JP2013218813A - Aluminum alloy foil for secondary battery electrode and method for producing the same - Google Patents

Aluminum alloy foil for secondary battery electrode and method for producing the same Download PDF

Info

Publication number
JP2013218813A
JP2013218813A JP2012086197A JP2012086197A JP2013218813A JP 2013218813 A JP2013218813 A JP 2013218813A JP 2012086197 A JP2012086197 A JP 2012086197A JP 2012086197 A JP2012086197 A JP 2012086197A JP 2013218813 A JP2013218813 A JP 2013218813A
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy foil
secondary battery
thickness
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012086197A
Other languages
Japanese (ja)
Other versions
JP2013218813A5 (en
JP5917242B2 (en
Inventor
Kaneshige Yamamoto
兼滋 山本
Satoru Suzuki
覚 鈴木
Masakazu Ishi
雅和 石
Tomohiko Furuya
智彦 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Foil Manufacturing Co Ltd
Furukawa Sky KK
Original Assignee
Nippon Foil Manufacturing Co Ltd
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Foil Manufacturing Co Ltd, Furukawa Sky KK filed Critical Nippon Foil Manufacturing Co Ltd
Priority to JP2012086197A priority Critical patent/JP5917242B2/en
Publication of JP2013218813A publication Critical patent/JP2013218813A/en
Publication of JP2013218813A5 publication Critical patent/JP2013218813A5/ja
Application granted granted Critical
Publication of JP5917242B2 publication Critical patent/JP5917242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy foil for a secondary battery electrode, excellent in ultrasonic welding properties and adhesion with an active material layer.SOLUTION: According to the present invention, there is provided an aluminum alloy foil for a secondary battery electrode which has a thickness of 5-30 μm, a thickness of an oxide film formed on a surface thereof of 1.0 nm or more and 10.0 nm or less, and an amount of an oil component contained in the surface of 0.65 mg/mor more, while the amount of an oil component [C (mg/m)] with respect to the thickness of an oxide film [t (nm)] falls in the range satisfying the following expressions (1) and (2). C≤0.68 t+2.44...(1) C≤-0.6 t+9.0...(2)

Description

本発明は、二次電池電極用アルミニウム合金箔、及びその製造方法に関する。   The present invention relates to an aluminum alloy foil for secondary battery electrodes and a method for producing the same.

リチウムイオン二次電池の正極材を製造するには、まず、LiCoOなどの活物質と、カーボンなどの導電材と、PVDFなどの結着剤とを混練してペーストを作製する。次いで、このペーストを厚さが10〜30μm程度のアルミニウム硬質箔あるいはアルミニウム軟質箔(以下、単に「アルミニウム合金箔」という)の両面に50〜200μm程度の厚さになるように塗布し、120〜200℃位で乾燥させる。その後、このアルミニウム合金箔にプレス、スリット、捲回の各工程を順次、施すことによりリチウムイオン二次電池の正極材が製造される。また、負極材でもアルミニウム合金箔を使える活物質があり、負極にアルミニウム合金箔を使用する場合がある。正極、負極をまとめて電極と呼ばれていることは言うまでもない。 To manufacture a positive electrode material for a lithium ion secondary battery, first, an active material such as LiCoO 2 , a conductive material such as carbon, and a binder such as PVDF are kneaded to prepare a paste. Next, this paste is applied to both sides of an aluminum hard foil or aluminum soft foil (hereinafter simply referred to as “aluminum alloy foil”) having a thickness of about 10 to 30 μm so as to have a thickness of about 50 to 200 μm. Dry at about 200 ° C. Then, the positive electrode material of a lithium ion secondary battery is manufactured by giving each process of a press, a slit, and winding to this aluminum alloy foil sequentially. In addition, there is an active material that can use an aluminum alloy foil for the negative electrode material, and an aluminum alloy foil may be used for the negative electrode. Needless to say, the positive electrode and the negative electrode are collectively referred to as an electrode.

上述した電極用基材となるアルミニウム合金箔への塗布から電池組み立てまでの加工工程において、電極端子のタブと電極集電体とを接続するために、複数の集電体用アルミニウム合金箔を短時間で接合させる必要があり、溶接によって接合させている。特に将来増加すると考えられている車載用電池では、民生用電池に比べて、1個の電池も大きく、大電流を流さないといけない理由で複数枚のアルミニウム合金箔を溶接する必要がある。   In the above-described processing steps from application to the aluminum alloy foil as the electrode substrate to battery assembly, a plurality of current collector aluminum alloy foils are shortened to connect the electrode terminal tab and the electrode current collector. They need to be joined in time, and are joined by welding. In particular, in-vehicle batteries that are expected to increase in the future, one battery is larger than consumer batteries, and it is necessary to weld a plurality of aluminum alloy foils for the reason that a large current must flow.

この接合には、比較的低温度で溶着させられるというメリットがある超音波溶接法が用いられている。超音波溶接法とは、接合させる固体材料間に超音波振動を与え、このエネルギーにより、接合界面での原子を拡散させて接合する方法であり、このため短時間で溶接ができ、金属を溶融させて接合する、他の溶接法より低コストで精度の良い電極材の接合ができる方法である。   For this joining, an ultrasonic welding method having an advantage of being welded at a relatively low temperature is used. The ultrasonic welding method is a method in which ultrasonic vibration is applied between the solid materials to be joined, and atoms are diffused at the joining interface using this energy, so that welding can be performed in a short time and the metal is melted. This is a method that allows joining of electrode materials with lower cost and higher accuracy than other welding methods.

従来、リチウムイオン二次電池の集電体用アルミニウム合金箔と電極タブとを接合するために超音波溶接法が好ましいことが特許文献1に開示されている。しかしながら、リチウムイオン二次電池の集電体用アルミニウム合金箔と電極タブとを接合する前に、集電体用アルミニウム合金箔自体を数十枚超音波溶接するために集電体用アルミニウム合金箔の材料およびその表面をどういう状態にすべきかについて開示したものは見当たらない。   Conventionally, it is disclosed in Patent Document 1 that an ultrasonic welding method is preferable to join an aluminum alloy foil for a current collector of a lithium ion secondary battery and an electrode tab. However, before joining the aluminum alloy foil for the current collector of the lithium ion secondary battery and the electrode tab, dozens of the aluminum alloy foil for the current collector itself are ultrasonically welded. There are no disclosures of the materials and their surface conditions.

特開2010−282846号公報JP 2010-282846 A

通常、溶接は2つの材料を1つの界面で接合させるものがほとんどであるが、電池材のタブとの接合のためのアルミニウム合金箔の接合は何十枚ものアルミニウム合金箔を1回の溶接で全て接合しようというものである。それが故に他では見られない特徴のある表面の状態が必要となってくる。   In general, welding is mostly performed by joining two materials at one interface, but joining of aluminum alloy foil for joining to a battery tab is performed by welding dozens of aluminum alloy foils in a single weld. It is all about joining. Therefore, it is necessary to have a characteristic surface state that cannot be seen elsewhere.

上記の電極集電体を構成するアルミニウム合金箔の表面には、通常数nm〜20nm程度の厚さの酸化皮膜が形成されている。また、その上には圧延時に潤滑のために用いられた油が残存している。この酸化皮膜と圧延油は超音波振動の抵抗となり得る。そもそも超音波溶接とは接合面に圧力を加えながら超音波振動を与えることにより原子拡散を誘起させ、相互金属の原子結合となる接合である。よって、原子拡散により接合される溶接方法であるため、金属原子同士が相接している方がよく接合されると考えられている。   On the surface of the aluminum alloy foil constituting the electrode current collector, an oxide film having a thickness of about several nm to 20 nm is usually formed. Moreover, the oil used for lubrication at the time of rolling remains on it. This oxide film and rolling oil can be a resistance to ultrasonic vibration. In the first place, ultrasonic welding is a bonding in which atomic diffusion is induced by applying ultrasonic vibration while applying pressure to the bonding surfaces to form atomic bonds of mutual metals. Therefore, since it is a welding method to be joined by atomic diffusion, it is considered that metal atoms are in contact with each other better.

2枚のアルミニウム合金箔を1つの接合面で溶接するのであれば、上記の通りの挙動を示すと考えられる。しかしながら、本発明者らは数十枚のアルミニウム合金箔を一度に超音波溶接する場合には、阻害する酸化皮膜が薄いほど、途中で溶接が終了してしまい、所望の枚数以上を一度に溶接し難くなり、酸化皮膜厚さと油分量とが後述する範囲内を満足すると、より多くの枚数のアルミニウム合金箔が一度に溶接できることを発見し、本発明に至ったものである。   If two aluminum alloy foils are welded at one joint surface, it is considered that the above behavior is exhibited. However, when the present inventors ultrasonically weld several tens of aluminum alloy foils at a time, the thinner the hindered oxide film, the more the welding ends in the middle, and the desired number of sheets or more are welded at a time. As a result, when the thickness of the oxide film and the amount of oil satisfy the ranges described later, it was discovered that a larger number of aluminum alloy foils can be welded at one time, and the present invention has been achieved.

また、アルミニウム合金箔表面に残存した圧延油も超音波振動の阻害要因と考えられる。どのような洗浄方法を採用しても、圧延油を完全に除去することは現実的には難しい。また、圧延油を極力減らしてしまうと、その後の製造工程の中で金属のアルミニウムが外部の大気中にさらされ、酸化皮膜が逆に成長し過ぎてしまう可能性が高くなる。   Further, the rolling oil remaining on the surface of the aluminum alloy foil is also considered as a factor inhibiting ultrasonic vibration. Whatever cleaning method is adopted, it is practically difficult to completely remove the rolling oil. Further, if the rolling oil is reduced as much as possible, there is a high possibility that the metal aluminum is exposed to the outside atmosphere in the subsequent manufacturing process and the oxide film grows too much.

本発明者らは、このような挙動に応じた金属材料の表面側因子の内、前記したように、酸化皮膜厚さ及び油分量の両方をあるバランスで存在させることにより、活物質が塗布されて積層して溶接する二次電池電極用アルミニウム合金箔に対し、未塗布部分を一度に超音波溶接させることができ易くなり、さらに活物質層との密着性が向上することを見出した。また、超音波溶接条件を種々変化させても最終的に溶接できるが、より広い溶接条件で溶接できるアルミニウム合金箔表面側因子に着目して本発明を完成したものである。なお、機械や条件とできた結果の説明を区別するため、以下、機械及び条件は「溶接」、できた結果は「溶着」と表現することとする。   As described above, the present inventors apply the active material by causing both the thickness of the oxide film and the amount of oil in a certain balance among the surface side factors of the metal material according to such behavior. It has been found that an uncoated portion can be easily ultrasonically welded at once to an aluminum alloy foil for a secondary battery electrode that is laminated and welded, and the adhesion to the active material layer is further improved. Moreover, although it can weld finally even if it changes various ultrasonic welding conditions, it pays attention to the aluminum alloy foil surface side factor which can be welded on a wider welding condition, and completed this invention. In order to distinguish the description of the result obtained from the machine and the condition, hereinafter, the machine and the condition are expressed as “welding”, and the result obtained is expressed as “welding”.

本発明は、二次電池電極用アルミニウム合金箔であって、厚さが5〜30μmであり、表面に形成されている酸化皮膜厚さが1.0nm以上10.0nm以下であり、表面の油分量が0.65mg/m以上であり、酸化皮膜厚さ〔t(nm)〕に対する油分量〔C(mg/m)〕が下記式(1)及び(2)を満足する範囲であることを特徴とする二次電池電極用アルミニウム合金箔に関するものである。
C≦0.68t+2.44 ・・・・・・ (1)
C≦−0.6t+9.0 ・・・・・・ (2)
The present invention is an aluminum alloy foil for a secondary battery electrode having a thickness of 5 to 30 μm, a thickness of an oxide film formed on the surface of 1.0 nm to 10.0 nm, and a surface oil The amount is 0.65 mg / m 2 or more, and the oil amount [C (mg / m 2 )] with respect to the oxide film thickness [t (nm)] is in a range satisfying the following formulas (1) and (2). The present invention relates to an aluminum alloy foil for a secondary battery electrode.
C ≦ 0.68t + 2.44 (1)
C ≦ −0.6t + 9.0 (2)

また、本発明は、上記記載の二次電池電極用アルミニウム合金箔であって、酸化皮膜厚さ〔t(nm)〕に対する油分量〔C(mg/m)〕が下記式を満足する範囲であることを特徴とする。
C≦0.64t+0.64 ・・・・・・ (3)
C≦−0.6t+8.0 ・・・・・・ (4)
The present invention also provides the above-described aluminum alloy foil for a secondary battery electrode, wherein the oil content [C (mg / m 2 )] relative to the oxide film thickness [t (nm)] satisfies the following formula: It is characterized by being.
C ≦ 0.64t + 0.64 (3)
C ≦ −0.6t + 8.0 (4)

また、本発明は、上記二次電池電極用アルミニウム合金箔を製造する方法であって、圧延上りのアルミニウム合金箔を脱脂、水和、酸化、加熱処理のいずれかの処理を1種または2種以上採用する二次電池電極用アルミニウム合金箔の製造方法に関するものである。   Further, the present invention is a method for producing the above-described aluminum alloy foil for secondary battery electrodes, wherein one or two treatments of degreasing, hydration, oxidation, and heat treatment are performed on the rolled aluminum alloy foil. The present invention relates to a method for producing an aluminum alloy foil for a secondary battery electrode that is employed as described above.

さらに本発明は、80℃以上95℃以下の熱水で10秒以上10分以下で水和処理を行なうことを特徴とする上記記載の二次電池電極用アルミニウム合金箔の製造方法に関するものである。   Furthermore, the present invention relates to the above-described method for producing an aluminum alloy foil for a secondary battery electrode, characterized in that a hydration treatment is performed in hot water at 80 ° C. to 95 ° C. for 10 seconds to 10 minutes. .

また、水和処理後に50℃以上100℃以下で1時間以上24時間以下で酸化処理を実施することを特徴とする上記記載の二次電池電極用アルミニウム合金箔の製造方法に関するものである。   Further, the present invention relates to the above-described method for producing an aluminum alloy foil for a secondary battery electrode, wherein the oxidation treatment is performed at 50 ° C. or more and 100 ° C. or less for 1 hour or more and 24 hours or less.

また、さらに本発明は、100℃以上220℃未満で1時間以上50時間以下で加熱処理を行なうことを特徴とする上記記載の二次電池電極用アルミニウム合金箔の製造方法に関するものである。   Furthermore, the present invention relates to the above-described method for producing an aluminum alloy foil for secondary battery electrodes, wherein the heat treatment is performed at 100 ° C. or higher and lower than 220 ° C. for 1 hour or longer and 50 hours or shorter.

本発明の実施例・比較例での酸化皮膜厚さと油分量をプロットしたグラフである。It is the graph which plotted the oxide film thickness and oil content in the Example and comparative example of this invention.

本発明の二次電池電極用アルミニウム合金箔は、リチウムイオン二次電池等の各種二次電池の電極用に用いられ、集電体として使用できるものであるが、本発明でいう二次電池は蓄電モジュール用でもよく、例えばリチウムイオン二次電池用キャパシタ等にも使用できるもの等の公知の電極用、集電体用合金を使用することができる。   The aluminum alloy foil for secondary battery electrodes of the present invention is used for electrodes of various secondary batteries such as lithium ion secondary batteries, and can be used as a current collector. For example, a known alloy for an electrode or current collector such as one that can be used for a capacitor for a lithium ion secondary battery or the like may be used.

本発明において、アルミニウム合金箔の厚さは、二次電池用途として活物質を保持した状態で超音波溶接用途に使用するため、5〜30μmであり、特に5〜20μmであることが好ましい。厚さが薄すぎると、活物質を十分保持できず、二次電池用途として使用することが困難になり、厚すぎると二次電池とした場合、電極の積層数が必然的に少なくなり活物質の保持量が足りず、電池容量が少なくなる。   In the present invention, the thickness of the aluminum alloy foil is 5 to 30 μm, and particularly preferably 5 to 20 μm, for use in ultrasonic welding with the active material held as a secondary battery. If the thickness is too thin, the active material cannot be retained sufficiently, making it difficult to use as a secondary battery. If the thickness is too thick, the number of electrode stacks will inevitably decrease when the secondary battery is used. Is not sufficient, and the battery capacity is reduced.

本発明のアルミニウム合金箔は超音波溶接を行なうのに適したものであるが、二次電池とするために、通常活物質ペーストが塗られた後、20枚〜60枚を重ねて溶接するように形状が調整されたものであることが好ましい。積層枚数が20枚未満の場合、集電体の捲回数あるいは積層する数が少ないので、同じ放電容量のリチウムイオン二次電池とするためには電極面積を大きくする必要があり、そのためにリチウムイオン二次電池が大きくなってしまい、一定容量、例えば、自動車に搭載するための容積が増加してしまうため好ましくない。さらには、25〜55枚を重ねて溶接するように形状を調整したものであることが好ましい。   The aluminum alloy foil of the present invention is suitable for ultrasonic welding. However, in order to obtain a secondary battery, usually 20 to 60 sheets are overlapped and welded after the active material paste is applied. It is preferable that the shape is adjusted. When the number of stacked layers is less than 20, the number of times the current collector is wound or the number of stacked layers is small. Therefore, in order to obtain a lithium ion secondary battery having the same discharge capacity, it is necessary to increase the electrode area. Since the secondary battery becomes large and a certain capacity, for example, a volume for mounting in an automobile increases, it is not preferable. Furthermore, it is preferable that the shape is adjusted so that 25 to 55 sheets are stacked and welded.

本発明の二次電池電極用アルミニウム合金箔は表面に形成されている酸化皮膜厚さが1.0nm以上10.0nm以下であるものを使用することが必要である。酸化皮膜厚さが1.0nm未満であると、溶接条件として弱いエネルギーの条件でないと所定枚数以上のアルミニウム合金箔が全て溶着せず、そのため、溶接に長時間を必要とするため溶接の生産性が劣るため好ましくない。   It is necessary to use the aluminum alloy foil for secondary battery electrodes of the present invention having an oxide film thickness of 1.0 nm or more and 10.0 nm or less formed on the surface. If the thickness of the oxide film is less than 1.0 nm, the aluminum alloy foil of a predetermined number or more does not deposit at all unless the welding conditions are weak energy conditions. Is not preferable because of inferiority.

ある条件で全ての枚数が溶着しなければ、条件を変更して超音波溶接をすることになる。この場合、選択する条件はより強いエネルギーが出力する条件となる。例えば、超音波振動のエネルギー(J)を上げる、溶接時間(秒)を長くする等である。溶接条件がより強いエネルギーの条件の場合は、超音波溶接機の加圧治具部分(通常この加圧治具部分の上部をホーン、下部をアンビルと呼び、以下このように記す)と複数枚が重なったアルミニウム合金箔とが直接接触する1枚目のアルミニウム合金箔の表面部分から2〜3枚内側の部分(以下、外側部分と記す)が短時間で溶着され、内側のアルミニウム合金箔まで溶着しようとした時に、外側部分に過剰に超音波のエネルギーがかけられ、アルミニウム合金箔がダメージを受けてしまい、超音波溶接機に安全センサーが働き途中で溶接を終了させてしまうため、重なった複数枚のアルミニウム合金箔を全て溶着することができなくなるため好ましくない。   If all the sheets are not welded under a certain condition, the condition is changed and ultrasonic welding is performed. In this case, the condition to be selected is a condition for outputting stronger energy. For example, the energy (J) of ultrasonic vibration is increased, and the welding time (second) is increased. If the welding conditions are stronger, the pressure jig part of the ultrasonic welder (usually the upper part of this pressure jig part is called the horn, the lower part is called the anvil, and is described below) and multiple sheets Two to three inner parts (hereinafter referred to as outer parts) are welded in a short time from the surface part of the first aluminum alloy foil in direct contact with the aluminum alloy foil overlaid, and the inner aluminum alloy foil When trying to weld, excessive ultrasonic energy was applied to the outer part, the aluminum alloy foil was damaged, the safety sensor worked on the ultrasonic welding machine, and the welding was terminated in the middle, so it overlapped Since it becomes impossible to weld all the plurality of aluminum alloy foils, it is not preferable.

また、酸化皮膜厚さが10.0nmを超える場合は、超音波エネルギーを強くする必要があり、所定枚数以上が短時間で溶着しても最表面にダメージを受け、アルミニウム合金箔が破砕してしまう可能性があるため、好ましくない。より好ましい範囲は2.5nm以上9.0nm以下であり、さらに好ましい範囲は3.0nm以上8.0nm以下である。なお、酸化皮膜厚さを好ましい厚さにするには、後述する本発明の製造方法を採用して製造することにより、簡単で確実に調整することができる。   In addition, when the oxide film thickness exceeds 10.0 nm, it is necessary to increase the ultrasonic energy. Even if a predetermined number or more sheets are welded in a short time, the outermost surface is damaged and the aluminum alloy foil is crushed. This is not preferable because it may be A more preferable range is 2.5 nm or more and 9.0 nm or less, and a further preferable range is 3.0 nm or more and 8.0 nm or less. In addition, in order to make oxide film thickness into preferable thickness, it can adjust easily and reliably by employ | adopting and manufacturing the manufacturing method of this invention mentioned later.

また、本発明のアルミニウム合金箔は、上記の酸化皮膜の上に存在する油分の量も0.65mg/m以上に調整することが必要で、上限は後述する式で調整することができるが、特に6.0mg/m以下、さらには、4.5mg/m以下であることが好ましい。油分量が0.65mg/m未満であると、リチウムイオン二次電池製造中に加わる熱の影響で油分量がほぼ0mg/m近くとなり、油分がないために酸化皮膜が成長してしまい、酸化皮膜の厚さが上述した範囲より厚くなるため好ましくない。油分量が6.0mg/mを超えると、溶接時の抵抗となって溶着され難くなるとともに、工程中での酸化皮膜厚さが厚くなり難く、上述した範囲の厚さにならないため好ましくない。 In addition, the aluminum alloy foil of the present invention needs to adjust the amount of oil present on the oxide film to 0.65 mg / m 2 or more, and the upper limit can be adjusted by the formula described later. , especially 6.0 mg / m 2 or less, further preferably has a 4.5 mg / m 2 or less. When oil amount is less than 0.65 mg / m 2, oil quantity by the influence of heat applied during the manufacturing the lithium ion secondary battery is almost 0 mg / m 2 close oxide film due to the lack oil ends up growth Since the thickness of the oxide film becomes thicker than the above range, it is not preferable. If the amount of oil exceeds 6.0 mg / m 2 , it becomes difficult to weld due to resistance during welding, and it is difficult to increase the thickness of the oxide film in the process. .

本発明においては、酸化皮膜厚さと油分量とが下記式(1)及び(2)を満足する範囲とするように調整することが必要である。この範囲を外れると上述したように酸化皮膜厚さ〔t(nm)〕が厚過ぎたり、薄過ぎたり、また、油分量が多かったり少なかったりするため好ましくない。
C≦0.68t+2.44 ・・・・・・ (1)
C≦−0.6t+9.0 ・・・・・・ (2)
In the present invention, it is necessary to adjust the thickness of the oxide film and the amount of oil so that the following expressions (1) and (2) are satisfied. Outside this range, as described above, the oxide film thickness [t (nm)] is too thick or too thin, and the amount of oil is large or small, which is not preferable.
C ≦ 0.68t + 2.44 (1)
C ≦ −0.6t + 9.0 (2)

表面の油分量〔C(mg/m)〕が式(1)で規定される範囲外になると、酸化皮膜厚さ〔t(nm)〕が上記所定厚さ範囲内であったとしても、油分量(C(mg/m)〕)が多くなり過ぎ、超音波溶接条件を変えても複数枚のアルミニウム合金箔を全て溶着することができなくなるため、好ましくない。 If the surface oil content [C (mg / m 2 )] is outside the range defined by the formula (1), even if the oxide film thickness [t (nm)] is within the predetermined thickness range, The amount of oil (C (mg / m 2 ))] becomes too large, and even if the ultrasonic welding conditions are changed, it is not possible to weld a plurality of aluminum alloy foils.

また、油分量〔C(mg/m)〕)が式(2)で規定される範囲外になると、酸化皮膜厚さ〔t(nm)〕が上記所定厚さ範囲内であったとしても、油分量〔C(mg/m)〕が多くなり過ぎ、如何に超音波溶接条件を変えようとも複数枚のアルミニウム箔を全て溶着することができなくなるため、好ましくない。 Further, when the oil content [C (mg / m 2 )]) is outside the range defined by the formula (2), the oxide film thickness [t (nm)] may be within the predetermined thickness range. , The amount of oil [C (mg / m 2 )] becomes too large, and no matter how the ultrasonic welding conditions are changed, it becomes impossible to weld a plurality of aluminum foils.

また、酸化皮膜厚さ〔t(nm)〕に対する油分量〔C(mg/m)は、下記式(3)及び(4)を満足する範囲にすることがさらに好ましい。この場合、アルミニウム合金箔の溶着可能枚数がさらに多くなるからである。
C≦0.64t+0.64 ・・・・・・ (3)
C≦−0.6t+8.0 ・・・・・・ (4)
The oil content [C (mg / m 2 ) with respect to the oxide film thickness [t (nm)] is more preferably in a range satisfying the following formulas (3) and (4). This is because the number of aluminum alloy foils that can be welded is further increased.
C ≦ 0.64t + 0.64 (3)
C ≦ −0.6t + 8.0 (4)

例えば、式(1),(2)の範囲で全てのアルミニウム箔が溶着する枚数が40枚以上であった場合、好ましい式(3),(4)の範囲で全てのアルミニウム箔が溶着する枚数が50枚以上となる。ここで示した枚数は、酸化皮膜厚さに対する油分量を式(3),(4)を満たすように制御することによって溶着可能枚数が増えるということを示すための例示であって、溶着枚数は、ここで例示した枚数に限定されるものではない。   For example, when the number of all aluminum foils to be welded is 40 or more in the range of the formulas (1) and (2), the number of all the aluminum foils to be welded in the range of the preferable formulas (3) and (4). Will be 50 or more. The number of sheets shown here is an example for showing that the number of weldable sheets increases by controlling the oil content with respect to the oxide film thickness so as to satisfy the expressions (3) and (4). The number of sheets illustrated here is not limited.

圧延上りのアルミニウム合金箔の酸化皮膜厚さと油分量は、圧延条件によって適宜調整可能であるが、圧延後に各種処理を行うことによっても調整可能である。   The oxide film thickness and oil content of the rolled aluminum alloy foil can be adjusted as appropriate depending on the rolling conditions, but can also be adjusted by performing various treatments after rolling.

例えば、圧延上りのアルミニウム合金箔を脱脂、水和、酸化、加熱処理のいずれかの処理を1種または2種以上採用することにより適正な酸化皮膜厚さ、油分量に調整することができる。これらの処理は、主に酸化皮膜厚さを制御するために実施するものであるが、前記したように圧延上りのアルミニウム合金箔には油分が残存しており、これらの処理を施すことによって、油分量も減少し、適正な範囲となることがある。これらの処理を施すと、いかなる雰囲気によっても、酸化皮膜厚さと油分量とが同時に変化することが避けられないものである。特に、脱脂、酸化、加熱処理では油分量が減少する。     For example, the aluminum oxide foil after rolling can be adjusted to an appropriate oxide film thickness and oil content by adopting one or more treatments of degreasing, hydration, oxidation, and heat treatment. These treatments are mainly carried out to control the oxide film thickness, but as described above, oil remains in the rolled-up aluminum alloy foil, and by performing these treatments, The oil content will also decrease and may be in the proper range. When these treatments are performed, it is inevitable that the oxide film thickness and the oil content change at the same time in any atmosphere. In particular, the amount of oil decreases in degreasing, oxidation, and heat treatment.

この時の好適条件としては、水和処理の場合、80℃以上95℃以下の熱水中に10秒以上10分以下の時間、浸漬処理すれば良い。80℃未満の場合は、水和による酸化皮膜の厚さが薄くなるため好ましくない。95℃を超える場合は酸化皮膜の厚さが厚くなり過ぎるため好ましくない。また、処理時間が10秒未満では水和が不十分であり、10分を超えると酸化皮膜が厚くなり過ぎるため好ましくない。   As a suitable condition at this time, in the case of the hydration treatment, the immersion treatment may be performed for 10 seconds or more and 10 minutes or less in hot water of 80 ° C. or more and 95 ° C. or less. When the temperature is less than 80 ° C., the thickness of the oxide film due to hydration becomes thin, which is not preferable. A temperature exceeding 95 ° C. is not preferable because the thickness of the oxide film becomes too thick. Further, if the treatment time is less than 10 seconds, hydration is insufficient, and if it exceeds 10 minutes, the oxide film becomes too thick, which is not preferable.

また、水和処理は上記のように浸漬処理によって達成できるものであるが、処理後のアルミニウム合金箔の表面に付着した水分を蒸発させることが必要である。通常は、ドライヤー等で乾燥させる程度で十分である。本発明では、さらに水和処理後に酸化処理を施すことが有効である。すなわち、水和処理後の酸化処理を50℃以上100℃以下で1時間以上24時間以下で処理することが好ましい。水和処理後の酸化処理が50℃未満では、酸化皮膜厚さが薄くなるため、アルミニウム箔を積層して超音波溶接する際に十分に溶着されないため好ましくない。また100℃を超えると、酸化皮膜が厚くなり過ぎるため溶接がうまくいかず好ましくない。酸化処理時間が1時間未満では、酸化皮膜厚さが不十分になり、24時間を超えると皮膜が厚くなり過ぎるため好ましくない。より好ましい範囲は80℃以上95℃以下であり、2時間以上12時間以下である。   Further, the hydration treatment can be achieved by the immersion treatment as described above, but it is necessary to evaporate the water adhering to the surface of the treated aluminum alloy foil. Usually, it is sufficient to dry with a dryer or the like. In the present invention, it is effective to perform an oxidation treatment after the hydration treatment. That is, the oxidation treatment after the hydration treatment is preferably performed at 50 ° C. or more and 100 ° C. or less for 1 hour or more and 24 hours or less. If the oxidation treatment after the hydration treatment is less than 50 ° C., the thickness of the oxide film becomes thin. On the other hand, when the temperature exceeds 100 ° C., the oxide film becomes too thick, and welding is not successful. If the oxidation treatment time is less than 1 hour, the thickness of the oxide film becomes insufficient, and if it exceeds 24 hours, the film becomes too thick. A more preferable range is 80 ° C. or more and 95 ° C. or less, and 2 hours or more and 12 hours or less.

さらに本発明は、圧延上りのアルミニウム合金箔に水和処理を施さずに加熱処理することによっても達成可能である。加熱処理を100℃以上220℃未満で、1時間以上50時間以下で行なうことが好ましい。加熱処理が100℃未満では、酸化皮膜厚さが厚くならないため好ましくない場合がある。また220℃を超えると、酸化皮膜が厚くなり過ぎるため好ましくない場合がある。加熱処理時間が1時間未満では、酸化皮膜厚さが十分厚くならず、また、50時間を超えると皮膜が厚くなり過ぎるため好ましくない場合がある。より好ましい範囲は120℃以上200℃以下であり、2時間以上24時間以下である。酸化皮膜厚さの最適範囲の理由は前記したのと同様の理由による。   Furthermore, the present invention can also be achieved by heat-treating the rolled aluminum alloy foil without subjecting it to hydration. The heat treatment is preferably performed at 100 ° C. or higher and lower than 220 ° C. for 1 hour or longer and 50 hours or shorter. If the heat treatment is less than 100 ° C., the oxide film thickness may not be increased, which may be undesirable. On the other hand, if it exceeds 220 ° C., the oxide film may become too thick, which may not be preferable. When the heat treatment time is less than 1 hour, the thickness of the oxide film is not sufficiently increased, and when it exceeds 50 hours, the film becomes too thick, which is not preferable. A more preferable range is 120 ° C. or more and 200 ° C. or less, and 2 hours or more and 24 hours or less. The reason for the optimum range of the oxide film thickness is the same as described above.

本実施形態に係る二次電池電極用アルミニウム合金箔の製造方法は、特に限定されたものではなく、公知の方法を採用すれば良い。すなわち、半連続鋳造により得られたアルミニウム合金鋳塊に面削、均質化処理、熱間圧延、冷間圧延及び箔圧延を順次施して得ることができる。この場合、半連続鋳造によるアルミニウム合金鋳塊の面削、均質化処理および熱間圧延までの工程に代えて、連続鋳造板を冷間圧延以降の工程に投入しても良い。なお、必要に応じて熱間圧延直後又は冷間圧延の途中で圧延板にバッチ式焼鈍炉に巻き取ったコイル状のアルミニウム合金圧延板を投入し、連続焼鈍炉でのいずれかの方法で中間焼鈍を施してもよく、又、箔圧延されたアルミニウム合金箔に最終焼鈍を施してもよい。   The manufacturing method of the aluminum alloy foil for secondary battery electrodes which concerns on this embodiment is not specifically limited, What is necessary is just to employ | adopt a well-known method. That is, it can be obtained by sequentially subjecting an aluminum alloy ingot obtained by semi-continuous casting to chamfering, homogenization treatment, hot rolling, cold rolling and foil rolling. In this case, instead of the steps up to chamfering, homogenizing treatment and hot rolling of the aluminum alloy ingot by semi-continuous casting, the continuous cast plate may be put into the steps after the cold rolling. In addition, if necessary, a coiled aluminum alloy rolled sheet wound up in a batch annealing furnace is introduced into the rolled sheet immediately after hot rolling or in the middle of cold rolling, and intermediate by any method in a continuous annealing furnace. Annealing may be performed, and final annealing may be performed on the foil-rolled aluminum alloy foil.

冷間圧延後の箔圧延も通常のアルミニウム合金箔を製造するときと同様の要領で行われ、汎用の箔圧延機に冷間圧延板を供給して冷間で圧延し、厚さが5〜30μm、好ましくは5〜20μmのアルミニウム合金箔を製造する。   The foil rolling after the cold rolling is also performed in the same manner as when producing a normal aluminum alloy foil, the cold rolling plate is supplied to a general-purpose foil rolling machine, and the sheet is rolled in a cold state. An aluminum alloy foil of 30 μm, preferably 5-20 μm is produced.

前記したように、超音波溶接性に優れた二次電池電極用アルミニウム合金箔は、最適な範囲の酸化皮膜厚さと油分量とを有することが必要で、このために冷間圧延板を箔圧延する際に、圧延油の温度、圧延速度、圧延油の流量の制御が行われ、圧延中および圧延直後の材料温度の上昇が抑制されているために、得られたアルミニウム合金箔の酸化皮膜が最適の厚さとなり、且つ油分量も最適のものとなる。よって、得られたアルミニウム合金箔は超音波溶接性が優れたものとなる。   As described above, an aluminum alloy foil for a secondary battery electrode excellent in ultrasonic weldability needs to have an optimal range of oxide film thickness and oil content. In this case, the temperature of the rolling oil, the rolling speed, and the flow rate of the rolling oil are controlled, and the increase in the material temperature during and immediately after the rolling is suppressed. The optimum thickness is achieved and the oil content is optimum. Therefore, the obtained aluminum alloy foil has excellent ultrasonic weldability.

前記したように、こうして得られた二次電池電極用アルミニウム合金箔に、さらに、箔圧延後に水和、酸化等の処理を施しても良い。   As described above, the aluminum alloy foil for a secondary battery electrode thus obtained may be further subjected to treatment such as hydration and oxidation after foil rolling.

前記したように、リチウムイオン二次電池電極集電体は、アルミニウム合金箔に活物質を塗工、乾燥、プレス、スリット、捲回、溶接などの工程を順に経て製造される。この製造工程の間にたとえアルミニウム合金箔に活物質塗工しない部分を溶接で接合すると雖も、これらの製造工程により、電池製造前のアルミニウム合金箔と溶接直前のアルミニウム合金箔の表面状態の性質が変化している可能性が大きい。これまで述べたように、水和、酸化等の処理は、電池製造工程を前提とした上で、前記した種々処理を施すことも含んでおり、超音波接合に優れたリチウムイオン二次電池電極集電体用のアルミニウム合金箔を提供するものである。   As described above, the lithium-ion secondary battery electrode current collector is manufactured by sequentially applying the active material to the aluminum alloy foil, drying, pressing, slitting, winding, welding, and the like. Even if parts that are not coated with active material are welded to the aluminum alloy foil during this manufacturing process, the properties of the surface condition of the aluminum alloy foil before battery manufacturing and the aluminum alloy foil just before welding are manufactured by these manufacturing processes. Is likely to have changed. As described above, treatments such as hydration and oxidation include the above-mentioned various treatments on the premise of the battery manufacturing process, and lithium ion secondary battery electrodes excellent in ultrasonic bonding. An aluminum alloy foil for a current collector is provided.

以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described, these are illustrations of this invention and various structures other than the above are also employable.

以下、本発明を実施例によりさらに説明するが、本発明はこれらに限定されるものではない。本発明は、アルミニウム合金箔からなる集電体を備える二次電池用電極に関するものであるが、活物質の種類によっては、負極、正極どちらにも利用でき得るものである。以下の実施例は、正極において本アルミニウム合金箔に適用した例について示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to these. Although this invention relates to the electrode for secondary batteries provided with the electrical power collector which consists of aluminum alloy foil, depending on the kind of active material, it can utilize for both a negative electrode and a positive electrode. The following examples show examples applied to the present aluminum alloy foil in the positive electrode.

(実施例1〜27、比較例1〜3)
表1に示したアルミニウム合金の内、1N30合金については、鋳塊を50mm/分の凝固速度で半連続鋳造により500mmの厚さに製造した。次に、アルミニウム合金鋳塊の圧延面を面削により平滑にした後、アルミニウム合金鋳塊に520℃にて6時間に亘って均質化処理を施した後、アルミニウム合金鋳塊に熱間粗圧延を圧延率が94%になるように施し、得られたアルミニウム合金板に熱間仕上げ圧延を施して3mmの厚さを有する熱間圧延板を製造した。熱間仕上げ圧延終了直後のアルミニウム合金板の温度は350℃であった。
(Examples 1-27, Comparative Examples 1-3)
Among the aluminum alloys shown in Table 1, for the 1N30 alloy, the ingot was manufactured to a thickness of 500 mm by semi-continuous casting at a solidification rate of 50 mm / min. Next, after smoothing the rolled surface of the aluminum alloy ingot by chamfering, the aluminum alloy ingot was homogenized at 520 ° C. for 6 hours, and then hot rough rolled on the aluminum alloy ingot. Was subjected to hot finish rolling to produce a hot rolled sheet having a thickness of 3 mm. The temperature of the aluminum alloy plate immediately after the hot finish rolling was 350 ° C.

続いて、このアルミニウム合金板に通常の圧延油を用いて冷間圧延を施し、0.3mmのアルミニウム合金板とした。さらに通常の箔圧延を施した後に、表1に示す条件で前処理、加熱処理を施して厚さが15μmのリチウムイオン二次電池用アルミニウム合金箔を得た。   Subsequently, the aluminum alloy plate was cold-rolled using a normal rolling oil to obtain a 0.3 mm aluminum alloy plate. Furthermore, after performing normal foil rolling, pretreatment and heat treatment were performed under the conditions shown in Table 1 to obtain an aluminum alloy foil for lithium ion secondary batteries having a thickness of 15 μm.

また、表1に示した1085合金については、鋳塊を50mm/分の凝固速度で半連続鋳造により500mmの厚さに製造した。次に、アルミニウム合金鋳塊の圧延面を面削により平滑にした後、アルミニウム合金鋳塊に520℃にて6時間に亘って均質化処理を施した後、アルミニウム合金鋳塊に熱間粗圧延を圧延率が94%になるように施して厚さが30mmのアルミニウム合金熱間粗圧延板を得た。その後、得られたアルミニウム合金熱間粗圧延板に熱間仕上げ圧延を施して3mmの厚さの熱間圧延板を製造した。   For the 1085 alloy shown in Table 1, the ingot was manufactured to a thickness of 500 mm by semi-continuous casting at a solidification rate of 50 mm / min. Next, after smoothing the rolled surface of the aluminum alloy ingot by chamfering, the aluminum alloy ingot was homogenized at 520 ° C. for 6 hours, and then hot rough rolled on the aluminum alloy ingot. Was applied to a rolling rate of 94% to obtain an aluminum alloy hot rough rolled plate having a thickness of 30 mm. Thereafter, the obtained aluminum alloy hot rough rolled sheet was subjected to hot finish rolling to produce a hot rolled sheet having a thickness of 3 mm.

熱間仕上げ圧延後のアルミニウム合金板を巻き取られたコイル状のまま室温まで冷却した後、この熱間圧延板に通常の圧延油を用いて冷間圧延を施し、0.30mmのアルミニウム合金板とした。さらに通常の箔圧延を施した後に、表1に示す条件で前処理、加熱処理を施して厚さが15μmのリチウムイオン二次電池用アルミニウム合金箔を得た。   The aluminum alloy sheet after hot finish rolling is cooled to room temperature in the form of a coiled coil, and then cold rolled using ordinary rolling oil on the hot rolled sheet to obtain a 0.30 mm aluminum alloy sheet It was. Furthermore, after performing normal foil rolling, pretreatment and heat treatment were performed under the conditions shown in Table 1 to obtain an aluminum alloy foil for lithium ion secondary batteries having a thickness of 15 μm.

得られた各々のリチウムイオン二次電池用アルミニウム合金箔について、酸化皮膜厚さ、表面の油分量および超音波溶接後の溶着しているアルミニウム部分の総厚さを測定し、表1に示した。なお、アルミニウム合金箔の処理及び各項目の測定方法の詳細を下記に記す。   With respect to each of the obtained aluminum alloy foils for lithium ion secondary batteries, the thickness of the oxide film, the amount of oil on the surface, and the total thickness of the welded aluminum part after ultrasonic welding were measured and shown in Table 1. . In addition, the detail of the processing of aluminum alloy foil and the measuring method of each item is described below.

〔超音波脱脂〕
得られた箔圧延後のアルミニウム合金箔をアセトン中に浸漬し、超音波をかけて脱脂を行った。脱脂後はアセトン蒸発により気化熱を奪われ、アルミニウム合金箔表面に水滴が着くので脱脂直後にドライヤーの冷風で素早く乾燥させた。
[Ultrasonic degreasing]
The obtained aluminum alloy foil after rolling was immersed in acetone and degreased by applying ultrasonic waves. After degreasing, the vaporization heat was taken away by evaporation of acetone, and water droplets were deposited on the surface of the aluminum alloy foil.

〔電解研磨〕
得られた箔圧延後のアルミニウム合金箔を5±2℃の過塩素酸:エタノール=1:4の容積比を有する溶液中で、各アルミニウム合金箔に応じた孔食電位+1Vで電解研磨を5〜20秒実施した。研磨時間は各アルミニウム合金箔に応じた最適時間で行った。
Electrolytic polishing
The obtained aluminum alloy foil after rolling is subjected to electropolishing at 5 ± 2 ° C. in a solution having a volume ratio of perchloric acid: ethanol = 1: 4 at a pitting potential of +1 V corresponding to each aluminum alloy foil. Performed for ~ 20 seconds. The polishing time was the optimum time according to each aluminum alloy foil.

〔油塗布(実施例24、比較例3)〕
圧延後のアルミニウム合金箔の表面には、通常1〜5mg/mの量の油分が付着している。圧延後の油分を一回除去し、そして油分量を人為的に変化させて付着させ、油分量の影響を調査する必要がある。そこで、アセトン中で超音波脱脂(前記)を行い、表面油分量を減少させ、そこへ油分を付着させる。得られた箔圧延後のアルミニウム合金箔を上記と同様の超音波脱脂(アセトン中)を行った後、塗布後の油分量が10g/mとなるよう、バーコーターで圧延油を塗布し、25℃×24時間大気中で保持した。
[Oil coating (Example 24, Comparative Example 3)]
The oil component of the quantity of 1-5 mg / m < 2 > has adhered to the surface of the aluminum alloy foil after rolling normally. It is necessary to remove the oil after rolling once, and to artificially change the amount of oil to make it adhere and investigate the effect of the amount of oil. Therefore, ultrasonic degreasing (described above) is performed in acetone to reduce the amount of oil on the surface, and the oil is attached thereto. The obtained aluminum alloy foil after rolled foil was subjected to ultrasonic degreasing (in acetone) as described above, and then the rolling oil was applied with a bar coater so that the amount of oil after coating was 10 g / m 2 . It was kept in air at 25 ° C. for 24 hours.

〔酸化皮膜厚さ測定〕
得られた各々のリチウムイオン二次電池用アルミニウム合金箔を10mm巾で130mmの長さに切断採取し、30±1.0℃の13mass%アジピン酸アンモニウム水溶液中に各上記寸法の試料を100mm長さ分だけ浸漬し、0.04mAの電流を、定電流で流し、時間−電圧曲線の変曲点の電圧に1.4nmを乗じた数値を皮膜厚さとした。
[Measurement of oxide film thickness]
Each of the obtained aluminum alloy foils for lithium ion secondary batteries was cut and collected to a length of 10 mm and a length of 130 mm, and each sample of the above dimensions was 100 mm long in a 13 mass% ammonium adipate aqueous solution at 30 ± 1.0 ° C. The film thickness was set to a value obtained by multiplying the voltage at the inflection point of the time-voltage curve by 1.4 nm with a current of 0.04 mA flowing at a constant current.

〔表面の油分量(C量)〕
得られた各々のリチウムイオン二次電池用アルミニウム合金箔を10mm×30mmの大きさに切断採取し、島津製作所製SSM−5000Aを用い、試料を本装置へ挿入し、900℃に加熱して気化された全炭素量を同社製TOC−V CPHを用いて分析し、アルミニウム合金箔表面に残存する油分量を測定した。
[Surface oil content (C content)]
Each of the obtained aluminum alloy foils for lithium ion secondary batteries was cut and sampled to a size of 10 mm × 30 mm, and a sample was inserted into this apparatus using SSM-5000A manufactured by Shimadzu Corporation, and heated to 900 ° C. for vaporization. The total carbon content was analyzed using TOC-V CPH manufactured by the same company, and the amount of oil remaining on the aluminum alloy foil surface was measured.

〔溶着後の総厚さ〕
得られた各々のリチウムイオン二次電池用アルミニウム合金箔を25mm×100mmの大きさに溶着する枚数分切断し、それら各枚数を重ねた状態で、日本アレックス製超音波溶接機AMW−35Mを用いて、上部のホーンと下部のアンビルの間に複数枚の上記アルミニウム合金箔を挟んで加圧し、下記条件にて超音波溶接を施した。溶接条件は異なる2条件を採用した。
[Total thickness after welding]
Each of the obtained aluminum alloy foils for lithium ion secondary batteries was cut into the number of sheets to be welded to a size of 25 mm × 100 mm, and in the state in which these numbers were stacked, an ultrasonic welding machine AMW-35M manufactured by Nippon Alex was used. Then, a plurality of the aluminum alloy foils were sandwiched and pressed between the upper horn and the lower anvil, and ultrasonic welding was performed under the following conditions. Two different welding conditions were adopted.

超音波溶接は用意した全てのアルミニウム合金箔がすべて溶着する枚数を求め、溶着して箔が板状に厚くなった溶着後のアルミニウム合金箔の総厚さを求めた。すなわち、超音波溶接するアルミニウム合金箔の枚数を1枚ずつ変えて行き、全ての枚数が溶着できる最大の枚数を求め、そのアルミニウム部分の総厚さを測定した。全ての枚数が溶着しているかどうかは断面観察から確認した。すなわち、溶着後の各アルミニウム合金箔を常温硬化型エポキシ樹脂中に埋め込み、研磨後、断面から溶着した枚数及び総厚さを測定した。
(1)溶接条件−1
・周波数 35kHz
・エネルギー 60J
・アンプリチュード 100%
・HOLD TIME 0.5秒
・Triggar圧 1bar
・Weld圧 1bar
・シリンダー径 φ20mm
(2)溶接条件−2
・周波数 35kHz
・エネルギー 80J
・アンプリチュード 70%
・HOLD TIME 2.0秒
・Triggar圧 1bar
・Weld圧 1bar
・シリンダー径 φ20mm
In ultrasonic welding, the number of all aluminum alloy foils prepared was welded, and the total thickness of the aluminum alloy foil after welding, which was welded to increase the thickness of the foil, was obtained. That is, the number of aluminum alloy foils to be ultrasonically welded was changed one by one, the maximum number of all the sheets that could be welded was determined, and the total thickness of the aluminum portion was measured. It was confirmed from cross-sectional observation whether all the sheets were welded. That is, each aluminum alloy foil after welding was embedded in a room temperature curing type epoxy resin, and after polishing, the number of sheets welded from the cross section and the total thickness were measured.
(1) Welding condition-1
・ Frequency 35 kHz
・ Energy 60J
・ Amplitude 100%
・ HOLD TIME 0.5 seconds ・ Trigger pressure 1 bar
-Weld pressure 1 bar
・ Cylinder diameter φ20mm
(2) Welding condition-2
・ Frequency 35 kHz
・ Energy 80J
・ Amplitude 70%
・ HOLD TIME 2.0 seconds ・ Trigger pressure 1 bar
-Weld pressure 1 bar
・ Cylinder diameter φ20mm

(実施例28〜35、比較例4〜9)
表2に示した1N30および1085のアルミニウム合金鋳塊から製造された15μmのリチウムイオン二次電池用アルミニウム合金箔を用いて、表2に示す条件で水和処理及びその後の酸化処理を施した。なお、1N30合金箔および1085合金箔の製造方法は上述と同様であった。
(Examples 28-35, Comparative Examples 4-9)
Hydration treatment and subsequent oxidation treatment were performed under the conditions shown in Table 2 using 15 μm aluminum alloy foils for lithium ion secondary batteries manufactured from 1N30 and 1085 aluminum alloy ingots shown in Table 2. In addition, the manufacturing method of 1N30 alloy foil and 1085 alloy foil was the same as the above-mentioned.

得られた各々のリチウムイオン二次電池用アルミニウム合金箔について、前記と同じように酸化皮膜厚さ、表面の油分量及び溶着後の総厚さを測定した。なお、その時の溶接条件は前記と同じ2条件である。   About each obtained aluminum alloy foil for lithium ion secondary batteries, the oxide film thickness, the amount of oil on the surface, and the total thickness after welding were measured as described above. The welding conditions at that time are the same two conditions as described above.

(実施例36〜46、比較例10〜12)
表3に示したアルミニウム合金鋳塊から製造された15μmのリチウムイオン二次電池用アルミニウム合金箔を用いて、表2に示す条件で水和処理及びその後の酸化処理を施した。なお、1N30合金箔および1085合金箔の製造方法は上述と同様であった。8021合金と3003合金の製造条件は以下に示す通りである。
(Examples 36 to 46, Comparative Examples 10 to 12)
Using a 15 μm aluminum alloy foil for lithium ion secondary batteries produced from the aluminum alloy ingot shown in Table 3, hydration treatment and subsequent oxidation treatment were performed under the conditions shown in Table 2. In addition, the manufacturing method of 1N30 alloy foil and 1085 alloy foil was the same as the above-mentioned. The manufacturing conditions for the 8021 alloy and the 3003 alloy are as follows.

〔8021合金〕
通常のJIS H4160に規定された8021合金の組成のアルミニウム合金鋳塊を50mm/分の凝固速度で半連続鋳造により500mmの厚さに製造した。このアルミニウム合金鋳塊を用いて、鋳塊面削後、520℃で1時間の均質化処理を施した。均質化処理終了後、ただちに熱間圧延を実施し、アルミニウム鋳塊に熱間粗圧延を圧延率が94%になるように施し、得られたアルミニウム合金板に熱間仕上げ圧延を施して3mmの厚さを有する熱間圧延板を製造した。熱間仕上げ圧延終了直後のアルミニウム合金板の温度は350℃であった。熱間仕上げ圧延後のアルミニウム合金板を室温まで冷却した後、この熱間圧延板に冷間圧延を施して板厚を0.60mmとした後、この0.60mm厚さのアルミニウム合金板に380℃にて4時間に亘って中間焼鈍を施した。続いて、このアルミニウム合金板に通常の圧延油を用いて冷間圧延を施し、0.3mmのアルミニウム合金板とした。さらに通常の箔圧延を施して、厚さが15μmのリチウムイオン二次電池用アルミニウム合金箔を得た。
[8021 alloy]
An aluminum alloy ingot having a composition of 8021 alloy defined in ordinary JIS H4160 was manufactured to a thickness of 500 mm by semi-continuous casting at a solidification rate of 50 mm / min. Using this aluminum alloy ingot, homogenization treatment was performed at 520 ° C. for 1 hour after chamfering. Immediately after the homogenization treatment, hot rolling is performed, and the aluminum ingot is subjected to hot rough rolling so that the rolling rate is 94%, and the obtained aluminum alloy sheet is subjected to hot finish rolling to 3 mm A hot rolled plate having a thickness was produced. The temperature of the aluminum alloy plate immediately after the hot finish rolling was 350 ° C. After the hot-rolled aluminum alloy sheet is cooled to room temperature, the hot-rolled sheet is cold-rolled to a thickness of 0.60 mm, and then the aluminum alloy sheet having a thickness of 0.60 mm is 380 mm. Intermediate annealing was performed at 4 ° C. for 4 hours. Subsequently, the aluminum alloy plate was cold-rolled using a normal rolling oil to obtain a 0.3 mm aluminum alloy plate. Furthermore, normal foil rolling was performed to obtain an aluminum alloy foil for lithium ion secondary batteries having a thickness of 15 μm.

〔3003合金〕
通常のJIS H4160に規定された3003合金の組成の鋳塊を50mm/分の凝固速度で半連続鋳造により500mmの厚さに製造した。このアルミニウム合金鋳塊を用いて、鋳塊面削後、600℃で3時間の均質化処理を施した。均質化処理終了後室温まで鋳塊を冷却した後、再び430℃に加熱した後、熱間圧延を実施し、アルミニウム合金鋳塊に熱間粗圧延を圧延率が94%になるように施し、得られたアルミニウム合金板に熱間仕上げ圧延を施して2mmの厚さを有する熱間圧延板を製造した。熱間仕上げ圧延終了直後のアルミニウム合金板の温度は310℃であった。熱間仕上げ圧延後のアルミニウム合金板を室温まで冷却した後、この熱間圧延板に冷間圧延を施して板厚を1.00mmとした後、この1.00mm厚さのアルミニウム合金板に350℃にて2時間に亘って中間焼鈍を施した。続いて、このアルミニウム合金板に通常の圧延油を用いて冷間圧延を施し、0.3mmのアルミニウム合金板とした。さらに通常の箔圧延を施して、厚さが15μmのリチウムイオン二次電池用アルミニウム合金箔を得た。
[3003 alloy]
An ingot having a composition of 3003 alloy defined in ordinary JIS H4160 was manufactured to a thickness of 500 mm by semi-continuous casting at a solidification rate of 50 mm / min. Using this aluminum alloy ingot, homogenization treatment was performed at 600 ° C. for 3 hours after chamfering. After the homogenization treatment is finished, the ingot is cooled to room temperature and then heated again to 430 ° C., and then hot rolled, and hot rough rolling is applied to the aluminum alloy ingot so that the rolling rate is 94%. The obtained aluminum alloy plate was subjected to hot finish rolling to produce a hot rolled plate having a thickness of 2 mm. The temperature of the aluminum alloy sheet immediately after the hot finish rolling was 310 ° C. After the hot-rolled aluminum alloy sheet is cooled to room temperature, the hot-rolled sheet is cold-rolled to a thickness of 1.00 mm, and then the aluminum alloy sheet having a thickness of 1.00 mm is 350 Intermediate annealing was performed at 2 ° C. for 2 hours. Subsequently, the aluminum alloy plate was cold-rolled using a normal rolling oil to obtain a 0.3 mm aluminum alloy plate. Furthermore, normal foil rolling was performed to obtain an aluminum alloy foil for lithium ion secondary batteries having a thickness of 15 μm.

(実施例47〜51、比較例13〜14)
実施例1〜27と同じ1N30合金の板厚が0.3mmのアルミニウム板を用いて、表4に示す各箔厚に圧延され製造されたリチウムイオン二次電池アルミニウム合金箔を得た。なお、実施例49及び実施例50は、最終の仕上げ圧延で2枚のアルミニウム箔を重ね合わせる、いわゆる重合圧延によって、片面がつや消しのアルミニウム合金箔とした。実施例51〜53に関わるアルミニウム合金箔は1枚で両ツヤの前記と同じアルミニウム合金箔とした。これらのアルミニウム合金箔を前記と同様の評価を行った。
(Examples 47 to 51, Comparative Examples 13 to 14)
A lithium ion secondary battery aluminum alloy foil produced by rolling to each foil thickness shown in Table 4 was obtained using an aluminum plate having the same 1N30 alloy thickness as 0.3 mm as in Examples 1 to 27. In Examples 49 and 50, two aluminum foils were overlapped in the final finish rolling, so that one side of the aluminum alloy foil was formed by mating rolling. The aluminum alloy foil in connection with Examples 51 to 53 was the same aluminum alloy foil as described above for both glosses. These aluminum alloy foils were evaluated in the same manner as described above.

<密着性評価>
これらの実施例・比較例に関わるリチウムイオン二次電池用アルミニウム合金箔に、LiCoOなどの活物質と、カーボンなどの導電材と、PVDFなどの結着剤とを混練してペースト作製し、その活物質を含むペーストを塗工し、150℃で10分間、大気中で乾燥させた後のアルミニウム合金箔の密着性を評価した。その結果を表1〜表4に示す。
<Adhesion evaluation>
A paste is prepared by kneading an active material such as LiCoO 2 , a conductive material such as carbon, and a binder such as PVDF into an aluminum alloy foil for lithium ion secondary batteries related to these examples and comparative examples, The paste containing the active material was applied, and the adhesion of the aluminum alloy foil after drying in the air at 150 ° C. for 10 minutes was evaluated. The results are shown in Tables 1 to 4.

密着性の評価は、上記の活物質を含むペーストを塗工し乾燥したアルミニウム合金箔を25mm巾に切断し、塗工面側を下側にし、アルミニウム合金箔側を上面となるように両面テープで水平な台に粘着させ、日本電産シンポ製デジタル・フォース・ゲージ(FGC−0.5B)を用いて、10mm/秒の速度で引き剥がした時の荷重の平均値を密着力とした。0.5N/25mm以上のものを(○)、0.5N/25mm未満のものを(×)とした。   The evaluation of adhesion is made by applying a paste containing the above active material and cutting the dried aluminum alloy foil to a width of 25 mm, using a double-sided tape so that the coated surface side is the lower side and the aluminum alloy foil side is the upper surface. Adhesion to a horizontal base was made, and the average value of the load when peeled off at a speed of 10 mm / sec using a digital force gauge (FGC-0.5B) manufactured by Nidec Simpo was taken as the adhesion force. Those with 0.5 N / 25 mm or more were marked with (◯), and those with less than 0.5 N / 25 mm were marked with (×).

<結果の考察>
表1に示すように、実施例1〜実施例27は、比較例1〜3に比べて、酸化皮膜厚さ及び表面C量が適切な範囲となっているため、超音波溶接をした場合に、より多くの枚数のアルミニウム合金箔が良好に溶着されたことが判る。また、比較例1〜比較例2は、密着性が良好でなかった。
<Consideration of results>
As shown in Table 1, in Examples 1 to 27, compared to Comparative Examples 1 to 3, the oxide film thickness and the surface C amount are in an appropriate range. It can be seen that a larger number of aluminum alloy foils were welded well. Further, Comparative Examples 1 and 2 did not have good adhesion.

また、表2に示すように、実施例28〜35は、溶接条件1では溶着枚数が少なくなっているが、酸化皮膜厚さ及び表面C量が表2に示す処理によって適切な範囲となっているため、溶接条件2に変更して超音波溶接をした場合には、溶着枚数が増加しており、良好に溶着されたことが判る。しかしながら、比較例4〜9では、溶接条件2に変更しても溶着枚数があまり増加せず、溶接結果が良好ではないことが判る。また、比較例6〜比較例8は、密着性が良好でなかった。   Further, as shown in Table 2, in Examples 28 to 35, the number of welds was reduced under welding condition 1, but the oxide film thickness and the surface C amount were in an appropriate range by the treatment shown in Table 2. Therefore, when ultrasonic welding is performed by changing to welding condition 2, the number of welds is increased, and it can be seen that the welds are satisfactorily welded. However, in Comparative Examples 4 to 9, it can be seen that even if the welding condition is changed to 2, the number of welds does not increase so much and the welding result is not good. Moreover, Comparative Example 6 to Comparative Example 8 did not have good adhesion.

さらに、また、表3に示すように、比較例10〜12が溶接条件を変えても溶着枚数があまり増加せず、溶着が不十分であるのに比べて、実施例36〜46は、酸化皮膜厚さ及び表面C量が表3に示す処理によって適切な範囲となっているため、どちらの溶接条件であっても超音波溶接をした場合に、溶着枚数が多い結果となり、良好に溶着されたことが判る。また、比較例10〜比較例12は、密着性が良好でなかった。   Furthermore, as shown in Table 3, even when Comparative Examples 10-12 changed the welding conditions, the number of welds did not increase so much, and compared with the insufficient welding, Examples 36-46 were oxidized. Since the film thickness and the surface C amount are within the appropriate ranges by the treatment shown in Table 3, when ultrasonic welding is performed regardless of the welding conditions, the number of welds is large, resulting in good welding. You can see that Moreover, Comparative Example 10 to Comparative Example 12 did not have good adhesion.

また、表4に示すように、実施例47〜51では所望の各厚さに圧延され、かつ、超音波溶接性にも優れたものとなっているのに対して、比較例13は、厚さが薄過ぎて超音波溶接ができるだけのアルミニウム合金箔を得ることができなかった。また、比較例14は、箔厚が厚過ぎて超音波溶接するのにいかなる条件を変更しても所望の枚数全てを溶着させることができなかった。   Moreover, as shown in Table 4, in Examples 47-51, while being rolled to each desired thickness and excellent in ultrasonic weldability, Comparative Example 13 is thicker. It was too thin to obtain an aluminum alloy foil that could be ultrasonically welded. Further, in Comparative Example 14, the foil thickness was too thick, and it was impossible to weld all the desired number of sheets even if any conditions were changed for ultrasonic welding.

ここで、上記実施例及び比較例をプロットしたグラフを図1に示す。図1において、比較例は◇で示し、実施例のうち溶接条件1又は2での溶着枚数が40枚以上のものを◆、40枚未満のものを▲で示した。   Here, the graph which plotted the said Example and the comparative example is shown in FIG. In FIG. 1, the comparative example is indicated by ◇, and among the examples, the number of welds of 40 or more under welding conditions 1 or 2 is indicated by ◆, and the case of less than 40 is indicated by ▲.

図1を見ると、全ての実施例は、酸化皮膜厚さが1.0nm以上10.0nm以下、表面の油分量が0.65mg/m以上であり、且つ式(1)及び(2)で規定される範囲内であった。また、溶着枚数が40枚以上である実施例は、全て式(3)及び(4)で規定される範囲内であった。そして、全ての比較例は、酸化皮膜が1.0nm未満であるか、又は式(1)又は(2)で規定される範囲外であった。 Referring to FIG. 1, in all examples, the oxide film thickness is 1.0 nm or more and 10.0 nm or less, the surface oil content is 0.65 mg / m 2 or more, and the formulas (1) and (2) It was within the range prescribed by. Moreover, all the examples in which the number of welds was 40 or more were within the range defined by the equations (3) and (4). And in all the comparative examples, the oxide film was less than 1.0 nm, or was outside the range prescribed | regulated by Formula (1) or (2).

以上のように、本発明に関わる表面に適当な厚さの酸化皮膜を有し、適切な量の油分量を有するリチウムイオン二次電池用アルミニウム合金箔は、適切な溶接条件により、優れた超音波溶接性及び活物質層との密着性を得ることができるようになることが分かった。   As described above, an aluminum alloy foil for a lithium ion secondary battery having an appropriate thickness of an oxide film on the surface according to the present invention and an appropriate amount of oil can be obtained by an excellent welding condition. It was found that sonic weldability and adhesion with the active material layer can be obtained.

Claims (6)

二次電池電極用アルミニウム合金箔であって、厚さが5〜30μmであり、表面に形成されている酸化皮膜厚さが1.0nm以上10.0nm以下であり、表面の油分量が0.65mg/m以上であり、酸化皮膜厚さ〔t(nm)〕に対する油分量〔C(mg/m)〕が下記式(1)及び(2)を満足する範囲であることを特徴とする二次電池電極用アルミニウム合金箔。
C≦0.68t+2.44 ・・・・・・ (1)
C≦−0.6t+9.0 ・・・・・・ (2)
An aluminum alloy foil for a secondary battery electrode having a thickness of 5 to 30 μm, a thickness of an oxide film formed on the surface of 1.0 to 10.0 nm, and a surface oil content of 0.1. It is 65 mg / m 2 or more, and the oil content [C (mg / m 2 )] relative to the oxide film thickness [t (nm)] is in a range satisfying the following formulas (1) and (2). Aluminum alloy foil for secondary battery electrode.
C ≦ 0.68t + 2.44 (1)
C ≦ −0.6t + 9.0 (2)
酸化皮膜厚さ〔t(nm)〕に対する油分量〔C(mg/m)〕が下記式(3)及び(4)を満足する範囲である、請求項1に記載の二次電池電極用アルミニウム合金箔。
C≦0.64t+0.64 ・・・・・・ (3)
C≦−0.6t+8.0 ・・・・・・ (4)
2. The secondary battery electrode according to claim 1, wherein the oil content [C (mg / m 2 )] with respect to the oxide film thickness [t (nm)] is in a range satisfying the following formulas (3) and (4): Aluminum alloy foil.
C ≦ 0.64t + 0.64 (3)
C ≦ −0.6t + 8.0 (4)
請求項1または請求項2に記載の二次電池電極用アルミニウム合金箔の製造方法であって、圧延上りのアルミニウム合金箔を脱脂、水和、酸化、加熱処理のいずれかの処理を1種または2種以上採用する二次電池電極用アルミニウム合金箔の製造方法。   It is a manufacturing method of the aluminum alloy foil for secondary battery electrodes of Claim 1 or Claim 2, Comprising: One type of processing of any one of degreasing, hydration, oxidation, and a heat processing is carried out to the aluminum alloy foil after rolling. The manufacturing method of the aluminum alloy foil for secondary battery electrodes employ | adopted 2 or more types. 水和処理を80℃以上95℃以下の熱水で10秒以上10分以下ですることを特徴とする請求項3に記載の二次電池電極用アルミニウム合金箔の製造方法。   The method for producing an aluminum alloy foil for a secondary battery electrode according to claim 3, wherein the hydration treatment is carried out with hot water at 80 ° C to 95 ° C for 10 seconds to 10 minutes. 水和処理後に酸化処理を50℃以上100℃以下で1時間以上24時間以下で実施することを特徴とする請求項4に記載の二次電池電極用アルミニウム合金箔の製造方法。   5. The method for producing an aluminum alloy foil for a secondary battery electrode according to claim 4, wherein after the hydration treatment, the oxidation treatment is performed at 50 ° C. or more and 100 ° C. or less for 1 hour or more and 24 hours or less. 圧延後のアルミニウム合金箔に加熱する処理方法であって、加熱処理を100℃以上220℃以下で、1時間以上50時間以下で行なうことを特徴とする請求項3に記載の二次電池電極用アルミニウム合金箔の製造方法。   It is a processing method which heats the aluminum alloy foil after rolling, Comprising: Heat processing is performed at 100 degreeC or more and 220 degrees C or less for 1 hour or more and 50 hours or less, The secondary battery electrode of Claim 3 characterized by the above-mentioned. Manufacturing method of aluminum alloy foil.
JP2012086197A 2012-04-05 2012-04-05 Aluminum alloy foil for secondary battery electrode and manufacturing method thereof Active JP5917242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012086197A JP5917242B2 (en) 2012-04-05 2012-04-05 Aluminum alloy foil for secondary battery electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012086197A JP5917242B2 (en) 2012-04-05 2012-04-05 Aluminum alloy foil for secondary battery electrode and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2013218813A true JP2013218813A (en) 2013-10-24
JP2013218813A5 JP2013218813A5 (en) 2015-04-23
JP5917242B2 JP5917242B2 (en) 2016-05-11

Family

ID=49590719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012086197A Active JP5917242B2 (en) 2012-04-05 2012-04-05 Aluminum alloy foil for secondary battery electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5917242B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180088A1 (en) * 2017-03-31 2018-10-04 Jx金属株式会社 Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP2019175802A (en) * 2018-03-29 2019-10-10 Jx金属株式会社 Rolled copper foil for lithium ion battery current collector and lithium ion battery
CN111225997A (en) * 2017-10-16 2020-06-02 富士胶片株式会社 Aluminum foil and aluminum member for electrode
JP2020113486A (en) * 2019-01-15 2020-07-27 トヨタ自動車株式会社 Positive electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207117A (en) * 2002-12-26 2004-07-22 Toyo Aluminium Kk Aluminum foil for collector, collector, and secondary battery
JP2005002371A (en) * 2003-06-09 2005-01-06 Toyo Aluminium Kk Aluminum foil, its production method, charge collector, secondary battery and electric double layer capacitor
JP2012021205A (en) * 2010-07-16 2012-02-02 Kobe Steel Ltd Hardened aluminum foil for battery collector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207117A (en) * 2002-12-26 2004-07-22 Toyo Aluminium Kk Aluminum foil for collector, collector, and secondary battery
JP2005002371A (en) * 2003-06-09 2005-01-06 Toyo Aluminium Kk Aluminum foil, its production method, charge collector, secondary battery and electric double layer capacitor
JP2012021205A (en) * 2010-07-16 2012-02-02 Kobe Steel Ltd Hardened aluminum foil for battery collector

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180088A1 (en) * 2017-03-31 2018-10-04 Jx金属株式会社 Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP2018174075A (en) * 2017-03-31 2018-11-08 Jx金属株式会社 Rolled copper foil for lithium ion battery current collector and lithium ion battery
KR20190117669A (en) * 2017-03-31 2019-10-16 제이엑스금속주식회사 Rolled copper foil and lithium ion battery for lithium ion battery collectors
CN110462901A (en) * 2017-03-31 2019-11-15 Jx金属株式会社 Lithium ion battery current collector rolled copper foil and lithium ion battery
KR102299094B1 (en) * 2017-03-31 2021-09-07 제이엑스금속주식회사 Rolled copper foil for lithium ion battery current collector and lithium ion battery
CN111225997A (en) * 2017-10-16 2020-06-02 富士胶片株式会社 Aluminum foil and aluminum member for electrode
CN111225997B (en) * 2017-10-16 2022-06-07 富士胶片株式会社 Aluminum foil and aluminum member for electrode
US11527758B2 (en) 2017-10-16 2022-12-13 Fujifilm Corporation Aluminum foil and aluminum member for electrodes
JP2019175802A (en) * 2018-03-29 2019-10-10 Jx金属株式会社 Rolled copper foil for lithium ion battery current collector and lithium ion battery
CN110323448A (en) * 2018-03-29 2019-10-11 Jx金属株式会社 Lithium ion battery current collector rolled copper foil and lithium ion battery
JP2020113486A (en) * 2019-01-15 2020-07-27 トヨタ自動車株式会社 Positive electrode

Also Published As

Publication number Publication date
JP5917242B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
JP5427752B2 (en) Copper foil for lithium-ion battery current collector
JP5083799B2 (en) Aluminum alloy foil for lithium ion battery electrode material excellent in bending resistance and method for producing the same
KR101991151B1 (en) Clad material for battery negative electrode lead material, process for production of clad material for battery negative electrode lead material, and battery
KR101491230B1 (en) Clad metals
JP5908194B1 (en) Steel foil for electrical storage device container, electrical storage device container and electrical storage device, and method for producing steel foil for electrical storage device container
JP5816285B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP5917242B2 (en) Aluminum alloy foil for secondary battery electrode and manufacturing method thereof
CN102747251B (en) Aluminium alloy foil for current collector of anode of lithium ion battery and manufacture method thereof
CN104254624A (en) Aluminum alloy foil for electrode current collector, method for producing same, and lithium ion secondary battery
JP2014040659A (en) Manufacturing method of aluminum alloy foil for lithium ion secondary battery positive electrode collector, aluminum alloy foil for lithium ion secondary battery positive electrode collector, and lithium ion secondary battery
JP7085419B2 (en) Rolled joint and its manufacturing method
JP5637812B2 (en) Ferritic stainless steel foil for lithium ion secondary battery laminate case and manufacturing method
JP2014114480A (en) Electrode collector aluminum alloy foil and method for manufacturing the same
JP5830100B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP2017047466A (en) Ni-PLATED STEEL FOIL, BATTERY CONDUCTIVE MEMBER, AND MANUFACTURING METHOD OF Ni-PLATED STEEL FOIL
JP7100560B2 (en) Lithium-ion battery Rolled copper foil for collector and lithium-ion battery
JP2010236055A (en) Aluminum alloy foil for lithium ion secondary battery, and method for producing the same
JP2013069684A (en) Copper foil of negative electrode collector for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing copper foil of negative electrode collector for lithium ion secondary battery
JP2013218813A5 (en)
CN110140236B (en) Negative electrode lead material and method for producing negative electrode lead material
WO2014181555A1 (en) Lead conductor and electrical energy storage device
JP2019032966A (en) Secondary battery negative electrode collector material
JP2021153201A (en) Electromagnetic wave shield tape, method for manufacturing the same, and electromagnetic wave shield cable
JP6435588B2 (en) Aluminum alloy foil for positive electrode current collector of lithium ion secondary battery
CN114833142B (en) Pole piece laser cleaning power adjusting method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160406

R150 Certificate of patent or registration of utility model

Ref document number: 5917242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350