JP2013217561A - Building with floor heating, and floor heating construction method for building - Google Patents

Building with floor heating, and floor heating construction method for building Download PDF

Info

Publication number
JP2013217561A
JP2013217561A JP2012088024A JP2012088024A JP2013217561A JP 2013217561 A JP2013217561 A JP 2013217561A JP 2012088024 A JP2012088024 A JP 2012088024A JP 2012088024 A JP2012088024 A JP 2012088024A JP 2013217561 A JP2013217561 A JP 2013217561A
Authority
JP
Japan
Prior art keywords
building
floor
foundation
heat
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012088024A
Other languages
Japanese (ja)
Other versions
JP5945146B2 (en
Inventor
Tetsuzo Fukuda
哲三 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012088024A priority Critical patent/JP5945146B2/en
Publication of JP2013217561A publication Critical patent/JP2013217561A/en
Application granted granted Critical
Publication of JP5945146B2 publication Critical patent/JP5945146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Central Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To further improve floor heating that uses heat accumulated in the soil, as a heat source.SOLUTION: A building K includes a heat insulating body 107 disposed on foundation projections KT raised from foundation concrete KC constructed to cover soil D, and further includes a plurality of electric resistance heating panels 102 on a surface of the constructed foundation concrete KC for each of underfloor regions of the building surrounded by the foundation projecting sections KT. The electric resistance heating panels 102 are covered by a concrete layer 105 while securing a clearance gap T with a lower face of a building floor 150. Heat is generated by midnight power service in an electricity contract time zone based on a contract to receive midnight power service, to keep the soil D in a heat accumulating state.

Description

本発明は、床暖房建築物、詳しくは、土壌に蓄熱した熱を熱源として床暖房を図る建築物と床暖房施工方法に関する。   The present invention relates to a floor heating building, and more particularly to a building and a floor heating construction method for floor heating using heat stored in soil as a heat source.

土壌に蓄熱した熱を熱源として床暖房を図る建築物として、下記の刊行物のものが知られている。   The following publications are known as buildings for floor heating using heat stored in the soil as a heat source.

特許第3049536号公報Japanese Patent No. 3049536 特許第4694168号公報Japanese Patent No. 4694168

これら特許文献で示された床暖房は、それ以前のものと比して熱源が大きく相違し、熱源を土壌に蓄熱した熱とする点で画期的なものであった。それ故に、施工手法や発熱体配置等において改良の余地が多々残されている。   The floor heating shown in these patent documents is epoch-making in that the heat source is greatly different from that before that, and the heat source is the heat stored in the soil. Therefore, there is still a lot of room for improvement in the construction method and the heating element arrangement.

本発明は、上記した課題を踏まえ、土壌に蓄熱した熱を熱源とした床暖房の更なる改良を図ることを目的とする。   In view of the above-described problems, an object of the present invention is to further improve floor heating using heat stored in soil as a heat source.

上記した目的の少なくとも一部を達成するために、本発明は、以下の形態として実施することができる。   In order to achieve at least a part of the above object, the present invention can be implemented as the following modes.

(1)本発明の一形態としては、土壌に蓄熱した熱を熱源として床暖房を図る建築物であって、土壌を覆うよう施工済みの基礎コンクリートから立ち上がり、建築物の土台の受けとなる基礎凸部に装着され、該基礎凸部で取り囲まれた建築物床下領域の断熱を図る断熱体と、前記建築物床下領域ごとの前記基礎コンクリートの表面に設置され、該基礎コンクリートの下の土壌に前記基礎コンクリートを経て熱を加えて前記土壌を蓄熱状態とする複数の発熱体と、前記建築物床下領域ごとの前記複数の発熱体を、前記建築物床下領域ごとの建築物床の下面との間に間隙を確保して覆う表層部と、前記発熱体を、深夜電力の通電を受ける契約に基づく電力契約時間帯における前記深夜電力を用いて加熱制御する制御手段とを備える。   (1) As one form of this invention, it is a building which aims at floor heating using the heat stored in the soil as a heat source, rises from the foundation concrete that has already been constructed so as to cover the soil, and serves as a foundation for the foundation of the building A heat insulator that is attached to a convex portion and that insulates the area under the building floor surrounded by the foundation convex portion, and is installed on the surface of the foundation concrete for each area under the building floor, and is placed on the soil under the foundation concrete. A plurality of heating elements that apply heat through the foundation concrete to store the soil in a heat storage state, and a plurality of the heating elements for each of the building underfloor areas, and a lower surface of the building floor for each of the building underfloor areas And a control unit that controls heating of the heating element using the midnight power in a power contract time period based on a contract for receiving energization of midnight power.

この形態の建築物では、土壌を蓄熱状態とするための複数の発熱体を、土壌を覆うよう施工済みの基礎コンクリートから立ち上がって建築物の土台の受けとなる基礎凸部で取り囲まれた建築物床下領域ごとに、設置する。建築物床下領域ごとの複数の発熱体は、建築物床の下面との間に間隙を確保して表層部にて覆われ、制御手段の加熱制御を受け、深夜電力の通電を受ける契約に基づく電力契約時間帯において、その深夜電力にて発熱する。この熱は、発熱体を覆う表層部と発熱体の設置対象である基礎コンクリートとを暖めるほか、基礎コンクリートの下の土壌にも伝わるので、土壌は蓄熱状態となる。しかも、建築物床下領域は、これを取り囲む基礎凸部に装着された断熱体により断熱されていることから、表層部を暖めた熱を建築物床下領域内に留め置くことができる。こうして土壌に蓄熱された熱と、表層部および基礎コンクリートを暖めた熱とが、表層部表面と建築物床の下面との間の間隙に放射されて建築物床を暖め、建築物床暖房を図ることができる。この結果、上記の形態の建築物によれば、基礎コンクリートが施工済みの状況にある建築物、例えばリフォーム対象の建築物、或いは天災により建築物上屋が全半壊して基礎コンクリートが残った建築物等に対しての床暖房を可能とする。   In this form of building, a plurality of heating elements to make the soil heat-storing state are raised from foundation concrete that has already been constructed so as to cover the soil, and are surrounded by foundation protrusions that serve as the foundation of the building Install in each underfloor area. Multiple heating elements for each area under the building floor are covered with a surface layer with a gap between the lower surface of the building floor, subjected to heating control by the control means, and based on a contract to receive energization of midnight power Heat is generated by the midnight power during the power contract time. This heat heats the surface layer covering the heating element and the foundation concrete on which the heating element is installed, and is also transmitted to the soil under the foundation concrete, so that the soil is in a heat storage state. And since the building underfloor area | region is insulated by the heat insulating body with which the foundation convex part surrounding this was mounted | worn, the heat which warmed the surface layer part can be kept in a building underfloor area | region. The heat stored in the soil in this way and the heat that warms the surface layer and foundation concrete are radiated to the gap between the surface of the surface layer and the lower surface of the building floor to warm the building floor and to heat the building floor. Can be planned. As a result, according to the building of the above form, the building in which the foundation concrete has already been constructed, for example, the building to be reformed, or the building where the building roof is completely destroyed by natural disaster and the foundation concrete remains. Enables floor heating of objects.

(2)上記形態の建築物において、前記契約に基づく深夜電力供給が停止すると、自己発電機器からの電力を用いて前記発熱体を加熱制御するようにできる。こうすれば、天災等により深夜電力供給が停止した状況下でも、床暖房を図ることができる。こうした自己発電機器としては、内燃機関を利用した発電機の他、自然界において生じる自然現象に起因するエネルギーを電気エネルギーに変換する太陽光発電機、風力発電機等がある。   (2) In the building of the above-described form, when the late-night power supply based on the contract is stopped, the heating element can be controlled to be heated using the power from the self-power generating device. In this way, floor heating can be achieved even in the situation where power supply is stopped late at night due to natural disasters or the like. Examples of such self-power generating devices include a generator using an internal combustion engine, a solar power generator that converts energy caused by a natural phenomenon that occurs in nature into electric energy, a wind power generator, and the like.

(3)上記のいずれか形態の建築物において、前記建築物床下領域ごとの前記発熱体を、前記基礎コンクリートの厚みが増すほど発熱容量が増すように加熱制御するようにできる。基礎コンクリートは、その下の土壌に比べて畜放熱が速やかに起こるものの、基礎コンクリート厚みが増せば、土壌ヘの熱の伝搬が緩慢となる。よって、上記形態とすれば、基礎コンクリート下の土壌への熱伝搬が盛んとなって土壌での蓄熱に不足が起きないようにでき、建築物床暖房の維持が可能となる。   (3) In the building of any one of the above forms, the heating element for each under-floor area of the building can be controlled to be heated so that the heat generation capacity increases as the thickness of the foundation concrete increases. Although heat dissipation of livestock occurs more rapidly in the foundation concrete than in the underlying soil, heat propagation to the soil becomes slow as the foundation concrete thickness increases. Therefore, if it is set as the said form, the heat | fever propagation to the soil under foundation concrete will be thrived, and it can be prevented from lacking in the heat storage in soil, and maintenance of building floor heating is attained.

(4)上記のいずれか形態の建築物において、前記表層部を100〜300mmの厚みのコンクリート層とできる。こうすれば、表層部自体での蓄熱が確保できるほか、基礎コンクリートおよびその下の土壌の蓄熱も進み、建築物床暖房の上から望ましい。   (4) In the building of any one of the above forms, the surface layer portion can be a concrete layer having a thickness of 100 to 300 mm. In this way, heat storage in the surface layer itself can be secured, and heat storage in the foundation concrete and the soil below it also proceeds, which is desirable from the top of the building floor heating.

(5)上記のいずれか形態の建築物において、前記深夜電力を用いた前記発熱体の加熱制御の実行の有無を報知する報知手段を有するようにできる。こうすれば、それまで深夜電力による発熱体の加熱制御を行っていなかった建築物について、今後は、深夜電力による発熱体の加熱制御の有無を新たに報知できる。   (5) The building according to any one of the above forms may have a notifying means for notifying whether or not the heating control of the heating element using the midnight power is executed. If it carries out like this, about the heating control of the heat generating body by midnight electric power until now can be newly alert | reported about the building which has not performed heating control of the heat generating body by midnight electric power until then.

(6)また、他の形態として、建築物の床暖房施工方法であって、土壌を覆うよう施工済みの基礎コンクリートから立ち上がって建築物の土台の受けとなる基礎凸部に断熱体を装着して、該基礎凸部で取り囲まれた建築物床下領域の断熱化を図る工程(a)と、建築物の基礎コンクリートの下の土壌に該基礎コンクリートを経て熱を加える発熱体を、前記建築物床下領域ごとの前記基礎コンクリートの表面に複数設置する工程(b)と、前記建築物床下領域ごとの前記複数の発熱体を、前記建築物床下領域ごとの建築物床の下面との間に間隙を確保して表層部にて覆う工程(c)と、前記発熱体を、深夜電力の通電を受ける契約に基づく電力契約時間帯における前記深夜電力を用いて加熱制御する制御手段を設置する工程(d)とを備える。   (6) In another form, the floor heating construction method for a building is a method of mounting a heat insulator on a foundation convex portion that rises from a foundation concrete that has already been constructed so as to cover the soil and serves as a foundation for the foundation of the building. A step (a) for heat insulation of an underfloor area of the building surrounded by the foundation convex part, and a heating element for applying heat to the soil under the foundation concrete of the building through the foundation concrete, The step (b) of installing a plurality on the surface of the foundation concrete for each underfloor area and the plurality of heating elements for each of the building underfloor areas between the lower surface of the building floor for each of the underfloor areas (C) and covering the surface with a surface layer portion, and installing a control means for controlling the heating of the heating element using the midnight power in a power contract time period based on a contract to receive energization of midnight power ( d).

この形態の建築物の床暖房施工方法では、基礎コンクリートが施工済みの状況にある建築物、例えばリフォーム対象の建築物、或いは天災により建築物上屋が全半壊して基礎コンクリートが残った建築物等に対して、床暖房施工を図って床暖房機能付きの建築物とできる。   In this form of building floor heating construction method, the building in which the foundation concrete has already been constructed, for example, the building to be remodeled, or the building shed completely destroyed by natural disaster and the foundation concrete remains. For example, a floor heating construction can be planned to provide a building with a floor heating function.

(7)上記形態の建築物の床暖房施工方法において、前記工程(C)では、施工済みの建築物床の少なくとも一部領域を取り払った後に、該取り払った一部領域の建築物床から前記表層部を前記建築物床下領域に持ち込んで、前記表層部にて前記建築物床下領域ごとの前記複数の発熱体を覆い、その後、前記取り払った一部領域の建築物床を修復するようにできる。こうすれば、既存の建築物を、床暖房機能付きの建築物にリフォームできる。   (7) In the floor heating construction method for a building according to the above aspect, in the step (C), after at least a partial area of the constructed building floor is removed, the building floor of the removed partial area is A surface layer part is brought into the building floor area, the plurality of heating elements for each of the building floor areas are covered with the surface layer part, and then the removed building area in the partial area can be repaired. . In this way, an existing building can be remodeled into a building with a floor heating function.

床暖房システム100を用いた床暖房建築物の概要を説明するための説明図である。It is explanatory drawing for demonstrating the outline | summary of the floor heating building using the floor heating system. 床暖房システム100の構成と建築物床との関係を説明するための説明図である。It is explanatory drawing for demonstrating the relationship between the structure of the floor heating system 100, and a building floor. 基礎コンクリートKCへの電気抵抗加熱パネル102の設置領域を概略的に斜視にて示す説明図である。It is explanatory drawing which shows the installation area | region of the electrical-resistance heating panel 102 to the foundation concrete KC in a schematic perspective view. 基礎コンクリートKCへの電気抵抗加熱パネル102の設置領域を概略的に平面視にて示す説明図である。It is explanatory drawing which shows the installation area | region of the electrical-resistance heating panel 102 to the foundation concrete KC roughly by planar view. 新築過程にある建築物K或いは上屋を喪失した建築物Kに対して行う床暖房施工手順を示す説明図である。It is explanatory drawing which shows the floor heating construction procedure performed with respect to the building K which lost the building K in the new construction process, or a roof. 給電制御の処理内容を示すフローチャートである。It is a flowchart which shows the processing content of electric power feeding control. 床暖房システム100が有する複数の電気抵抗加熱パネル102の発熱容量の設定の様子を施工済み基礎コンクリートKCの厚みと関連付けて示す説明図である。It is explanatory drawing which shows the mode of the setting of the heat generating capacity | capacitance of the several electrical resistance heating panel 102 which the floor heating system 100 has linked | related with the thickness of the completed foundation concrete KC. 既存建築物を床暖房建築物YKにリフォームする際の床暖房施工手順を示す説明図である。It is explanatory drawing which shows the floor heating construction procedure at the time of renovating the existing building to the floor heating building YK. 施工手順の詳細を模式的に示す説明図である。It is explanatory drawing which shows the detail of a construction procedure typically.

以下、本発明の実施の形態について、その実施例を図面に基づき説明する。図1は床暖房システム100を用いた床暖房建築物の概要を説明するための説明図、図2は床暖房システム100の構成と建築物床との関係を説明するための説明図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram for explaining an outline of a floor heating building using the floor heating system 100, and FIG. 2 is an explanatory diagram for explaining a relationship between the configuration of the floor heating system 100 and a building floor.

図示するように、床暖房建築物YKは、建築物Kの基礎部分に、実施例としての床暖房システム100を備え、その制御装置200を、例えば基礎部分や建築物壁面に有する。本実施例では、制御装置200は、防塵と防水機能を有する図示しない開閉式のボックス内に組み込まれ、このボックスごと基礎部分に埋設されている。制御装置200を建築物壁面に設置する場合には、操作可能な適宜箇所に設置すればよい。床暖房システム100は、基礎コンクリートおよびその下の土壌を蓄熱状態とするためのものであり、図2に詳しく示すように、建築物Kの基礎部分の土壌Dを覆うよう施工済みの基礎コンクリートKCの上面に、電気抵抗加熱パネル102と、コンクリート層105と、断熱体107とを有する。この場合、施工済み基礎コンクリートKCは、少なくとも100〜150mmの厚みを有することが、強度および後述の土壌Dの蓄熱に当たって望ましい。   As shown in the figure, the floor heating building YK includes a floor heating system 100 as an example in the foundation portion of the building K, and has the control device 200 on the foundation portion or the wall surface of the building, for example. In the present embodiment, the control device 200 is incorporated in an openable / closable box (not shown) having a dustproof and waterproof function, and the box is embedded in the base portion. When the control device 200 is installed on a building wall surface, it may be installed at an appropriate place where it can be operated. The floor heating system 100 is for making the foundation concrete and the soil below the heat storage state. As shown in detail in FIG. 2, the foundation concrete KC that has already been constructed to cover the soil D of the foundation portion of the building K. The electric resistance heating panel 102, the concrete layer 105, and the heat insulator 107 are provided on the upper surface. In this case, it is desirable that the applied foundation concrete KC has a thickness of at least 100 to 150 mm in terms of strength and heat storage of the soil D described later.

電気抵抗加熱パネル102は、平板状を成し、水密性を持って折り返し備えた電気抵抗加熱線により、面状に発熱する構成を備え、施工済みの基礎コンクリートKCの上面に後述するように複数設置されている。コンクリート層105は、建築物Kの建築物床150の下面との間に間隙Tを50〜300mmの範囲で確保した上で、100〜300mmの厚みで電気抵抗加熱パネル102を覆い、その下層への水の浸入回避、下層保護等の機能を果たす。コンクリート層105は、建築物Kの基礎コンクリートと一体とされる。断熱体107は、施工済みの基礎コンクリートKCから立ち上がって建築物Kの土台150Dの受けとなる基礎凸部KTに装着され、この基礎凸部KTで取り囲まれた後述の建築物床下領域の断熱を図る。なお、基礎凸部KTは、布基礎として構成されても良いほか、ベタ基礎として構成されても良い。   The electric resistance heating panel 102 is formed in a flat plate shape and has a structure that generates heat in a sheet shape by an electric resistance heating wire that is folded back with watertightness. is set up. The concrete layer 105 covers the electric resistance heating panel 102 with a thickness of 100 to 300 mm after securing a gap T within a range of 50 to 300 mm between the lower surface of the building floor 150 of the building K, and to the lower layer. It functions to prevent water from entering and protect the lower layer. The concrete layer 105 is integrated with the foundation concrete of the building K. The heat insulating body 107 is mounted on a foundation convex portion KT that rises from the foundation concrete KC that has been constructed and receives the foundation 150D of the building K, and insulates the below-mentioned area of the floor under the building that is surrounded by the foundation convex portion KT. Plan. In addition, the foundation convex part KT may be configured as a cloth foundation or a solid foundation.

上記の床暖房システム100を施工済みの基礎コンクリートKCに構築するに当たり、基礎コンクリートKCの上面に、図示しない最下層砂層を小石の無い山砂等を用いて約30mmの厚みで形成して、この砂層に電気抵抗加熱パネル102を設置するようにすることもできる。また、電気抵抗加熱パネル102をコンクリート層105にて覆う前に、小石の無い山砂等を用いた約50mmの砂層(上部砂層)にて予め電気抵抗加熱パネル102を覆い尽くし、これをコンクリート層105にて覆うようにすることもできる。この場合には、電気抵抗加熱パネル102は、上部砂層とその上のコンクリート層105の2層で覆われることになる。なお、上部砂層とコンクリート層105との境界に、図示しない防湿フィルムを介在させるようにしてもよい。   In constructing the above-mentioned floor heating system 100 to the foundation concrete KC that has been constructed, a lowermost sand layer (not shown) is formed on the upper surface of the foundation concrete KC with a thickness of about 30 mm using mountain sand without pebbles, The electrical resistance heating panel 102 may be installed in the sand layer. Further, before covering the electric resistance heating panel 102 with the concrete layer 105, the electric resistance heating panel 102 is covered in advance with a sand layer (upper sand layer) of about 50 mm using mountain sand without pebbles and the like. It can also be covered with 105. In this case, the electric resistance heating panel 102 is covered with two layers of the upper sand layer and the concrete layer 105 thereon. A moisture-proof film (not shown) may be interposed at the boundary between the upper sand layer and the concrete layer 105.

上記構成を備える床暖房システム100は、電気抵抗加熱パネル102への通電により当該パネルを発熱させ、基礎コンクリートKCおよびこれに覆われた土壌Dを蓄熱状態とし、この土壌Dに逆ドーム状の蓄熱層Dhを形成する。こうした蓄熱層Dhの形成の様子は、上記の特許文献等にて提案された既存構成と変わるものではない。   The floor heating system 100 having the above configuration heats the panel by energizing the electrical resistance heating panel 102 to make the foundation concrete KC and the soil D covered therewith a heat storage state, and the soil D has a reverse dome-shaped heat storage. Layer Dh is formed. The state of formation of the heat storage layer Dh is not different from the existing configuration proposed in the above-mentioned patent documents.

次に、電気抵抗加熱パネル102の設置の様子について説明する。図3は基礎コンクリートKCへの電気抵抗加熱パネル102の設置領域を概略的に斜視にて示す説明図、図4は基礎コンクリートKCへの電気抵抗加熱パネル102の設置領域を概略的に平面視にて示す説明図である。   Next, how the electric resistance heating panel 102 is installed will be described. FIG. 3 is an explanatory view schematically showing the installation area of the electrical resistance heating panel 102 on the foundation concrete KC in a perspective view, and FIG. 4 is a schematic plan view of the installation area of the electrical resistance heating panel 102 on the foundation concrete KC. It is explanatory drawing shown.

図示するように、基礎凸部KTは、図2に示した土壌Dを覆って施工済みの基礎コンクリートKCの外周縁および建築物Kの住空間区画において、基礎コンクリートKCから立ち上がり、基礎コンクリートKCを区画する。こうして基礎凸部KTにて区画されて取り囲まれた領域は、本実施例では、図3〜図4に示すように、第1床下領域R1〜第6床下領域R6とされ、第6床下領域R6は、玄関土間の土間基礎DKを除く領域とされている。そして、本実施例の床暖房システム100では、図4に示すように、第1床下領域R1〜第6床下領域R6の各床下領域ごとに、電気抵抗加熱パネル102を基礎コンクリートKCの表面に複数設置して備える。こうして設置された電気抵抗加熱パネル102は、後述する制御装置200からの制御を受けて発熱して、その熱を基礎コンクリートKCおよびその下の土壌Dに基礎コンクリートKCを経て加え、土壌Dを蓄熱状態とする。第1床下領域R1〜第6床下領域R6の各床下領域ごとの電気抵抗加熱パネル102の設置枚数は、各床下領域の広さや建築物Kで占める位置に応じて設定される。この場合、建築物Kが体育館や公民館等の広い平屋状建築であれば、各床下領域は、ほぼ同じとなるので、同じ枚数の電気抵抗加熱パネル102を設置すればよい。   As shown in the figure, the foundation convex portion KT rises from the foundation concrete KC and covers the soil D shown in FIG. 2 at the outer peripheral edge of the foundation concrete KC and the living space section of the building K. Partition. In this embodiment, the regions surrounded and divided by the basic convex portions KT are, as shown in FIGS. 3 to 4, the first underfloor region R1 to the sixth underfloor region R6, and the sixth underfloor region R6. Is an area excluding the soil foundation DK between the entrance soils. And in the floor heating system 100 of a present Example, as shown in FIG. 4, several electric resistance heating panels 102 are provided on the surface of the foundation concrete KC for every underfloor area | region of 1st underfloor area | region R1-6th underfloor area | region R6. Install and prepare. The electrical resistance heating panel 102 thus installed generates heat under the control of the control device 200 to be described later, and applies the heat to the foundation concrete KC and the underlying soil D through the foundation concrete KC, and stores the soil D as heat storage. State. The number of installed electrical resistance heating panels 102 for each underfloor region in the first underfloor region R1 to the sixth underfloor region R6 is set according to the size of each underfloor region and the position occupied by the building K. In this case, if the building K is a wide one-story building such as a gymnasium or a public hall, the areas under the floors are substantially the same, and therefore the same number of electrical resistance heating panels 102 may be installed.

基礎コンクリートKCに建築された建築物Kの建築物床150は、本実施例では、図2に示すように、床暖房システム100の側から、土台150D、大引151、根太152、床下地材153、フローリング材154を備え、土台150Dに掛け渡された大引151と根太152にて、建築物床150と床暖房システム100の表層との間の隔たりTを形成する。つまり、大引151や根太152の寸法やその組構造を変えることで、或いはコンクリート層105の厚みを変えることで上記の隔たりTを種々のものとでき、この隔たりTは、床暖房システム100の設置箇所での暖房の要請程度、詳しくは暖房温度や頻度等と床暖房システム100による土壌蓄熱の状況に応じて規定される。   In this embodiment, the building floor 150 of the building K built on the foundation concrete KC is, as shown in FIG. 2, from the floor heating system 100 side, the base 150D, the large draw 151, the joist 152, and the floor base material. 153, the flooring material 154 is provided, and the gap T between the building floor 150 and the surface layer of the floor heating system 100 is formed by the large drawing 151 and the joist 152 spanned over the base 150D. That is, by changing the size of the large draw 151 and the joist 152 and the group structure thereof, or by changing the thickness of the concrete layer 105, the gap T can be various. It is defined according to the required degree of heating at the installation location, specifically the heating temperature and frequency, and the state of soil heat storage by the floor heating system 100.

制御装置200は、図1に示すように、定格送電線LAからの給電と非常用第1送電線LBおよび非常用第2送電線LCからの給電が可能とされ、床暖房システム100の電気抵抗加熱パネル102に通電を図る。非常用第1送電線LBは、建築物Kに付随して設置され、或いは建築物Kが属する市町村内等に設置された風力発電装置FWから制御装置200まで架線されている。風力発電装置FWは、風力を受けて回転するロータの回転を経て風力エネルギーを電気エネルギーに変換する。そして、この風力発電装置FWは、風力に応じた電力量で発電し、その発電した電力を非常用第1送電線LBを経て供給する。つまり、この風力発電装置FWは、自然界において生じる風の発生という自然現象に起因するエネルギーを電気エネルギーに変換するエネルギー源に相当する。こうした風力発電装置FWは、火力発電、原子力発電、もしくは水力発電といった発電システムを用いて電力会社が商用的に供給するものではなく、建築物Kに付随した発電装置、或いは、電力会社の商用的供給エリアより狭いエリアを給電範囲とする発電装置(例えば、建築物Kの属する自治体単位を給電エリアとする風力発電装置、近隣地域を給電エリアとする風力発電装置)である。非常用第2送電線LCは、建築物Kに付随して制御装置200から延びて架線され、内燃機関を利用して発電を図る発電機EWの発電電力を、制御装置200に送電する。この発電機EWは、ポータブル式であって持ち運び自在であることから、通常時には建築物Kに付属しておく必要はなく、地震や津波等の天災による定格送電線LAからの給電喪失が起きた際に用意すればよい。   As shown in FIG. 1, the control device 200 can supply power from the rated power transmission line LA and power from the emergency first power transmission line LB and the emergency second power transmission line LC. The heating panel 102 is energized. The first emergency power transmission line LB is installed along with the building K, or is extended from the wind power generator FW installed in the municipality to which the building K belongs to the control device 200. The wind power generator FW converts wind energy into electrical energy through rotation of a rotor that rotates by receiving wind power. And this wind power generator FW produces | generates with the electric energy according to a wind force, and supplies the generated electric power through the 1st emergency power transmission line LB. That is, the wind power generator FW corresponds to an energy source that converts energy resulting from a natural phenomenon of wind generation that occurs in nature into electrical energy. Such a wind power generator FW is not supplied by a power company commercially using a power generation system such as thermal power generation, nuclear power generation, or hydroelectric power generation, but is a power generation apparatus attached to the building K or a commercial power company. It is a power generator (for example, a wind power generator that uses a local government unit to which the building K belongs as a power supply area, a wind power generator that uses a neighboring area as a power supply area) that has an area that is narrower than the supply area. The emergency second power transmission line LC extends from the control device 200 along with the building K and is wired to transmit power generated by the generator EW that generates power using the internal combustion engine to the control device 200. Since this generator EW is portable and portable, it is not usually necessary to attach it to the building K, and power loss from the rated transmission line LA due to natural disasters such as earthquakes and tsunamis has occurred. Just prepare it.

制御装置200は、CPU、ROM、RAM等の論理演算回路を備え、制御部202と、メモリ部204と、I/O部206と、入力部208、報知部209等を有する。メモリ部204は、電気抵抗加熱パネル102への通電プログラム等を記憶する。I/O部206は、建築物床150の温度(床温)を検出する床温センサー210や外気温度を検出する外気温センサー212等との接続を図る。入力部208は、上記の各送電線と接続され、制御部202の制御下で、給電を受ける送電線を選択する。制御装置200は、上記のセンサー入力に応じた電気抵抗加熱パネル102への通電制御等、床暖房システム100の全体の制御を担う。この場合、入力部208については、手動による送電線選択を行うよう構成したり、定格送電線LAからの給電が天災等により停止すると、非常用第1送電線LBや非常用第2送電線LCからの給電に自動切り換えするよう構成できる。報知部209は、後述するように電気抵抗加熱パネル102が深夜電力にて加熱制御されると、当該制御が実行されている旨を、ランプ等にて点灯して報知する。   The control device 200 includes a logical operation circuit such as a CPU, a ROM, and a RAM, and includes a control unit 202, a memory unit 204, an I / O unit 206, an input unit 208, a notification unit 209, and the like. The memory unit 204 stores an energization program for the electrical resistance heating panel 102 and the like. The I / O unit 206 is connected to the floor temperature sensor 210 that detects the temperature (floor temperature) of the building floor 150, the outside air temperature sensor 212 that detects the outside air temperature, and the like. The input unit 208 is connected to each of the power transmission lines described above, and selects a power transmission line that receives power supply under the control of the control unit 202. The control device 200 is responsible for overall control of the floor heating system 100 such as energization control to the electric resistance heating panel 102 according to the sensor input. In this case, the input unit 208 is configured to perform manual transmission line selection or when the power supply from the rated transmission line LA is stopped due to a natural disaster or the like, the first emergency transmission line LB or the second emergency transmission line LC. It can be configured to automatically switch to power supply from. As will be described later, when the electric resistance heating panel 102 is controlled to be heated at midnight power, the notification unit 209 lights up with a lamp or the like to notify that the control is being performed.

本実施例では、地震や津波等の天災による給電喪失に備え、制御装置200を既述したように基礎コンクリートKCに埋め込み設置したが、床暖房システム100の制御を2系統に分けることもできる。具体的には、定格送電線LAからの深夜電力給電による電気抵抗加熱パネル102の制御系統と、非常用第1送電線LB或いは非常用第2送電線LCからの非常時給電による制御系統とに分ける。そして、前者の制御系統についての制御装置200にあっては、建築物Kの外壁に設け、後者の制御系統の制御装置200を既述したように基礎コンクリートKCに埋設することもできる。こうすれば、定格送電線LAからの給電が有る通常時のメンテナンスが簡便となる。また、天災による電力喪失時にあっては、基礎コンクリートKCに埋設済みの制御装置200を用いて、非常用第1送電線LBや非常用第2送電線LCからの給電による床暖房を継続もしくは開始することができる。   In this embodiment, the control device 200 is embedded and installed in the foundation concrete KC as described above in preparation for loss of power supply due to natural disasters such as earthquakes and tsunamis, but the control of the floor heating system 100 can also be divided into two systems. Specifically, the control system of the electric resistance heating panel 102 by late-night power feeding from the rated transmission line LA and the control system by emergency feeding from the emergency first transmission line LB or the emergency second transmission line LC Divide. In the control device 200 for the former control system, the control device 200 for the latter control system can be embedded in the foundation concrete KC as described above. If it carries out like this, the normal maintenance with the electric power feeding from rated power transmission line LA will become easy. In addition, when power is lost due to natural disasters, floor heating by power supply from the first emergency transmission line LB or the second emergency transmission line LC is continued or started using the control device 200 embedded in the foundation concrete KC. can do.

次に、上記した床暖房建築物YKの施工手順について説明する。図5は新築過程にある建築物K或いは上屋を喪失した建築物Kに対して行う床暖房施工手順を示す説明図である。   Next, the construction procedure of the above-described floor heating building YK will be described. FIG. 5 is an explanatory diagram showing a floor heating construction procedure to be performed on the building K in the process of new construction or the building K whose roof has been lost.

図示するように、まず、土壌Dを覆うよう施工済みの基礎コンクリートKCから立ち上がった基礎凸部KT(図2参照)の内周壁に断熱体107を装着する(ステップS100)。断熱体107は、押出発泡ポリスチレンフォーム等のパネル状の市販の断熱材である。断熱体107の装着に際しては、基礎凸部KTの内周壁を適宜な工具にて平滑化して接着剤を塗布し、当該接着剤にて断熱体107を接着固定する。そして、断熱体107の装着を、図3〜図4に示した第1床下領域R1〜第6床下領域R6の各床下領域ごとに行うことで、基礎凸部KTで取り囲まれた第1床下領域R1〜第6床下領域R6の各床下領域の断熱化を図る。この場合、施工対象は既述した上屋喪失の建築物Kであることから、基礎凸部KTへの土台150Dの固定と並行して断熱体107の装着が可能である。そして、基礎凸部KTの天端と土台150Dとの間に気密シート等を配設することや、断熱体107を土台150Dの上面まで延ばして基礎凸部KTに装着することが、各床下領域の断熱確保の点から望ましい。   As shown in the drawing, first, the heat insulating body 107 is attached to the inner peripheral wall of the foundation convex portion KT (see FIG. 2) that has risen from the foundation concrete KC that has been constructed so as to cover the soil D (step S100). The heat insulating body 107 is a panel-shaped commercially available heat insulating material such as an extruded expanded polystyrene foam. When the heat insulating body 107 is mounted, the inner peripheral wall of the base convex portion KT is smoothed with an appropriate tool, an adhesive is applied, and the heat insulating body 107 is bonded and fixed with the adhesive. And the 1st underfloor area | region surrounded by the base convex part KT by performing mounting | wearing of the heat insulating body 107 for every underfloor area | region of 1st underfloor area | region R1-6th underfloor area | region R6 shown in FIGS. Insulation of each underfloor region of R1 to sixth underfloor region R6 is achieved. In this case, since the construction object is the above-mentioned building K with the loss of the roof, it is possible to mount the heat insulating body 107 in parallel with the fixing of the base 150D to the base convex portion KT. In addition, it is possible to dispose an airtight sheet or the like between the top of the base convex portion KT and the base 150D, or to extend the heat insulating body 107 to the top surface of the base 150D and attach the base convex portion KT to the base convex portion KT. It is desirable from the viewpoint of ensuring heat insulation.

次いで、土壌Dを覆うよう施工済みの基礎コンクリートKCの表面に電気抵抗加熱パネル102を複数設置する(ステップS110)。このパネル設置は、基礎凸部KTで取り囲まれた第1床下領域R1〜第6床下領域R6の各床下領域ごとに行われ、各領域でのパネル設置枚数は、既述したように各床下領域の広さや建築物Kで占める位置に応じて、或いは建築物形状や用途に応じて設定される。また、それぞれの電気抵抗加熱パネル102は、その接続箇所において、防水処置がなされる。   Next, a plurality of electrical resistance heating panels 102 are installed on the surface of the foundation concrete KC that has been constructed so as to cover the soil D (step S110). This panel installation is performed for each underfloor area of the first underfloor area R1 to the sixth underfloor area R6 surrounded by the base convex portion KT, and the number of panel installations in each area is as described above. It is set according to the area occupied by the building K and the position occupied by the building K, or according to the building shape and application. In addition, each electrical resistance heating panel 102 is waterproofed at the connection location.

パネル設置後は、第1床下領域R1〜第6床下領域R6の各床下領域(図3〜図4参照)ごとの複数の電気抵抗加熱パネル102を覆うようコンクリートを流し込み、表面をならす(ステップS120)。流し込まれたコンクリートは、その養生後に図2に示すコンクリート層105となることから、コンクリートの流し込みは、養生後のコンクリート層105の表面と建築物Kの建築物床150の下面との間に間隙Tを確保した上で、100〜300mmの厚みとなるようになされる。なお、土壌Dの蓄熱状態を把握するためのセンサーを設置する場合には、当該センサーを流し込んだコンクリートに埋設する。   After the panel installation, concrete is poured to cover the plurality of electrical resistance heating panels 102 for each of the underfloor regions (see FIGS. 3 to 4) of the first underfloor region R1 to the sixth underfloor region R6, and the surface is smoothed (step S120). ). Since the poured concrete becomes a concrete layer 105 shown in FIG. 2 after curing, the concrete is poured between the surface of the concrete layer 105 after curing and the lower surface of the building floor 150 of the building K. After securing T, the thickness is 100 to 300 mm. In addition, when installing the sensor for grasping | ascertaining the heat storage state of the soil D, it embeds in the concrete into which the said sensor was poured.

コンクリート流し込みに次いで、或いはこれと相前後して、制御装置200を基礎凸部KTに埋設設置し(ステップS130)、コンクリートの養生を図る(ステップS140)。コンクリート養生後は、土台150Dの設置等、建築物Kの上屋を組み付けることで(ステップS150)、床暖房建築物YKが完成する。   Following or after the concrete pouring, the control device 200 is embedded in the foundation convex portion KT (step S130), and the concrete is cured (step S140). After the concrete curing, the floor heating building YK is completed by assembling the roof of the building K such as the installation of the base 150D (step S150).

次に、制御装置200が行う給電制御について説明する。図6は給電制御の処理内容を示すフローチャートである。   Next, power supply control performed by the control device 200 will be described. FIG. 6 is a flowchart showing the processing content of power supply control.

この給電制御では、暖房が必要とされる期間、例えば暦で定めた冬期から春先まで、或いは日付で定めた期間、外気温が所定温度を下回るようになってから所定温度を上回るようになった期間等において繰り返し実行され、まず、深夜電力の供給がなされているか否かを判定する(ステップS200)。ここで肯定判定すると、制御装置200は、深夜電力の通電を受ける契約に基づく電力(契約規定電力)を床暖房システム100の複数の電気抵抗加熱パネル102に与えて、土壌Dの蓄熱を図る(ステップS210)。この際、制御装置200は、報知部209にて、電気抵抗加熱パネル102が深夜電力にて加熱制御されている旨をランプ等にて点灯して報知する。こうすることで、床暖房システム100の施工前までは深夜電力による床暖房がなされていなかった建築物Kについては、今後は、深夜電力による電気抵抗加熱パネル102の加熱制御を経た床暖房が実施されていることを認知させることができる。   In this power supply control, the period during which heating is required, for example, from winter to early spring as determined by the calendar, or during the period specified by the date, the outside air temperature has exceeded the predetermined temperature after it has decreased below the predetermined temperature. It is repeatedly executed in a period or the like. First, it is determined whether or not midnight power is supplied (step S200). If an affirmative determination is made here, the control device 200 applies electric power (contract stipulated power) based on a contract for receiving energization of midnight power to the plurality of electric resistance heating panels 102 of the floor heating system 100 so as to store heat in the soil D ( Step S210). At this time, the control device 200 notifies the notification unit 209 that the electric resistance heating panel 102 is controlled to be heated by midnight power with a lamp or the like. In this way, for the building K that has not been heated by midnight power before construction of the floor heating system 100, floor heating through heating control of the electrical resistance heating panel 102 by midnight power will be implemented in the future. Can be recognized.

一方、ステップS200にて、深夜電力の供給がなされていないと否定判定すると、制御装置200は、入力部208に有効に給電可能とされている風力発電装置FWと発電機EWのいずれかの発電電力を床暖房システム100の複数の電気抵抗加熱パネル102に与えて、土壌Dの蓄熱を図る(ステップS220)。この際、制御装置200は、報知部209にて、電気抵抗加熱パネル102が風力発電装置FWと発電機EWのいずれかの発電電力にて加熱制御されている旨を、深夜電力による加熱制御の場合と異なる態様で、ランプ等にて点灯して報知する。こうすることで、深夜電力による床暖房がなされているか、風力発電装置FWと発電機EWのいずれかの発電電力による床暖房がなされているかを区別して認知させることができる。   On the other hand, if it is determined in step S200 that no late-night power is supplied, the control device 200 generates power from either the wind power generator FW or the generator EW that can effectively supply power to the input unit 208. Electric power is supplied to the plurality of electrical resistance heating panels 102 of the floor heating system 100 to store the soil D (step S220). At this time, the control device 200 indicates that the electric resistance heating panel 102 is heated and controlled by the generated power of either the wind power generator FW or the generator EW in the notification unit 209. In a different manner from the case, the lamp is lit to notify the user. By doing so, it is possible to distinguish and recognize whether floor heating is performed by late-night power or floor heating is performed by either the wind power generator FW or the generator EW.

上記のステップS210、220における土壌Dの蓄熱に際しての電気抵抗加熱パネル102の通電制御は、上記の特許公報等にてなされる既存手法を踏襲すればよい。そして、ステップS220での電気抵抗加熱パネル102の通電は、深夜電力の供給停止時のものであることから、既存手法と異なり、深夜電力の供給時間帯(深夜)以外の時間帯(例えば、日中)において、風力発電装置FWと発電機EWのいずれかの発電電力にて土壌Dの蓄熱を図るようにすることもできる。例えば、完成後の床暖房建築物YKが公民館や体育館のように天災発生時の避難場所であるとすると、避難時には通常より多くの人が家屋内に集まることから、暖房要請が高まる。よって、このような場合には、日中深夜に拘わらず、風力発電装置FWと発電機EWのいずれかの発電電力にて土壌Dの蓄熱を図ることで、避難した人員に、暖房による安らぎやくつろぎをもたらすことができる。   The energization control of the electrical resistance heating panel 102 at the time of heat storage of the soil D in the above steps S210 and 220 may follow the existing method made in the above-mentioned patent publications and the like. And since the energization of the electrical resistance heating panel 102 in step S220 is at the time of stopping the supply of midnight power, unlike the existing method, a time zone (for example, daylight) other than the midnight power supply time zone (midnight) In the middle), heat storage of the soil D can be achieved by the generated power of either the wind power generator FW or the generator EW. For example, if the floor heating building YK after completion is an evacuation site in the event of a natural disaster such as a public hall or a gymnasium, more people will gather in the house at the time of evacuation. Therefore, in such a case, regardless of whether it is daytime or late at night, by storing the soil D with the generated power of either the wind power generator FW or the generator EW, Can bring relaxation.

また、上記のステップS210、220における土壌Dの蓄熱に際しての電気抵抗加熱パネル102の通電制御を行うに当たり、本実施例では、電気抵抗加熱パネル102の設置対象である施工済み基礎コンクリートKCの厚みに応じて、電気抵抗加熱パネル102の発熱容量を予め規定する。図7は床暖房システム100が有する複数の電気抵抗加熱パネル102の発熱容量の設定の様子を施工済み基礎コンクリートKCの厚みと関連付けて示す説明図である。図示するように、本実施例では、施工済み基礎コンクリートKCの厚みが増すほど、電気抵抗加熱パネル102の発熱容量が大きくなるようにした。   In addition, in performing the energization control of the electric resistance heating panel 102 at the time of heat storage of the soil D in the above Steps S210 and 220, in this embodiment, the thickness of the installed foundation concrete KC that is the installation target of the electric resistance heating panel 102 is set. Accordingly, the heat generation capacity of the electric resistance heating panel 102 is specified in advance. FIG. 7 is an explanatory diagram showing the setting of the heat generation capacity of the plurality of electrical resistance heating panels 102 of the floor heating system 100 in association with the thickness of the foundation concrete KC that has been constructed. As shown in the figure, in this example, the heat generation capacity of the electrical resistance heating panel 102 was increased as the thickness of the foundation concrete KC after construction was increased.

以上説明したように、本実施例の建築物Kでは、土壌Dを蓄熱状態とするための複数の電気抵抗加熱パネル102、土壌Dを覆うよう施工済みの基礎コンクリートKCから立ち上がって土台150Dの受けとなる基礎凸部KTで取り囲まれた第1床下領域R1〜第6床下領域R6の各床下領域ごとに、設置する。第1床下領域R1〜第6床下領域R6の各床下領域ごとの複数の電気抵抗加熱パネル102は、建築物床150の下面との間に間隙Tを確保してコンクリート層105にて覆われ、制御装置200の制御を受けて、深夜電力の通電を受ける契約に基づく電力契約時間帯において、その深夜電力にて発熱する。   As described above, in the building K of the present embodiment, the plurality of electrical resistance heating panels 102 for making the soil D in a heat storage state and the foundation concrete KC that has been constructed so as to cover the soil D are received by the foundation 150D. It installs for every underfloor area | region of 1st underfloor area | region R1-6th underfloor area | region R6 surrounded by the basic | foundation convex part KT used as. The plurality of electrical resistance heating panels 102 for each underfloor region of the first underfloor region R1 to the sixth underfloor region R6 are covered with the concrete layer 105 while ensuring a gap T between the lower surface of the building floor 150, Under the control of the control device 200, heat is generated by the midnight power in the power contract time zone based on the contract for receiving energization of the midnight power.

電気抵抗加熱パネル102は、当該パネルを覆うコンクリート層105と基礎コンクリートKCとを暖めるほか、基礎コンクリートKCの下の土壌Dにも熱を伝えるので、土壌Dは蓄熱状態となる。しかも、第1床下領域R1〜第6床下領域R6の各床下領域は、これを取り囲む基礎凸部KTに装着された断熱体107により断熱されていることから、コンクリート層105を暖めた熱を第1床下領域R1〜第6床下領域R6の各床下領域内に留め置くことができる。こうして土壌Dに蓄熱された熱と、コンクリート層105および基礎コンクリートKCを暖めた熱とが、コンクリート層105の表面と建築物床150の下面との間の間隙Tに放射されて建築物床150を暖め、建築物Kの床暖房を図ることができる。この結果、本実施例によれば、基礎コンクリートKCが施工済みの状況にある建造過程の新築建築物や、天災により建築物上屋が全半壊して基礎コンクリートKCが残った場合に、その基礎コンクリートKCに改めて建築物を建造する際の当該建築物を、床暖房が可能な床暖房建築物YKとすることができる。   The electrical resistance heating panel 102 warms the concrete layer 105 and the foundation concrete KC covering the panel, and also transfers heat to the soil D under the foundation concrete KC, so that the soil D is in a heat storage state. In addition, each of the underfloor regions of the first underfloor region R1 to the sixth underfloor region R6 is insulated by the heat insulating body 107 attached to the foundation convex portion KT surrounding the first underfloor region R6. It can be kept in each underfloor area of 1 underfloor area R1 to 6th underfloor area R6. Thus, the heat stored in the soil D and the heat that warms the concrete layer 105 and the foundation concrete KC are radiated to the gap T between the surface of the concrete layer 105 and the lower surface of the building floor 150, and the building floor 150 The floor heating of the building K can be achieved. As a result, according to this example, when the foundation concrete KC has been installed, or when the building roof is completely destroyed due to a natural disaster, the foundation concrete KC remains. The said building at the time of constructing a building anew in concrete KC can be made into the floor heating building YK in which floor heating is possible.

また、本実施例では、何らかの原因、例えば給電施設の長期に亘る故障や天災による給電ラインの喪失等により、深夜電力供給が停止すると、風力発電装置FWや発電機EWからの電力を用いて電気抵抗加熱パネル102を加熱制御する(ステップS220)。このため、本実施例によれば、何らかの原因で深夜電力供給が停止した状況下でも、建築物Kの床暖房を図ることができる。   Further, in this embodiment, when the power supply is stopped at midnight due to some cause, for example, a long-term failure of the power supply facility or loss of the power supply line due to natural disasters, the power from the wind power generator FW or the generator EW is used to The resistance heating panel 102 is heated (step S220). For this reason, according to the present Example, the floor heating of the building K can be aimed also under the condition where the power supply for midnight stopped for some reason.

また、本実施例では、第1床下領域R1〜第6床下領域R6の各床下領域ごとの複数の電気抵抗加熱パネル102を、施工済み基礎コンクリートKCの厚みが増すほど発熱容量が増すように加熱制御する(図7参照)。施工済み基礎コンクリートKCは、その下の土壌Dに比べて畜放熱が速やかに起こるものの、その厚みが増せば、土壌Dヘの熱の伝搬が緩慢となる。よって、本実施例では、施工済み基礎コンクリートKCの厚みが増すほど電気抵抗加熱パネル102の発熱容量を増やすので、基礎コンクリート下の土壌Dへの熱伝搬が盛んとなって土壌Dでの蓄熱に不足が起きないようにして、建築物床暖房を維持できる。   Further, in this embodiment, the plurality of electrical resistance heating panels 102 for each underfloor region of the first underfloor region R1 to the sixth underfloor region R6 are heated so that the heat generation capacity increases as the thickness of the finished foundation concrete KC increases. Control (see FIG. 7). Although the heat-dissipation of the foundation concrete KC that has already been completed occurs more quickly than the soil D underneath it, the propagation of heat to the soil D becomes slow as the thickness increases. Therefore, in this example, the heat generation capacity of the electrical resistance heating panel 102 increases as the thickness of the foundation concrete KC that has been constructed increases, so that heat propagation to the soil D under the foundation concrete is active, and heat storage in the soil D is increased. Building floor heating can be maintained without deficiencies.

また、本実施例では、第1床下領域R1〜第6床下領域R6の各床下領域ごとの複数の電気抵抗加熱パネル102をコンクリート層105で覆うに当たり、このコンクリート層105を100〜300mmの厚みとした。よって、建築物床150と向き合うコンクリート層105、それ自体での蓄熱と建築物床150の側への放熱とが確保できるほか、施工済み基礎コンクリートKCおよびその下の土壌Dの蓄熱も進み、建築物の床暖房効率が確保される。   Further, in this embodiment, when covering the plurality of electrical resistance heating panels 102 for each underfloor region of the first underfloor region R1 to the sixth underfloor region R6 with the concrete layer 105, the concrete layer 105 has a thickness of 100 to 300 mm. did. Therefore, the concrete layer 105 facing the building floor 150, heat storage by itself and heat radiation to the building floor 150 side can be secured, and the heat storage of the constructed foundation concrete KC and the soil D below it proceeds. The floor heating efficiency of things is ensured.

次に、既存建築物をリフォームにて床暖房建築物YKとする実施例について説明する。図8は既存建築物を床暖房建築物YKにリフォームする際の床暖房施工手順を示す説明図、図9は施工手順の詳細を模式的に示す説明図である。なお、この実施例では、土間基礎DKに繋がる玄関部分の第6床下領域R6については、床下面が施工済み基礎コンクリートKCに近接していることから、リフォームから除外してある。   Next, an example in which an existing building is a floor heating building YK by renovation will be described. FIG. 8 is an explanatory view showing a floor heating construction procedure when an existing building is reformed into a floor heating building YK, and FIG. 9 is an explanatory view schematically showing details of the construction procedure. In addition, in this Example, about the 6th under floor area | region R6 of the entrance part connected with the soil foundation DK, since the floor lower surface is adjoining to the completed foundation concrete KC, it is excluded from reform.

図示するように、まず、建築物床150(図2参照)を構成するフローリング材154を剥がして、フローリング材154に施工用開口RHを形成する(ステップS105)。この施工用開口RHの形成手法は種々採択可能であり、リフォーム対象となる第1床下領域R1〜第5床下領域R5の各床下領域ごとに形成する手法の他、一つの床下領域、例えば第1床下領域R1だけに施工用開口RHを形成する手法とすることもできる。通常、既存の建築物Kでは、その床下において隣り合う床下領域の間を工員が往来できるよう、基礎凸部KTに切欠部が設けられているので、一つの床下領域に施工用開口RHを形成することで、他の床下領域にも工員の往来が可能である。また、施工用開口RHの大きさについても、図9に示すように、床面の一部とするほか、部屋の床面全域に及ぶ大きさとできる。   As shown in the drawing, first, the flooring material 154 constituting the building floor 150 (see FIG. 2) is peeled off to form a construction opening RH in the flooring material 154 (step S105). Various methods for forming the construction opening RH can be adopted. In addition to the method for forming each underfloor region of the first underfloor region R1 to the fifth underfloor region R5 to be reformed, one underfloor region, for example, the first underfloor region R1 A method of forming the construction opening RH only in the underfloor region R1 can also be adopted. Usually, in the existing building K, a notch is provided in the base convex part KT so that a worker can travel between adjacent underfloor areas under the floor, so a construction opening RH is formed in one underfloor area. By doing so, it is possible for workers to come and go to other sub-floor areas. Further, as shown in FIG. 9, the size of the construction opening RH can be a part of the floor as well as the size of the entire floor of the room.

施工用開口RHの形成後は、この施工用開口RHから断熱体107を床下に持ち込み、既述したステップS100のように、第1床下領域R1〜第5床下領域R5の各床下領域において、基礎凸部KT(図2参照)の内周壁に断熱体107を装着・固定する。次いで、既述したステップS110〜140を実行して、第1床下領域R1〜第5床下領域R5の各床下領域における施工済みの基礎コンクリートKCの表面への電気抵抗加熱パネル102の設置、電気抵抗加熱パネル102を覆うようなコンクリートの流し込み、制御装置200の埋設設置、コンクリートの養生を図る。コンクリート養生後は、形成した施工用開口RHを新たなフローリング材154で塞いで床を修復することで(ステップS160)、既存建築物を床暖房建築物YKとするリフォームが完了する。   After the construction opening RH is formed, the heat insulating body 107 is brought under the floor from the construction opening RH, and in each of the underfloor areas of the first underfloor area R1 to the fifth underfloor area R5 as in step S100 described above, A heat insulator 107 is attached and fixed to the inner peripheral wall of the convex portion KT (see FIG. 2). Next, steps S110 to 140 described above are executed, and the electrical resistance heating panel 102 is installed on the surface of the foundation concrete KC that has already been constructed in each underfloor region of the first underfloor region R1 to the fifth underfloor region R5, and the electrical resistance The concrete is poured so as to cover the heating panel 102, the control device 200 is buried, and the concrete is cured. After the concrete curing, the renovation of the existing building as the floor heating building YK is completed by closing the formed construction opening RH with the new flooring material 154 and repairing the floor (step S160).

以上、本発明の実施の形態について説明したが、本発明はこのような実施の形態になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々なる態様での実施が可能である。例えば、上記の実施例では、施工済み基礎コンクリートKCの表面に設置した電気抵抗加熱パネル102をコンクリート層105にて覆ったが、電気抵抗加熱パネル102を小石や砂、もしくは小片に粉砕済みのガレキと小石と砂の混練物にて覆うようにすることもできる。   Although the embodiments of the present invention have been described above, the present invention is not limited to such embodiments, and can be implemented in various modes without departing from the scope of the present invention. For example, in the above embodiment, the electric resistance heating panel 102 installed on the surface of the foundation concrete KC that has been applied is covered with the concrete layer 105, but the electric resistance heating panel 102 is crushed into pebbles, sand, or small pieces. It can also be covered with a mixture of pebbles and sand.

また、図8のリフォームの際の施工手順において、フローリング材154の剥がしを省略することもできる。例えば、既存の建築物Kが例えば廊下や台所等にいわゆる床下収納ボックスを有する場合、当該ボックスの蓋を開けて床下収納ボックスを一時取り除くと、図9に示した第1床下領域R1〜第5床下領域R5の各床下領域に工員の往来が可能である。こうした場合には、フローリング材154の剥がしを省略して図8のステップS100〜140を実行することで、既存建築物を床暖房建築物YKにリフォームできる。   Moreover, in the construction procedure in the case of renovation of FIG. 8, peeling of the flooring material 154 can be omitted. For example, when an existing building K has a so-called underfloor storage box in, for example, a corridor or a kitchen, the first underfloor regions R1 to R5 shown in FIG. Workers can come and go to each underfloor region of the underfloor region R5. In such a case, the existing building can be reformed to the floor heating building YK by removing the flooring material 154 and executing steps S100 to S140 in FIG.

100…床暖房システム
102…電気抵抗加熱パネル
105…コンクリート層
107…断熱体
150…建築物床
150D…土台
151…大引
152…根太
153…床下地材
154…フローリング材
200…制御装置
202…制御部
204…メモリ部
206…I/O部
208…入力部
209…報知部
210…床温センサー
212…外気温センサー
K…建築物
D…土壌
T…間隙
R1〜R6…第1床下領域〜第6床下領域
LA…定格送電線
LB…非常用第1送電線
LC…非常用第2送電線
KC…基礎コンクリート(施工済み基礎コンクリート)
RH…施工用開口
YK…床暖房建築物
DK…土間基礎
KT…基礎凸部
EW…発電機
Dh…蓄熱層
DESCRIPTION OF SYMBOLS 100 ... Floor heating system 102 ... Electrical resistance heating panel 105 ... Concrete layer 107 ... Insulation body 150 ... Building floor 150D ... Base 151 ... Large drawing 152 ... joist 153 ... Floor base material 154 ... Flooring material 200 ... Control apparatus 202 ... Control Section 204 ... Memory section 206 ... I / O section 208 ... Input section 209 ... Notification section 210 ... Floor temperature sensor 212 ... Outside air temperature sensor K ... Building D ... Soil T ... Gap R1-R6 ... First underfloor area-sixth Underfloor area LA ... Rated transmission line LB ... Emergency first transmission line LC ... Emergency second transmission line KC ... Foundation concrete (foundation concrete)
RH ... Opening for construction YK ... Floor heating building DK ... Soil foundation KT ... Foundation convex part EW ... Generator Dh ... Thermal storage layer

Claims (7)

土壌に蓄熱した熱を熱源として床暖房を図る建築物であって、
土壌を覆うよう施工済みの基礎コンクリートから立ち上がり、建築物の土台の受けとなる基礎凸部に装着され、該基礎凸部で取り囲まれた建築物床下領域の断熱を図る断熱体と、
前記建築物床下領域ごとの前記基礎コンクリートの表面に設置され、該基礎コンクリートの下の土壌に前記基礎コンクリートを経て熱を加えて前記土壌を蓄熱状態とする複数の発熱体と、
前記建築物床下領域ごとの前記複数の発熱体を、前記建築物床下領域ごとの建築物床の下面との間に間隙を確保して覆う表層部と、
前記発熱体を、深夜電力の通電を受ける契約に基づく電力契約時間帯における前記深夜電力を用いて加熱制御する制御手段とを備える
建築物。
A building that uses the heat stored in the soil as a heat source to heat the floor,
A thermal insulator that rises from the foundation concrete that has been constructed so as to cover the soil, is attached to the foundation convex portion that receives the foundation of the building, and insulates the area under the building floor surrounded by the foundation convex portion,
A plurality of heating elements that are installed on the surface of the foundation concrete for each area under the building floor, and heat the soil under the foundation concrete through the foundation concrete so that the soil is in a heat storage state;
A surface layer portion that covers the plurality of heating elements for each of the building floor areas with a space between the lower surface of the building floor for each of the building floor areas;
Control means for controlling heating of the heating element using the midnight power in a power contract time period based on a contract for receiving midnight power.
前記制御手段は、前記契約に基づく深夜電力供給が停止すると、自己発電機器からの電力を用いて前記発熱体を加熱制御する請求項1に記載の建築物。   2. The building according to claim 1, wherein when the late-night power supply based on the contract is stopped, the control unit controls the heating of the heating element using electric power from a self-generating device. 前記制御手段は、前記建築物床下領域ごとの前記発熱体を、前記基礎コンクリートの厚みが増すほど発熱容量が増すように加熱制御する請求項1または請求項2に記載の建築物。   The building according to claim 1 or 2, wherein the control means controls the heating element for each under-floor region of the building so that the heat generation capacity increases as the thickness of the foundation concrete increases. 前記表層部は、100〜300mmの厚みのコンクリート層とされている請求項1から請求項3のいずれかに記載の建築物。   The building according to any one of claims 1 to 3, wherein the surface layer portion is a concrete layer having a thickness of 100 to 300 mm. 前記深夜電力を用いた前記発熱体の加熱制御の実行の有無を報知する報知手段を有する請求項1から請求項4のいずれかに記載の建築物。   The building according to any one of claims 1 to 4, further comprising notification means for notifying whether or not the heating control of the heating element using the midnight power is performed. 建築物の床暖房施工方法であって、
土壌を覆うよう施工済みの基礎コンクリートから立ち上がって建築物の土台の受けとなる基礎凸部に断熱体を装着して、該基礎凸部で取り囲まれた建築物床下領域の断熱化を図る工程(a)と、
建築物の基礎コンクリートの下の土壌に該基礎コンクリートを経て熱を加える発熱体を、前記建築物床下領域ごとの前記基礎コンクリートの表面に複数設置する工程(b)と、
前記建築物床下領域ごとの前記複数の発熱体を、前記建築物床下領域ごとの建築物床の下面との間に間隙を確保して表層部にて覆う工程(c)と、
前記発熱体を、深夜電力の通電を受ける契約に基づく電力契約時間帯における前記深夜電力を用いて加熱制御する制御手段を設置する工程(d)とを備える
建築物の床暖房施工方法。
A floor heating construction method for a building,
A process of mounting a heat insulating body on a foundation convex portion that rises from a foundation concrete that has already been constructed so as to cover the soil and serves as a foundation for the building, and insulates the area under the building floor surrounded by the foundation convex portion ( a) and
A step (b) of installing a plurality of heating elements for applying heat to the soil under the foundation concrete of the building through the foundation concrete on the surface of the foundation concrete for each area under the building floor;
A step (c) of securing a gap between the plurality of heating elements for each of the building underfloor regions and a lower surface of the building floor for each of the building underfloor regions and covering the surface with a surface layer portion;
A floor heating construction method for a building, comprising: a step (d) of installing a control unit that controls heating of the heating element using the late-night power in a power contract time period based on a contract for receiving energization of late-night power.
前記工程(C)では、施工済みの建築物床の少なくとも一部領域を取り払った後に、該取り払った一部領域の建築物床から前記表層部を前記建築物床下領域に持ち込んで、前記表層部にて前記建築物床下領域ごとの前記複数の発熱体を覆い、その後、前記取り払った一部領域の建築物床を修復する請求項6に記載の建築物の床暖房施工方法。   In the step (C), after removing at least a partial area of the constructed building floor, the surface layer part is brought into the area below the building floor from the building floor of the removed partial area, and the surface layer part The floor heating construction method for a building according to claim 6, wherein the plurality of heating elements for each area under the building floor are covered, and then the building floor of the removed partial area is repaired.
JP2012088024A 2012-04-09 2012-04-09 Floor heating building and floor heating construction method of building Active JP5945146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012088024A JP5945146B2 (en) 2012-04-09 2012-04-09 Floor heating building and floor heating construction method of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012088024A JP5945146B2 (en) 2012-04-09 2012-04-09 Floor heating building and floor heating construction method of building

Publications (2)

Publication Number Publication Date
JP2013217561A true JP2013217561A (en) 2013-10-24
JP5945146B2 JP5945146B2 (en) 2016-07-05

Family

ID=49589856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012088024A Active JP5945146B2 (en) 2012-04-09 2012-04-09 Floor heating building and floor heating construction method of building

Country Status (1)

Country Link
JP (1) JP5945146B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112228942A (en) * 2020-09-30 2021-01-15 南京航空航天大学 Intelligent temperature controller for carbon fiber electric floor heating
CN112254197A (en) * 2020-09-10 2021-01-22 南京航空航天大学 Novel temperature controller for far infrared electric floor heating system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358036A (en) * 1986-08-27 1988-03-12 Tohoku Electric Power Co Inc Heat storage type floor heating device
JPH07293909A (en) * 1994-04-27 1995-11-10 Kyodo Ky Tec Kk Hot air floor heating device and its working method
JPH09101041A (en) * 1995-10-04 1997-04-15 Nippon Beroo Kk Floor heating structure
JPH116630A (en) * 1997-06-17 1999-01-12 Yukiguni Kagaku Kk Floor heating device
JP2001349566A (en) * 2000-06-09 2001-12-21 J-Home:Kk Floor-heating device of building
JP2003322351A (en) * 2002-05-02 2003-11-14 Enaatekku Kk Heat storage type floor heating system using midnight electric power in high heat-insulating and high airtight housing
JP2006038387A (en) * 2004-07-29 2006-02-09 Tokyo Denki Univ Regenerative floor heating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358036A (en) * 1986-08-27 1988-03-12 Tohoku Electric Power Co Inc Heat storage type floor heating device
JPH07293909A (en) * 1994-04-27 1995-11-10 Kyodo Ky Tec Kk Hot air floor heating device and its working method
JPH09101041A (en) * 1995-10-04 1997-04-15 Nippon Beroo Kk Floor heating structure
JPH116630A (en) * 1997-06-17 1999-01-12 Yukiguni Kagaku Kk Floor heating device
JP2001349566A (en) * 2000-06-09 2001-12-21 J-Home:Kk Floor-heating device of building
JP2003322351A (en) * 2002-05-02 2003-11-14 Enaatekku Kk Heat storage type floor heating system using midnight electric power in high heat-insulating and high airtight housing
JP2006038387A (en) * 2004-07-29 2006-02-09 Tokyo Denki Univ Regenerative floor heating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112254197A (en) * 2020-09-10 2021-01-22 南京航空航天大学 Novel temperature controller for far infrared electric floor heating system
CN112228942A (en) * 2020-09-30 2021-01-15 南京航空航天大学 Intelligent temperature controller for carbon fiber electric floor heating

Also Published As

Publication number Publication date
JP5945146B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
KR102173290B1 (en) A Heating cable System for preventing black ice removal using a bed spring and its installation method
KR102409179B1 (en) Hypocaust with mulitlayer heat reservation structure
KR101913280B1 (en) gang form by carbon fiber heating
JP5945146B2 (en) Floor heating building and floor heating construction method of building
US8145047B2 (en) Self-regulating electric heating system
JP2008298389A (en) Floor heating system
CN206803308U (en) A kind of floating build floor electricity floor heating system
CN207194237U (en) A kind of light steel partition wall in floor heating house
JP3185552U (en) Air conditioning system
JP2017146010A (en) Architectural structure
JP2016070044A (en) Draft, ventilation and heat insulation system of building
JP5968499B1 (en) Solar heat utilization system
JP4694168B2 (en) Floor heating building
JP2004053164A (en) Regenerative electric floor heater
CN208363495U (en) Inside plant assembly system
CN202511360U (en) Radiation heating pipeline embedding structure
Thieblemont et al. Alternative method to integrate electrically heated floor in TRNSYS: Load management
JP2003322351A (en) Heat storage type floor heating system using midnight electric power in high heat-insulating and high airtight housing
CN210105200U (en) Ground paving structure
JP5070000B2 (en) Thermal storage floor structure and thermal storage floor construction method
JP2874046B2 (en) Hot water floor heating system construction method
JP3512991B2 (en) Heat storage floor heating construction unit
JP3269044B2 (en) Underfloor insulation structure of building and underfloor insulation method of building
JP6285677B2 (en) Thermal storage heating system and building
CN108331292A (en) Inside plant assembly system and laying method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160527

R150 Certificate of patent or registration of utility model

Ref document number: 5945146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250