JP2013216515A - Manufacturing apparatus and manufacturing method of silicon carbide single crystal - Google Patents

Manufacturing apparatus and manufacturing method of silicon carbide single crystal Download PDF

Info

Publication number
JP2013216515A
JP2013216515A JP2012086574A JP2012086574A JP2013216515A JP 2013216515 A JP2013216515 A JP 2013216515A JP 2012086574 A JP2012086574 A JP 2012086574A JP 2012086574 A JP2012086574 A JP 2012086574A JP 2013216515 A JP2013216515 A JP 2013216515A
Authority
JP
Japan
Prior art keywords
single crystal
silicon carbide
heating
carbide single
sic single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012086574A
Other languages
Japanese (ja)
Other versions
JP5811012B2 (en
Inventor
Hidemi Makino
英美 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012086574A priority Critical patent/JP5811012B2/en
Publication of JP2013216515A publication Critical patent/JP2013216515A/en
Application granted granted Critical
Publication of JP5811012B2 publication Critical patent/JP5811012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing apparatus and manufacturing method of an SiC single crystal in which temperature distribution of the SiC single crystal surface can be made more uniform, and deterioration of crystal quality can be controlled when growing up the SiC single crystal to be long.SOLUTION: A heating form by a second heating device 13 is changed along with growth of an SiC single crystal 20. Concretely, the SiC single crystal 20 is made longer, an outer peripheral surface is heated more, thereby driving power is increased from a lower side in sequence for each of steps 13a-13c, and a part corresponding to a place in which the SiC single crystal 20 exists is heated in sequence in each of the steps 13a-13c. As a result, temperature distribution can be almost uniform in a longitudinal direction of the SiC single crystal 20, and deterioration of crystal quality of the SiC single crystal 20 can be controlled.

Description

本発明は、炭化珪素(以下、SiCという)単結晶で構成される種結晶に対して原料ガスを供給することでSiC単結晶の製造を行うSiC単結晶の製造装置および製造方法に関するものである。   The present invention relates to a SiC single crystal manufacturing apparatus and manufacturing method for manufacturing a SiC single crystal by supplying a raw material gas to a seed crystal composed of a silicon carbide (hereinafter referred to as SiC) single crystal. .

従来より、SiC単結晶製造装置として、例えば特許文献1に示される構造の製造装置が提案されている。この従来のSiC単結晶製造装置では、円筒形状の真空容器の周囲を囲むように加熱コイルを配置すると共に、真空容器の内側に原料ガス加熱容器と結晶成長容器を配置し、結晶成長容器を上下動機構によって引き上げ可能な構成としている。このような構成により、加熱コイルによる誘導加熱によって原料ガス加熱容器を加熱することで原料ガスを加熱しながら結晶成長容器に取り付けられた種結晶表面にSiC単結晶を成長させる。また、上下動機構によって結晶成長容器を引上げることでSiC単結晶の長尺成長が可能となるようにしている。そして、SiC単結晶の長尺成長に伴い、加熱コイルのパワーを調整することでSiC単結晶の長尺方向(成長方向)におけるSiC単結晶表面温度を制御している。これにより、SiC単結晶表面の温度および過飽和度を制御でき、長尺成長時にも成長初期と同様の成長速度を得ることが可能となる。   Conventionally, as a SiC single crystal manufacturing apparatus, for example, a manufacturing apparatus having a structure shown in Patent Document 1 has been proposed. In this conventional SiC single crystal manufacturing apparatus, a heating coil is arranged so as to surround a cylindrical vacuum vessel, a source gas heating vessel and a crystal growth vessel are arranged inside the vacuum vessel, and the crystal growth vessel is moved up and down. It can be pulled up by a moving mechanism. With such a configuration, the SiC single crystal is grown on the surface of the seed crystal attached to the crystal growth vessel while heating the source gas by heating the source gas heating vessel by induction heating with a heating coil. Further, the SiC single crystal can be grown long by pulling up the crystal growth vessel by the vertical movement mechanism. And the SiC single crystal surface temperature in the elongate direction (growth direction) of a SiC single crystal is controlled by adjusting the power of a heating coil with the long growth of a SiC single crystal. Thereby, the temperature and supersaturation degree of the surface of the SiC single crystal can be controlled, and it is possible to obtain the same growth rate as in the initial stage of growth even during long growth.

特開2008−169098号公報JP 2008-169098 A

しかしながら、特許文献1のようにSiC単結晶の周囲を囲むように配置された加熱コイルが単一のものであると、SiC単結晶表面の温度について制御しても長尺方向における温度分布の制御が難しく、長尺成長させるほど長尺方向において温度分布が生じ、熱応力が発生してしまう。このため、成長中のSiC単結晶の内部に発生した熱応力によって欠陥が増加し、結晶品質を劣化させるという問題がある。   However, if the heating coil arranged so as to surround the periphery of the SiC single crystal as in Patent Document 1 is a single one, the temperature distribution in the longitudinal direction is controlled even if the temperature of the surface of the SiC single crystal is controlled. However, the longer the growth, the more the temperature distribution is generated in the longitudinal direction and the thermal stress is generated. For this reason, there is a problem in that defects increase due to thermal stress generated in the growing SiC single crystal and the crystal quality is deteriorated.

本発明は上記点に鑑みて、SiC単結晶を長尺成長させる際にSiC単結晶表面の温度分布をより均一にでき、結晶品質の劣化を抑制できるSiC単結晶製造装置および製造方法を提供することを目的とする。   In view of the above points, the present invention provides a SiC single crystal manufacturing apparatus and a manufacturing method capable of making the temperature distribution on the surface of the SiC single crystal more uniform and suppressing deterioration in crystal quality when the SiC single crystal is grown long. For the purpose.

上記目的を達成するため、請求項1に記載の発明では、台座(9)に対してSiC単結晶基板からなる種結晶(5)を設置し、加熱装置(13)にて台座の周囲を加熱しつつ種結晶の表面にSiCの原料ガス(3a)を供給することで種結晶の表面にSiC単結晶(20)を結晶成長させると共に、引上機構(11)によって台座を引上げることでSiC単結晶を長尺化させるSiC単結晶の製造装置において、加熱装置は、加熱コイルによって構成されていると共にSiC単結晶の成長方向において加熱コイルが多段(13a〜13c)に並べられた多段構造とされ、かつ、加熱コイルの各段が独立して温度制御される構成とされていることを特徴としている。   In order to achieve the above object, according to the first aspect of the present invention, a seed crystal (5) made of a SiC single crystal substrate is installed on the pedestal (9), and the periphery of the pedestal is heated by a heating device (13). On the other hand, the SiC single crystal (20) is grown on the surface of the seed crystal by supplying the SiC source gas (3a) to the surface of the seed crystal, and the pedestal is pulled up by the pulling mechanism (11). In a SiC single crystal manufacturing apparatus that lengthens a single crystal, the heating device includes a heating coil and a multi-stage structure in which heating coils are arranged in multiple stages (13a to 13c) in the growth direction of the SiC single crystal. In addition, each stage of the heating coil is configured to be temperature-controlled independently.

このように、加熱装置を構成する加熱コイルを多段構造とし、各段が独立して温度制御できる構成とされている。このため、加熱コイルの各段による温度制御によりSiC単結晶の成長に伴った細やかな温度制御を行うことができる。これにより、SiC単結晶の成長表面の温度分布をSiC単結晶の成長に適した温度に調整できると共に、長尺成長中のSiC単結晶の外周表面の温度をほぼ均一に制御でき、SiC単結晶の結晶品質の劣化を抑制することが可能となる。   Thus, the heating coil which comprises a heating apparatus is set as the multistage structure, and it is set as the structure which can control temperature independently at each stage. For this reason, fine temperature control accompanying the growth of the SiC single crystal can be performed by temperature control by each stage of the heating coil. As a result, the temperature distribution of the growth surface of the SiC single crystal can be adjusted to a temperature suitable for the growth of the SiC single crystal, and the temperature of the outer peripheral surface of the SiC single crystal during the long growth can be controlled almost uniformly. It becomes possible to suppress the deterioration of the crystal quality of.

請求項3に記載の発明では、加熱装置を加熱コイルによって構成すると共にSiC単結晶の成長方向において加熱コイルを多段(13a〜13c)に並べられた多段構造とし、かつ、加熱コイルの各段を独立して温度制御できるように構成し、SiC単結晶の成長に合せて引上機構によって台座を引上げることで、SiC単結晶の成長表面の高さを一定に保ちつつ、該SiC単結晶の成長に合せて加熱コイルの各段を制御することを特徴としている。   In the invention according to claim 3, the heating device is configured by a heating coil, and the heating coil has a multi-stage structure in which the heating coils are arranged in multiple stages (13a to 13c) in the growth direction of the SiC single crystal, and each stage of the heating coil is formed. The temperature can be controlled independently, and the pedestal is pulled up by a pulling mechanism in accordance with the growth of the SiC single crystal, so that the height of the growth surface of the SiC single crystal is kept constant while the SiC single crystal It is characterized by controlling each stage of the heating coil in accordance with the growth.

このように、SiC単結晶の成長に伴って加熱装置による加熱形態を変化させるようにしている。例えば、請求項4に記載の発明のように、種結晶の表面が多段のうち最も下方に位置する第1段(13a)と対応する位置に配置した状態で第1段を駆動して加熱を行いつつSiC単結晶を成長させ始め、SiC単結晶が成長するに連れて多段のうちの下方から順に駆動電力を増大していく。これにより、SiC単結晶の長尺方向において温度分布がほぼ均一になるようにでき、SiC単結晶の結晶品質の劣化を抑制することが可能となる。   Thus, the heating mode by the heating device is changed with the growth of the SiC single crystal. For example, as in the invention described in claim 4, heating is performed by driving the first stage in a state where the surface of the seed crystal is arranged at a position corresponding to the first stage (13 a) located at the lowermost position among the multiple stages. The SiC single crystal is started to grow while performing, and the driving power is increased in order from the lower of the multiple stages as the SiC single crystal grows. Thereby, the temperature distribution can be made substantially uniform in the longitudinal direction of the SiC single crystal, and deterioration of the crystal quality of the SiC single crystal can be suppressed.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係の一例を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows an example of a corresponding relationship with the specific means as described in embodiment mentioned later.

本発明の第1実施形態にかかるSiC単結晶製造装置1の断面図である。It is sectional drawing of the SiC single crystal manufacturing apparatus 1 concerning 1st Embodiment of this invention. SiC単結晶20の成長に伴った第2加熱装置13の各段13a〜13cの駆動電力の制御形態を示した図である。It is the figure which showed the control form of the drive electric power of each stage 13a-13c of the 2nd heating apparatus 13 with the growth of the SiC single crystal 20. FIG. 図2に示す制御形態で加熱を行った場合のSiC単結晶20の長尺方向における温度分布を示した図である。It is the figure which showed the temperature distribution in the elongate direction of the SiC single crystal 20 at the time of heating with the control form shown in FIG.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.

(第1実施形態)
図1に示すように、SiC単結晶製造装置1は、底部に備えられた流入口2を通じて原料ガス供給源3からの原料ガス3aを供給すると共に、上部の流出口4を通じて原料ガス3aのうちの未反応ガスを排出する。そして、SiC単結晶製造装置1は、装置内に配置したSiC単結晶基板からなる種結晶5上にSiC単結晶20を成長させることにより、SiC単結晶20のインゴットを形成する。
(First embodiment)
As shown in FIG. 1, the SiC single crystal manufacturing apparatus 1 supplies a source gas 3a from a source gas supply source 3 through an inlet 2 provided at the bottom and out of the source gas 3a through an outlet 4 at the top. Unreacted gas is discharged. Then, the SiC single crystal manufacturing apparatus 1 forms an ingot of the SiC single crystal 20 by growing the SiC single crystal 20 on the seed crystal 5 made of the SiC single crystal substrate disposed in the apparatus.

SiC単結晶製造装置1には、原料ガス供給源3、真空容器6、第1断熱材7、加熱容器8、台座9、第2断熱材10、回転引上機構11、第1、第2加熱装置12、13、干渉防止部材14、パージガス供給源15およびパイロメータ16(16a〜16f)が備えられている。   The SiC single crystal manufacturing apparatus 1 includes a source gas supply source 3, a vacuum container 6, a first heat insulating material 7, a heating container 8, a pedestal 9, a second heat insulating material 10, a rotary pulling mechanism 11, first and second heating. Devices 12 and 13, interference preventing member 14, purge gas supply source 15 and pyrometer 16 (16 a to 16 f) are provided.

原料ガス供給源3は、キャリアガスと共にSiおよびCを含有するSiCの原料ガス3a(例えば、シラン等のシラン系ガスとプロパン等の炭化水素系ガスの混合ガス)を流入口2より供給する。   The source gas supply source 3 supplies an SiC source gas 3 a containing Si and C together with a carrier gas (for example, a mixed gas of a silane-based gas such as silane and a hydrocarbon-based gas such as propane) from the inlet 2.

真空容器6は、石英ガラスなどで構成され、中空円筒状を為しており、キャリアガスや原料ガス3aの導入導出が行え、かつ、SiC単結晶製造装置1の他の構成要素を収容すると共に、その収容している内部空間の圧力を真空引きすることにより減圧できる構造とされている。この真空容器6の底部に原料ガス3aの流入口2が設けられ、上部(具体的には側壁の上方位置)に原料ガス3aの流出口4が設けられている。   The vacuum vessel 6 is made of quartz glass or the like, has a hollow cylindrical shape, can introduce and lead the carrier gas and the source gas 3a, and accommodates other components of the SiC single crystal manufacturing apparatus 1. The structure is such that the internal space in which it is housed can be depressurized by evacuating it. The inlet 2 of the source gas 3a is provided at the bottom of the vacuum vessel 6, and the outlet 4 of the source gas 3a is provided at the upper part (specifically, the position above the side wall).

第1断熱材7は、円筒形状を為しており、真空容器6に対して同軸的に配置され、中空部により原料ガス導入管7aを構成している。第1断熱材7は、例えば黒鉛や表面をTaC(炭化タンタル)やNbC(炭化ニオブ)などの高融点金属炭化物にてコーティングした黒鉛などで構成されることで、熱エッチングが抑制できるようにしている。   The first heat insulating material 7 has a cylindrical shape, is disposed coaxially with respect to the vacuum vessel 6, and constitutes a raw material gas introduction pipe 7 a with a hollow portion. The first heat insulating material 7 is made of, for example, graphite or graphite whose surface is coated with a refractory metal carbide such as TaC (tantalum carbide) or NbC (niobium carbide) so that thermal etching can be suppressed. Yes.

加熱容器8は、中空形状で構成され、種結晶5の表面にSiC単結晶20を成長させる反応室を構成している。加熱容器8は、例えば黒鉛や表面をTaC(炭化タンタル)やNbC(炭化ニオブ)などの高融点金属炭化物にてコーティングした黒鉛などで構成されることで、熱エッチングが抑制できるようにしている。この加熱容器8は、台座9を囲むように、台座9に対して原料ガス3aの流動方向の上流側より下流側まで配置されている。この加熱容器8により、流入口2から供給された原料ガス3aを種結晶5に導くまでに、原料ガス3aに含まれたパーティクルを排除しつつ、原料ガス3aを分解している。   Heating vessel 8 is formed in a hollow shape, and constitutes a reaction chamber in which SiC single crystal 20 is grown on the surface of seed crystal 5. The heating container 8 is made of, for example, graphite or graphite whose surface is coated with a refractory metal carbide such as TaC (tantalum carbide) or NbC (niobium carbide), so that thermal etching can be suppressed. The heating container 8 is arranged from the upstream side in the flow direction of the raw material gas 3 a to the downstream side with respect to the base 9 so as to surround the base 9. By this heating container 8, the raw material gas 3 a is decomposed while excluding particles contained in the raw material gas 3 a until the raw material gas 3 a supplied from the inlet 2 is led to the seed crystal 5.

具体的には、加熱容器8は、中空円筒状部材を有した構造とされ、本実施形態の場合は有底円筒状部材で構成されている。加熱容器8には、底部に第1断熱材7の中空部と連通させられるガス導入口8aが備えられ、第1断熱材7の中空部を通過してきた原料ガス3aがガス導入口8aを通じて加熱容器8内に導入される。   Specifically, the heating container 8 has a structure having a hollow cylindrical member, and in the case of the present embodiment, the heating container 8 is composed of a bottomed cylindrical member. The heating vessel 8 is provided with a gas introduction port 8a that communicates with the hollow portion of the first heat insulating material 7 at the bottom, and the source gas 3a that has passed through the hollow portion of the first heat insulating material 7 is heated through the gas introduction port 8a. It is introduced into the container 8.

また、加熱容器8の内周壁面のうち、台座9よりも原料ガス3aの流動方向の上流側において、パージガス導入孔8bが備えられている。このパージガス導入孔8bより、後述するパージガス供給源15から供給されるパージガス15aを加熱容器8内に導入し、加熱容器8と台座9との間の隙間を通じて流動させるようにしている。パージガス導入孔8bは、加熱容器8の内周を全周囲むように形成されており、台座9の周囲を囲むようにパージガス15aを導入する。   Further, a purge gas introduction hole 8 b is provided on the inner peripheral wall surface of the heating container 8 on the upstream side of the pedestal 9 in the flow direction of the raw material gas 3 a. Through this purge gas introduction hole 8b, a purge gas 15a supplied from a purge gas supply source 15 to be described later is introduced into the heating container 8 and flows through a gap between the heating container 8 and the base 9. The purge gas introduction hole 8 b is formed so as to surround the entire inner periphery of the heating container 8, and introduces the purge gas 15 a so as to surround the periphery of the base 9.

台座9は、加熱容器8の中心軸と同軸的に配置された板状部材で構成されている。例えば、台座9は、黒鉛や表面をTaC(炭化タンタル)やNbC(炭化ニオブ)などの高融点金属炭化物にてコーティングした黒鉛などで構成され、熱エッチングが抑制できるようにしてある。この台座9に、種結晶5が貼り付けられ、種結晶5の表面にSiC単結晶20を成長させる。台座9は、成長させたい種結晶5の形状と対応する形状、例えば円盤形状で構成され、種結晶5が配置される面と反対側の面において回転引上機構11と連結される。   The pedestal 9 is composed of a plate-like member that is arranged coaxially with the central axis of the heating container 8. For example, the pedestal 9 is made of graphite or graphite whose surface is coated with a refractory metal carbide such as TaC (tantalum carbide) or NbC (niobium carbide) so that thermal etching can be suppressed. A seed crystal 5 is attached to the pedestal 9, and a SiC single crystal 20 is grown on the surface of the seed crystal 5. The pedestal 9 has a shape corresponding to the shape of the seed crystal 5 to be grown, for example, a disk shape, and is connected to the rotary pulling mechanism 11 on the surface opposite to the surface on which the seed crystal 5 is disposed.

第2断熱材10は、加熱容器8や台座9の外周を囲みつつ、パージガス15aを加熱容器8内に導く外周断熱材を構成する。本実施形態では、第2断熱材10は、円筒形状で構成されており、例えば黒鉛や表面をTaC(炭化タンタル)やNbC(炭化ニオブ)などの高融点金属炭化物にてコーティングした黒鉛などで構成されることで、熱エッチングが抑制できるようにしてある。第2断熱材10の内径は第1断熱材7や加熱容器8の外径よりも大きくされており、これらの間にパージガス15aが導入される隙間が構成されるようにしてある。なお、図には示していないが、第2断熱材10の内径を上方において縮径することもでき、このような構成とすればパージガス15aがよりパージガス導入孔8b側に抜けるようにできる。   The second heat insulating material 10 constitutes an outer peripheral heat insulating material that guides the purge gas 15 a into the heating container 8 while surrounding the outer periphery of the heating container 8 and the base 9. In the present embodiment, the second heat insulating material 10 is formed in a cylindrical shape, for example, graphite or graphite whose surface is coated with a refractory metal carbide such as TaC (tantalum carbide) or NbC (niobium carbide). As a result, thermal etching can be suppressed. The inner diameter of the second heat insulating material 10 is made larger than the outer diameters of the first heat insulating material 7 and the heating container 8, and a gap for introducing the purge gas 15a is formed between them. Although not shown in the drawing, the inner diameter of the second heat insulating material 10 can be reduced upward, and with such a configuration, the purge gas 15a can be further discharged to the purge gas introduction hole 8b side.

回転引上機構11は、パイプ材11aを介して台座9の回転および引上げを行う。パイプ材11aは、一端が台座9のうちの種結晶5の貼付面と反対側の面に接続されており、他端が回転引上機構11の本体に接続されている。このパイプ材11aも、例えば黒鉛や表面をTaC(炭化タンタル)などの高融点金属炭化物にてコーティングした黒鉛などで構成されることで、熱エッチングが抑制できるようにしてある。このような構成により、パイプ材11aと共に台座9、種結晶5およびSiC単結晶20の回転および引き上げが行え、SiC単結晶20の成長面が所望の温度分布となるようにしつつ、SiC単結晶20の成長に伴って、その成長表面の温度を常に成長に適した温度に調整できる。   The rotary pulling mechanism 11 rotates and pulls the pedestal 9 through the pipe material 11a. One end of the pipe material 11 a is connected to the surface of the pedestal 9 on the side opposite to the attaching surface of the seed crystal 5, and the other end is connected to the main body of the rotary pulling mechanism 11. The pipe material 11a is also made of, for example, graphite or graphite whose surface is coated with a refractory metal carbide such as TaC (tantalum carbide), so that thermal etching can be suppressed. With such a configuration, the pedestal 9, the seed crystal 5 and the SiC single crystal 20 can be rotated and pulled together with the pipe material 11a, and the SiC single crystal 20 is grown while the growth surface of the SiC single crystal 20 has a desired temperature distribution. The growth surface temperature can always be adjusted to a temperature suitable for growth.

第1、第2加熱装置12、13は、加熱コイル(誘導加熱用コイルや直接加熱用コイル)によって構成され、真空容器6の周囲を囲むように配置されている。本実施形態の場合、第1、第2加熱装置12、13を誘導加熱用コイルによって構成しており、例えば誘導加熱用コイルを銅製で内部を水冷できる構成としている。これら第1、第2加熱装置12、13は、それぞれ独立して温度制御できるように構成されており、第1加熱装置12は、加熱容器8の下方と対応した位置に配置され、第2加熱装置13は、台座9と対応した位置に配置されている。したがって、第1加熱装置12によって加熱容器8の下方部分の温度を制御することができ、第2加熱装置13によって台座9や種結晶5およびSiC単結晶20の周囲の温度を制御することができる。   The first and second heating devices 12 and 13 are constituted by heating coils (induction heating coils and direct heating coils), and are arranged so as to surround the vacuum vessel 6. In the case of this embodiment, the 1st, 2nd heating apparatuses 12 and 13 are comprised by the coil for induction heating, for example, it is set as the structure which can cool the inside by water with the coil for induction heating. The first and second heating devices 12 and 13 are configured to be able to independently control the temperature, and the first heating device 12 is disposed at a position corresponding to the lower side of the heating container 8 to perform the second heating. The device 13 is disposed at a position corresponding to the base 9. Therefore, the temperature of the lower part of the heating container 8 can be controlled by the first heating device 12, and the temperature around the pedestal 9, the seed crystal 5 and the SiC single crystal 20 can be controlled by the second heating device 13. .

また、第2加熱装置13については、さらに長尺成長させられるSiC単結晶20の長尺方向(成長方向)において第1〜第3段13a〜13cが並べられた多段構造とされている。各段13a〜13cはそれぞれ別々の電気回路によって駆動され、各段13a〜13cの温度制御が独立して行えるように構成されている。各段13a〜13cは、所定の間隔を空けて配置されており、その間隔が10mm以上かつ100mm以下となるようにしている。本実施形態の場合、各段13a〜13cの間隔を等間隔としており、長尺成長させるSiC単結晶20のインゴットの長さを100mmと想定し、その間隔を50mmに設定している。   Moreover, about the 2nd heating apparatus 13, it is set as the multistage structure in which the 1st-3rd step 13a-13c was arranged in the elongate direction (growth direction) of the SiC single crystal 20 made to grow further long. Each of the stages 13a to 13c is driven by a separate electric circuit, and is configured such that temperature control of each of the stages 13a to 13c can be performed independently. Each stage 13a-13c is arrange | positioned at predetermined intervals, and the space | interval is 10 mm or more and 100 mm or less. In the case of the present embodiment, the intervals of the respective steps 13a to 13c are set to be equal intervals, the length of the ingot of the SiC single crystal 20 to be elongated is assumed to be 100 mm, and the interval is set to 50 mm.

各段13a〜13cは、長尺成長後においてSiC単結晶20を長尺方向に囲めるように配置されている。具体的には、第1段13aは、最も原料ガス3aの流動方向上流側に位置しており、回転引上機構11によって台座9が最も引き下げられている状態、つまりSiC単結晶20の成長前の状態において、種結晶5の表面と対応する位置に配置されている。第2段13bは、第1段13aと第3段13cの間に配置され、第1〜第3段13a〜13cの内側においてSiC単結晶20の表面の温度分布ができるだけ均一となるように第1段13aと第3段13cから等間隔の場所に配置されていると好ましい。第3段13cは、SiC単結晶20を長尺成長させた後、つまり回転引上機構11によって引上げられた後の種結晶5の位置と対応した位置に配置されている。   Each step 13a to 13c is arranged so as to surround SiC single crystal 20 in the longitudinal direction after the long growth. Specifically, the first stage 13a is located most upstream in the flow direction of the source gas 3a, and the pedestal 9 is pulled down most by the rotary pulling mechanism 11, that is, before the growth of the SiC single crystal 20 In this state, it is arranged at a position corresponding to the surface of the seed crystal 5. The second stage 13b is arranged between the first stage 13a and the third stage 13c, and is arranged so that the temperature distribution on the surface of the SiC single crystal 20 is as uniform as possible inside the first to third stages 13a to 13c. It is preferable that they are arranged at equal intervals from the first stage 13a and the third stage 13c. The third stage 13 c is arranged at a position corresponding to the position of the seed crystal 5 after the SiC single crystal 20 is grown long, that is, after being pulled up by the rotary pulling mechanism 11.

これら各段13a〜13cは、加熱時に互いに干渉しないように設定されている。例えば、第2加熱装置13が加熱コイルによって構成されることから、各段13a〜13cが電磁誘導による干渉を受けて所望のパワーを発揮できなくなることがある。このため、所望のパワーを発揮できなくなるような相互干渉が抑制されるように、例えば各段13a〜13cの駆動周波数を異ならせ、各段13a〜13cの駆動周波数が近似した周波数や逓倍周波数にはならないようにしてある。例えば各段13a〜13cの周波数を3kHz、5kHz、7kHzとすることができる。また、各段13a〜13cは、それぞれSiC単結晶20の長尺方向において移動させられるようになっており、それにより長尺方向での配置場所の微調整が可能となっている。   These stages 13a to 13c are set so as not to interfere with each other during heating. For example, since the 2nd heating device 13 is comprised by a heating coil, each stage 13a-13c may receive interference by electromagnetic induction, and may become unable to exhibit desired power. For this reason, for example, the drive frequencies of the stages 13a to 13c are varied so that the mutual interference that prevents the desired power from being exhibited is suppressed, and the drive frequencies of the stages 13a to 13c are approximated to frequencies or multiplication frequencies. It is not to be. For example, the frequency of each stage 13a-13c can be 3 kHz, 5 kHz, and 7 kHz. In addition, each of the steps 13a to 13c is moved in the longitudinal direction of the SiC single crystal 20, thereby enabling fine adjustment of the arrangement location in the longitudinal direction.

このように、第2加熱装置13を多段構造とし、各段13a〜13cが独立して温度制御できる構成とされている。このため、各段13a〜13cによる温度制御によりSiC単結晶20の成長に伴った細やかな温度制御を行うことができる。これにより、SiC単結晶20の成長表面の温度分布をSiC単結晶20の成長に適した温度に調整できると共に、長尺成長中のSiC単結晶20の表面(外周表面)の温度をほぼ均一に制御できる。したがって、SiC単結晶20の結晶品質の劣化を抑制することが可能となる。   Thus, the 2nd heating apparatus 13 is set as the multistage structure, and it is set as the structure which can carry out temperature control of each stage 13a-13c independently. For this reason, fine temperature control accompanying the growth of SiC single crystal 20 can be performed by temperature control by each stage 13a-13c. Thereby, the temperature distribution of the growth surface of the SiC single crystal 20 can be adjusted to a temperature suitable for the growth of the SiC single crystal 20, and the temperature of the surface (outer peripheral surface) of the SiC single crystal 20 during the long growth is substantially uniform. Can be controlled. Therefore, it is possible to suppress the deterioration of the crystal quality of SiC single crystal 20.

なお、第2加熱装置13のうち最も原料ガス3aの流動方向下流側に位置するもの(本実施形態の場合第3段13c)がSiC単結晶20の長尺成長後における台座9の位置よりも更に流動方向下流側に位置するように配置することもできる。しかしながら、本実施形態では第2加熱装置13が台座9よりも原料ガス3aの流動方向下流側に配置されないようにすることで、その下流側が加熱されないようにしている。   Of the second heating device 13, the one located most downstream in the flow direction of the source gas 3 a (the third stage 13 c in this embodiment) is more than the position of the base 9 after the long growth of the SiC single crystal 20. Furthermore, it can also arrange | position so that it may be located in the flow direction downstream. However, in the present embodiment, the downstream side is prevented from being heated by preventing the second heating device 13 from being disposed downstream of the base 9 in the flow direction of the raw material gas 3a.

干渉防止部材14は、多段構成とされた第2加熱装置13の各段13a〜13cの間に配置され、各段13a〜13cの相互干渉がより抑制されるようにする。干渉防止部材14は、例えば銅製で内部を水冷できる干渉防止用コイルによって構成されている。   The interference preventing member 14 is disposed between the stages 13a to 13c of the second heating device 13 having a multistage configuration so that mutual interference between the stages 13a to 13c is further suppressed. The interference preventing member 14 is made of, for example, an interference preventing coil made of copper and capable of cooling the inside with water.

パージガス供給源15は、パージガス15aを供給するものである。パージガス15aは、ArやHeなどの不活性ガスやH2やHClなどのエッチングガスにて構成され、SiC多結晶の付着を防止する付着防止ガスとして機能する。パージガス供給源15から供給されるパージガス15aは、第1断熱材7や加熱容器8の外周壁と第2断熱材10の内周壁との間の隙間を介し、パージガス導入孔8bを通じて加熱容器8内に導入されるようになっている。 The purge gas supply source 15 supplies the purge gas 15a. The purge gas 15a is composed of an inert gas such as Ar or He, or an etching gas such as H 2 or HCl, and functions as an adhesion preventing gas for preventing the deposition of SiC polycrystal. The purge gas 15a supplied from the purge gas supply source 15 passes through the clearance between the outer peripheral wall of the first heat insulating material 7 and the heating container 8 and the inner peripheral wall of the second heat insulating material 10 and passes through the purge gas introduction hole 8b to enter the heating container 8. To be introduced.

パイロメータ16は、SiC単結晶製造装置1の内部の複数箇所の温度測定が行えるように複数個備えられている。第1メータ16aは、原料ガス導入管7aおよびガス導入口8aを通じてSiC単結晶20の成長表面温度を測定する。第2〜第5メータ16b〜16eは、SiC単結晶20の長尺方向に並べて配置されており、第2加熱装置13を構成する各段13a〜13cや干渉防止部材14の間の隙間や第2断熱材10および加熱容器8に形成された透孔もしくはスリットを通じてSiC単結晶20の外周表面等の表面温度を測定する。第6メータ16fは、台座9の裏面温度を測定する。   A plurality of pyrometers 16 are provided so as to perform temperature measurement at a plurality of locations inside the SiC single crystal manufacturing apparatus 1. The first meter 16a measures the growth surface temperature of the SiC single crystal 20 through the source gas introduction pipe 7a and the gas introduction port 8a. The second to fifth meters 16b to 16e are arranged side by side in the longitudinal direction of the SiC single crystal 20, and the gaps between the steps 13a to 13c and the interference prevention member 14 constituting the second heating device 13 (2) The surface temperature of the outer peripheral surface of the SiC single crystal 20 and the like is measured through the through holes or slits formed in the heat insulating material 10 and the heating container 8. The sixth meter 16 f measures the back surface temperature of the base 9.

このような構造により、本実施形態にかかるSiC単結晶製造装置1が構成されている。続いて、本実施形態にかかるSiC単結晶製造装置1を用いたSiC単結晶20の製造方法について図2および図3を参照して説明する。   With this structure, the SiC single crystal manufacturing apparatus 1 according to the present embodiment is configured. Then, the manufacturing method of the SiC single crystal 20 using the SiC single crystal manufacturing apparatus 1 concerning this embodiment is demonstrated with reference to FIG. 2 and FIG.

まず、台座9に種結晶5を取り付け、加熱容器8内に設置する。このとき、図2(b)に示すように、種結晶5の表面が第2加熱装置13における最も下方に位置している第1段13aと対応する位置に配置されるようにする。そして、第1、第2加熱装置12、13を制御し、所望の温度分布を付ける。すなわち、種結晶5の表面において原料ガス3aが再結晶化されることでSiC単結晶が成長しつつ、加熱容器8内において再結晶化レートよりも昇華レートの方が高くなる温度となるようにする。具体的には、図2(a)に示すように、第2加熱装置13については第1段13aを10kWの電力で駆動し、第2段13bを第1段13aよりも低い5kWの電力で駆動する。第3段13cについてはこの時点では電力を0kWとして駆動しない。このようにすることで、SiC単結晶20を成長させるべき種結晶5の表面側を加熱しつつ、台座9の裏面側はあまり加熱されないようにできる。   First, the seed crystal 5 is attached to the pedestal 9 and installed in the heating container 8. At this time, as shown in FIG. 2 (b), the surface of the seed crystal 5 is arranged at a position corresponding to the first stage 13 a located at the lowest position in the second heating device 13. And the 1st, 2nd heating apparatuses 12 and 13 are controlled and desired temperature distribution is attached. That is, the source gas 3a is recrystallized on the surface of the seed crystal 5 so that the SiC single crystal grows and the sublimation rate becomes higher in the heating vessel 8 than the recrystallization rate. To do. Specifically, as shown in FIG. 2A, for the second heating device 13, the first stage 13a is driven with 10 kW of power, and the second stage 13b is driven with 5 kW of power lower than the first stage 13a. To drive. The third stage 13c is not driven at this time with the power set to 0 kW. By doing in this way, the back surface side of the base 9 can be prevented from being heated very much, heating the surface side of the seed crystal 5 which should grow the SiC single crystal 20.

また、真空容器6を所望圧力にしつつ、必要に応じてArやHeなどの不活性ガスによるキャリアガスやH2やHClなどのエッチングガスを導入しながら原料ガス導入管7aを通じて原料ガス3aを導入する。これにより、原料ガス3aが図1中の矢印で示したように流動し、種結晶5に供給されてSiC単結晶20が成長させられる。そして、回転引上機構11によってパイプ材11aを介して台座9や種結晶5およびSiC単結晶20を回転させつつ、SiC単結晶20の成長レートに合せて引上げる。これにより、SiC単結晶20の成長表面の高さがほぼ一定に保たれ、成長表面温度の温度分布を制御性良く制御することが可能となる。 In addition, the source gas 3a is introduced through the source gas introduction pipe 7a while introducing a carrier gas using an inert gas such as Ar or He or an etching gas such as H 2 or HCl while bringing the vacuum vessel 6 to a desired pressure. To do. Thereby, source gas 3a flows as shown by an arrow in FIG. 1, and is supplied to seed crystal 5 to grow SiC single crystal 20. Then, the base 9, the seed crystal 5, and the SiC single crystal 20 are rotated through the pipe material 11 a by the rotary pulling mechanism 11, and pulled up according to the growth rate of the SiC single crystal 20. Thereby, the height of the growth surface of SiC single crystal 20 is kept substantially constant, and the temperature distribution of the growth surface temperature can be controlled with good controllability.

また、パージガス供給源15より、パージガス導入孔8bを通じてArやHeなどの不活性ガスやH2やHClなどのエッチングガスにて構成されるパージガスを導入している。これにより、パージガス15aが図1中の矢印で示したようにパージガス導入孔8bおよび台座9やSiC単結晶20と加熱容器8の間を通じて流出口4側に流動させられる。このため、パージガス15aの影響により、台座9の周囲や加熱容器8の内周壁面に多結晶が形成されることを抑制することが可能となる。これにより、種結晶5の周囲に位置する部分に多結晶が形成されることを抑制でき、多結晶の成長による原料ガス3aの流路の閉塞を防止することができるため、より長時間のSiC単結晶の成長が可能となる。 A purge gas composed of an inert gas such as Ar or He or an etching gas such as H 2 or HCl is introduced from the purge gas supply source 15 through the purge gas introduction hole 8b. As a result, the purge gas 15a is caused to flow toward the outlet 4 through the purge gas introduction hole 8b and the pedestal 9 or between the SiC single crystal 20 and the heating vessel 8 as shown by the arrows in FIG. For this reason, it is possible to suppress the formation of polycrystals around the pedestal 9 and the inner peripheral wall surface of the heating container 8 due to the influence of the purge gas 15a. As a result, it is possible to suppress the formation of polycrystals in the portion located around the seed crystal 5 and to prevent clogging of the flow path of the source gas 3a due to the growth of the polycrystals. Single crystal growth is possible.

さらに、パイロメータ16a〜16fを用いてSiC単結晶20の成長表面やSiC単結晶20の外周表面および台座9の裏面の温度を測定し、その結果をフィードバックして第1、第2加熱装置12、13を微調整することで各部の温度が所望温度となるようにする。例えば、第2加熱装置13を構成する各段13a〜13cへ供給する電力を微調整したり、これらの配置を微調整している。   Furthermore, the pyrometers 16a to 16f are used to measure the temperature of the growth surface of the SiC single crystal 20, the outer peripheral surface of the SiC single crystal 20, and the back surface of the pedestal 9, and the results are fed back to the first and second heating devices 12, 13 is finely adjusted so that the temperature of each part becomes a desired temperature. For example, the electric power supplied to each stage 13a-13c which comprises the 2nd heating apparatus 13 is finely adjusted, or these arrangement | positions are finely adjusted.

このようにしてSiC単結晶20を成長させるが、SiC単結晶20の成長初期の段階では、第2加熱装置13への電力供給を上記形態とし、その長さ(長尺量)が第1段13aと第2段13bの間隔程度までその形態を継続する。そして、SiC単結晶20が成長して長尺量が第1段13aと第2段13bの間の距離に相当する長さ(ここでは50mm)程度になると、第2加熱装置13の電力供給の形態を変化させる。具体的には、図2(b)に示すように、第1段13aおよび第2段13bを10kWの電力で駆動し、第3段13cを第1段13aおよび第2段13bよりも低い5kWの電力で駆動する。このようにすることで、SiC単結晶20を成長させるべき種結晶5の表面側を加熱しつつ、SiC単結晶20の外周表面についても加熱でき、かつ、台座9の裏面側はあまり加熱されないようにできる。   In this way, the SiC single crystal 20 is grown. At the initial growth stage of the SiC single crystal 20, the power supply to the second heating device 13 is set to the above-described form, and the length (long amount) is the first stage. The configuration is continued until the interval between 13a and the second stage 13b. Then, when the SiC single crystal 20 grows and the length becomes about a length (here, 50 mm) corresponding to the distance between the first stage 13a and the second stage 13b, the power supply of the second heating device 13 is Change form. Specifically, as shown in FIG. 2B, the first stage 13a and the second stage 13b are driven with 10 kW of power, and the third stage 13c is 5 kW lower than the first stage 13a and the second stage 13b. Drive with the power of. By doing in this way, the outer peripheral surface of the SiC single crystal 20 can be heated while heating the surface side of the seed crystal 5 on which the SiC single crystal 20 is to be grown, and the back surface side of the base 9 is not heated so much. Can be.

そして、さらにSiC単結晶20が成長してその長さ(長尺量)が第1段13aと第3段13cの間の距離に相当する長さ(ここでは100mm)程度になると、第2加熱装置13の電力供給の形態を再度変化させる。具体的には、図2(c)に示すように、各段13a〜13cをすべて10kWの電力で駆動する。このようにすることで、SiC単結晶20を成長させるべき種結晶5の表面側を加熱しつつ、SiC単結晶20の外周表面についても加熱でき、かつ、台座9の裏面側はあまり加熱されないようにできる。その後、SiC単結晶20の長さが100mmに至るとSiC単結晶20の成長を終了する。   When the SiC single crystal 20 further grows and its length (long amount) reaches a length (here, 100 mm) corresponding to the distance between the first stage 13a and the third stage 13c, the second heating is performed. The power supply mode of the device 13 is changed again. Specifically, as shown in FIG. 2C, all the stages 13a to 13c are driven with 10 kW of power. By doing in this way, the outer peripheral surface of the SiC single crystal 20 can be heated while heating the surface side of the seed crystal 5 on which the SiC single crystal 20 is to be grown, and the back surface side of the base 9 is not heated so much. Can be. Thereafter, when the length of the SiC single crystal 20 reaches 100 mm, the growth of the SiC single crystal 20 is finished.

このように、SiC単結晶20を成長させ、SiC単結晶20の成長に伴って第2加熱装置13による加熱形態を変化させるようにしている。具体的には、SiC単結晶20が長尺化するほど外周表面を加熱するために、各段13a〜13cについて下方から順に駆動電力を増大させるようにし、各段13a〜13cのうちSiC単結晶20が存在している場所と対応する部分について順に加熱が行われるようにする。これにより、SiC単結晶20の長尺方向において温度分布がほぼ均一になるようにでき、SiC単結晶20の結晶品質の劣化を抑制することが可能となる。例えば、図3に示されるように、本実施形態の加熱形態とした場合、従来技術と比較してSiC単結晶20の厚み内における温度分布がより均一となるようにできる。   In this way, the SiC single crystal 20 is grown, and the heating mode by the second heating device 13 is changed as the SiC single crystal 20 grows. Specifically, in order to heat the outer peripheral surface as the SiC single crystal 20 becomes longer, the driving power is increased in order from the bottom for each of the stages 13a to 13c, and the SiC single crystal of each of the stages 13a to 13c. The portion corresponding to the place where 20 is present is heated in order. As a result, the temperature distribution in the longitudinal direction of SiC single crystal 20 can be made substantially uniform, and the deterioration of the crystal quality of SiC single crystal 20 can be suppressed. For example, as shown in FIG. 3, when the heating mode of the present embodiment is used, the temperature distribution within the thickness of the SiC single crystal 20 can be made more uniform as compared with the prior art.

SiC単結晶20を放熱するために、SiC単結晶20の裏面側の冷却は必要であるが、例えば数MPa以下の小さな熱応力でもすべり転位などの結晶欠陥がSiC単結晶20に発生してしまう。このため、SiC単結晶20の内部の温度勾配を小さくすることが必要であり、そのためにはSiC単結晶20の外周表面での温度分布が均一となり、温度勾配が小さくなることが必要となる。   In order to dissipate the SiC single crystal 20, it is necessary to cool the back surface side of the SiC single crystal 20, but crystal defects such as slip dislocations are generated in the SiC single crystal 20 even with a small thermal stress of, for example, several MPa or less. . For this reason, it is necessary to reduce the temperature gradient inside the SiC single crystal 20, and for this purpose, the temperature distribution on the outer peripheral surface of the SiC single crystal 20 becomes uniform and the temperature gradient needs to be reduced.

これに対して、本実施形態では、SiC単結晶20の成長に伴って第2加熱装置13による加熱形態を変化させるようにしている。このため、SiC単結晶20の成長に合せてSiC単結晶20の裏面側の冷却を行いつつ、SiC単結晶20の外周表面の温度分布をほぼ均一にでき、温度勾配を小さくできる。したがって、結晶欠陥少ない長尺成長させたSiC単結晶20のインゴットを得ることができる。   On the other hand, in this embodiment, the heating mode by the second heating device 13 is changed as the SiC single crystal 20 grows. Therefore, the temperature distribution on the outer peripheral surface of the SiC single crystal 20 can be made substantially uniform and the temperature gradient can be reduced while cooling the back surface side of the SiC single crystal 20 in accordance with the growth of the SiC single crystal 20. Accordingly, it is possible to obtain an ingot of the SiC single crystal 20 that is grown long with few crystal defects.

なお、本実施形態のSiC単結晶製造装置1を用いた場合と従来のように第2加熱装置13が各段13a〜13cを独立して制御できない構造を用いた場合とで、SiC単結晶20を成長させたときのSiC単結晶20の表裏面での温度差と結晶内部のせん断応力分布を確認した。その結果、本実施形態のSiC単結晶製造装置1を用いた場合には、SiC単結晶20の表裏面での温度差が200℃となり、結晶内部のせん断応力が発生しない応力であった。また、従来の構造を用いた場合には、SiC単結晶20の表裏面での温度差が400℃となり、結晶内部のせん断応力が発生する応力となった。このことからも、本実施形態のSiC単結晶製造装置1を用いることで、SiC単結晶20の外周表面の温度分布をほぼ均一にして温度勾配を小さくでき、結晶欠陥を抑制することが可能になることが分かる。   In addition, when the SiC single crystal manufacturing apparatus 1 of the present embodiment is used and when the second heating apparatus 13 uses a structure in which each stage 13a to 13c cannot be controlled independently as in the conventional case, the SiC single crystal 20 The temperature difference between the front and back surfaces of the SiC single crystal 20 and the shear stress distribution inside the crystal were confirmed. As a result, when the SiC single crystal manufacturing apparatus 1 of the present embodiment was used, the temperature difference between the front and back surfaces of the SiC single crystal 20 was 200 ° C., and the shear stress was not generated inside the crystal. In addition, when the conventional structure was used, the temperature difference between the front and back surfaces of the SiC single crystal 20 was 400 ° C., and the shear stress was generated inside the crystal. Also from this, by using the SiC single crystal manufacturing apparatus 1 of the present embodiment, the temperature distribution on the outer peripheral surface of the SiC single crystal 20 can be made substantially uniform, the temperature gradient can be reduced, and crystal defects can be suppressed. I understand that

(他の実施形態)
上記実施形態では、SiC単結晶製造装置1として、原料ガス3aがSiC単結晶20の成長表面に供給されてからSiC単結晶20の外周表面や台座9の横を通過して更に上方に排出させられる方式(アップフロー方式)のものを例に挙げて説明した。しかしながら、それに限らず、原料ガス3aがSiC単結晶20の成長表面に供給されてから、再度その供給方向と同方向に戻されるリターンフロー方式や、原料ガス3aがSiC単結晶20の成長表面に供給されてから、加熱容器8の外周方向に排出させられる方式(サイドフロー方式)にも適用できる。
(Other embodiments)
In the above embodiment, as the SiC single crystal manufacturing apparatus 1, after the source gas 3 a is supplied to the growth surface of the SiC single crystal 20, it passes through the outer peripheral surface of the SiC single crystal 20 and the side of the pedestal 9 and is discharged further upward. The method (upflow method) is described as an example. However, the present invention is not limited to this, and a return flow method in which the source gas 3a is supplied to the growth surface of the SiC single crystal 20 and then returned again in the same direction as the supply direction, or the source gas 3a is applied to the growth surface of the SiC single crystal 20. It can also be applied to a method (side flow method) in which the gas is discharged in the outer peripheral direction of the heating container 8 after being supplied.

また、本発明は原料ガス3aを供給するガス供給法成長とは異なる成長法に適用することもできる。すなわち、真空容器内に配置された坩堝に予めSiC原料粉末を配置しておき、加熱装置による加熱によってSiC原料粉末からSiC原料を昇華させた原料ガスを発生させ、種結晶表面にSiC単結晶を成長させる昇華法成長に対しても本発明を適用できる。   The present invention can also be applied to a growth method different from the gas supply method growth for supplying the source gas 3a. That is, SiC raw material powder is placed in advance in a crucible placed in a vacuum vessel, a raw material gas obtained by sublimating the SiC raw material from the SiC raw material powder is generated by heating with a heating device, and an SiC single crystal is formed on the seed crystal surface. The present invention can also be applied to sublimation growth for growth.

また、上記実施形態では、温度測定にパイロメータ16を用いたが、パイロメータ16の代わりに熱電対を用いることもできる。例えば、第2断熱材10に対して熱電対を設置し、この熱電対の出力に基づいて各部の温度を検出することで第2〜第5メータ16b〜16eとして用いることができる。さらに、台座9の回転と引き上げの双方が行える回転引上機構12を例に挙げたが、少なくとも引上げが行える引上機構であれば良い。   In the above embodiment, the pyrometer 16 is used for temperature measurement, but a thermocouple may be used instead of the pyrometer 16. For example, it can be used as the second to fifth meters 16b to 16e by installing a thermocouple for the second heat insulating material 10 and detecting the temperature of each part based on the output of the thermocouple. Further, the rotary pulling mechanism 12 capable of both rotating and pulling up the pedestal 9 has been described as an example, but at least a pulling mechanism capable of pulling up may be used.

なお、上記実施形態で説明した第2加熱装置13を構成する各段13a〜13cの段数や各段13a〜13cの間隔は適宜変更可能であり、長尺成長させたいSiC単結晶20の長さに応じて設定すれば良い。   It should be noted that the number of stages 13a to 13c constituting the second heating device 13 described in the above embodiment and the interval between the stages 13a to 13c can be changed as appropriate, and the length of the SiC single crystal 20 to be grown long. It may be set according to.

1 単結晶製造装置
3a 原料ガス
5 種結晶
8 加熱容器
9 台座
10 第2断熱材
11 回転引上機構
11a パイプ材
12、13 第1、第2加熱装置
13a〜13c 各段
14 干渉防止部材
16 パイロメータ
20 SiC単結晶
DESCRIPTION OF SYMBOLS 1 Single crystal manufacturing apparatus 3a Source gas 5 Seed crystal 8 Heating container 9 Base 10 2nd heat insulating material 11 Rotation pulling mechanism 11a Pipe material 12, 13 1st, 2nd heating apparatus 13a-13c Each stage 14 Interference prevention member 16 Pyrometer 20 SiC single crystal

Claims (8)

反応室を構成する中空形状の加熱容器(8)と、
前記加熱容器内に配置された台座(9)と、
前記加熱容器の外周のうち前記台座と対応する位置に配置され、前記加熱容器を加熱する加熱装置(13)と、
前記台座を上方に引上げる引上機構(11)とを有し、
前記台座に対して炭化珪素単結晶基板からなる種結晶(5)を設置し、前記加熱装置にて前記台座の周囲を加熱しつつ前記種結晶の表面に炭化珪素の原料ガス(3a)を供給することで前記種結晶の表面に炭化珪素単結晶(20)を結晶成長させると共に、前記引上機構によって前記台座を引上げることで前記炭化珪素単結晶を長尺化させる炭化珪素単結晶の製造装置であって、
前記加熱装置は、加熱コイルによって構成されていると共に前記炭化珪素単結晶の成長方向において前記加熱コイルが多段(13a〜13c)に並べられた多段構造とされ、かつ、前記加熱コイルの各段が独立して温度制御される構成とされていることを特徴とする炭化珪素単結晶の製造装置。
A hollow heating vessel (8) constituting the reaction chamber;
A pedestal (9) disposed in the heating vessel;
A heating device (13) that is disposed at a position corresponding to the pedestal of the outer periphery of the heating container and heats the heating container;
A lifting mechanism (11) for pulling up the pedestal upward;
A seed crystal (5) made of a silicon carbide single crystal substrate is installed on the pedestal, and a silicon carbide source gas (3a) is supplied to the surface of the seed crystal while heating the periphery of the pedestal with the heating device. Thus, the silicon carbide single crystal (20) is grown on the surface of the seed crystal, and the silicon carbide single crystal is elongated by pulling up the pedestal by the pulling mechanism. A device,
The heating device includes a heating coil and has a multistage structure in which the heating coils are arranged in multiple stages (13a to 13c) in the growth direction of the silicon carbide single crystal, and each stage of the heating coil includes An apparatus for producing a silicon carbide single crystal, characterized in that the temperature is controlled independently.
前記加熱コイルの各段の間には、前記各段を駆動するときの相互干渉を防止する干渉防止部材(14)が設置されていることを特徴とする請求項1に記載の炭化珪素単結晶の製造装置。   The silicon carbide single crystal according to claim 1, wherein an interference preventing member (14) for preventing mutual interference when driving each stage is installed between each stage of the heating coil. Manufacturing equipment. 反応室を構成する中空形状の加熱容器(8)と、
前記加熱容器内に配置された台座(9)と、
前記加熱容器の外周のうち前記台座と対応する位置に配置され、前記加熱容器を加熱する加熱装置(13)と、
前記台座を上方に引上げる引上機構(11)とを有する製造装置(1)を用いて、
前記台座に対して炭化珪素単結晶基板からなる種結晶(5)を設置し、前記加熱装置にて前記台座の周囲を加熱しつつ前記種結晶の表面に炭化珪素の原料ガス(3a)を供給することで前記種結晶の表面に炭化珪素単結晶(20)を結晶成長させると共に、前記引上機構によって前記台座を引上げることで前記炭化珪素単結晶を長尺化させる炭化珪素単結晶の製造方法であって、
前記加熱装置を加熱コイルによって構成すると共に前記炭化珪素単結晶の成長方向において前記加熱コイルを多段(13a〜13c)に並べられた多段構造とし、かつ、前記加熱コイルの各段を独立して温度制御できるように構成し、
前記炭化珪素単結晶の成長に合せて前記引上機構によって前記台座を引上げることで、前記炭化珪素単結晶の成長表面の高さを一定に保ちつつ、該炭化珪素単結晶の成長に合せて前記加熱コイルの各段を制御することを特徴とする炭化珪素単結晶の製造方法。
A hollow heating vessel (8) constituting the reaction chamber;
A pedestal (9) disposed in the heating vessel;
A heating device (13) that is disposed at a position corresponding to the pedestal of the outer periphery of the heating container and heats the heating container;
Using a manufacturing apparatus (1) having a pulling mechanism (11) for pulling up the pedestal upward,
A seed crystal (5) made of a silicon carbide single crystal substrate is installed on the pedestal, and a silicon carbide source gas (3a) is supplied to the surface of the seed crystal while heating the periphery of the pedestal with the heating device. Thus, the silicon carbide single crystal (20) is grown on the surface of the seed crystal, and the silicon carbide single crystal is elongated by pulling up the pedestal by the pulling mechanism. A method,
The heating device is constituted by a heating coil and has a multistage structure in which the heating coils are arranged in multiple stages (13a to 13c) in the growth direction of the silicon carbide single crystal, and each stage of the heating coil is independently heated. Configured to control,
By pulling up the pedestal by the pulling mechanism in accordance with the growth of the silicon carbide single crystal, the height of the growth surface of the silicon carbide single crystal is kept constant and the growth of the silicon carbide single crystal is adjusted. A method for producing a silicon carbide single crystal, wherein each stage of the heating coil is controlled.
前記種結晶の表面が前記多段のうち最も下方に位置する第1段(13a)と対応する位置に配置した状態で前記第1段(13a)を駆動して加熱を行いつつ前記炭化珪素単結晶を成長させ始め、前記炭化珪素単結晶が成長するに連れて前記多段のうちの下方から順に駆動電力を増大していくことを特徴とする請求項3に記載の炭化珪素単結晶の製造方法。   The silicon carbide single crystal is heated while driving the first stage (13a) in a state where the surface of the seed crystal is arranged at a position corresponding to the first stage (13a) located at the lowest position among the multistages. 4. The method for producing a silicon carbide single crystal according to claim 3, wherein the driving power is increased in order from the lower of the multistage as the silicon carbide single crystal grows. 5. 前記第1段(13a)を残りの段(13b、13c)よりも高い電力で駆動した状態で前記炭化珪素単結晶を成長させ始め、前記炭化珪素単結晶が成長するに連れて前記多段のうちの下方から順に駆動電力を増大させて前記第1段の駆動電力にすることを特徴とする請求項4に記載の炭化珪素単結晶の製造方法。   The silicon carbide single crystal begins to grow in a state where the first stage (13a) is driven with higher power than the remaining stages (13b, 13c), and the multistage as the silicon carbide single crystal grows. 5. The method for producing a silicon carbide single crystal according to claim 4, wherein the driving power is increased in order from the lower side to obtain the first stage driving power. 6. 前記加熱コイルの各段の駆動周波数を異ならせることを特徴とする請求項3に記載の炭化珪素単結晶の製造方法。   4. The method for producing a silicon carbide single crystal according to claim 3, wherein the driving frequency of each stage of the heating coil is varied. 前記加熱コイルの各段の間に、前記各段を駆動するときの相互干渉を防止する干渉防止部材(14)を設置することを特徴とする請求項3ないし6のいずれか1つに記載の炭化珪素単結晶の製造方法。   The interference preventing member (14) for preventing mutual interference when each of the stages is driven is installed between the stages of the heating coil. A method for producing a silicon carbide single crystal. 前記SiC単結晶の成長表面と裏面および外周表面の温度測定を行い、該温度測定の結果に基づいて前記加熱コイルを制御することを特徴とする請求項3ないし7のいずれか1つに記載の炭化珪素単結晶の製造方法。   The temperature of the growth surface of the said SiC single crystal, a back surface, and an outer peripheral surface is measured, The said heating coil is controlled based on the result of this temperature measurement, The one of Claim 3 thru | or 7 characterized by the above-mentioned. A method for producing a silicon carbide single crystal.
JP2012086574A 2012-04-05 2012-04-05 Silicon carbide single crystal manufacturing apparatus and manufacturing method Active JP5811012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012086574A JP5811012B2 (en) 2012-04-05 2012-04-05 Silicon carbide single crystal manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012086574A JP5811012B2 (en) 2012-04-05 2012-04-05 Silicon carbide single crystal manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JP2013216515A true JP2013216515A (en) 2013-10-24
JP5811012B2 JP5811012B2 (en) 2015-11-11

Family

ID=49589114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012086574A Active JP5811012B2 (en) 2012-04-05 2012-04-05 Silicon carbide single crystal manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP5811012B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110878423A (en) * 2018-09-06 2020-03-13 昭和电工株式会社 Crystal growing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230924A (en) * 2007-03-22 2008-10-02 Denso Corp Apparatus and method for producing silicon carbide single crystal
WO2010050362A1 (en) * 2008-10-28 2010-05-06 株式会社ブリヂストン Method for manufacturing silicon carbide single crystal
JP2011241146A (en) * 2004-08-27 2011-12-01 Denso Corp METHOD FOR PRODUCING SiC SINGLE CRYSTAL

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241146A (en) * 2004-08-27 2011-12-01 Denso Corp METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP2008230924A (en) * 2007-03-22 2008-10-02 Denso Corp Apparatus and method for producing silicon carbide single crystal
WO2010050362A1 (en) * 2008-10-28 2010-05-06 株式会社ブリヂストン Method for manufacturing silicon carbide single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110878423A (en) * 2018-09-06 2020-03-13 昭和电工株式会社 Crystal growing device
CN110878423B (en) * 2018-09-06 2022-05-17 昭和电工株式会社 Crystal growing device
US11447890B2 (en) 2018-09-06 2022-09-20 Showa Denko K.K. Crystal growth apparatus

Also Published As

Publication number Publication date
JP5811012B2 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
JP3959952B2 (en) Method and apparatus for producing silicon carbide single crystal
KR20120067944A (en) Apparatus for manufacturing silicon carbide single crystal
JP2008169098A (en) Method and apparatus for producing silicon carbide single crystal
CN112176404B (en) System and method for efficiently manufacturing a plurality of high-quality semiconductor single crystals
WO2013014920A1 (en) Silicon carbide single crystal manufacturing device
JP4924105B2 (en) Silicon carbide single crystal manufacturing apparatus and manufacturing method
TW201920745A (en) Vapor-phase deposition method
JP5602093B2 (en) Single crystal manufacturing method and manufacturing apparatus
JP6257483B2 (en) Silicon single crystal manufacturing method
JP5811012B2 (en) Silicon carbide single crystal manufacturing apparatus and manufacturing method
EP2465980B1 (en) Apparatus and method for manufacturing silicon carbide single crystal
JP7024622B2 (en) Silicon carbide single crystal and its manufacturing method
JP5831339B2 (en) Method for producing silicon carbide single crystal
JP5648604B2 (en) Silicon carbide single crystal manufacturing equipment
JP5655199B2 (en) Semiconductor thin film manufacturing apparatus and nitride semiconductor manufacturing method
JP5482669B2 (en) Silicon carbide single crystal manufacturing equipment
JP5263145B2 (en) Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method using the same
JP6052051B2 (en) Silicon carbide single crystal manufacturing equipment
JP4400479B2 (en) Single crystal manufacturing method and manufacturing apparatus
JP2004043211A (en) PROCESS AND APPARATUS FOR PREPARING SiC SINGLE CRYSTAL
US11453959B2 (en) Crystal growth apparatus including heater with multiple regions and crystal growth method therefor
JP4941475B2 (en) Manufacturing method of silicon carbide single crystal and manufacturing apparatus suitable therefor
US20210040645A1 (en) Silicon carbide single crystal manufacturing apparatus, and manufacturing method of silicon carbide single crystal
JP5842725B2 (en) Silicon carbide single crystal manufacturing equipment
JP2023127894A (en) Silicon carbide single crystal and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150831

R151 Written notification of patent or utility model registration

Ref document number: 5811012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250