナトリウム化合物などを挙げることができる。 Specific examples of the reducing compound include hydrazine, hydrazine derivative, hydrazine hydrochloride, hydrazine sulfate, hydrazine sulfate such as hydrazine hydrate, hydroxylamine compound such as hydroxylamine and hydroxylamine derivative, sodium boron hydride, sodium sulfite, and hydrogen sulfite. Examples thereof include sodium compounds such as sodium, sodium thiosulfate, and sodium hypophosphate.

脂肪酸銅中の銅原子に対して配位結合を形成し易い、脂肪酸銅の構造を維持した状態で錯体を形成し易い等の観点から、還元性化合物は、アミノ基を有することが好ましい。アミノ基を有する還元性化合物としては、ヒドラジン及びその誘導体、ヒドロキシルアミン及びその誘導体等を挙げることができる。 The reducing compound preferably has an amino group from the viewpoints of easily forming a coordination bond with respect to the copper atom in the fatty acid copper and easily forming a complex while maintaining the structure of the fatty acid copper. Examples of the reducing compound having an amino group include hydrazine and its derivative, hydroxylamine and its derivative, and the like.

脂肪酸銅、還元性化合物及びアルキルアミンを含む組成物を加熱する工程における加熱温度を低くする(例えば、150℃以下)観点から、還元性化合物は、アルキルアミンの蒸発又は分解を生じない温度範囲において、銅イオンを還元し易く、銅原子から遊離し易いものを選択することが好ましい。このような還元性化合物としては、ヒドラジン及びその誘導体、ヒドロキシルアミン及びその誘導体等を挙げることができる。これらの還元性化合物は窒素原子を有するため、窒素原子が銅原子との配位結合を形成して錯体を形成することができる。また、これらの還元性化合物は一般にアルキルアミンと比較して還元力が強いため、生成した錯体が比較的穏和な条件で自発的な分解を生じ、銅イオンの還元及び銅原子からの遊離が生じ易い傾向にある。 From the viewpoint of lowering the heating temperature in the step of heating the composition containing the fatty acid copper, the reducing compound and the alkylamine (for example, 150 ° C. or lower), the reducing compound is in a temperature range in which the alkylamine does not evaporate or decompose. , It is preferable to select a compound that easily reduces copper ions and easily releases from copper atoms. Examples of such reducing compounds include hydrazine and its derivatives, hydroxylamine and its derivatives, and the like. Since these reducing compounds have a nitrogen atom, the nitrogen atom can form a coordinate bond with a copper atom to form a complex. In addition, since these reducing compounds generally have stronger reducing power than alkylamines, the formed complex undergoes spontaneous decomposition under relatively mild conditions, resulting in reduction of copper ions and liberation from copper atoms. It tends to be easy.

ヒドラジン又はヒドロキシルアミンの代わりにこれらの誘導体から好適なものを選択することで、脂肪酸銅との反応性を調節することができ、所望の条件で自発分解を生じる錯体を生成することができる。ヒドラジン誘導体としては、メチルヒドラジン、エチルヒドラジン、n−プロピルヒドラジン、イソプロピルヒドラジン、n−ブチルヒドラジン、イソブチルヒドラジン、sec−ブチルヒドラジン、t−ブチルヒドラジン、n−ペンチルヒドラジン、イソペンチルヒドラジン、neo−ペンチルヒドラジン、t−ペンチルヒドラジン、n−ヘキシルヒドラジン、イソヘキシルヒドラジン、n−ヘプチルヒドラジン、n−オクチルヒドラジン、n−ノニルヒドラジン、n−デシルヒドラジン、n−ウンデシルヒドラジン、n−ドデシルヒドラジン、シクロヘキシルヒドラジン、フェニルヒドラジン、4−メチルフェニルヒドラジン、ベンジルヒドラジン、2−フェニルエチルヒドラジン、2−ヒドラジノエタノール、アセトヒドラジン等を挙げることができる。ヒドロキシルアミンの誘導体としては、N,N−ジ(スルホエチル)ヒドロキシルアミン、モノメチルヒドロキシルアミン、ジメチルヒドロキシルアミン、モノエチルヒドロキシルアミン、ジエチルヒドロキシルアミン、N,N−ジ(カルボキシエチル)ヒドロキシルアミン等を挙げることができる。 By selecting a suitable derivative from these derivatives instead of hydrazine or hydroxylamine, the reactivity with the fatty acid copper can be adjusted, and a complex that causes spontaneous decomposition can be produced under desired conditions. Examples of hydrazine derivatives include methyl hydrazine, ethyl hydrazine, n-propyl hydrazine, isopropyl hydrazine, n-butyl hydrazine, isobutyl hydrazine, sec-butyl hydrazine, t-butyl hydrazine, n-pentyl hydrazine, isopentyl hydrazine, and neo-pentyl hydrazine. , T-pentyl hydrazine, n-hexyl hydrazine, isohexyl hydrazine, n-heptyl hydrazine, n-octyl hydrazine, n-nonyl hydrazine, n-decyl hydrazine, n-undecyl hydrazine, n-dodecyl hydrazine, cyclohexyl hydrazine, phenyl Examples thereof include hydrazine, 4-methylphenylhydrazine, benzylhydrazine, 2-phenylethylhydrazine, 2-hydrazinoethanol, acetohydrazine and the like. Examples of the hydroxylamine derivative include N, N-di (sulfoethyl) hydroxylamine, monomethylhydroxylamine, dimethylhydroxylamine, monoethylhydroxylamine, diethylhydroxylamine, N, N-di (carboxyethyl) hydroxylamine and the like. Can be done.

脂肪酸銅に含まれる銅と還元性化合物との比率は、所望の錯体が形成される条件であれば特に制限されない。例えば、前記比率(銅:還元性化合物)はモル基準で1:1〜1:4の範囲とすることができ、1:1〜1:3の範囲とすることが好ましく、1:1〜1:2の範囲とすることがより好ましい。 The ratio of copper contained in the fatty acid copper to the reducing compound is not particularly limited as long as the desired complex is formed. For example, the ratio (copper: reducing compound) can be in the range of 1: 1 to 1: 4 on a molar basis, preferably in the range of 1: 1 to 1: 3, and 1: 1 to 1. : It is more preferable to set it in the range of 2.

(アルキルアミン)
アルキルアミンは、脂肪酸銅と還元性化合物とから形成される錯体の分解反応の反応媒として機能すると考えられる。さらに、還元性化合物の還元作用によって生じるプロトンを捕捉し、反応溶液が酸性に傾いて銅原子が酸化されることを抑制すると考えられる。
(Alkylamine)
The alkylamine is considered to function as a reaction medium for the decomposition reaction of the complex formed from the fatty acid copper and the reducing compound. Furthermore, it is considered that the protons generated by the reducing action of the reducing compound are captured, and the reaction solution is inclined to be acidic to suppress the oxidation of copper atoms.

アルキルアミンは、RNH(Rは炭化水素基であり、環状又は分岐状であってもよい。)で表される1級アミン、RNH(R及びRは同じであっても異なっていてもよい炭化水素基であり、環状又は分岐状であってもよい。)で表される2級アミン、炭化水素鎖に2つのアミノ基が置換したアルキレンジアミン等であってもよい。アルキルアミンは、1つ以上の二重結合を有していてもよく、酸素、ケイ素、窒素、イオウ、リン等の原子を有していてもよい。アルキルアミンは、1種を単独で用いてもよく、2種以上を併用してもよい。 Alkylamines are primary amines represented by RNH 2 (R is a hydrocarbon group and may be cyclic or branched), R 1 R 2 NH (R 1 and R 2 are the same. It may be a hydrocarbon group which may be different, and may be a secondary amine represented by cyclic or branched), an alkylenediamine in which two amino groups are substituted in a hydrocarbon chain, or the like. .. Alkylamines may have one or more double bonds and may have atoms such as oxygen, silicon, nitrogen, sulfur and phosphorus. One type of alkylamine may be used alone, or two or more types may be used in combination.

アルキルアミンの炭化水素基の炭素数は、7以下であることが好ましい。アルキルアミンの炭化水素基の炭素数が7以下であると、銅含有粒子を融着させて導体を形成するための加熱の際に、アルキルアミンが熱分解し易く、良好に銅含有粒子を焼結(融着)させることができる傾向にある。アルキルアミンの炭化水素基の炭素数は6以下であることがより好ましい。アルキルアミンの炭化水素基の炭素数の下限は、例えば、3以上であってもよい。 The hydrocarbon group of the alkylamine preferably has 7 or less carbon atoms. When the hydrocarbon group of the alkylamine has 7 or less carbon atoms, the alkylamine is easily thermally decomposed during heating for fusing the copper-containing particles to form a conductor, and the copper-containing particles are satisfactorily burned. It tends to be able to bind (fuse). More preferably, the hydrocarbon group of the alkylamine has 6 or less carbon atoms. The lower limit of the number of carbon atoms of the hydrocarbon group of the alkylamine may be, for example, 3 or more.

1級アミンとして具体的には、エチルアミン、2−エトキシエチルアミン、プロピルアミン、ブチルアミン、イソブチルアミン、ペンチルアミン、イソペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、ヘキサデシルアミン、オレイルアミン、3−メトキシプロピルアミン、3−エトキシプロピルアミン等を挙げることができる。 Specifically, as primary amines, ethylamine, 2-ethoxyethylamine, propylamine, butylamine, isobutylamine, pentylamine, isopentylamine, hexylamine, cyclohexylamine, heptylamine, octylamine, nonylamine, decylamine, dodecylamine, Hexadecylamine, oleylamine, 3-methoxypropylamine, 3-ethoxypropylamine and the like can be mentioned.

2級アミンとして具体的には、ジエチルアミン、ジプロピルアミン、ジブチルアミン、エチルプロピルアミン、エチルペンチルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン等を挙げることができる。 Specific examples of the secondary amine include diethylamine, dipropylamine, dibutylamine, ethylpropylamine, ethylpentylamine, dibutylamine, dipentylamine, dihexylamine and the like.

アルキレンジアミンとして具体的には、エチレンジアミン、N,N−ジメチルエチレンジアミン、N,N’−ジメチルエチレンジアミン、N,N−ジエチルエチレンジアミン、N,N’−ジエチルエチレンジアミン、1,3−プロパンジアミン、2,2−ジメチル−1,3−プロパンジアミン、N,N−ジメチル−1,3−ジアミノプロパン、N,N’−ジメチル−1,3−ジアミノプロパン、N,N−ジエチル−1,3−ジアミノプロパン、1,4−ジアミノブタン、1,5−ジアミノ−2−メチルペンタン、1,6−ジアミノへキサン、N,N’−ジメチル−1,6−ジアミノへキサン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,9−ジアミノノナン、1,12−ジアミノドデカン等を挙げることができる。 Specifically, as alkylenediamine, ethylenediamine, N, N-dimethylethylenediamine, N, N'-dimethylethylenediamine, N, N-diethylethylenediamine, N, N'-diethylethylenediamine, 1,3-propanediamine, 2,2 -Dimethyl-1,3-propanediamine, N, N-dimethyl-1,3-diaminopropane, N, N'-dimethyl-1,3-diaminopropane, N, N-diethyl-1,3-diaminopropane, 1,4-diaminobutane, 1,5-diamino-2-methylpentane, 1,6-diaminohexane, N, N'-dimethyl-1,6-diaminohexane, 1,7-diaminoheptane, 1, Examples thereof include 8-diaminooctane, 1,9-diaminononane, and 1,12-diaminododecane.

アルキルアミンは、炭化水素基の炭素数が7以下であるアルキルアミンの少なくとも1種を含むことが好ましい。これにより、低温での焼結性(融着性)により優れる銅含有粒子を製造することができる。アルキルアミンは1種を単独で用いても、2種以上を併用してよい。アルキルアミンは、炭化水素基の炭素数が7以下であるアルキルアミンと、炭化水素基の炭素数が8以上のアルキルアミンと、を含んでもよい。炭化水素基の炭素数が7以下であるアルキルアミンと炭化水素基の炭素数が8以上のアルキルアミンとを併用する場合、アルキルアミン全体に占める炭化水素基の炭素数が7以下であるアルキルアミンの割合は50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。 The alkylamine preferably contains at least one of the alkylamines having 7 or less carbon atoms in the hydrocarbon group. Thereby, copper-containing particles having excellent sinterability (fusing property) at low temperature can be produced. One type of alkylamine may be used alone, or two or more types may be used in combination. The alkylamine may include an alkylamine having a hydrocarbon group having 7 or less carbon atoms and an alkylamine having a hydrocarbon group having 8 or more carbon atoms. When an alkylamine having 7 or less carbon atoms in a hydrocarbon group and an alkylamine having 8 or more carbon atoms in a hydrocarbon group are used in combination, the alkylamine having 7 or less carbon atoms in the hydrocarbon group as a whole. Is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more.

脂肪酸銅に含まれる銅とアルキルアミンとの比率は、所望の銅含有粒子が得られる条件であれば特に制限されない。例えば、前記比率(銅:アルキルアミン)はモル基準で1:1〜1:8の範囲とすることができ、1:1〜1:6の範囲とすることが好ましく、1:1〜1:4の範囲とすることがより好ましい。 The ratio of copper to alkylamine contained in the fatty acid copper is not particularly limited as long as the desired copper-containing particles can be obtained. For example, the ratio (copper: alkylamine) can be in the range of 1: 1 to 1: 8 on a molar basis, preferably in the range of 1: 1 to 1: 6, and 1: 1 to 1: 1. The range of 4 is more preferable.

脂肪酸銅、還元性化合物及びアルキルアミンを含む組成物を加熱撹拌する工程を実施するための方法は特に制限されない。例えば、脂肪酸銅と還元性化合物とを溶媒に混合した後にアルキルアミンを添加して加熱する方法、脂肪酸銅とアルキルアミンとを溶媒と混合した後に還元性化合物を添加して加熱する方法、脂肪酸銅の出発物質である水酸化銅と脂肪酸、還元性化合物及びアルキルアミンを溶媒に混合して加熱する方法、脂肪酸銅の出発物質である水酸化銅と脂肪酸、及びアルキルアミンを溶媒に混合した後に還元性化合物を添加して加熱する方法等を挙げることができる。 The method for carrying out the step of heating and stirring the composition containing the fatty acid copper, the reducing compound and the alkylamine is not particularly limited. For example, a method in which fatty acid copper and a reducing compound are mixed in a solvent and then an alkylamine is added and heated, a method in which fatty acid copper and an alkylamine are mixed in a solvent and then a reducing compound is added and heated, a method in which fatty acid copper is added and heated. A method of mixing and heating copper hydroxide and fatty acid, reducing compounds and alkylamine, which are the starting materials of fatty acid copper, in a solvent, and reducing after mixing copper hydroxide and fatty acid, which are starting materials of fatty acid copper, in a solvent. Examples thereof include a method of adding a sex compound and heating.

加熱撹拌工程は、銅前駆体として炭素数が9以下である脂肪酸銅を用いることにより、比較的低温で行うことができる。例えば、150℃以下で行うことができ、130℃以下で行うことが好ましく、100℃以下で行うことがより好ましい。 The heating and stirring step can be performed at a relatively low temperature by using fatty acid copper having 9 or less carbon atoms as the copper precursor. For example, it can be carried out at 150 ° C. or lower, preferably at 130 ° C. or lower, and more preferably at 100 ° C. or lower.

脂肪酸銅、還元性化合物及びアルキルアミンを含む組成物は、さらに溶媒を含んでもよい。脂肪酸銅と還元性化合物による錯体の形成を促進する観点から、極性溶媒を含むことが好ましい。ここで極性溶媒とは、25℃で水に溶解する溶媒を意味する。極性溶媒を用いることで、錯体の形成が促進される傾向にある。その理由は明らかではないが、固体である脂肪酸銅を溶解させながら水溶性である還元性化合物との接触が促進されるためと考えられる。溶媒は1種を単独で用いても、2種以上を併用してもよい。 The composition containing the fatty acid copper, the reducing compound and the alkylamine may further contain a solvent. It is preferable to contain a polar solvent from the viewpoint of promoting the formation of a complex of the fatty acid copper and the reducing compound. Here, the polar solvent means a solvent that dissolves in water at 25 ° C. The use of polar solvents tends to promote the formation of complexes. The reason is not clear, but it is considered that the contact with the water-soluble reducing compound is promoted while dissolving the solid fatty acid copper. One type of solvent may be used alone, or two or more types may be used in combination.

極性溶媒としては、25℃で水に溶解するアルコールが挙げられる。25℃で水に溶解するアルコールとしては、炭素数が1〜8であり、分子中に水酸基を1個以上有するアルコールを挙げることができる。このようなアルコールとしては、直鎖状のアルキルアルコール、フェノール、分子内にエーテル結合を有する炭化水素の水素原子を水酸基で置換したもの等を挙げることができる。より強い極性を発現する観点から、分子中に水酸基を2個以上含むアルコールも好ましく用いられる。また、製造される銅含有粒子の用途に応じてイオウ原子、リン原子、ケイ素原子等を含むアルコールを用いてもよい。 Examples of the polar solvent include alcohols that dissolve in water at 25 ° C. Examples of the alcohol that dissolves in water at 25 ° C. include alcohols having 1 to 8 carbon atoms and having one or more hydroxyl groups in the molecule. Examples of such alcohols include linear alkyl alcohols, phenols, and those in which the hydrogen atom of a hydrocarbon having an ether bond in the molecule is replaced with a hydroxyl group. From the viewpoint of expressing stronger polarity, an alcohol containing two or more hydroxyl groups in the molecule is also preferably used. Further, alcohol containing a sulfur atom, a phosphorus atom, a silicon atom and the like may be used depending on the use of the produced copper-containing particles.

アルコールとして具体的には、メタノール、エタノール、1−プロパノール、2−プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、アリルアルコール、ベンジルアルコール、ピナコール、プロピレングリコール、メントール、カテコール、ヒドロキノン、サリチルアルコール、グリセリン、ペンタエリスリトール、スクロース、グルコース、キシリトール、メトキシエタノール、トリエチレングリコールモノメチルエーテル、エチレングリコール、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール等を挙げることができる。 Specific examples of alcohols include methanol, ethanol, 1-propanol, 2-propanol, butanol, pentanol, hexanol, heptanol, octanol, allyl alcohol, benzyl alcohol, pinacol, propylene glycol, menthol, catechol, hydroquinone, salicyl alcohol, Examples thereof include glycerin, pentaerythritol, sucrose, glucose, xylitol, methoxyethanol, triethylene glycol monomethyl ether, ethylene glycol, triethylene glycol, tetraethylene glycol and pentaethylene glycol.

アルコールのうち、水に対する溶解度が極めて大きいメタノール、エタノール、1−プロパノール及び2−プロパノールが好ましく、1−プロパノール及び2−プロパノールがより好ましく、1−プロパノールがさらに好ましい。 Of the alcohols, methanol, ethanol, 1-propanol and 2-propanol, which have extremely high solubility in water, are preferable, 1-propanol and 2-propanol are more preferable, and 1-propanol is further preferable.

[ウレタン結合を有する樹脂]
ウレタン結合を有する樹脂の分子構造及び分子量は特に制限されず、導体形成用組成物の用途、基材の種類等に応じて選択できる。ウレタン結合を有する樹脂は、熱可塑性であっても、熱硬化性であってもよい。ウレタン結合を有する樹脂は、1種を単独で用いても、分子構造、分子量等が異なる2種以上を併用してもよい。
[Resin with urethane bond]
The molecular structure and molecular weight of the resin having a urethane bond are not particularly limited, and can be selected according to the use of the conductor-forming composition, the type of the base material, and the like. The resin having a urethane bond may be thermoplastic or thermosetting. As the resin having a urethane bond, one type may be used alone, or two or more types having different molecular structures, molecular weights, etc. may be used in combination.

セラミック、ガラス、無機フィラー含有樹脂等の無機材料を含む基材に対する接着性の観点から、ウレタン結合を有する樹脂は、アルコキシシリル基及びシラノール基からなる群より選択される少なくとも1つの基をさらに有することが好ましい。このような基に含まれるケイ素原子は、無機材料との親和性が高く、少量でも充分な接着力向上効果が得られる傾向にある。さらに、このような基を有することで導体形成用組成物の耐熱性が向上し、銅含有粒子を焼結させるための加熱工程による導体形成用組成物の劣化が抑制される傾向にある。 From the viewpoint of adhesiveness to a substrate containing an inorganic material such as ceramic, glass, or an inorganic filler-containing resin, the resin having a urethane bond further has at least one group selected from the group consisting of an alkoxysilyl group and a silanol group. Is preferable. The silicon atom contained in such a group has a high affinity with an inorganic material, and there is a tendency that a sufficient adhesive strength improving effect can be obtained even in a small amount. Further, having such a group improves the heat resistance of the conductor-forming composition, and tends to suppress deterioration of the conductor-forming composition due to the heating step for sintering the copper-containing particles.

アルコキシシリル基として具体的には、メトキシシリル基、ジメトキシシリル基、トリメトキシシリル基、エトキシシリル基、ジエトキシシリル基、トリエトキシシリル基、プロピロキシシリル基、ブトキシシリル基、イソプロピロキシシリル基等が挙げられる。ウレタン結合を有する樹脂がアルコキシシリル基を有する場合、アルコキシシリル基は1種のみであっても、異なる2種以上であってもよい。 Specific examples of the alkoxysilyl group include a methoxysilyl group, a dimethoxysilyl group, a trimethoxysilyl group, an ethoxysilyl group, a diethoxysilyl group, a triethoxysilyl group, a proproxysilyl group, a butoxysilyl group, and an isoproproxysilyl group. Can be mentioned. When the resin having a urethane bond has an alkoxysilyl group, the alkoxysilyl group may be only one type or two or more different types.

導体形成用組成物がウレタン結合を有する樹脂を含むか否かは、例えば赤外吸収スペクトル測定によって確認することができる。具体的には、ウレタン結合(−NH−COO−)を有する樹脂を含む場合は、NH伸縮振動由来の3300cm−1付近のピーク、CO伸縮振動由来の1720cm−1付近のピーク等を観測できる。 Whether or not the conductor-forming composition contains a resin having a urethane bond can be confirmed by, for example, infrared absorption spectrum measurement. Specifically, when a resin having a urethane bond (-NH-COO-) is contained, a peak near 3300 cm -1 derived from NH stretching vibration, a peak near 1720 cm -1 derived from CO stretching vibration, and the like can be observed.

導体形成用組成物がウレタン結合と、アルコキシシリル基及びシラノール基からなる群より選択される少なくとも1つの基を有する樹脂を含むか否かは、例えばICP発光分光分析、29Si−NMR測定、赤外吸収スペクトル測定によって確認することができる。 Whether or not the composition for forming a conductor contains a urethane bond and a resin having at least one group selected from the group consisting of an alkoxysilyl group and a silanol group is determined, for example, by ICP emission spectroscopy, 29 Si-NMR measurement, red. It can be confirmed by external absorption spectroscopy.

ウレタン結合を有する樹脂の含有量は、銅含有粒子100質量部に対して3.0質量部〜15.0質量部であり、5.0質量部〜15.0質量部であることが好ましく、6.0質量部〜12.0質量部であることがより好ましい。ウレタン結合を有する樹脂の含有量が、銅含有粒子100質量部に対して3.0質量部以上であると、導体の基材に対する接着力が充分に得られる傾向にある。ウレタン結合を有する樹脂の含有量が銅含有粒子100質量部に対して15.0質量部以下であると、導体の体積抵抗率の増大が抑制される傾向にある。 The content of the resin having a urethane bond is 3.0 parts by mass to 15.0 parts by mass and preferably 5.0 parts by mass to 15.0 parts by mass with respect to 100 parts by mass of the copper-containing particles. It is more preferably 6.0 parts by mass to 12.0 parts by mass. When the content of the resin having a urethane bond is 3.0 parts by mass or more with respect to 100 parts by mass of the copper-containing particles, the adhesive force of the conductor to the substrate tends to be sufficiently obtained. When the content of the resin having a urethane bond is 15.0 parts by mass or less with respect to 100 parts by mass of the copper-containing particles, the increase in the volume resistivity of the conductor tends to be suppressed.

[シランカップリング剤]
シランカップリング剤の種類は特に制限されず、対象基材の種類、使用温度等に応じて選択することができる。シランカップリング剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、シランカップリング剤は導体形成用組成物中の分散媒に可溶であっても、不溶であってもよい。
[Silane coupling agent]
The type of the silane coupling agent is not particularly limited, and can be selected according to the type of the target base material, the operating temperature, and the like. One type of silane coupling agent may be used alone, or two or more types may be used in combination. Further, the silane coupling agent may be soluble or insoluble in the dispersion medium in the conductor-forming composition.

シランカップリング剤としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニル−トリス(2−メトキシエトキシ)シラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、メチルトリ(メタクリロキシエトキシ)シラン、3−アクリロキシプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(N−ビニルベンジルアミノエチル)−3−アミノプロピルトリメトキシシラン、3−アニリノプロピルトリメトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、3−(4,5−ジヒドロイミダゾリル)プロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルメチルジイソプロペノキシシラン、メチルトリグリシドキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、トリメチルシリルイソシアネート、ジメチルシリルイソシアネート、フェニルシリルトリイソシアネート、テトライソシアネートシラン、メチルシリルトリイソシアネート、ビニルシリルトリイソシアネート、エトキシシラントリイソシアネート等が挙げられる。 Examples of the silane coupling agent include methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, and vinyl-tris (2-). Methoxyethoxy) silane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, methyltri (methacryloxyethoxy) silane, 3-acryloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- Aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (N-vinylbenzylamino) Ethyl) -3-aminopropyltrimethoxysilane, 3-anilinopropyltrimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3- (4,5-dihydroimidazolyl) propyltriethoxysilane , 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldiisopropenoxysilane, Methyltriglycidoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, trimethylsilylisocyanate, dimethylsilylisocyanate, phenylsilyltriisocyanate, tetraisocyanatesilane, methylsilyltriisocyanate , Vinylsilyl triisocyanate, ethoxysilane triisocyanate and the like.

これらのシランカップリング剤の中でも、導体形成用組成物中の材料間の界面の結合又は濡れ性を向上させる効果が大きいシランカップリング剤が好ましい。 Among these silane coupling agents, a silane coupling agent having a great effect of improving the bond or wettability of the interface between the materials in the conductor forming composition is preferable.

シランカップリング剤の含有量は、銅含有粒子100質量部に対して0.25質量部〜4.0質量部であることが好ましく、0.5質量部〜3.0質量部であることがより好ましい。カップリング剤の量が銅含有粒子100質量部に対して0.25質量部以上であると、接着強度の向上効果がより得られ易い傾向にある。また、カップリング剤の量が銅含有粒子100質量部に対して4.0質量部以下であると、導体形成用組成物がゲル化しにくくなり、導体形成用組成物の成膜性がより良好になる。 The content of the silane coupling agent is preferably 0.25 parts by mass to 4.0 parts by mass, and preferably 0.5 parts by mass to 3.0 parts by mass with respect to 100 parts by mass of the copper-containing particles. More preferred. When the amount of the coupling agent is 0.25 parts by mass or more with respect to 100 parts by mass of the copper-containing particles, the effect of improving the adhesive strength tends to be more easily obtained. Further, when the amount of the coupling agent is 4.0 parts by mass or less with respect to 100 parts by mass of the copper-containing particles, the conductor-forming composition is less likely to gel, and the film-forming property of the conductor-forming composition is better. become.

銅含有粒子、ウレタン結合を有する樹脂及びシランカップリング剤を含有する導体形成用組成物を焼結してなる焼結体を含む導体が、基材に対する接着性に優れる理由は明らかではないが、例えば、ウレタン結合を有する樹脂は極性が比較的高いため、少ない添加量でも基材に対する充分な接着性の向上効果を発揮できるためと考えられる。また、シランカップリング剤は無機物質である銅粒子とウレタン系樹脂との双方に対して高い親和性を有するため、基材に対する接着性が向上するものと考えられる。 It is not clear why a conductor containing a sintered body obtained by sintering a conductor-forming composition containing copper-containing particles, a resin having a urethane bond, and a silane coupling agent has excellent adhesiveness to a base material. For example, since the resin having a urethane bond has a relatively high polarity, it is considered that a sufficient effect of improving the adhesiveness to the substrate can be exhibited even with a small amount of addition. Further, since the silane coupling agent has a high affinity for both the copper particles which are inorganic substances and the urethane-based resin, it is considered that the adhesiveness to the base material is improved.

銅含有粒子、ウレタン結合を有する樹脂及びシランカップリング剤を含有する導体形成用組成物を焼結してなる焼結体を含む導体が、導電性に優れる理由は明らかではないが、例えば、一般的に接着力向上のために添加されるエポキシ樹脂、アクリル樹脂等の硬化速度の速い熱硬化性樹脂は、銅含有粒子を焼結させるための加熱工程において、銅含有粒子の焼結よりも速く樹脂の熱硬化が進行して充分な焼結が妨げられる傾向があるのに対し、ウレタン結合を有する樹脂は熱可塑性である(硬化しない)か、熱硬化性であっても硬化速度が比較的遅いため、銅含有粒子の焼結を妨げにくく、良好な導電性が発現し易いためと考えられる。また、ウレタン結合を有する樹脂は、硬化する際、体積収縮が収縮し、銅粒子の接触が進行したために良好な導電性が発現し易くなると考えられる。また、ウレタン結合を含む樹脂が収縮する際、シランカップリング剤が架橋剤と類似の硬化を発揮することで、ウレタン結合を含む樹脂の体積収縮がさらに進行し、ウレタン結合を含む樹脂単独で用いる場合よりも、良好な導電性が発現し易くなると考えられる。 It is not clear why a conductor containing a sintered body obtained by sintering a conductor-forming composition containing copper-containing particles, a resin having a urethane bond, and a silane coupling agent has excellent conductivity, but for example, in general. Thermosetting resins with a high curing rate, such as epoxy resin and acrylic resin, which are added to improve adhesive strength, are faster than sintering copper-containing particles in the heating process for sintering copper-containing particles. While thermosetting of the resin tends to proceed and sufficient sintering is hindered, the resin having a urethane bond is thermoplastic (does not cure) or has a relatively high curing rate even if it is thermosetting. It is considered that because it is slow, it is difficult to prevent the sintering of copper-containing particles and good conductivity is easily exhibited. Further, it is considered that the resin having a urethane bond tends to exhibit good conductivity because the volume shrinkage contracts when the resin is cured and the contact of the copper particles progresses. Further, when the resin containing the urethane bond shrinks, the silane coupling agent exhibits curing similar to that of the cross-linking agent, so that the volume shrinkage of the resin containing the urethane bond further progresses, and the resin containing the urethane bond is used alone. It is considered that good conductivity is more likely to be developed than in the case.

[分散媒]
導体形成用組成物は、分散媒を含有していてもよい。分散媒の種類は特に制限されず、導体形成用組成物の用途に応じて一般に用いられる有機溶媒から選択でき、1種を単独で用いても、2種以上を併用してもよい。導体形成用組成物を印刷法に適用する場合は、導体形成用組成物の粘度コントロールの観点から、テルピネオール、イソボルニルシクロヘキサノール、ジヒドロターピネオール及びジヒドロターピネオールアセテートからなる群より選択される少なくとも1種を含むことが好ましい。
[Dispersion medium]
The conductor-forming composition may contain a dispersion medium. The type of the dispersion medium is not particularly limited, and can be selected from commonly used organic solvents depending on the use of the conductor-forming composition, and one type may be used alone or two or more types may be used in combination. When the conductor-forming composition is applied to a printing method, at least one selected from the group consisting of terpineol, isobornylcyclohexanol, dihydroterpineol and dihydroterpineol acetate from the viewpoint of viscosity control of the conductor-forming composition. Is preferably included.

導体形成用組成物の粘度は特に制限されず、導体形成用組成物の使用方法に応じて選択できる。例えば、導体形成用組成物をスクリーン印刷法に適用する場合は、粘度が0.1Pa・s〜30Pa・sであることが好ましく、1Pa・s〜30Pa・sであることがより好ましい。導体形成用組成物をインクジェット印刷法に適用する場合は、使用するインクジェットヘッドの規格にもよるが、粘度が0.1mPa・s〜30mPa・sであることが好ましく、5mPa・s〜20mPa・sであることがより好ましい。導体形成用組成物の粘度はE型粘度計(東機産業株式会社製、製品名:VISCOMETER−TV22、適用コーンプレート型ロータ:3°×R17.65)を用いて測定される25℃における粘度を意味する。 The viscosity of the conductor-forming composition is not particularly limited and can be selected according to the method of using the conductor-forming composition. For example, when the conductor-forming composition is applied to a screen printing method, the viscosity is preferably 0.1 Pa · s to 30 Pa · s, and more preferably 1 Pa · s to 30 Pa · s. When the composition for forming a conductor is applied to an inkjet printing method, the viscosity is preferably 0.1 mPa · s to 30 mPa · s, and 5 mPa · s to 20 mPa · s, although it depends on the standard of the inkjet head used. Is more preferable. The viscosity of the conductor forming composition is measured at 25 ° C. using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., product name: VISCOMETER-TV22, applicable cone plate type rotor: 3 ° × R17.65). Means.

[その他の成分]
導体形成用組成物は、必要に応じて銅含有粒子、ウレタン結合を有する樹脂、シランカップリング剤及び分散媒以外のその他の成分を含んでもよい。このような成分としては、ウレタン結合を有する樹脂以外の樹脂、ラジカル開始剤、還元剤等が挙げられる。
[Other ingredients]
The conductor-forming composition may contain copper-containing particles, a resin having a urethane bond, a silane coupling agent, and other components other than the dispersion medium, if necessary. Examples of such a component include resins other than resins having a urethane bond, radical initiators, reducing agents and the like.

導体形成用組成物がウレタン結合を有する樹脂以外の樹脂を含む場合、当該樹脂としてアルコキシシリル基及びシラノール基からなる群より選択される少なくとも1つの基を有する樹脂を含んでもよい。この場合も、導体形成用組成物がウレタン結合と、アルコキシシリル基及びシラノール基からなる群より選択される少なくとも1つの基とを有する樹脂を含む場合と同様の効果を得ることができる。 When the conductor-forming composition contains a resin other than the resin having a urethane bond, the resin may contain a resin having at least one group selected from the group consisting of an alkoxysilyl group and a silanol group. In this case as well, the same effect as when the conductor-forming composition contains a resin having a urethane bond and at least one group selected from the group consisting of an alkoxysilyl group and a silanol group can be obtained.

導体形成用組成物がウレタン結合を有する樹脂以外の樹脂を含む場合、樹脂全体におけるウレタン樹脂結合を有する樹脂の割合は導電性と保存安定性の観点から30質量%以上であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。 When the conductor-forming composition contains a resin other than the resin having a urethane bond, the proportion of the resin having the urethane resin bond in the entire resin is preferably 30% by mass or more from the viewpoint of conductivity and storage stability, and is 50%. It is more preferably 70% by mass or more, and further preferably 70% by mass or more.

本実施形態の導体形成用組成物は、低温(例えば、200℃以下)での加熱によって導体が得られるため、耐熱性が比較的低い材質からなる基材に導体を配置する場合に好適に用いることができる。耐熱性が比較的低い材質としては、熱可塑性樹脂が挙げられる。熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン樹脂、ポリカーボネート樹脂などが挙げられる。また、基材の耐熱性が高くても、基材に備えられる耐熱性の低い部材があって高温で加熱ができない場合でも、好適に用いることができる。 Since the conductor forming composition of the present embodiment can be obtained by heating at a low temperature (for example, 200 ° C. or lower), it is preferably used when the conductor is arranged on a base material made of a material having relatively low heat resistance. be able to. Examples of materials having relatively low heat resistance include thermoplastic resins. Examples of the thermoplastic resin include polyolefin resins such as polyethylene, polypropylene and polymethylpentene, and polycarbonate resins. Further, even if the base material has high heat resistance, it can be suitably used even when there is a member having low heat resistance provided in the base material and heating cannot be performed at a high temperature.

<導体及びその製造方法>
本実施形態の導体は、上述した実施形態の導体形成用組成物を焼結してなる焼結体を含む。導体の形状は特に制限されず、薄膜状、パターン状等を挙げることができる。本実施形態の導体は、種々の電子部品の配線、被膜等の形成に使用できる。特に、本実施形態の導体は低温(例えば、200℃以下)で製造できるため、樹脂等の耐熱性の低い基材上に金属箔、配線パターン等を形成する用途に好適に用いられる。また、通電を目的としない装飾、印字等の用途にも好適に用いられる。
<Conductor and its manufacturing method>
The conductor of the present embodiment includes a sintered body obtained by sintering the conductor-forming composition of the above-described embodiment. The shape of the conductor is not particularly limited, and examples thereof include a thin film shape and a pattern shape. The conductor of this embodiment can be used for forming wirings, coatings, etc. of various electronic components. In particular, since the conductor of this embodiment can be manufactured at a low temperature (for example, 200 ° C. or lower), it is suitably used for forming a metal foil, a wiring pattern, or the like on a base material having low heat resistance such as resin. Further, it is suitably used for applications such as decoration and printing that are not intended to be energized.

基材上に導体形成用組成物からなる層を形成し、加熱して焼結体を得る場合、基材の材質は特に制限されず、導電性を有していても有していなくてもよい。具体的には、Cu、Au、Pt、Pd、Ag、Zn、Ni、Co、Fe、Al、Sn等の金属、これら金属の合金、ITO、ZnO、SnO、Si等の半導体、ガラス、セラミック、黒鉛、グラファイト等のカーボン材料、樹脂、紙、これらの組み合わせなどを挙げることができる。 When a layer made of a conductor-forming composition is formed on a base material and heated to obtain a sintered body, the material of the base material is not particularly limited, and it may or may not have conductivity. Good. Specifically, metals such as Cu, Au, Pt, Pd, Ag, Zn, Ni, Co, Fe, Al and Sn, alloys of these metals, semiconductors such as ITO, ZnO, SnO and Si, glass and ceramics. Examples thereof include carbon materials such as graphite and graphite, resins, papers, and combinations thereof.

本実施形態の導体は、樹脂等の有機材料を含む基材に対して優れた接着性を示すとともに、セラミック、ガラス、無機フィラー含有樹脂等の無機材料を含む基材に対しても優れた接着性を示す。基材の形状は特に制限されず、板状、棒状、ロール状、フィルム状等であってよい。 The conductor of the present embodiment exhibits excellent adhesiveness to a base material containing an organic material such as resin, and also has excellent adhesion to a base material containing an inorganic material such as ceramic, glass, and an inorganic filler-containing resin. Show sex. The shape of the base material is not particularly limited, and may be a plate shape, a rod shape, a roll shape, a film shape, or the like.

導体の体積抵抗率は2000mΩ・cm以下であることが好ましく、200mΩ・cm以下であることがより好ましく、10mΩ・cm以下であることがさらに好ましく、1mΩ・cm以下であることが特に好ましい。 The volume resistivity of the conductor is preferably 2000 mΩ · cm or less, more preferably 200 mΩ · cm or less, further preferably 10 mΩ · cm or less, and particularly preferably 1 mΩ · cm or less.

導体の基材に対する接着力は0.05N/m以上であることが好ましく、0.5N/m以上であることがより好ましく、5.0N/m以上であることがさらに好ましく、50.0N/m以上であることが特に好ましい。本明細書において導体の基材に対する接着力は、卓上ピール試験機を用いて幅10mmの導体をピール角度90°、ピール速度30mm/秒で基材から剥離したときの、基材と導体の接着力(N/m)である。 The adhesive force of the conductor to the substrate is preferably 0.05 N / m or more, more preferably 0.5 N / m or more, further preferably 5.0 N / m or more, and 50.0 N / m. It is particularly preferable that it is m or more. In the present specification, the adhesive force of a conductor to a base material is the adhesion between the base material and the conductor when a conductor having a width of 10 mm is peeled off from the base material at a peel angle of 90 ° and a peel speed of 30 mm / sec using a desktop peel tester. It is a force (N / m).

本実施形態の導体は、種々の用途に用いることができる。具体的には、積層板、太陽電池パネル、ディスプレイ、タッチパネル、トランジスタ、半導体パッケージ、積層セラミックコンデンサ等の電子部品に使用される、電気配線、放熱膜、表面被覆膜等の部材として利用することができる。特に、本実施形態の導体は樹脂等の基材上に形成できるため、フレキシブルな積層板、太陽電池パネル、ディスプレイ等の製造に好適である。 The conductor of this embodiment can be used for various purposes. Specifically, it is used as a member such as an electric wiring, a heat radiating film, and a surface coating film used for electronic parts such as a laminated board, a solar cell panel, a display, a touch panel, a transistor, a semiconductor package, and a laminated ceramic capacitor. Can be done. In particular, since the conductor of the present embodiment can be formed on a base material such as resin, it is suitable for manufacturing flexible laminated plates, solar cell panels, displays and the like.

導体形成用組成物を加熱して得られる焼結体は、めっきシード層としても好適に用いることができる。焼結体をめっきシード層として用いる場合、めっきシード層上に形成されるめっき層に用いる金属の種類は特に制限されず、めっきの方法も電解めっき又は無電解めっきのいずれであってもよい。また、焼結体上にめっき層を形成することによって得られる導体もまた、上述の種々の用途に用いることができる。 The sintered body obtained by heating the conductor-forming composition can also be suitably used as a plating seed layer. When the sintered body is used as the plating seed layer, the type of metal used for the plating layer formed on the plating seed layer is not particularly limited, and the plating method may be either electrolytic plating or electroless plating. Further, the conductor obtained by forming the plating layer on the sintered body can also be used for the above-mentioned various uses.

本実施形態の導体の製造方法は、本実施形態の導体形成用組成物を加熱して、焼結体を得る工程(加熱工程)を備える。加熱工程では、導体形成用組成物に含まれる銅含有粒子の表面の有機物を完全に又は部分的に熱分解又は揮発させ、かつ、銅含有粒子を焼結させて、焼結体を得る。本実施形態の導体形成用組成物は、200℃以下、好ましくは180℃以下の温度で銅含有粒子を焼結させて導体に変化させることが可能である。このとき、焼結体には、ウレタン結合を有する樹脂及びシランカップリング剤の一部又は全部が残存し得る。 The method for producing a conductor of the present embodiment includes a step (heating step) of heating the conductor-forming composition of the present embodiment to obtain a sintered body. In the heating step, the organic matter on the surface of the copper-containing particles contained in the conductor-forming composition is completely or partially thermally decomposed or volatilized, and the copper-containing particles are sintered to obtain a sintered body. The conductor-forming composition of the present embodiment can be transformed into a conductor by sintering copper-containing particles at a temperature of 200 ° C. or lower, preferably 180 ° C. or lower. At this time, a part or all of the resin having a urethane bond and the silane coupling agent may remain in the sintered body.

加熱工程が実施される雰囲気中の成分は特に制限されず、通常の導体の製造工程で用いられる窒素、アルゴン等から選択できる。また、水素、ギ酸等の還元性物質を、窒素等に飽和させた雰囲気中で加熱してもよい。加熱時の圧力は特に制限されないが、減圧とすることでより低温で銅含有粒子を焼結させて導体に変化させることが促進される傾向にある。 The components in the atmosphere in which the heating step is carried out are not particularly limited, and can be selected from nitrogen, argon and the like used in a normal conductor manufacturing step. Further, a reducing substance such as hydrogen or formic acid may be heated in an atmosphere saturated with nitrogen or the like. The pressure during heating is not particularly limited, but the reduced pressure tends to promote the sintering of copper-containing particles at a lower temperature to change them into conductors.

加熱工程は一定の温度で行っても、温度を変えながら行ってもよい。加熱工程を、温度を上昇させながら行う場合は、一定の昇温速度で行っても、昇温速度を変えながら行ってもよい。 The heating step may be performed at a constant temperature or while changing the temperature. When the heating step is performed while raising the temperature, it may be performed at a constant temperature rise rate or while changing the temperature rise rate.

加熱工程の時間は特に制限されず、加熱温度、加熱雰囲気、銅含有粒子の量等を考慮して選択できる。加熱方法は特に制限されず、熱板による加熱、赤外ヒータによる加熱、パルスレーザによる加熱等を挙げることができる。 The time of the heating step is not particularly limited, and can be selected in consideration of the heating temperature, the heating atmosphere, the amount of copper-containing particles, and the like. The heating method is not particularly limited, and examples thereof include heating with a hot plate, heating with an infrared heater, and heating with a pulse laser.

導体の製造方法は、必要に応じてその他の工程を有していてもよい。その他の工程としては、加熱工程前に導体形成用組成物を含む層を基材に設ける工程、加熱工程前に導体形成用組成物中の揮発成分の少なくとも一部を乾燥等により除去する工程、加熱工程後に還元雰囲気中で加熱により生成した酸化銅を還元する工程、加熱工程後に光焼成を行って残存成分を除去する工程、加熱工程後に得られた導体に対して荷重をかける工程などを挙げることができる。 The method for manufacturing the conductor may include other steps, if necessary. Other steps include a step of providing a layer containing the conductor-forming composition on the substrate before the heating step, a step of removing at least a part of volatile components in the conductor-forming composition by drying or the like before the heating step, and a step of removing at least a part of the volatile components in the conductor-forming composition. Examples include a step of reducing copper oxide produced by heating in a reducing atmosphere after the heating step, a step of performing photocalculation after the heating step to remove residual components, and a step of applying a load to the conductor obtained after the heating step. be able to.

本実施形態の導体の製造方法は、焼結体上に、めっき層を形成する工程(めっき層形成工程)をさらに備えていてもよい。 The conductor manufacturing method of the present embodiment may further include a step of forming a plating layer (plating layer forming step) on the sintered body.

めっき層形成工程において、めっき層を形成する方法は特に制限されず、電解めっき又は無電解めっきのいずれであってもよい。めっき層の形成に用いる金属の種類は特に制限されず、銅、ニッケル、金、クロム等が挙げられる。 In the plating layer forming step, the method of forming the plating layer is not particularly limited, and either electrolytic plating or electroless plating may be used. The type of metal used to form the plating layer is not particularly limited, and examples thereof include copper, nickel, gold, and chromium.

<積層体>
本実施形態の積層体は、基材と、前記基材上に配置される上述した実施形態の導体と、を備える。基材の種類は特に制限されず、導体を形成しうる基材として上述したものから選択してもよい。基材上に配置される導体は、基材の全面に配置されていても、一部にのみ配置されていてもよい。
<Laminated body>
The laminate of the present embodiment includes a base material and the conductor of the above-described embodiment arranged on the base material. The type of the base material is not particularly limited, and the base material on which the conductor can be formed may be selected from the above-mentioned ones. The conductor arranged on the base material may be arranged on the entire surface of the base material or may be arranged only on a part of the base material.

<装置>
本実施形態の装置は、上述した実施形態の導体を備える。装置の種類は特に制限されない。例えば、上述した実施形態の導体からなる配線、被膜等を有する太陽電池パネル、ディスプレイ、タッチパネル、電子部品(トランジスタ、セラミックコンデンサ、半導体パッケージ等)などが挙げられる。また、これらの装置を内蔵する電子機器、家電、産業用機械、輸送用機械等も本実施形態の装置に含まれる。
<Device>
The apparatus of this embodiment includes the conductor of the above-described embodiment. The type of device is not particularly limited. For example, a wiring made of a conductor of the above-described embodiment, a solar cell panel having a coating film, a display, a touch panel, an electronic component (transistor, ceramic capacitor, semiconductor package, etc.) and the like can be mentioned. In addition, electronic devices, home appliances, industrial machines, transportation machines, etc. incorporating these devices are also included in the devices of the present embodiment.

以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.

[製造例1]
[1.1]ノナン酸銅の合成
水酸化銅(II)(関東化学株式会社、特級)91.5g(0.94mol)に1−プロパノール(関東化学株式会社、特級)150mLを加えて撹拌し、これにノナン酸(関東化学株式会社)370.9g(2.34mol)を加えた。得られた混合物を、セパラブルフラスコ中で90℃、30分間加熱撹拌した。得られた溶液を加熱したままろ過して未溶解物を除去した。その後放冷し、生成したノナン酸銅を吸引ろ過し、洗浄液が透明になるまでヘキサンで洗浄した。得られた粉体を50℃の防爆オーブンで3時間乾燥してノナン酸銅(II)を得た。収量は340g(収率96質量%)であった。
[Manufacturing Example 1]
[1.1] Synthesis of copper nonanoate To 91.5 g (0.94 mol) of copper (II) hydroxide (Kanto Chemical Co., Inc., special grade), 150 mL of 1-propanol (Kanto Chemical Co., Inc., special grade) was added and stirred. , 370.9 g (2.34 mol) of nonanoic acid (Kanto Chemical Co., Inc.) was added thereto. The resulting mixture was heated and stirred in a separable flask at 90 ° C. for 30 minutes. The obtained solution was filtered while being heated to remove undissolved substances. After that, the mixture was allowed to cool, and the produced copper nonanoate was suction-filtered and washed with hexane until the washing liquid became transparent. The obtained powder was dried in an explosion-proof oven at 50 ° C. for 3 hours to obtain copper (II) nonanoate. The yield was 340 g (yield 96% by mass).

[1.2]銅含有粒子の合成
上記で得られたノナン酸銅(II)15.01g(0.040mol)及び酢酸銅(II)無水物(関東化学株式会社、特級)7.21g(0.040mol)をセパラブルフラスコに入れ、1−プロパノール22mL及びヘキシルアミン(東京化成工業株式会社)32.1g(0.32mol)を添加し、オイルバス中、80℃で加熱撹拌して溶解させた。氷浴に移し、内温が5℃になるまで冷却した後、ヒドラジン一水和物(関東化学株式会社、特級)7.72mL(0.16mol)を加えて、さらに氷浴中で撹拌した。なお、銅:ヘキシルアミンのモル比は1:4である。次いで、オイルバス中で10分間、90℃で加熱撹拌した。その際、発泡を伴う還元反応が進み、セパラブルフラスコの内壁が銅光沢を呈し、溶液が暗赤色に変化した。遠心分離を9000rpm(回転/分)で1分間実施して固体物を得た。固形物をさらにヘキサン15mLで洗浄する工程を3回繰り返し、酸残渣を除去して、銅光沢を有する銅含有粒子の粉体を含む銅ケークAを得た。
[1.2] Synthesis of Copper-Containing Particles 15.01 g (0.040 mol) of copper (II) nonanoate and 7.21 g (0) of copper (II) acetate anhydride (Kanto Chemical Co., Inc., special grade) obtained above. .040 mol) was placed in a separable flask, 22 mL of 1-propanol and 32.1 g (0.32 mol) of hexylamine (Tokyo Kasei Kogyo Co., Ltd.) were added, and the mixture was dissolved by heating and stirring at 80 ° C. in an oil bath. .. After transferring to an ice bath and cooling to an internal temperature of 5 ° C., 7.72 mL (0.16 mol) of hydrazine monohydrate (Kanto Chemical Co., Inc., special grade) was added, and the mixture was further stirred in the ice bath. The molar ratio of copper: hexylamine is 1: 4. Then, it was heated and stirred at 90 ° C. for 10 minutes in an oil bath. At that time, the reduction reaction accompanied by foaming proceeded, the inner wall of the separable flask exhibited a copper luster, and the solution turned dark red. Centrifugation was performed at 9000 rpm (rotation / min) for 1 minute to obtain a solid. The step of further washing the solid material with 15 mL of hexane was repeated three times to remove the acid residue to obtain a copper cake A containing a powder of copper-containing particles having a copper luster.

上記で合成した銅ケークAに含まれる銅含有粒子を透過型電子顕微鏡(商品名:JEM−2100F、日本電子株式会社)で観察したところ、無作為に選択した200個の銅含有粒子の長軸の長さの平均値は104nmであり、長軸の長さが50nm以下である銅含有粒子の割合は18個数%であり、長軸の長さが70nm以上である銅含有粒子の割合は67個数%であり、最大径粒子の長軸の長さは200nmであり、アスペクト比の平均値は1.2であった。また、表面に凹凸を有する銅含有粒子が観察され、円形度の平均値は0.81であった。図1に、銅含有粒子の透過型電子顕微鏡像を示す。 When the copper-containing particles contained in the copper cake A synthesized above were observed with a transmission electron microscope (trade name: JEM-2100F, Nippon Denshi Co., Ltd.), the long axis of 200 randomly selected copper-containing particles was observed. The average value of the length is 104 nm, the proportion of copper-containing particles having a major axis length of 50 nm or less is 18% by number, and the proportion of copper-containing particles having a major axis length of 70 nm or more is 67. The number% was, the length of the major axis of the maximum diameter particles was 200 nm, and the average value of the aspect ratio was 1.2. Further, copper-containing particles having irregularities on the surface were observed, and the average value of circularity was 0.81. FIG. 1 shows a transmission electron microscope image of copper-containing particles.

[実施例1−1〜1−6、及び比較例1−1〜1−5]
銅ケークA(50質量部)、テルピネオール(25質量部)、及びイソボルニルシクロヘキサノール(商品名:テルソルブMTPH、日本テルペン化学株式会社)(25質量部)を混合した。得られたペースト状の混合物に、ウレタン結合と、アルコキシシリル基としてメトキシシリル基とを有するウレタン樹脂A(商品名:U201、荒川化学工業株式会社)を、銅ケークA100質量部に対して不揮発分として表1に示す量(質量部)で混合した。続いて、シランカップリング剤(商品名:KBM―903、信越化学工業)を、銅ケークA100質量部に対して表1に示す量(質量部)で混合して、導体形成用組成物を調製した。
[Examples 1-1 to 1-6 and Comparative Examples 1-1 to 1-5]
Copper cake A (50 parts by mass), terpineol (25 parts by mass), and isobornylcyclohexanol (trade name: Telsolv MTPH, Nippon Terpen Chemical Co., Ltd.) (25 parts by mass) were mixed. Urethane resin A (trade name: U201, Arakawa Chemical Industry Co., Ltd.) having a urethane bond and a methoxysilyl group as an alkoxysilyl group was added to the obtained paste-like mixture as a non-volatile component with respect to 100 parts by mass of copper cake A. The mixture was mixed in the amount (parts by mass) shown in Table 1. Subsequently, a silane coupling agent (trade name: KBM-903, Shin-Etsu Chemical Co., Ltd.) is mixed with 100 parts by mass of copper cake A in an amount (parts by mass) shown in Table 1 to prepare a conductor-forming composition. did.

[実施例2−1〜2−6、及び比較例2−1〜2−5]
ウレタン樹脂Aに代えて、ウレタン結合を有し、アルコキシシリル基及びシラノール基のいずれも有しないウレタン樹脂B(商品名:KL424、荒川化学工業株式会社)を、銅ケークA100質量部に対して不揮発分として表1に示す量(質量部)で用いた以外は、実施例1−1等と同様にして、導体形成用組成物を調製した。
[Examples 2-1 to 2-6 and Comparative Examples 2-1 to 2-5]
Instead of urethane resin A, urethane resin B (trade name: KL424, Arakawa Chemical Industry Co., Ltd.) having a urethane bond and having neither an alkoxysilyl group nor a silanol group is non-volatile with respect to 100 parts by mass of copper cake A. A composition for forming a conductor was prepared in the same manner as in Example 1-1 and the like except that the amount (part by mass) shown in Table 1 was used as the minute.

[比較例3−1及び3−2]
液状エポキシ樹脂(9.95質量部)(商品名:YL980、三菱化学株式会社)、テルピネオール(45質量部)、及びイソボルニルシクロヘキサノール(商品名:テルソルブMTPH、日本テルペン化学株式会社)(45質量部)、イミダゾール系エポキシ硬化剤(商品名:キュアゾール2P4MHz、四国化成工業株式会社)(0.05質量部)を混合してエポキシ樹脂溶液を調製した。
[Comparative Examples 3-1 and 3-2]
Liquid epoxy resin (9.95 parts by mass) (trade name: YL980, Mitsubishi Chemical Co., Ltd.), terpineol (45 parts by mass), and isobornylcyclohexanol (trade name: Telsolv MTPH, Nippon Terpen Chemical Co., Ltd.) (45) (Mass by mass) and an imidazole-based epoxy curing agent (trade name: Curesol 2P 4 MHz, Shikoku Kasei Kogyo Co., Ltd.) (0.05 parts by mass) were mixed to prepare an epoxy resin solution.

ウレタン樹脂Aに代えて、上記のエポキシ樹脂溶液を、銅ケークA100質量部に対して不揮発分として表1に示す量(質量部)で用いた以外は、実施例1−1等と同様にして、導体形成用組成物を調製した。 In the same manner as in Example 1-1 and the like, the above epoxy resin solution was used in place of the urethane resin A in an amount (parts by mass) shown in Table 1 as a non-volatile content with respect to 100 parts by mass of the copper cake A. , A composition for forming a conductor was prepared.

[比較例4−1及び4−2]
ウレタン樹脂Aを用いなかった以外は、実施例1−1等と同様にして、導体形成用組成物を調製した。
[Comparative Examples 4-1 and 4-2]
A conductor-forming composition was prepared in the same manner as in Example 1-1 and the like except that the urethane resin A was not used.

(ゲル化の評価)
実施例及び比較例で得られた導体形成用組成物がゲル化しているかどうかを目視にて観察した。ゲル化していなかったものを「○」と評価し、ゲル化していたものを「×」とした。結果を表1に示す。
(Evaluation of gelation)
Whether or not the conductor-forming compositions obtained in Examples and Comparative Examples were gelled was visually observed. Those that were not gelled were evaluated as "○", and those that were gelled were evaluated as "x". The results are shown in Table 1.

(導体の形成)
実施例及び比較例で得られた導体形成用組成物を、基材としてのガラス板上に塗布し、加熱して銅を含む薄膜(焼結体)を得た。加熱は、酸素濃度を100ppm以下とした1気圧の窒素雰囲気中、昇温速度4℃/秒で180℃まで加熱し、60分間保持することによって行った。銅を含む薄膜(焼結体)を透過型電子顕微鏡(商品名:JEM−2100F、日本電子株式会社)で観察したところ、実施例及び比較例のいずれにおいても、導体形成用組成物中の銅含有粒子同士が焼結しており、導体の形成が示唆された。
(Formation of conductor)
The conductor-forming compositions obtained in Examples and Comparative Examples were applied onto a glass plate as a base material and heated to obtain a thin film (sintered body) containing copper. The heating was carried out by heating to 180 ° C. at a heating rate of 4 ° C./sec and holding for 60 minutes in a nitrogen atmosphere at 1 atm with an oxygen concentration of 100 ppm or less. When a thin film (sintered body) containing copper was observed with a transmission electron microscope (trade name: JEM-2100F, JEOL Ltd.), copper in the conductor forming composition was observed in both Examples and Comparative Examples. The contained particles were sintered together, suggesting the formation of a conductor.

(導電性の評価)
次いで、銅を含む薄膜(焼結体)の体積抵抗率を、4端針面抵抗測定器で測定した面抵抗値と、非接触表面・層断面形状計測システム(商品名:VertScan、株式会社菱化システム)から求めた膜厚とから計算した。結果を表1に示す。
(Evaluation of conductivity)
Next, the volume resistivity of the thin film (sintered body) containing copper was measured with a four-end needle surface resistance measuring device, and the non-contact surface / layer cross-sectional shape measurement system (trade name: VertScan, Ryo Co., Ltd.) It was calculated from the film thickness obtained from the chemical system). The results are shown in Table 1.

[接着性の評価]
得られた銅を含む薄膜(焼結体)に対して、JIS K5400に準じてクロスカット試験を実施した(幅1mm)。粘着テープを薄膜に貼り、そのテープを剥離したときに、ガラス板からの膜はがれがなかった(残存したマス目が100個中100個であった)場合を、接着性が「良好:○」であると評価した。一方、テープを剥離したときに、ガラス板からの膜はがれが生じた(残存したマス目が100個中99個以下であった)場合を、接着性が「不良:×」であると評価した。結果を表1に示す。
[Evaluation of adhesiveness]
A cross-cut test was carried out on the obtained thin film (sintered body) containing copper according to JIS K5400 (width 1 mm). When the adhesive tape was attached to the thin film and the tape was peeled off, the film did not peel off from the glass plate (the number of remaining squares was 100 out of 100), the adhesiveness was "good: ○". It was evaluated as. On the other hand, when the film was peeled off from the glass plate when the tape was peeled off (the number of remaining squares was 99 or less out of 100), the adhesiveness was evaluated as "defective: x". .. The results are shown in Table 1.

表1に示されるように、ウレタン樹脂A又はウレタン樹脂Bを銅含有粒子100質量部に対して3.0質量部〜15.0質量部含有する実施例の導体形成用組成物を用いて形成した銅を含む薄膜(焼結体)は、体積抵抗率が低く導電性が良好であり、基材に対する接着性も良好であった。また、アルコキシシリル基及びシラノール基からなる群より選択される少なくとも1つの基を有するウレタン樹脂A及びシランカップリング剤を用いて形成した銅を含む薄膜(焼結体)は、そのような基を有していないウレタン樹脂B及びシランカップリング剤を用いて形成した銅を含む薄膜(焼結体)に比べて、基材に対する接着性及び導電性により優れていた。これは、ウレタン樹脂Aのアルコキシシリル基及びシランカップリング剤のアルコキシシリル基が、基材(ガラス)と親和性が高く、少量でも充分な接着性が発現し、銅含有粒子同士の接触も起こり易くなったためであると考えられる。 As shown in Table 1, formed by using the conductor-forming composition of the example containing 3.0 parts by mass to 15.0 parts by mass of urethane resin A or urethane resin B with respect to 100 parts by mass of copper-containing particles. The thin film (sintered body) containing copper had a low volume resistivity and good conductivity, and also had good adhesiveness to a base material. Further, a thin film (sintered body) containing copper formed by using a urethane resin A having at least one group selected from the group consisting of an alkoxysilyl group and a silanol group and a silane coupling agent has such a group. Compared with the thin film (sintered body) containing copper formed by using the urethane resin B and the silane coupling agent which does not have it, it was superior in adhesiveness and conductivity to the base material. This is because the alkoxysilyl group of the urethane resin A and the alkoxysilyl group of the silane coupling agent have high affinity with the base material (glass), sufficient adhesiveness is exhibited even in a small amount, and contact between copper-containing particles also occurs. It is thought that this is because it became easier.

シランカップリング剤を用いることで、ウレタン樹脂A又はウレタン樹脂Bを単独で用いる場合と比較して、銅を含む薄膜(焼結体)の導電性が良好であった。これは、焼結する際、シランカップリング剤がウレタン樹脂と架橋構造を形成することで、導体形成用組成物の体積が収縮し、銅含有粒子同士の接触が起こり易くなったためであると考えられる。 By using the silane coupling agent, the conductivity of the thin film (sintered body) containing copper was better than when the urethane resin A or the urethane resin B was used alone. It is considered that this is because the silane coupling agent forms a crosslinked structure with the urethane resin during sintering, so that the volume of the conductor-forming composition shrinks and the copper-containing particles easily come into contact with each other. Be done.

樹脂成分としてエポキシ樹脂を用いた比較例3−1及び3−2の導体形成用組成物を用いて形成した銅を含む薄膜(焼結体)は、体積抵抗率が高くなった。樹脂成分を含まず、カップリング剤のみを用いた比較例4−1では、銅を含む薄膜(焼結体)は導電性を示さなかった。また、樹脂成分を含まない比較例4−2では、体積抵抗率は低いものの、基材に対する接着力がほとんどなかった。 The copper-containing thin film (sintered body) formed by using the conductor-forming compositions of Comparative Examples 3-1 and 3-2 using an epoxy resin as a resin component had a high volume resistivity. In Comparative Example 4-1 which did not contain a resin component and used only a coupling agent, the thin film (sintered body) containing copper did not show conductivity. Further, in Comparative Example 4-2 containing no resin component, although the volume resistivity was low, there was almost no adhesive force to the base material.

これらの結果から、本発明の導体形成用組成物が、基材に対する接着性及び導電性に優れる導体を形成することが可能であることが確認された。 From these results, it was confirmed that the conductor-forming composition of the present invention can form a conductor having excellent adhesiveness and conductivity to a substrate.

Claims (8)

銅含有粒子と、ウレタン結合を有する樹脂と、シランカップリング剤と、を含有し、
前記ウレタン結合を有する樹脂が、アルコキシシリル基及びシラノール基からなる群より選択される少なくとも1つの基を有し、
前記ウレタン結合を有する樹脂の含有量が、前記銅含有粒子100質量部に対して3.0質量部〜15.0質量部である、導体形成用組成物。
It contains copper-containing particles, a resin having a urethane bond, and a silane coupling agent.
The resin having a urethane bond has at least one group selected from the group consisting of an alkoxysilyl group and a silanol group.
A conductor-forming composition in which the content of the resin having a urethane bond is 3.0 parts by mass to 15.0 parts by mass with respect to 100 parts by mass of the copper-containing particles.
前記シランカップリング剤の含有量が、前記銅含有粒子100質量部に対して0.25質量部〜4.0質量部である、請求項1に記載の導体形成用組成物。 The conductor-forming composition according to claim 1, wherein the content of the silane coupling agent is 0.25 parts by mass to 4.0 parts by mass with respect to 100 parts by mass of the copper-containing particles. 前記銅含有粒子が、銅を含むコア粒子と、前記コア粒子の表面の少なくとも一部を被覆する有機物と、を有する、請求項1又は2に記載の導体形成用組成物。 The conductor-forming composition according to claim 1 or 2 , wherein the copper-containing particles include core particles containing copper and an organic substance that covers at least a part of the surface of the core particles. 請求項1〜のいずれか一項に記載の導体形成用組成物を加熱して、焼結体を得る工程を備える、導体の製造方法。 A method for producing a conductor, comprising a step of heating the conductor-forming composition according to any one of claims 1 to 3 to obtain a sintered body. 前記焼結体上に、めっき層を形成する工程をさらに備える、請求項に記載の導体の製造方法。 The method for manufacturing a conductor according to claim 4 , further comprising a step of forming a plating layer on the sintered body. 請求項1〜のいずれか一項に記載の導体形成用組成物を焼結してなる焼結体を含む、導体。 A conductor comprising a sintered body obtained by sintering the conductor-forming composition according to any one of claims 1 to 3. 基材と、前記基材上に設けられた、請求項6に記載の導体と、を備える、積層体。 A laminate comprising a base material and the conductor according to claim 6 provided on the base material. 請求項に記載の導体を備える、装置。 An apparatus comprising the conductor according to claim 6.
JP2017068618A 2017-03-30 2017-03-30 Compositions for forming conductors, conductors and methods for manufacturing them, laminates and devices Active JP6838462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017068618A JP6838462B2 (en) 2017-03-30 2017-03-30 Compositions for forming conductors, conductors and methods for manufacturing them, laminates and devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017068618A JP6838462B2 (en) 2017-03-30 2017-03-30 Compositions for forming conductors, conductors and methods for manufacturing them, laminates and devices

Publications (2)

Publication Number Publication Date
JP2018170227A JP2018170227A (en) 2018-11-01
JP6838462B2 true JP6838462B2 (en) 2021-03-03

Family

ID=64018894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017068618A Active JP6838462B2 (en) 2017-03-30 2017-03-30 Compositions for forming conductors, conductors and methods for manufacturing them, laminates and devices

Country Status (1)

Country Link
JP (1) JP6838462B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6637201B1 (en) * 2019-01-11 2020-01-29 Jx金属株式会社 Method for producing composite of ceramic and conductor
JP7269565B2 (en) * 2019-03-29 2023-05-09 学校法人 関西大学 Conductive ink composition and conductive laminate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157704A1 (en) * 2011-05-18 2012-11-22 戸田工業株式会社 Copper powder, copper paste, method for manufacturing conductive coating film, and conductive coating film
JP2015063590A (en) * 2013-09-25 2015-04-09 三井化学株式会社 Conductive paste composition and fired body

Also Published As

Publication number Publication date
JP2018170227A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6343041B2 (en) Thermally conductive paste and use thereof
JP6717289B2 (en) Copper-containing particles, conductor forming composition, conductor manufacturing method, conductor and device
TW201623459A (en) Conductive composition and electronic component using the same
TW201013704A (en) Conductive inks and pastes
JP2008084620A (en) Silver particle powder and its manufacturing method
JP2008081789A (en) Composite powder of silver particle and production method therefor
WO2007108188A1 (en) Electroconductive ink
JP6729143B2 (en) Resin composition, bonded body and semiconductor device
JP6838462B2 (en) Compositions for forming conductors, conductors and methods for manufacturing them, laminates and devices
JP2006032165A (en) Conductive metal particles and conductive resin composition using them, and conductive adhesive
JP2017101307A (en) Copper-containing particle, conductor forming composition, method for producing conductor, conductor and electronic component
JP7031187B2 (en) Conductor and its forming method, as well as structure and its manufacturing method
WO2018159115A1 (en) Method for manufacturing semiconductor device
JP2020013768A (en) Pasty silver particle composition, manufacturing method of metal-made member conjugate, and manufacturing method of silver particle sintered article and composite of resin cured article
JP2017197658A (en) Conductor-forming composition, method for producing conductor, method for producing plating layer, conductor, laminate and device
JP7172224B2 (en) COMPOSITION FOR CONDUCTOR-FORMING AND METHOD FOR MANUFACTURING ARTICLE HAVING CONDUCTOR LAYER
JP7143685B2 (en) METHOD FOR MANUFACTURING CONDUCTIVE LAMINATED BODY, CONDUCTIVE LAMINATED BODY, AND 2-PART CONDUCTIVE FILM FORMING AGENT
JP2017204371A (en) Conductor-forming composition, method for producing conductor, method for producing plating layer, conductor, laminate, and device
JP2016145397A (en) Producing method of copper membrane and conductor obtained thereby
JP2018170206A (en) Conductor and method for producing the same, conductor-forming composition, laminate, and device
TW201936818A (en) Composition for bonding
JP7333164B2 (en) COMPOSITION FOR CONDUCTOR-FORMING AND METHOD FOR MANUFACTURING ARTICLE HAVING CONDUCTOR LAYER
JP2018092967A (en) Conductor and forming method thereof, structure and manufacturing method thereof
JP7187835B2 (en) COMPOSITION FOR CONDUCTOR-FORMING AND MANUFACTURING METHOD THEREOF, AND ARTICLE HAVING CONDUCTOR LAYER AND MANUFACTURING METHOD THEREOF
JPWO2018030173A1 (en) Bonding composition and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210125

R151 Written notification of patent or utility model registration

Ref document number: 6838462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350