JP2013217505A - Heat insulating structure of hot water storage type water heater and method for manufacturing the same - Google Patents

Heat insulating structure of hot water storage type water heater and method for manufacturing the same Download PDF

Info

Publication number
JP2013217505A
JP2013217505A JP2012085619A JP2012085619A JP2013217505A JP 2013217505 A JP2013217505 A JP 2013217505A JP 2012085619 A JP2012085619 A JP 2012085619A JP 2012085619 A JP2012085619 A JP 2012085619A JP 2013217505 A JP2013217505 A JP 2013217505A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
hot water
vacuum heat
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012085619A
Other languages
Japanese (ja)
Other versions
JP5953892B2 (en
Inventor
Toshinori Sugiki
稔則 杉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012085619A priority Critical patent/JP5953892B2/en
Publication of JP2013217505A publication Critical patent/JP2013217505A/en
Application granted granted Critical
Publication of JP5953892B2 publication Critical patent/JP5953892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Details Of Fluid Heaters (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively manufacture a heat insulating structure having high heat insulating property using a vacuum heat insulating material and a formed insulating material.SOLUTION: A heat insulating structure 6 constituting a hot water storage tank unit 1 has formed heat insulating materials 7 and a vacuum heat insulating material 8. The formed insulating materials 7 has the first foamed heat insulating material 7A integrally formed in the inner face of the vacuum heat insulating material 8 by filling the inner face side of the vacuum heat insulating material 8 with foamed particle and the second foamed heat insulating material 7B integrally formed in the outer face of the vacuum heat insulating material 8 by filling the outer face side of the vacuum heat insulating material 8 with the foamed particle. Consequently, when forming the heat insulating structure 6, foamable particle with which both the face sides of the vacuum heat insulating material 8 are filled is foamed while coming into close contact with the inner face and the outer face of the vacuum heat insulating material 8 and the first and second foamed heat insulating materials 7A, 7B can be integrally formed. Accordingly, the high performance heat insulating structure 6 with no gap in the formed heat insulating material 7 can be effectively manufactured.

Description

本発明は、貯湯タンクを備えた貯湯式給湯機の断熱構造体及びその製造方法に関する。   The present invention relates to a heat insulating structure for a hot water storage type hot water heater provided with a hot water storage tank and a method for manufacturing the same.

一般に、貯湯式給湯機の貯湯タンクには、最高で約90℃の温水が貯湯されるので、従来技術では、貯湯タンクの周囲に真空断熱材及び他の断熱材(成形断熱材等)を配置し、タンク内の温水が冷めないように保温性能を向上させる構成としている。しかし、真空断熱材を貯湯タンクに密着させる構成とした場合には、真空断熱材と成形断熱材との間に隙間が生じ易くなり、この隙間から放熱が生じることにより、保温性能が低下するという問題がある。   In general, hot water storage tanks of hot water storage hot water stores hot water at a maximum of about 90 ° C, so the conventional technology places vacuum heat insulating materials and other heat insulating materials (molded heat insulating materials, etc.) around the hot water storage tank. And it is set as the structure which improves heat retention performance so that the warm water in a tank may not cool. However, when the vacuum heat insulating material is configured to be in close contact with the hot water storage tank, a gap is likely to be generated between the vacuum heat insulating material and the molded heat insulating material, and heat release performance is reduced due to heat dissipation from the gap. There's a problem.

このため、従来技術では、例えば1ショット成形や2ショット以上の多段成形を行うことにより、真空断熱材を成形断熱材の内部に埋設した一体成形部品を形成し、両者間に隙間が生じるのを防止した構成や、両者間の隙間を接着剤によって埋める構成などが提案されている(例えば、特許文献1,2参照)。これにより、従来技術では、前記隙間から放熱が生じるのを防止し、高い断熱性能を実現するようにしている。   For this reason, in the prior art, for example, by performing one-shot molding or multi-stage molding of two or more shots, an integrally molded part in which the vacuum heat insulating material is embedded in the molded heat insulating material is formed, and a gap is generated between them. The structure which prevented, the structure which fills the clearance gap between both with an adhesive agent etc. are proposed (for example, refer patent document 1, 2). Thereby, in the prior art, heat generation is prevented from occurring through the gap, and high heat insulation performance is realized.

特開2006−118635号公報JP 2006-118635 A 特開2005−188714号公報JP 2005-188714 A

しかしながら、従来技術において、例えば1ショット成形により真空断熱材と成形断熱材とを一体成形する場合には、真空断熱材と成形断熱材とが隙間無く接合されるように、真空断熱材の表面に接着剤を予め塗布しておく必要がある。この結果、断熱材の製造時には、接着剤の塗布工程が新たに追加されることになり、製造効率が低下するという問題がある。しかも、接着剤を使用した場合には、塗布工程で接着剤に異物が付着することにより、真空断熱材が成形時に破損する虞れがあり、歩留まりが低下し易い。   However, in the conventional technology, for example, when the vacuum heat insulating material and the molded heat insulating material are integrally formed by one shot molding, the vacuum heat insulating material and the molded heat insulating material are bonded to the surface of the vacuum heat insulating material so that the gap is bonded without a gap. It is necessary to apply an adhesive in advance. As a result, at the time of manufacturing the heat insulating material, an adhesive coating process is newly added, and there is a problem that manufacturing efficiency is lowered. In addition, when an adhesive is used, foreign matter adheres to the adhesive during the coating process, and thus the vacuum heat insulating material may be damaged during molding, and the yield tends to decrease.

また、1ショット成形を行う場合には、例えば金型内で真空断熱材を位置決めするための位置決め用断熱材を予め形成しておき、この位置決め用断熱材を真空断熱材の外周の4辺にそれぞれ取付けた上で、真空断熱材を金型内に固定する必要がある。この結果、断熱材の製造時には、位置決め用断熱材を形成する作業や、これを真空断熱材の4辺に1個ずつ取付ける作業に加えて、金型内で真空断熱材の4辺を1箇所ずつ位置合わせする作業を行うことになり、これらの作業に手間と時間がかかるという問題がある。また、この従来技術では、金型内の圧力変動によって真空断熱材に反りが生じる虞れがある。   In addition, when performing one-shot molding, for example, a positioning heat insulating material for positioning the vacuum heat insulating material in a mold is formed in advance, and this positioning heat insulating material is placed on the four sides of the outer periphery of the vacuum heat insulating material. After mounting each, it is necessary to fix the vacuum heat insulating material in the mold. As a result, at the time of manufacturing the heat insulating material, in addition to the work of forming the positioning heat insulating material and the work of attaching them one by one to the four sides of the vacuum heat insulating material, the four sides of the vacuum heat insulating material are placed in one place in the mold. There is a problem that it takes time and labor to perform alignment work one by one. Moreover, in this prior art, there exists a possibility that curvature may arise in a vacuum heat insulating material by the pressure fluctuation in a metal mold | die.

一方、2ショット以上の多段成形を行う場合には、例えば最初の1ショットを実行した後に、金型をスライドさせる作業が必要となるので、これらの作業により加工時間が増加し、製造効率が低下するという問題がある。   On the other hand, when performing multi-stage molding of two or more shots, for example, after performing the first shot, it is necessary to slide the mold, so these operations increase the processing time and reduce the manufacturing efficiency. There is a problem of doing.

本発明は、上述のような問題点を解消するためになされたもので、真空断熱材と成形断熱材とを用いて、高い保温性能を有する断熱構造体を効率よく製造することが可能な貯湯式給湯機の断熱構造体及びその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can use a vacuum heat insulating material and a molded heat insulating material to efficiently manufacture a heat insulating structure having high heat retention performance. It aims at providing the heat insulation structure of a water heater, and its manufacturing method.

本発明に係る貯湯式給湯機の断熱構造体は、温水を貯留する貯湯タンクを外側から覆う成形断熱材と、成形断熱材の内部に埋設され、貯湯タンクに面した内面と外部に面した外面とを有する板状の真空断熱材と、を備えた貯湯式給湯機の断熱構造体であって、成形断熱材は、真空断熱材の内面側に発泡粒子を充填することにより内面に一体成形され、真空断熱材の周縁部の外側まで延在した第1の発泡断熱材と、真空断熱材の外面側に発泡粒子を充填することにより外面に一体成形され、真空断熱材の周縁部の外側まで延在して第1の発泡断熱材と一体成形された第2の発泡断熱材と、を備えるものである。   The heat insulation structure of the hot water storage type hot water heater according to the present invention includes a molded heat insulating material that covers the hot water storage tank for storing hot water from the outside, an inner surface facing the hot water storage tank, and an outer surface that is embedded in the molded heat insulating material. A heat insulating structure of a hot water storage water heater comprising a plate-shaped vacuum heat insulating material, and the molded heat insulating material is integrally formed on the inner surface by filling foamed particles on the inner surface side of the vacuum heat insulating material. The first foamed heat insulating material extending to the outside of the peripheral portion of the vacuum heat insulating material and the outer surface side of the vacuum heat insulating material are integrally formed on the outer surface by filling the foam particles, and the outer periphery of the vacuum heat insulating material And a second foam heat insulating material that is integrally formed with the first foam heat insulating material.

本発明によれば、断熱構造体の成形時には、真空断熱材の両面側にそれぞれ充填した発泡粒子を真空断熱材の内面及び外面に密着した状態で発泡させ、第1,第2の発泡断熱材を一体成形することができる。これにより、成形時に接着剤等を使用しなくても、成形後の発泡断熱材と真空断熱材との間に隙間が生じるのを抑制し、断熱構造体の保温性能を向上させることができる。また、第1,第2の発泡断熱材を真空断熱材の両側から衝合して一体成形することができ、しかも、これらの発泡断熱材は、真空断熱材を金型内で支持しつつ、真空断熱材と一体化することができる。これにより、位置決め用断熱材や真空断熱材の曲げ加工等が不要となるので、1ショット成形により断熱構造体を効率よく製造することができる。   According to the present invention, at the time of molding the heat insulating structure, the foam particles filled on both sides of the vacuum heat insulating material are foamed in close contact with the inner surface and the outer surface of the vacuum heat insulating material, and the first and second foam heat insulating materials. Can be integrally molded. Thereby, even if it does not use an adhesive agent etc. at the time of shaping | molding, it can suppress that a clearance gap produces between the foaming heat insulating material after shaping | molding, and a vacuum heat insulating material, and can improve the heat retention performance of a heat insulation structure. In addition, the first and second foam heat insulating materials can be integrally molded from both sides of the vacuum heat insulating material, and these foam heat insulating materials support the vacuum heat insulating material in the mold, Can be integrated with vacuum insulation. This eliminates the need for bending of the positioning heat insulating material and the vacuum heat insulating material, so that the heat insulating structure can be efficiently manufactured by one-shot molding.

本発明の実施の形態1による貯湯式給湯機の貯湯タンクユニットを示す斜視図である。It is a perspective view which shows the hot water storage tank unit of the hot water storage type water heater by Embodiment 1 of this invention. 貯湯タンクユニットを図1中の鉛直な平面Pに沿って破断した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which fractured | ruptured the hot water storage tank unit along the vertical plane P in FIG. 真空断熱材を外周側からみた外観図である。It is the external view which looked at the vacuum heat insulating material from the outer peripheral side. 本発明の実施の形態1による断熱構造体の製造方法において、第1の準備工程を示す縦断面図である。In the manufacturing method of the heat insulation structure by Embodiment 1 of this invention, it is a longitudinal cross-sectional view which shows a 1st preparatory process. 第2の準備工程において、金型内の空間に発泡粒子を充填する状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which fills the space in a metal mold | die with a foaming particle in a 2nd preparation process. 第2の準備工程において、金型内に充填した発泡粒子により真空断熱材を支持しつつ、フックを金型の外部に移動した状態を示す縦断面図である。In a 2nd preparation process, it is a longitudinal cross-sectional view which shows the state which moved the hook to the exterior of the metal mold | die, supporting a vacuum heat insulating material with the foaming particle with which it filled in the metal mold | die. 2つの金型を衝合して成形工程を実施する状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which collides two metal mold | dies and implements a formation process. 第1の準備工程において、フックにより真空断熱材を支持する部位を図3と同様位置からみた外観図である。FIG. 4 is an external view of a portion where a vacuum heat insulating material is supported by a hook from the same position as in FIG. 3 in the first preparation step.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、本発明は、以下に説明する実施の形態1乃至3に限定されるものではない。また、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the first to third embodiments described below. Moreover, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted.

実施の形態1.
まず、図1乃至図8を参照しつつ、本発明の実施の形態1について説明する。図1は、本発明の実施の形態1による貯湯式給湯機の貯湯タンクユニットを示す斜視図である。また、図2は、貯湯タンクユニットを図1中の鉛直な平面Pに沿って破断した状態を示す縦断面図である。貯湯式給湯機は、市水等の低温水を熱源機により高温水に沸き上げて、高温水を貯湯タンクユニット1に貯留したり、外部の所望個所に給湯するものである。なお、貯湯式給湯機は、貯湯タンクユニット1の他にも、貯湯タンクユニット1に水を供給する給水配管、貯湯タンクユニット1から高温水を取出す給湯配管、低温水と高温水とを混合して所定温度の湯を供給する混合弁、低温水を加熱する熱源機(電気ヒータやヒートポンプユニット)等を備えている。なお、本実施の形態では、貯湯タンクユニット1の断熱構造について説明するので、その他の構造物の図示及び説明を省略する。
Embodiment 1 FIG.
First, Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view showing a hot water storage tank unit of a hot water storage type hot water heater according to Embodiment 1 of the present invention. 2 is a longitudinal sectional view showing a state in which the hot water tank unit is broken along a vertical plane P in FIG. The hot water storage type hot water heater boils low temperature water such as city water into high temperature water using a heat source device, stores the high temperature water in the hot water storage tank unit 1, or supplies hot water to an external desired location. In addition to the hot water storage tank unit 1, the hot water storage type hot water heater is a water supply pipe for supplying water to the hot water storage tank unit 1, a hot water supply pipe for taking out high temperature water from the hot water storage tank unit 1, and low temperature water and high temperature water. A mixing valve for supplying hot water at a predetermined temperature, a heat source device (electric heater or heat pump unit) for heating low-temperature water, and the like. In addition, in this Embodiment, since the heat insulation structure of the hot water storage tank unit 1 is demonstrated, illustration and description of another structure are abbreviate | omitted.

貯湯タンクユニット1は、図2に示すように、外郭ケース2、貯湯タンク3、上部断熱材4、下部断熱材5、断熱構造体6等を備えている。外郭ケース2は、複数のパネル等により箱形状に形成され、貯湯タンク3、断熱材4,5及び断熱構造体6を内部に収容している。貯湯タンク3は、鉛直方向に延びる円筒状の密閉型タンクとして形成され、熱源機により加熱された高温水を貯留するように構成されている。また、断熱材4,5及び断熱構造体6は、高温水が貯留される貯湯タンク3を保温するもので、上部断熱材4は貯湯タンク3の上部側を覆うように配置され、下部断熱材5は貯湯タンク3の下部側を覆うように配置されている。   As shown in FIG. 2, the hot water storage tank unit 1 includes an outer case 2, a hot water storage tank 3, an upper heat insulating material 4, a lower heat insulating material 5, a heat insulating structure 6, and the like. The outer case 2 is formed in a box shape by a plurality of panels or the like, and accommodates the hot water storage tank 3, the heat insulating materials 4, 5 and the heat insulating structure 6 inside. The hot water storage tank 3 is formed as a cylindrical sealed tank extending in the vertical direction, and is configured to store high-temperature water heated by a heat source device. Moreover, the heat insulating materials 4 and 5 and the heat insulating structure 6 hold the hot water storage tank 3 in which high-temperature water is stored, and the upper heat insulating material 4 is disposed so as to cover the upper side of the hot water storage tank 3. 5 is arrange | positioned so that the lower part side of the hot water storage tank 3 may be covered.

断熱構造体6は、例えば略半円筒状に形成されており、複数個の断熱構造体6を円筒状に組合わせることによって貯湯タンク3の全周を覆うように構成されている。断熱構造体6の上端面は上部断熱材4と密着され、断熱構造体6の下端面は下部断熱材5と密着されている。また、断熱構造体6は、貯湯タンク3の外周面を外側から覆う略半円筒状の成形断熱材7と、インサート成形等の手段により成形断熱材7の内部に埋設され、貯湯タンク3に面した内周面(内面)と外部に面した外周面(外面)とを有する略半円筒状(板状)の真空断熱材8とを備えている。   The heat insulation structure 6 is formed in, for example, a substantially semi-cylindrical shape, and is configured to cover the entire circumference of the hot water storage tank 3 by combining a plurality of heat insulation structures 6 in a cylindrical shape. The upper end surface of the heat insulating structure 6 is in close contact with the upper heat insulating material 4, and the lower end surface of the heat insulating structure 6 is in close contact with the lower heat insulating material 5. The heat insulating structure 6 is embedded in the molded heat insulating material 7 by means of a substantially semi-cylindrical molded heat insulating material 7 that covers the outer peripheral surface of the hot water storage tank 3 from the outside, and insert molding or the like. And a substantially semi-cylindrical (plate-like) vacuum heat insulating material 8 having an inner peripheral surface (inner surface) and an outer peripheral surface (outer surface) facing the outside.

成形断熱材7は、例えばビーズ法ポリスチレンフォーム(EPS)断熱材等の発泡断熱材により構成されている。詳しく述べると、成形断熱材7は、後述のように、真空断熱材8の内周側に発泡粒子を充填することにより真空断熱材8の内周面に一体成形された第1の発泡断熱材7Aと、真空断熱材8の外周側に発泡粒子を充填することにより真空断熱材8の外周面に一体成形された第2の発泡断熱材7Bとを備えている。これらの発泡断熱材7A,7Bは、それぞれ略半円筒状に形成され、鉛直方向において真空断熱材8の周縁部の外側まで延在すると共に、真空断熱材8の外側で互いに一体成形されている。   The molded heat insulating material 7 is made of, for example, a foam heat insulating material such as a bead method polystyrene foam (EPS) heat insulating material. More specifically, the molded heat insulating material 7 is a first foam heat insulating material integrally formed on the inner peripheral surface of the vacuum heat insulating material 8 by filling the inner peripheral side of the vacuum heat insulating material 8 with foamed particles as will be described later. 7A and a second foam heat insulating material 7B integrally formed on the outer peripheral surface of the vacuum heat insulating material 8 by filling the outer peripheral side of the vacuum heat insulating material 8 with foamed particles. These foam heat insulating materials 7A and 7B are each formed in a substantially semi-cylindrical shape, extend to the outside of the peripheral edge portion of the vacuum heat insulating material 8 in the vertical direction, and are integrally formed with each other outside the vacuum heat insulating material 8. .

真空断熱材8は、成形断熱材7の円筒面に沿った湾曲形状を有し、発泡断熱材7A,7Bの間に埋設された状態で円弧状に延びている。また、真空断熱材8は、図2及び図3に示すように、例えば発泡体、粉体、繊維体等をシート状(板状)に加工することにより形成された芯材8Aと、芯材8Aを挟んで配置された2枚のガスバリア性フィルム8Bとを備えている。ここで、図3は、真空断熱材を外周側からみた外観図である。ガスバリア性フィルム8Bは、プラスチックフィルム、プラスチック金属ラミネートフィルム等により形成され、ガスバリア性を有している。   The vacuum heat insulating material 8 has a curved shape along the cylindrical surface of the molded heat insulating material 7, and extends in an arc shape in a state of being embedded between the foam heat insulating materials 7A and 7B. Further, as shown in FIGS. 2 and 3, the vacuum heat insulating material 8 includes, for example, a core material 8A formed by processing foam, powder, fiber, or the like into a sheet shape (plate shape), and a core material. And two gas barrier films 8B arranged with 8A interposed therebetween. Here, FIG. 3 is an external view of the vacuum heat insulating material viewed from the outer peripheral side. The gas barrier film 8B is formed of a plastic film, a plastic metal laminate film, or the like, and has gas barrier properties.

各ガスバリア性フィルム8Bのうち芯材8Aを取囲む枠状の部位は、図3に示すように、互いに熱溶着されて枠状溶着部8Cを形成している。これにより、芯材8Aは、枠状溶着部8Cの内側で2枚のガスバリア性フィルム8Bの間に密封され、真空に近い減圧状態に保持されている。また、枠状溶着部8Cは、芯材8Aの周縁部から全周にわたってフランジ状に張出している。さらに、各ガスバリア性フィルム8Bの上端部(周縁部)には、枠状溶着部8Cの外側に位置して非溶着状態に保持された非溶着周縁部8Dが設けられている。非溶着周縁部8Dは、芯材8Aの密封状態を破壊することなく真空断熱材8を安全に把持することが可能な部位を構成している。   As shown in FIG. 3, the frame-shaped portions surrounding the core material 8A in each gas barrier film 8B are thermally welded together to form a frame-shaped welded portion 8C. Thereby, the core material 8A is sealed between the two gas barrier films 8B inside the frame-shaped welded portion 8C, and is kept in a reduced pressure state close to a vacuum. Further, the frame-shaped welded portion 8C projects in a flange shape from the peripheral edge of the core material 8A over the entire circumference. Furthermore, the non-welding peripheral part 8D which was located in the outer side of the frame-shaped welding part 8C and was hold | maintained in the non-welding state is provided in the upper end part (peripheral part) of each gas barrier film 8B. The non-welding peripheral edge 8D constitutes a part that can safely hold the vacuum heat insulating material 8 without destroying the sealed state of the core material 8A.

上記構成によれば、断熱構造体6の製造時には、真空断熱材8の内周側及び外周側にそれぞれ発泡粒子を充填して第1,第2の発泡断熱材7A,7Bを一体成形することができる。これにより、従来技術と比較して次のような作用効果を得ることができる。まず、従来技術の課題について説明すると、従来技術では、例えば1ショット成形により断熱材を成形するときに、金型の内部に充填した発泡粒子が真空断熱材8の内周側から外周側(または外周側から内周側)に回り込み易いように、真空断熱材8の枠状溶着部8Cを予め曲げ加工しておく必要がある。これにより、曲げ加工の分だけ作業時間が増加し、製造効率が低下する。また、曲げ加工時に真空断熱材8を破損させると、穴開きによるスローリーク等が生じ、断熱構造体6が不良品となるという問題がある。   According to the said structure, at the time of manufacture of the heat insulation structure 6, filling the foam particle to the inner peripheral side and outer peripheral side of the vacuum heat insulating material 8, respectively, and forming the 1st, 2nd foam heat insulating materials 7A and 7B integrally. Can do. Thereby, the following effects can be obtained as compared with the prior art. First, the problems of the prior art will be described. In the prior art, for example, when the heat insulating material is formed by one shot molding, the foam particles filled in the mold are transferred from the inner peripheral side of the vacuum heat insulating material 8 to the outer peripheral side (or It is necessary to bend the frame-shaped welded portion 8C of the vacuum heat insulating material 8 in advance so that it can easily go from the outer peripheral side to the inner peripheral side. As a result, the working time increases by the amount of bending, and the manufacturing efficiency decreases. Further, if the vacuum heat insulating material 8 is damaged during bending, a slow leak or the like due to perforation occurs, and there is a problem that the heat insulating structure 6 becomes a defective product.

また、従来技術では、断熱材を成形するときに、成形断熱材と真空断熱材とを密着させるために、真空断熱材の両面に接着剤を予め塗布しておく必要がある。この塗布工程によっても、作業時間が増加し、製造効率が低下する。しかも、塗布した接着剤に異物が付着すると、真空断熱材が破損する虞れがある。さらに、従来技術の成形時には、真空断熱材8を金型内で浮いた状態に保持するために、予め形成しておいた位置決め用断熱材を真空断熱材8の外周の4辺にそれぞれ取付けて、真空断熱材8を金型内で位置決めする作業が必要となる。この場合には、位置決め用断熱材の成形及び取付け作業や、真空断熱材8の位置決め作業に手間と時間がかかるという問題がある。一方、2ショット以上の多段成形を行う場合には、例えば最初の1ショットを実行した後に、金型をスライドさせる必要があるので、作業時間が増加して製造効率が低下する。   In the prior art, when the heat insulating material is formed, it is necessary to apply an adhesive in advance on both sides of the vacuum heat insulating material in order to bring the formed heat insulating material and the vacuum heat insulating material into close contact with each other. This coating process also increases work time and decreases manufacturing efficiency. Moreover, if a foreign substance adheres to the applied adhesive, the vacuum heat insulating material may be damaged. Further, during the molding of the prior art, in order to hold the vacuum heat insulating material 8 in a floating state in the mold, positioning heat insulating materials previously formed are respectively attached to the four sides of the outer periphery of the vacuum heat insulating material 8. An operation for positioning the vacuum heat insulating material 8 in the mold is required. In this case, there is a problem that it takes time and labor to form and attach the positioning heat insulating material and to position the vacuum heat insulating material 8. On the other hand, when performing multi-stage molding of two or more shots, for example, it is necessary to slide the mold after executing the first one shot, so that the working time increases and the manufacturing efficiency decreases.

これに対し、本実施の形態では、真空断熱材8の両面側にそれぞれ充填した発泡粒子を、真空断熱材8の内周面及び外周面に密着した状態で発泡させ、第1,第2の発泡断熱材7A,7Bを一体成形することができる。これにより、成形時に接着剤等を使用しなくても、成形後の発泡断熱材7A,7Bと真空断熱材8との間に隙間が生じるのを抑制し、断熱構造体6の保温性能を向上させることができる。   On the other hand, in the present embodiment, the foam particles filled on both sides of the vacuum heat insulating material 8 are foamed in close contact with the inner peripheral surface and the outer peripheral surface of the vacuum heat insulating material 8, and the first and second The foam heat insulating materials 7A and 7B can be integrally formed. Thereby, without using an adhesive or the like at the time of molding, the formation of a gap between the foamed heat insulating materials 7A, 7B and the vacuum heat insulating material 8 after molding is suppressed, and the heat insulation performance of the heat insulating structure 6 is improved. Can be made.

しかも、本実施の形態では、発泡断熱材7A,7Bを、真空断熱材8の枠状溶着部8Cの両側から衝合して一体成形することができる。即ち、成形時に発泡粒子を、真空断熱材8の内周側と外周側の両方に対応する金型から吐出するので、真空断熱材8の内周側から外周側(及び外周側から内周側)に回り込ませなくてもよいので、枠状溶着部8Cの曲げ加工を省略して加工の手間を軽減し、また、真空断熱材8の破損を防止することができる。さらに、成形時には、真空断熱材8の内周側及び外周側にそれぞれ充填した発泡粒子により、真空断熱材8を金型内で規定の位置に浮いた状態に保持することができる。これにより、従来技術の位置決め用断熱材等を使用しなくても、成形断熱材7内の規定位置に真空断熱材8を埋設することができ、真空断熱材8の反り等も抑制することができる。従って、本実施の形態によれば、1ショット成形により断熱構造体6を効率よく製造することができる。   Moreover, in the present embodiment, the foam heat insulating materials 7A and 7B can be abutted from both sides of the frame-shaped welded portion 8C of the vacuum heat insulating material 8 and integrally molded. That is, since the foamed particles are discharged from the mold corresponding to both the inner peripheral side and the outer peripheral side of the vacuum heat insulating material 8 at the time of molding, the vacuum heat insulating material 8 is changed from the inner peripheral side to the outer peripheral side (and from the outer peripheral side to the inner peripheral side). ), The bending work of the frame-shaped welded portion 8C can be omitted to reduce the labor of processing, and damage to the vacuum heat insulating material 8 can be prevented. Further, at the time of molding, the vacuum heat insulating material 8 can be held in a predetermined position in the mold by the foam particles filled on the inner peripheral side and the outer peripheral side of the vacuum heat insulating material 8 respectively. Accordingly, the vacuum heat insulating material 8 can be embedded at a specified position in the molded heat insulating material 7 without using the positioning heat insulating material of the prior art, and the warpage of the vacuum heat insulating material 8 can be suppressed. it can. Therefore, according to the present embodiment, the heat insulating structure 6 can be efficiently manufactured by one-shot molding.

また、本実施の形態では、真空断熱材8の枠状溶着部8Cの外側に非溶着周縁部8Dを設けている。これにより、次のような作用効果を得ることができる。一般に、真空断熱材8は、ガスバリア性フィルム8Bに穴が開いて内部の減圧状態が損なわれると、断熱性能が大きく低下する。このため、製造時等には、ガスバリア性フィルム8Bを傷つけないように細心の注意を払う必要があり、取扱いが困難である。これに対し、非溶着周縁部8Dは、破損してもフィルム内の密封状態に影響しない部位であるから、断熱構造体6の製造時には、非溶着周縁部8Dを把持することにより真空断熱材8の支持や移動を容易に行うことができる。これにより、真空断熱材8を取扱うときの作業効率を向上し、また、不良品(スローリーク等)の発生を抑制することができる。   Moreover, in this Embodiment, the non-welding peripheral part 8D is provided in the outer side of the frame-shaped welding part 8C of the vacuum heat insulating material 8. FIG. Thereby, the following effects can be obtained. Generally, when the vacuum heat insulating material 8 has a hole in the gas barrier film 8B and the internal reduced pressure state is impaired, the heat insulating performance is greatly deteriorated. For this reason, it is necessary to pay close attention not to damage the gas barrier film 8B at the time of manufacture or the like, and handling is difficult. On the other hand, since the non-welding peripheral edge 8D is a part that does not affect the sealed state in the film even if it is damaged, the vacuum heat insulating material 8 can be obtained by gripping the non-welding peripheral edge 8D when the heat insulating structure 6 is manufactured. Can be easily supported and moved. Thereby, the work efficiency at the time of handling the vacuum heat insulating material 8 can be improved, and generation | occurrence | production of inferior goods (slow leak etc.) can be suppressed.

また、本実施の形態では、第1,第2の発泡断熱材7A,7Bを、互いに異なる種類の発泡材料により形成してもよい。具体的に述べると、第1の発泡断熱材7Aは、第2の発泡断熱材7Bよりも耐熱性の高い発泡材料を用いて形成してもよい。これにより、成形断熱材7のうち貯湯タンク3に近い内周部の耐熱性を高め、断熱構造体6の耐久性を向上させることができる。   In the present embodiment, the first and second foam heat insulating materials 7A and 7B may be formed of different types of foam materials. Specifically, the first foam heat insulating material 7A may be formed using a foam material having higher heat resistance than the second foam heat insulating material 7B. Thereby, the heat resistance of the internal peripheral part near the hot water storage tank 3 among the shaping | molding heat insulating materials 7 can be improved, and the durability of the heat insulation structure 6 can be improved.

さらに、第1の発泡断熱材7Aは、第2の発泡断熱材7Bよりも発泡倍率が低い(低倍率の)発泡材料を用いて形成してもよい。一般に、発泡断熱材は、発泡倍率が低いほど断熱性能が向上し、強度が向上し固くなる特性を有している。従って、本構成によれば、成形断熱材7のうち貯湯タンク3に近い内周部に低倍率で断熱性が高い発泡断熱材7Aを使用し、成形断熱材7のうち外部に面した外周部には、高倍率で弾力性が高い発泡断熱材7Bを使用することができる。これにより、高い保温性能を実現しつつ、外部からの衝撃等を吸収しやすい断熱構造体6を形成することができる。   Further, the first foam heat insulating material 7A may be formed using a foam material having a lower expansion ratio (low magnification) than that of the second foam heat insulating material 7B. In general, a foam heat insulating material has a characteristic that heat insulation performance is improved and strength is increased and hardened as the expansion ratio is lower. Therefore, according to the present configuration, the foamed heat insulating material 7A having a low magnification and high heat insulating property is used for the inner peripheral portion close to the hot water storage tank 3 in the molded heat insulating material 7, and the outer peripheral portion facing the outside of the molded heat insulating material 7. The foam heat insulating material 7B having high elasticity and high elasticity can be used. Thereby, the heat insulation structure 6 which is easy to absorb the impact from the outside etc. can be formed, implement | achieving high heat retention performance.

次に、図4乃至図8を参照しつつ、本実施の形態による断熱構造体6の製造方法について説明する。本実施の形態では、成形断熱材7を成形するための金型20(コア型)及び金型21(キャビティー型)を用いて、以下に示す第1の準備工程、第2の準備工程及び成形工程を順次行うことにより、断熱構造体6を製造する。金型20,21は、成形断熱材7と同様に略半円筒状に形成されており、それぞれ複数(単数でもよい)の発泡粒子充填口22を備えている。   Next, the manufacturing method of the heat insulation structure 6 by this Embodiment is demonstrated, referring FIG. 4 thru | or FIG. In the present embodiment, using a mold 20 (core mold) and a mold 21 (cavity mold) for molding the molded heat insulating material 7, the following first preparation process, second preparation process, and The heat insulating structure 6 is manufactured by sequentially performing the molding process. The molds 20 and 21 are formed in a substantially semi-cylindrical shape similarly to the molded heat insulating material 7, and each include a plurality (or a single number) of foamed particle filling ports 22.

図4は、第1の準備工程を示す縦断面図である。第1の準備工程では、まず、金型20,21を、両者間に隙間Sを設けた状態で配置する。次に、支持部材としてのフック23により真空断熱材8の非溶着周縁部8Dを支持(把持)しつつ、真空断熱材8を前記隙間Sから金型20,21間の空間に配置する。このとき、真空断熱材8の両面側は、それぞれ金型20,21の内壁面から離れた位置に保持される。なお、フック23による真空断熱材8の把持位置を図8に示す。図8は、フックにより真空断熱材を支持する部位を図3と同様位置からみた外観図である。このように、フック23は、真空断熱材8の非溶着周縁部8Dを把持するので、この把持動作により非溶着周縁部8Dが破損したとしても、真空断熱材8の密封状態が損なわれるのを防止することができる。従って、密封状態の破壊による不良品の発生を抑制し、製造時の歩留まりを向上させることができる。なお、真空断熱材8は複数個のフック23により把持してもよい。   FIG. 4 is a longitudinal sectional view showing the first preparation process. In the first preparation step, first, the molds 20 and 21 are arranged with a gap S provided therebetween. Next, the vacuum heat insulating material 8 is disposed in the space between the molds 20 and 21 from the gap S while supporting (gripping) the non-welding peripheral edge portion 8D of the vacuum heat insulating material 8 by the hook 23 as a support member. At this time, both sides of the vacuum heat insulating material 8 are held at positions away from the inner wall surfaces of the molds 20 and 21, respectively. In addition, the holding position of the vacuum heat insulating material 8 by the hook 23 is shown in FIG. FIG. 8 is an external view of a portion where the vacuum heat insulating material is supported by the hook as seen from the same position as in FIG. Thus, since the hook 23 grips the non-welding peripheral edge portion 8D of the vacuum heat insulating material 8, even if the non-welding peripheral edge portion 8D is damaged by this gripping operation, the sealed state of the vacuum heat insulating material 8 is impaired. Can be prevented. Therefore, the generation of defective products due to the destruction of the sealed state can be suppressed, and the yield during manufacturing can be improved. The vacuum heat insulating material 8 may be held by a plurality of hooks 23.

次に、図5及び図6は、第2の準備工程を示す縦断面図である。第2の準備工程では、まず、図5に示すように、発泡粒子充填口22から金型20,21間の空間に発泡粒子(発泡ビーズ)24A,24Bを充填する。このとき、真空断熱材8の内周側には、金型20の発泡粒子充填口22から発泡粒子24Aを充填し、真空断熱材8の外周側には、金型21の発泡粒子充填口22から発泡粒子24Bを充填する。このとき、発泡粒子24Aの充填動作と発泡粒子24Bの充填動作とを同時に同圧力で行うことにより、金型20,21(成形断熱材7)の内部における真空断熱材8の傾きを補正し、真空断熱材8の両面側を金型20,21の内壁面と平行に配置することができる。また、発泡粒子24A,24Bの充填タイミングや充填圧力に差異を生じさせることにより、成形断熱材7の内部における真空断熱材8の位置を必要に応じて調整することができる。   Next, FIG.5 and FIG.6 is a longitudinal cross-sectional view which shows a 2nd preparatory process. In the second preparation step, first, as shown in FIG. 5, foamed particles (foamed beads) 24 </ b> A and 24 </ b> B are filled into the space between the molds 20 and 21 from the foamed particle filling port 22. At this time, the foam particles 24 </ b> A are filled into the inner peripheral side of the vacuum heat insulating material 8 from the foamed particle filling port 22 of the mold 20, and the foamed particle filling port 22 of the mold 21 is filled into the outer peripheral side of the vacuum heat insulating material 8. To fill the expanded particles 24B. At this time, by performing the filling operation of the foam particles 24A and the filling operation of the foam particles 24B at the same pressure at the same time, the inclination of the vacuum heat insulating material 8 inside the molds 20, 21 (molded heat insulating material 7) is corrected, Both side surfaces of the vacuum heat insulating material 8 can be arranged in parallel to the inner wall surfaces of the molds 20 and 21. Moreover, the position of the vacuum heat insulating material 8 inside the molded heat insulating material 7 can be adjusted as necessary by making a difference in the filling timing and filling pressure of the foam particles 24A and 24B.

そして、発泡粒子24A,24Bの充填量を増加していくと、図6に示すように、真空断熱材8が発泡粒子24A,24Bにより両側から支持(位置決め)された状態となるので、フック23を真空断熱材8から取外して金型20,21の外部に移動する。なお、本実施の形態では、金型20,21にそれぞれ設けられた2個の発泡粒子充填口22を例示したが、本発明では、複数の発泡粒子充填口22を、金型20,21の軸方向及び周方向(図5中の上下方向及び紙面と垂直な方向)にそれぞれ並べて配置する構成としてもよい。この構成によれば、金型20,21の内壁面のほぼ全体にわたって発泡粒子24A,24Bを均等に充填することができ、発泡粒子24A,24Bにより真空断熱材8を安定的に支持することができる。   As the filling amount of the expanded particles 24A and 24B is increased, the vacuum heat insulating material 8 is supported (positioned) from both sides by the expanded particles 24A and 24B as shown in FIG. Is removed from the vacuum heat insulating material 8 and moved to the outside of the molds 20 and 21. In the present embodiment, two foamed particle filling ports 22 provided in the molds 20 and 21 are illustrated. However, in the present invention, a plurality of foamed particle filling ports 22 are provided on the molds 20 and 21. It is good also as a structure arrange | positioned along with the axial direction and the circumferential direction (the up-down direction in FIG. According to this configuration, the foam particles 24A and 24B can be uniformly filled over almost the entire inner wall surfaces of the molds 20 and 21, and the vacuum heat insulating material 8 can be stably supported by the foam particles 24A and 24B. it can.

また、金型20の発泡粒子充填口22と、金型21の発泡粒子充填口22とは、これらの発泡粒子充填口22から真空断熱材8の枠状溶着部8Cまでの距離が等しくなるように配置するのが好ましい。これにより、それぞれの発泡粒子充填口22から充填した発泡粒子24A,24Bを、枠状溶着部8Cの位置で互いに接触(衝合)させて一体生成することができる。従って、枠状溶着部8Cを曲げ加工しなくても、真空断熱材8の端部付近で成形断熱材7の内部に隙間が生じるのを抑制することができる。   Further, the expanded particle filling port 22 of the mold 20 and the expanded particle filling port 22 of the mold 21 have the same distance from the expanded particle filling port 22 to the frame-shaped welded portion 8 </ b> C of the vacuum heat insulating material 8. It is preferable to arrange in the above. As a result, the foam particles 24A and 24B filled from the respective foam particle filling ports 22 can be integrally produced by contacting (colliding) with each other at the position of the frame-shaped weld portion 8C. Therefore, it is possible to suppress the generation of a gap in the molded heat insulating material 7 near the end of the vacuum heat insulating material 8 without bending the frame-shaped welded portion 8C.

次に、図7は、成形工程を示す縦断面図である。成形工程では、発泡粒子24A,24Bの充填を継続しつつ、金型20,21を衝合して隙間Sを閉じる。これにより、発泡粒子24A,24Bを金型20,21内で圧縮して真空断熱材8と密着させ、発泡粒子24A,24Bと真空断熱材8との間の隙間を無くした状態に保持する。そして、この状態で発泡粒子24A,24Bを発泡させることにより、第1の発泡断熱材7Aを真空断熱材8の内周面に一体成形し、第2の発泡断熱材7Bを真空断熱材8の外周面に一体成形すると共に、これらの発泡断熱材7A,7Bを真空断熱材8の外側で一体成形して成形断熱材7を完成する。   Next, FIG. 7 is a longitudinal sectional view showing the molding process. In the molding step, the molds 20 and 21 are brought into contact with each other and the gap S is closed while the filling of the expanded particles 24A and 24B is continued. As a result, the foam particles 24A and 24B are compressed in the molds 20 and 21 to be brought into close contact with the vacuum heat insulating material 8, and the gap between the foam particles 24A and 24B and the vacuum heat insulating material 8 is eliminated. In this state, the foamed particles 24 </ b> A and 24 </ b> B are foamed to integrally form the first foam heat insulating material 7 </ b> A on the inner peripheral surface of the vacuum heat insulating material 8, and the second foam heat insulating material 7 </ b> B is formed on the vacuum heat insulating material 8. The molded heat insulating material 7 is completed by integrally forming the outer peripheral surface and integrally forming the foam heat insulating materials 7A and 7B outside the vacuum heat insulating material 8.

上記製造方法によれば、第1の準備工程では、フック23を用いて真空断熱材8を金型20,21内の規定位置に支持することができる。そして、第2の準備工程では、真空断熱材8の内周側及び外周側にそれぞれ充填した発泡粒子24A,24Bにより、真空断熱材8を両側から支持しつつ、フック23を取外すことができる。これにより、位置決め用断熱材等を使用しなくても、成形断熱材7内の規定位置に真空断熱材8を埋設することができる。また、成形工程では、発泡粒子24A,24Bを真空断熱材8の内周面及び外周面にそれぞれ密着した状態で発泡させ、発泡断熱材7A,7Bと真空断熱材8とを両者間に隙間のない状態で一体成形することができる。これにより、接着剤の使用や枠状溶着部8Cの曲げ加工等が不要となるので、製造工程を簡略化することができる。従って、1ショット成形により高性能の断熱構造体6を効率よく製造することができる。   According to the manufacturing method, in the first preparation step, the vacuum heat insulating material 8 can be supported at the specified positions in the molds 20 and 21 using the hooks 23. In the second preparation step, the hooks 23 can be removed while supporting the vacuum heat insulating material 8 from both sides by the foam particles 24A and 24B filled on the inner and outer peripheral sides of the vacuum heat insulating material 8, respectively. Thereby, the vacuum heat insulating material 8 can be embedded at a specified position in the molded heat insulating material 7 without using a positioning heat insulating material or the like. Further, in the molding step, the foam particles 24A and 24B are foamed in close contact with the inner peripheral surface and the outer peripheral surface of the vacuum heat insulating material 8, respectively, and the foam heat insulating materials 7A and 7B and the vacuum heat insulating material 8 have a gap between them. It can be integrally formed in a state without any. This eliminates the need for using an adhesive or bending the frame-shaped welded portion 8C, thereby simplifying the manufacturing process. Therefore, the high-performance heat insulating structure 6 can be efficiently manufactured by one-shot molding.

また、第2の準備工程では、前述したように、真空断熱材8の内周側と外周側にそれぞれ充填する発泡粒子の充填タイミング及び/又は充填圧力のバランスに基いて、成形断熱材7の内部における真空断熱材8の位置及び傾きを調整することができる。これにより、1ショット成形を用いる場合でも、成形断熱材7と真空断熱材8との位置関係を正確かつ容易に設定することができ、断熱構造体6の保温性能を安定させることができる。   Further, in the second preparation step, as described above, based on the balance between the filling timing and / or the filling pressure of the foam particles to be filled on the inner peripheral side and the outer peripheral side of the vacuum heat insulating material 8, The position and inclination of the vacuum heat insulating material 8 inside can be adjusted. Thereby, even when using one-shot molding, the positional relationship between the molded heat insulating material 7 and the vacuum heat insulating material 8 can be set accurately and easily, and the heat retaining performance of the heat insulating structure 6 can be stabilized.

1 貯湯タンクユニット
2 外郭ケース
3 貯湯タンク
4 上部断熱材
5 下部断熱材
6 断熱構造体
7 成形断熱材
7A 第1の発泡断熱材
7B 第2の発泡断熱材
8 真空断熱材
8A 芯材
8B ガスバリア性フィルム
8C 枠状溶着部
8D 非溶着周縁部
20,21 金型
22 発泡粒子充填口
23 フック(支持部材)
24A,24B 発泡粒子
DESCRIPTION OF SYMBOLS 1 Hot water storage tank unit 2 Outer case 3 Hot water storage tank 4 Upper heat insulating material 5 Lower heat insulating material 6 Heat insulating structure 7 Molding heat insulating material 7A 1st foam heat insulating material 7B 2nd foam heat insulating material 8 Vacuum heat insulating material 8A Core material 8B Gas barrier property Film 8C Frame-like welded portion 8D Non-welded peripheral edge 20, 21 Mold 22 Foamed particle filling port 23 Hook (supporting member)
24A, 24B expanded particles

Claims (7)

温水を貯留する貯湯タンクを外側から覆う成形断熱材と、
前記成形断熱材の内部に埋設され、前記貯湯タンクに面した内面と外部に面した外面とを有する板状の真空断熱材と、
を備えた貯湯式給湯機の断熱構造体であって、
前記成形断熱材は、
前記真空断熱材の内面側に発泡粒子を充填することにより前記内面に一体成形され、前記真空断熱材の周縁部の外側まで延在した第1の発泡断熱材と、
前記真空断熱材の外面側に発泡粒子を充填することにより前記外面に一体成形され、前記真空断熱材の周縁部の外側まで延在して前記第1の発泡断熱材と一体成形された第2の発泡断熱材と、
を備えた貯湯式給湯機の断熱構造体。
Molded insulation that covers the hot water storage tank that stores hot water from the outside,
A plate-like vacuum heat insulating material embedded in the molded heat insulating material and having an inner surface facing the hot water storage tank and an outer surface facing the outside;
A heat insulation structure for a hot water storage water heater comprising
The molded insulation is
A first foam heat insulating material that is integrally formed with the inner surface by filling foam particles on the inner surface side of the vacuum heat insulating material, and extends to the outside of the peripheral edge of the vacuum heat insulating material;
Filled with foam particles on the outer surface side of the vacuum heat insulating material, is integrally formed with the outer surface, extends to the outside of the peripheral edge of the vacuum heat insulating material, and is integrally formed with the first foam heat insulating material. Foam insulation of
Heat insulation structure for hot water storage water heaters equipped with
前記真空断熱材は、板状の芯材を挟んで2枚のガスバリア性フィルムを溶着することにより形成し、前記各ガスバリア性フィルムの周縁部には、溶着された部分の外側に位置して非溶着状態に保持された非溶着周縁部を設けてなる請求項1に記載の貯湯式給湯機の断熱構造体。   The vacuum heat insulating material is formed by welding two gas barrier films sandwiching a plate-shaped core material, and the peripheral edge of each gas barrier film is located outside the welded portion. The heat insulation structure of the hot water storage type hot-water supply device according to claim 1, wherein a non-welding peripheral edge portion held in a welding state is provided. 前記第1,第2の発泡断熱材は、互いに異なる種類の発泡材料を用いて形成してなる請求項1または2に記載の貯湯式給湯機の断熱構造体。   The heat insulation structure of a hot water storage type hot water supply apparatus according to claim 1 or 2, wherein the first and second foam heat insulating materials are formed using different types of foam materials. 前記第1の発泡断熱材は、前記第2の発泡断熱材よりも低倍率の発泡材料を用いて形成してなる請求項1または2に記載の貯湯式給湯機の断熱構造体。   The heat insulation structure of a hot water storage type hot water heater according to claim 1 or 2, wherein the first foam heat insulating material is formed using a foam material having a lower magnification than the second foam heat insulating material. 温水を貯留する貯湯タンクを外側から覆う成形断熱材と、前記成形断熱材の内部に埋設され、前記貯湯タンクに面した内面と外部に面した外面とを有する板状の真空断熱材とを備えた貯湯式給湯機の断熱構造体の製造方法であって、
前記成形断熱材を成形する2つの金型間に隙間を設けた状態で、前記真空断熱材を支持部材により支持しつつ前記各金型間の空間に配置する第1の準備工程と、
前記真空断熱材の内面側及び外面側となる位置で前記各金型間の空間にそれぞれの金型に設けた発泡粒子吐出口から発泡粒子を充填し、前記真空断熱材を前記発泡粒子により両面側から支持した状態で前記支持部材を前記真空断熱材から取外して前記金型の外部に移動する第2の準備工程と、
前記2つの金型を衝合して前記発泡粒子を圧縮した状態で前記発泡粒子を発泡させることにより、前記真空断熱材の内面側に位置する第1の発泡断熱材と前記真空断熱材の外面側に位置する第2の発泡断熱材とを一体成形して前記成形断熱材を完成する成形工程と、
を備えた貯湯式給湯機の断熱構造体の製造方法。
A molded heat insulating material that covers a hot water storage tank that stores hot water from the outside, and a plate-shaped vacuum heat insulating material that is embedded inside the molded heat insulating material and has an inner surface facing the hot water storage tank and an outer surface facing the outside. A method of manufacturing a heat insulation structure for a hot water storage hot water heater,
A first preparatory step of arranging the vacuum heat insulating material in a space between the molds while supporting the vacuum heat insulating material with a support member in a state where a gap is provided between the two molds for forming the molded heat insulating material;
Foam particles are filled from the foam particle discharge port provided in each mold in the space between the molds at positions on the inner surface side and outer surface side of the vacuum heat insulating material, and the vacuum heat insulating material is double-sided by the foam particles. A second preparatory step in which the support member is removed from the vacuum heat insulating material and moved to the outside of the mold while being supported from the side;
A first foam heat insulating material located on the inner surface side of the vacuum heat insulating material and an outer surface of the vacuum heat insulating material by foaming the foamed particles in a state where the two molds are abutted to compress the foamed particles A molding step of integrally molding the second foam insulation material located on the side to complete the molded insulation material;
For manufacturing a heat insulating structure of a hot water storage type hot water heater provided with
前記第1の準備工程では、前記真空断熱材を構成する2枚のガスバリア性フィルムの周縁部に設けられた非溶着周縁部を前記支持部材により支持してなる請求項5に記載の貯湯式給湯機の断熱構造体の製造方法。   6. The hot water storage type hot water supply according to claim 5, wherein in the first preparation step, a non-welding peripheral edge provided at a peripheral edge of two gas barrier films constituting the vacuum heat insulating material is supported by the support member. Method for manufacturing a heat insulating structure of a machine. 前記第2の準備工程では、前記真空断熱材の内面側と外面側にそれぞれ充填する発泡粒子の充填タイミング及び/又は充填圧力のバランスに基いて、前記成形断熱材の内部における前記真空断熱材の位置及び傾きを調整してなる請求項5または6に記載の貯湯式給湯機の断熱構造体の製造方法。   In the second preparation step, based on the balance of filling timing and / or filling pressure of the foam particles filling the inner surface side and the outer surface side of the vacuum heat insulating material, the vacuum heat insulating material inside the molded heat insulating material. The manufacturing method of the heat insulation structure of the hot water storage type water heater of Claim 5 or 6 formed by adjusting a position and inclination.
JP2012085619A 2012-04-04 2012-04-04 Heat insulation structure for hot water storage type hot water heater and method for manufacturing the same Active JP5953892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012085619A JP5953892B2 (en) 2012-04-04 2012-04-04 Heat insulation structure for hot water storage type hot water heater and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012085619A JP5953892B2 (en) 2012-04-04 2012-04-04 Heat insulation structure for hot water storage type hot water heater and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2013217505A true JP2013217505A (en) 2013-10-24
JP5953892B2 JP5953892B2 (en) 2016-07-20

Family

ID=49589816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012085619A Active JP5953892B2 (en) 2012-04-04 2012-04-04 Heat insulation structure for hot water storage type hot water heater and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5953892B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168949A (en) * 2017-03-30 2018-11-01 パナソニックIpマネジメント株式会社 Vacuum heat insulation housing and refrigerator
CN111331772A (en) * 2018-12-18 2020-06-26 青岛经济技术开发区海尔热水器有限公司 Preparation method of double-liner water heater and double-liner water heater
WO2020217270A1 (en) * 2019-04-22 2020-10-29 三菱電機株式会社 Polyurethane foam insulation material and storage water heater
CN112248348A (en) * 2020-09-29 2021-01-22 原言(广州)科技有限公司 Be used for heat-insulating panel forming device of household electrical appliances

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913187A (en) * 1982-07-13 1984-01-23 松下冷機株式会社 Vacuum heat-insulating composite body and its manufacture
JP2007131329A (en) * 2005-11-10 2007-05-31 Corona Corp Thermal insulation material for storage tank
JP2008267481A (en) * 2007-04-19 2008-11-06 Mag:Kk Vacuum heat insulating composite material manufacturing method and vacuum heat insulating composite material
JP2009197532A (en) * 2008-02-25 2009-09-03 Panasonic Corp Heat insulating wall and house applied with the same
JP2010025507A (en) * 2008-07-24 2010-02-04 Sanden Corp Hot water storage tank and molding method of heat insulator for hot water storage tank
JP2011237072A (en) * 2010-05-07 2011-11-24 Mitsubishi Electric Corp Hot water storage tank unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913187A (en) * 1982-07-13 1984-01-23 松下冷機株式会社 Vacuum heat-insulating composite body and its manufacture
JP2007131329A (en) * 2005-11-10 2007-05-31 Corona Corp Thermal insulation material for storage tank
JP2008267481A (en) * 2007-04-19 2008-11-06 Mag:Kk Vacuum heat insulating composite material manufacturing method and vacuum heat insulating composite material
JP2009197532A (en) * 2008-02-25 2009-09-03 Panasonic Corp Heat insulating wall and house applied with the same
JP2010025507A (en) * 2008-07-24 2010-02-04 Sanden Corp Hot water storage tank and molding method of heat insulator for hot water storage tank
JP2011237072A (en) * 2010-05-07 2011-11-24 Mitsubishi Electric Corp Hot water storage tank unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168949A (en) * 2017-03-30 2018-11-01 パナソニックIpマネジメント株式会社 Vacuum heat insulation housing and refrigerator
CN111331772A (en) * 2018-12-18 2020-06-26 青岛经济技术开发区海尔热水器有限公司 Preparation method of double-liner water heater and double-liner water heater
CN111331772B (en) * 2018-12-18 2024-01-09 青岛经济技术开发区海尔热水器有限公司 Preparation method of double-liner water heater and double-liner water heater
WO2020217270A1 (en) * 2019-04-22 2020-10-29 三菱電機株式会社 Polyurethane foam insulation material and storage water heater
JPWO2020217270A1 (en) * 2019-04-22 2021-10-28 三菱電機株式会社 Polyurethane foam insulation and hot water storage type water heater
JP7156510B2 (en) 2019-04-22 2022-10-19 三菱電機株式会社 Polyurethane foam insulation and storage water heater
CN112248348A (en) * 2020-09-29 2021-01-22 原言(广州)科技有限公司 Be used for heat-insulating panel forming device of household electrical appliances

Also Published As

Publication number Publication date
JP5953892B2 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
JP4861715B2 (en) Manufacturing method of vacuum insulation
JP5953892B2 (en) Heat insulation structure for hot water storage type hot water heater and method for manufacturing the same
ES2555155T3 (en) Apparatus and methods for forming stiffened composite hat parts using thermally expansive styling plates
EP2590241B1 (en) Cell block and method for manufacturing same
JP5380189B2 (en) Hot bulge forming equipment
JP2012163258A (en) Storage type hot water supply apparatus
JP2014513382A5 (en)
JP2013512404A (en) Groove type vacuum heat insulating material and method for manufacturing the same
KR102111834B1 (en) Heat-radiation structure with high general performance and methods of preparation thereof
JP5959558B2 (en) Composite structure and method for producing the same
WO2011102337A1 (en) Heat insulator and process for producing heat insulator
JP6046044B2 (en) Tool set and method for manufacturing a metal liner
JP5887828B2 (en) Hot water storage type water heater and manufacturing method of molded heat insulating material
JP5250080B2 (en) refrigerator
JP5609782B2 (en) Hot water storage water heater
JP4805466B2 (en) Method for manufacturing a heater plate provided with a sheath heater
JP6641243B2 (en) Method for manufacturing composite heat insulator, method for manufacturing water heater, and composite heat insulator
JP6491005B2 (en) Method for manufacturing composite structure and temperature control panel
JP2013024439A (en) Refrigerator
JP6233050B2 (en) Hot water storage water heater
JP5928012B2 (en) Hot water storage water heater
EP3141370B1 (en) Method for producing composite thermal insulator, method for producing water heater, and composite thermal insulator
JP6252368B2 (en) Hot water storage water heater
JP2014019024A (en) Molding jig of a composite and molding method of a composite
CN108372226B (en) Air pressure forming tool and method for internally ribbed cylinder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R150 Certificate of patent or registration of utility model

Ref document number: 5953892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250