JP2013215075A - Photovoltaic power generation control system - Google Patents

Photovoltaic power generation control system Download PDF

Info

Publication number
JP2013215075A
JP2013215075A JP2012093373A JP2012093373A JP2013215075A JP 2013215075 A JP2013215075 A JP 2013215075A JP 2012093373 A JP2012093373 A JP 2012093373A JP 2012093373 A JP2012093373 A JP 2012093373A JP 2013215075 A JP2013215075 A JP 2013215075A
Authority
JP
Japan
Prior art keywords
voltage
commercial power
power
power supply
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012093373A
Other languages
Japanese (ja)
Other versions
JP5946035B2 (en
Inventor
Kenji Takao
賢二 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba IT and Control Systems Corp
Original Assignee
Toshiba IT and Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba IT and Control Systems Corp filed Critical Toshiba IT and Control Systems Corp
Priority to JP2012093373A priority Critical patent/JP5946035B2/en
Publication of JP2013215075A publication Critical patent/JP2013215075A/en
Application granted granted Critical
Publication of JP5946035B2 publication Critical patent/JP5946035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

PROBLEM TO BE SOLVED: To provide a photovoltaic power generation control system capable of achieving optimum power of a solar battery in a short time after an AC power system which had caused a power failure has been restored.SOLUTION: Being accompanied with stopping of a commercial power supply system 5, for a DC-DC converter 2 and a DC-AC inverter 3 which have stopped the operation and MPPT control, the time of MPPT control which starts with power restoration of the commercial power supply system 5 is shortened by using a DC voltage of the DC-DC converter 2, and the time required for a solar cell 1 to obtain optimum power is shortened by synchronizing a voltage phase of the commercial power system 5 at power restoration with a phase of an output voltage of the DC-AC inverter 3.

Description

本発明は、太陽電池で発電した電力を商用電源系統に系統連系して動作する太陽光発電制御システムに関する。  The present invention relates to a photovoltaic power generation control system that operates by connecting power generated by a solar cell to a commercial power supply system.

太陽電池で発電した電力を商用電源系統と系統連系し、その上、商用電源系統側に電力を逆潮流させる技術については社団法人日本電気協会から発行されている「系統連系規程」に定められている条件で行わればならない。このため、「系統連系規程」に沿った太陽光発電制御システムの開発が進められている。  The technology to connect the power generated by solar cells to the commercial power system and to reverse the power flow to the commercial power system is defined in the “System Interconnection Rules” issued by the Japan Electric Association. It must be done under the specified conditions. For this reason, development of a photovoltaic power generation control system in accordance with the “system interconnection regulations” is underway.

太陽電池の発電能力は太陽電池に照射する太陽光の量と、太陽電池が動作する温度に影響を受ける。日々天候が変わる環境下で、太陽電池の発電能力を常に最適化する方法として、最大電力点追尾(MPPT:Maximum Power Point Tracking)制御が知られている。(特許文献1参照)  The power generation capacity of the solar cell is affected by the amount of sunlight irradiated to the solar cell and the temperature at which the solar cell operates. Maximum power point tracking (MPPT) control is known as a method for constantly optimizing the power generation capacity of a solar cell in an environment where the weather changes every day. (See Patent Document 1)

太陽光発電制御システムと系統連系している商用電源系統の電圧が低下した時及び周波数が変動した時に、太陽光発電システムが発電する電力の品質を確保するため、「系統連系規程」では事故時運転継続要件(FRT要件(FRT:Fault Ride Through))を満たす事が要求されている。(非特許文献1参照)  In order to ensure the quality of power generated by the photovoltaic power generation system when the voltage of the commercial power system connected to the photovoltaic power generation control system decreases and when the frequency fluctuates, It is required to satisfy the operation continuation requirement at the time of accident (FRT requirement (FRT: Fault Ride Through)). (See Non-Patent Document 1)

特開2011−101455号公報JP 2011-101455 A

「系統連系規程 Grid−interconnection Code JEAC 9701−2010[2011年追補版(その1)]、社団法人日本電気協会 系統連系専門部会“Grid-Interconnection Code JEAC 9701-2010 [2011 supplement (Part 1)], Japan Electric Association

系統連系する商用電源系統電圧の位相(周波数)を以降外部周波数、太陽光発電制御システムの電力変換器が出力する交流電力の位相を以降内部周波数と称す。太陽電池が発電した電力を商用電源系統に系統連系する場合、外部周波数と内部周波数の位相を同期させることが「系統連系規程」で求められている。従来方式の位相同期制御を図3に示す。(a)の様に内部周波数と外部周波数の位相が同期していない場合、内部周波数が外部周波数に比較してどれぐらい位相差があるか検出する。位相差を検出後(b)の様に位相差を用いて内部周波数に対してPI制御を行う。(c)のように内部周波数が外部周波数に同期するまで(a)、(b)の動作を繰り返していた。この方法では、内部周波数と外部周波数が同期するまでに外部周波数5周期分ほどの時間を要するため、より早い同期方法が求められている。  Hereinafter, the phase (frequency) of the commercial power system voltage that is connected to the grid is referred to as an external frequency, and the phase of AC power that is output from the power converter of the photovoltaic power generation control system is referred to as an internal frequency. When the power generated by the solar cell is grid-connected to the commercial power supply system, the “system interconnection regulations” require that the phases of the external frequency and the internal frequency be synchronized. FIG. 3 shows conventional phase synchronization control. When the phases of the internal frequency and the external frequency are not synchronized as in (a), it is detected how much the internal frequency is different from the external frequency. After detecting the phase difference, PI control is performed on the internal frequency using the phase difference as shown in (b). The operations of (a) and (b) were repeated until the internal frequency was synchronized with the external frequency as shown in (c). In this method, a time equivalent to five cycles of the external frequency is required until the internal frequency and the external frequency are synchronized, and therefore a faster synchronization method is required.

また、太陽電池の発電能力を最適化するためのMPPT制御において、特許文献1では商用電源系統が停電する直前に記憶していた電圧を起点としてMPPT制御を始める方法について記述しているが、商用電源系統から交流周波数を取得できない状態を伴う電圧低下から復旧した場合に、内部周波数を外部周波数に同期させ、太陽光発電システムから最適な交流電力を速やかに得る方法については言及していない。  Further, in MPPT control for optimizing the power generation capacity of a solar cell, Patent Document 1 describes a method for starting MPPT control starting from a voltage stored immediately before a commercial power supply system fails. No reference is made to a method for quickly obtaining optimum AC power from a solar power generation system by synchronizing the internal frequency with an external frequency when recovering from a voltage drop accompanied by a state in which AC frequency cannot be obtained from the power supply system.

本発明の目的は、太陽光発電システムが発電する電力の品質を確保するためのFRT要件を満たし、電力変換器の出力する電力が、電力低下から有効電力まで回復する時間を短縮する太陽光発電制御システムを提供することである。  The purpose of the present invention is to meet the FRT requirements for ensuring the quality of the power generated by the photovoltaic power generation system, and to shorten the time required for the power output from the power converter to recover from power reduction to active power. To provide a control system.

上記目的を達成するために、本発明による太陽光発電制御システムは、太陽電池と、前記太陽電池が発電した直流電力を交流電力に変換し商用電源系統と系統連系する電力変換部と、前記太陽電池の出力電圧と出力電流の組を微小変化させながら前記太陽電池の最適動作点へと追従制御させる電力追従制御部と、前記商用電源系統の電圧を検出する電圧検出部と、前記電圧検出部が検出した電圧を基にして前記商用電力系統が瞬時電圧低下状態であるか否かを判定する系統状態判定部と、前記商用電源系統の電圧位相を検出する位相検出部と、前記電力変換部の出力交流電圧位相を前記商用電源系統の電圧位相へ同期させる位相同期部と、前記系統状態判定部により前記商用電源系統が瞬時電圧低下状態であると判定されたとき瞬時電圧低下直前の前記太陽電池が発電していた出力電流と出力電圧の組を記憶する動作記憶部とを備え、前記系統状態判定部により前記商用電源系統が復帰状態にあると判定されたとき、前記商用電源系統の瞬時電圧低下復帰後、最初に検出した電圧位相におけるゼロクロスのタイミングで前記電力変換部の電圧位相をプリセットして、前記商用電源系統の電圧位相に同期させ、さらに前記動作記憶部が記憶した瞬時電圧低下直前の前記太陽電池の出力電圧と出力電流の組を起点として前記太陽電池の最適動作点へと追従制御させることを特徴とする。  In order to achieve the above object, a photovoltaic power generation control system according to the present invention includes a solar cell, a power conversion unit that converts DC power generated by the solar cell into AC power, and is connected to a commercial power system, and A power follow-up control unit that performs follow-up control to the optimum operating point of the solar cell while minutely changing a set of output voltage and output current of the solar cell, a voltage detection unit that detects a voltage of the commercial power supply system, and the voltage detection A system state determination unit that determines whether the commercial power system is in an instantaneous voltage drop state based on the voltage detected by the unit, a phase detection unit that detects a voltage phase of the commercial power system, and the power conversion A phase synchronization unit that synchronizes the output AC voltage phase of the unit with the voltage phase of the commercial power supply system, and an instantaneous voltage drop when the commercial power supply system is determined to be in an instantaneous voltage drop state by the system state determination unit An operation storage unit that stores a set of output current and output voltage generated by the previous solar cell, and when the commercial power state determination unit determines that the commercial power supply system is in a return state, After the instantaneous voltage drop recovery of the power supply system, the voltage phase of the power conversion unit is preset at the timing of zero crossing in the first detected voltage phase, synchronized with the voltage phase of the commercial power supply system, and further stored in the operation storage unit The tracking control is performed to the optimum operating point of the solar cell starting from the set of the output voltage and output current of the solar cell immediately before the instantaneous voltage drop.

本発明によれば、商用電源系統側の瞬時電圧低下からの復帰後、外部周波数と内部周波数の位相が同期するまでの時間短縮が可能となることに加え、位相同期によりMPPT制御を開始するタイミングが早くなるので、FRT要件で求められている出力電力の回復時間をより短縮する事が可能となる。  According to the present invention, after the recovery from the instantaneous voltage drop on the commercial power supply system side, it is possible to shorten the time until the phase of the external frequency and the internal frequency is synchronized, and in addition, the timing for starting the MPPT control by phase synchronization. Therefore, the recovery time of the output power required by the FRT requirement can be further shortened.

本発明の実施の形態に係る太陽光発電制御システムの構成図。The block diagram of the photovoltaic power generation control system which concerns on embodiment of this invention. 交流電源系統電圧とマイコン内カウンタの関係図。The relationship diagram of AC power supply system voltage and the counter in the microcomputer. 従来の位相同期制御説明図。FIG. 6 is a diagram illustrating conventional phase synchronization control. 本発明の位相同期制御説明図。Explanatory drawing of phase-synchronization control of this invention. 太陽電池の電流−電圧特性の概念図。The conceptual diagram of the electric current-voltage characteristic of a solar cell.

以下、本発明の実施の形態について説明する。図1は本発明の実施の形態に係る太陽光発電制御システムの構成図である。太陽電池1で発電した直流は、DC/DCコンバータ2とDC/ACインバータ3などを含む機器で構成された電力変換器4内で電圧調整を受けた後交流に変換され、交流電源系統5に系統連系される。  Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of a photovoltaic power generation control system according to an embodiment of the present invention. The direct current generated by the solar cell 1 is subjected to voltage adjustment in a power converter 4 composed of devices including a DC / DC converter 2 and a DC / AC inverter 3, and then converted into alternating current. Grid connected.

系統電源電圧検出器9は系統状態判定装置10に商用電源系統5の電圧を送信し、系統状態判定装置10では商用電源系統5が瞬時電圧低下状態にあるか否かを判定する。系統電源位相検出器12は商用電源系統5の電圧位相を検出し、位相同期装置13に送信する。位相同期装置13は電力変換器4と商用電源系統5の電圧位相を常に同期(PLL:Phase Locked Loop)制御をして、商用電源系統5との系統連系を可能にしている  The system power supply voltage detector 9 transmits the voltage of the commercial power supply system 5 to the system state determination device 10, and the system state determination device 10 determines whether or not the commercial power supply system 5 is in an instantaneous voltage drop state. The system power supply phase detector 12 detects the voltage phase of the commercial power supply system 5 and transmits it to the phase synchronization device 13. The phase synchronizer 13 always synchronizes the voltage phase of the power converter 4 and the commercial power supply system 5 (PLL: Phase Locked Loop) and enables system interconnection with the commercial power supply system 5.

ここで、PLL制御について概略を説明する。商用電力系統の瞬時電圧低下にて、例えば、0%まで電圧低下した場合は、商用電源系統5の電圧位相が系統電源位相検出器12で検出出来なくなるので、PLL制御が止まる。商用電源系統5が瞬時電圧低下から復旧すると、電力変換器5の出力電圧位相と商用電源系統の電圧位相とを系統連系させる為に、PLL制御が始まる。PLL制御をする際、図2のように商用電源系統電圧の一周期0[rad]〜2π[rad]を例えば0[cnt]〜3,000,000[cnt]のようなカウンタ値として扱い、このカウント数を用いて図3の様に、(a)内部周波数と外部周波数の位相差を検出し、このときの位相差はカウント数となる。(b)内部周波数に対し位相差のカウント数を用いてPI制御を実施し、(a)と(b)の操作を繰り返すことにより徐々に内部周波数と外部周波数の位相差が小さくなり、最終的に(c)内部周波数と外部周波数の同期が行われる。  Here, an outline of the PLL control will be described. For example, when the voltage drops to 0% due to the instantaneous voltage drop of the commercial power system, the voltage phase of the commercial power supply system 5 cannot be detected by the system power supply phase detector 12, and the PLL control stops. When the commercial power supply system 5 recovers from the instantaneous voltage drop, the PLL control is started in order to link the output voltage phase of the power converter 5 and the voltage phase of the commercial power supply system. When performing PLL control, as shown in FIG. 2, one cycle 0 [rad] to 2π [rad] of the commercial power system voltage is treated as a counter value such as 0 [cnt] to 3,000,000 [cnt]. As shown in FIG. 3, using this count number, (a) the phase difference between the internal frequency and the external frequency is detected, and the phase difference at this time becomes the count number. (B) PI control is performed using the number of phase difference counts for the internal frequency, and the phase difference between the internal frequency and the external frequency is gradually reduced by repeating the operations (a) and (b). (C) The internal frequency and the external frequency are synchronized.

図3に示す操作により、電力変換器4の出力電力と商用電源系統5の電力が逆潮流可能となる、ある一定範囲内に電圧位相が同期した時の状態を、PLLロックと称する。このPLLロック状態に導く制御方法をPLL制御と言う。  A state in which the output phase of the power converter 4 and the power of the commercial power supply system 5 can be reversely flowed by the operation shown in FIG. 3 and the voltage phase is synchronized within a certain range is referred to as a PLL lock. The control method leading to this PLL lock state is called PLL control.

本実施形態のPLL制御では図1のように系統電源位相検出器12が停電から復帰した商用電源系統5の周波数(外部周波数)を検出し位相同期装置13に入力する。位相同期装置13は図4(a)の様に外部周波数が停電から復帰して最初のゼロクロスになった場合、電力変換器4にDC/ACインバータの周波数(内部周波数)をプリセットして(b)の様に内部周波数と外部周波数の位相を同期(PLLロック)させる。よって、位相同期により電力変換器4の出力電力と商用電源系統5が系統連系可能となる。  In the PLL control of the present embodiment, the system power supply phase detector 12 detects the frequency (external frequency) of the commercial power supply system 5 that has recovered from the power failure as shown in FIG. When the external frequency recovers from the power failure and becomes the first zero cross as shown in FIG. 4A, the phase synchronizer 13 presets the frequency (internal frequency) of the DC / AC inverter in the power converter 4 (b ), The phase of the internal frequency and the external frequency is synchronized (PLL lock). Therefore, the output power of the power converter 4 and the commercial power supply system 5 can be interconnected by phase synchronization.

上述のようにPLLロックを終えたことにより、電力変換器4で商用電源系統4の周波数をPWM制御の基準正弦波として用いることが出来るので、太陽電池1に対するMPPT制御を開始することが出来る。MPPT制御とは電圧検出器6で検出された電圧(VDC)、電流検出器7で検出された電流(IDC)を電力追従制御装置8に入力し、太陽電池1の発電能力を最適化する方法である。  By completing the PLL lock as described above, the power converter 4 can use the frequency of the commercial power supply system 4 as a reference sine wave for PWM control, so that the MPPT control for the solar cell 1 can be started. MPPT control is a method of optimizing the power generation capability of the solar cell 1 by inputting the voltage (VDC) detected by the voltage detector 6 and the current (IDC) detected by the current detector 7 to the power follow-up control device 8. It is.

ここで、MPPT制御について概略を説明する。前述したように太陽電池1の出力電力P(P=I×V)の特性は、太陽電池1に照射する太陽光の量と、太陽電池1が動作する温度によって変化し、概ね図5の様な曲線を描くことが知られている。これを通称「I−V特性曲線」と言う。よって太陽電池の最大出力を得るためには、図5に示す斜線で示された面積(I×V)が最大となる「I−V特性曲線」上のImaxとVmaxの組み合わせを探せばよい。  Here, an outline of MPPT control will be described. As described above, the characteristics of the output power P (P = I × V) of the solar cell 1 vary depending on the amount of sunlight irradiated to the solar cell 1 and the temperature at which the solar cell 1 operates, and are generally as shown in FIG. It is known to draw a simple curve. This is commonly called “IV characteristic curve”. Therefore, in order to obtain the maximum output of the solar cell, a combination of Imax and Vmax on the “IV characteristic curve” where the area (I × V) indicated by the oblique line shown in FIG.

ImaxとVmaxの組み合わせを探すため、IとVの組み合わせを微小変化させてその組み合わせを電力追従制御装置8に入力する。電力追従装置では入力されたIとVの組み合わせから太陽電池1の出力電力を計算の上、電力の増減を判定し、ImaxとVmaxの組み合わせに近づけるように「I−V特性曲線」上で微小変化を繰り返す。この制御方法がMPPT制御である。  In order to find a combination of Imax and Vmax, the combination of I and V is minutely changed and the combination is input to the power follow-up control device 8. In the power tracking device, the output power of the solar cell 1 is calculated from the input combination of I and V, the increase or decrease of the power is determined, and the “IV characteristic curve” is small so as to approach the combination of Imax and Vmax. Repeat the change. This control method is MPPT control.

動作記憶装置11は商用電源系統が停電になった場合、電力追従制御装置8から受け取った直流電流(IDC)と直流電圧(VDC)を記憶保持する。また、停電から復帰した場合、記憶保持していた直流電流(IDC)と直流電圧(VDC)を電力追従制御装置8に入力する。  The operation storage device 11 stores and holds the direct current (IDC) and the direct current voltage (VDC) received from the power follow-up control device 8 when the commercial power supply system fails. When the power is restored from the power failure, the DC current (IDC) and the DC voltage (VDC) that are stored are input to the power tracking control device 8.

ここで、電力変換器4の出力電力を商用電源系統5へ系統連系している状態とする。この状態で商用電源系統5が瞬間的な電圧低下を起こした場合、電力変換器4では商用電源系統5の電圧波形を用いてDC/ACインバータ3に対してPWM制御を行うので、商用電源系統5の電圧低下に伴いDC/ACインバータ3の出力電圧が低下してしまう。この状態でDC/DCコンバータ2からDC/ACインバータ3に入力される電圧は、DC/ACインバータ3には高すぎる電圧となってしまう。よって太陽電池1の出力を絞るとともにDC/DCコンバータ2の出力電圧も絞る必要が生じる。太陽電池1の出力を1度絞ると元の出力に戻すまでにMPPT制御を初期状態から行う必要があるので、太陽電池1の出力が元に戻るのに時間を要してしまう。  Here, it is assumed that the output power of the power converter 4 is connected to the commercial power supply system 5. In this state, when the commercial power supply system 5 causes a momentary voltage drop, the power converter 4 performs PWM control on the DC / AC inverter 3 using the voltage waveform of the commercial power supply system 5. With the voltage drop of 5, the output voltage of the DC / AC inverter 3 is lowered. In this state, the voltage input from the DC / DC converter 2 to the DC / AC inverter 3 is too high for the DC / AC inverter 3. Therefore, it is necessary to reduce the output of the solar cell 1 and also reduce the output voltage of the DC / DC converter 2. If the output of the solar cell 1 is reduced once, it is necessary to perform the MPPT control from the initial state before returning to the original output. Therefore, it takes time for the output of the solar cell 1 to return to the original state.

この時間を短縮するための方法を以下に示す。系統状態判定装置10は系統電源監視装置9からの交流電源監視信号を基に商用電源系統5の停電を検知する。停電を検知すると系統状態判定装置10は電力追従制御装置8に停電信号を発信する。電力追従制御装置8では停電信号を受信すると、停電直前の直流電圧(VDC)、直流電流(IDC)を動作記憶装置11に記憶させる。系統状態判定装置10が商用電源系統5の復電を検知した場合、電源位相検出器12は復電後、外部周波数の最初のゼロクロスを検出した際、位相同期装置13に電圧位相(VRN)を入力し、図4のように、内部周波数の位相角をプリセットする。この動作を行うことにより外部周波数と内部周波数の位相が同期し、PLLロック状態となるまでの時間が短縮できる。  A method for shortening this time is shown below. The system state determination device 10 detects a power failure of the commercial power supply system 5 based on the AC power supply monitoring signal from the system power supply monitoring device 9. When a power failure is detected, the system state determination device 10 transmits a power failure signal to the power tracking control device 8. When the power follow-up control device 8 receives the power failure signal, it stores the DC voltage (VDC) and DC current (IDC) immediately before the power failure in the operation storage device 11. When the system state determination device 10 detects the power recovery of the commercial power system 5, the power phase detector 12 detects the first zero cross of the external frequency after the power recovery and supplies the voltage phase (VRN) to the phase synchronization device 13. Then, the phase angle of the internal frequency is preset as shown in FIG. By performing this operation, the phases of the external frequency and the internal frequency are synchronized, and the time until the PLL lock state is reached can be shortened.

また、系統状態判定装置10は電力追従制御装置8に復電信号を発信する。電力追従制御装置8は動作記憶装置11に記憶していた直流電圧(VDC)と直流電流(IDC)を出力するように指示する。動作記憶装置11が出力した直流電圧(VDC)と直流電流(IDC)は電力追従制御装置8へ入力される。電力追従制御装置8は入力された直流電圧(VDC)と直流電流(IDC)を用いてMPPT制御を開始することが出来る。  In addition, the system state determination device 10 transmits a power recovery signal to the power follow-up control device 8. The power follow-up control device 8 instructs to output the direct current voltage (VDC) and direct current (IDC) stored in the operation storage device 11. The direct current voltage (VDC) and direct current (IDC) output from the operation storage device 11 are input to the power tracking control device 8. The power follow-up control device 8 can start MPPT control using the input DC voltage (VDC) and DC current (IDC).

このように動作する本実施形態の太陽光発電制御システムにおいては、交流電源が瞬間的な停電から復電した場合、DC/ACインバータ3の出力電圧の位相を、商用電源系統5のゼロクロス点でプリセットするので、従来方法では商用電源系統の周波数が5周期ほどして位相同期が完了していたところ、本実施形態では最大でも商用電源系統の半周期で位相同期が完了するので位相同期の時間が短縮できる。  In the photovoltaic power generation control system of this embodiment that operates in this way, when the AC power supply recovers from an instantaneous power failure, the phase of the output voltage of the DC / AC inverter 3 is the zero cross point of the commercial power supply system 5. Since the preset is preset, the phase synchronization is completed after the frequency of the commercial power supply system is about 5 cycles in the conventional method. However, in this embodiment, the phase synchronization is completed in the half cycle of the commercial power supply system at the maximum. Can be shortened.

さらに、DC/ACインバータ3の出力電圧と商用電源系統5の電圧位相が同期した状態で、瞬間的な停電時に記憶した直流電源(VDC)、直流電流(IDC)を用いてMPPT制御を再開できるので、太陽電池1の発電が最適化されるまでの時間も短縮できる。  Furthermore, the MPPT control can be resumed using the DC power supply (VDC) and DC current (IDC) stored at the moment of a power failure while the output voltage of the DC / AC inverter 3 and the voltage phase of the commercial power supply system 5 are synchronized. Therefore, the time until the power generation of the solar cell 1 is optimized can be shortened.

よって、商用電源系統5が瞬間的な停電から復帰したとき、太陽光発電制御システムと商用電源系統5との系統連系可能となるまでの時間が短縮されるので、FRT要件を満たすことが出来る。  Therefore, when the commercial power supply system 5 recovers from the momentary power failure, the time until the grid connection between the photovoltaic power generation control system and the commercial power supply system 5 is shortened, so that the FRT requirement can be satisfied. .

1 太陽電池
2 DC/DCコンバータ
3 DC/ACインバータ
4 電力変換器
5 商用電源系統
6 電圧検出器
7 電流検出器
8 電力追従制御装置
9 系統電源電圧検出器
10 系統状態判定装置
11 動作記憶装置
12 系統電源位相検出器
13 位相同期装置
DESCRIPTION OF SYMBOLS 1 Solar cell 2 DC / DC converter 3 DC / AC inverter 4 Power converter 5 Commercial power supply system 6 Voltage detector 7 Current detector 8 Power tracking control apparatus 9 System power supply voltage detector 10 System state determination apparatus 11 Operation | movement memory apparatus 12 System power supply phase detector 13 Phase synchronization device

Claims (1)

太陽電池と、
前記太陽電池が発電した直流電力を交流電力に変換し商用電源系統と系統連系する電力変換部と、
前記太陽電池の出力電圧と出力電流の組を微小変化させながら前記太陽電池の最適動作点へと追従制御させる電力追従制御部と、
前記商用電力系統の電圧を検出する電圧検出部と、
前記電圧検出部が検出した電圧を基にして前記商用電源系統が瞬時電圧低下状態であるか否かを判定する系統状態判定部と、
前記商用電源系統の電圧位相を検出する位相検出部と、
前記電力変換部の出力交流電圧位相を前記商用電源系統の電圧位相へ同期させる位相同期部と、
前記系統状態判定部により前記商用電源系統が瞬時電圧低下状態であると判定されたとき瞬時電圧低下直前の前記太陽電池が発電していた出力電流と出力電圧の組を記憶する動作記憶部とを備え、
前記系統状態判定部により前記商用電源系統が復帰状態にあると判定されたとき、前記商用電源系統の瞬時電圧低下復帰後、最初に検出した電圧位相におけるゼロクロスのタイミングで前記電力変換部の電圧位相をプリセットして、前記商用電源系統の電圧位相に同期させ、さらに前記動作記憶部が記憶した瞬時電圧低下直前の前記太陽電池の出力電圧と出力電流の組を用いて前記太陽電池の最適動作点へと追従制御させることを特徴とする太陽光発電制御システム。
Solar cells,
A power conversion unit that converts the DC power generated by the solar cell into AC power and interconnects with a commercial power supply system;
A power follow-up control unit that performs follow-up control to the optimum operating point of the solar cell while minutely changing the set of output voltage and output current of the solar cell;
A voltage detector for detecting the voltage of the commercial power system;
A system state determination unit that determines whether the commercial power supply system is in an instantaneous voltage drop state based on the voltage detected by the voltage detection unit;
A phase detector for detecting a voltage phase of the commercial power system;
A phase synchronization unit that synchronizes the output AC voltage phase of the power conversion unit to the voltage phase of the commercial power supply system; and
An operation storage unit for storing a set of output current and output voltage generated by the solar cell immediately before the instantaneous voltage drop when the commercial power supply system is determined to be in an instantaneous voltage drop state by the grid state determination unit; Prepared,
When it is determined by the system state determination unit that the commercial power supply system is in a return state, the voltage phase of the power conversion unit at the timing of zero crossing in the voltage phase first detected after the instantaneous voltage drop recovery of the commercial power supply system Is preset to synchronize with the voltage phase of the commercial power system, and the optimum operating point of the solar cell using the set of output voltage and output current of the solar cell immediately before the instantaneous voltage drop stored in the operation storage unit A photovoltaic power generation control system characterized by following control.
JP2012093373A 2012-03-30 2012-03-30 Solar power generation control system Active JP5946035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012093373A JP5946035B2 (en) 2012-03-30 2012-03-30 Solar power generation control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012093373A JP5946035B2 (en) 2012-03-30 2012-03-30 Solar power generation control system

Publications (2)

Publication Number Publication Date
JP2013215075A true JP2013215075A (en) 2013-10-17
JP5946035B2 JP5946035B2 (en) 2016-07-05

Family

ID=49588032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012093373A Active JP5946035B2 (en) 2012-03-30 2012-03-30 Solar power generation control system

Country Status (1)

Country Link
JP (1) JP5946035B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016226279A (en) * 2015-05-29 2016-12-28 国立大学法人 東京大学 Power converter, power network system and control method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320834A (en) * 2000-05-09 2001-11-16 Canon Inc System interconnection inverter unit, system interconnection power system, photovoltaic power generation system and method for detecting service interruption of system
JP2003169482A (en) * 2001-11-29 2003-06-13 Kawamura Electric Inc Power converter
JP2006246650A (en) * 2005-03-04 2006-09-14 Kawamura Electric Inc System cooperation method of distributed power source and system cooperation inverter
JP2011101455A (en) * 2009-11-04 2011-05-19 Tokyo Electric Power Co Inc:The Device for controlling photovoltaic power generation facility
JP2011170835A (en) * 2010-01-19 2011-09-01 Omron Corp Mppt controller, solar battery control device, solar power generation system, mppt control program, and control method for mppt controller
JP2012055036A (en) * 2010-08-31 2012-03-15 Central Res Inst Of Electric Power Ind Operation stabilization method of power conditioner at time of brownout recovery, power conditioner carrying out the same, and program for operation stabilization of power conditioner at time of brownout recovery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320834A (en) * 2000-05-09 2001-11-16 Canon Inc System interconnection inverter unit, system interconnection power system, photovoltaic power generation system and method for detecting service interruption of system
JP2003169482A (en) * 2001-11-29 2003-06-13 Kawamura Electric Inc Power converter
JP2006246650A (en) * 2005-03-04 2006-09-14 Kawamura Electric Inc System cooperation method of distributed power source and system cooperation inverter
JP2011101455A (en) * 2009-11-04 2011-05-19 Tokyo Electric Power Co Inc:The Device for controlling photovoltaic power generation facility
JP2011170835A (en) * 2010-01-19 2011-09-01 Omron Corp Mppt controller, solar battery control device, solar power generation system, mppt control program, and control method for mppt controller
JP2012055036A (en) * 2010-08-31 2012-03-15 Central Res Inst Of Electric Power Ind Operation stabilization method of power conditioner at time of brownout recovery, power conditioner carrying out the same, and program for operation stabilization of power conditioner at time of brownout recovery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016226279A (en) * 2015-05-29 2016-12-28 国立大学法人 東京大学 Power converter, power network system and control method therefor

Also Published As

Publication number Publication date
JP5946035B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
US9490626B2 (en) Methods for anti-islanding in distributed-source electrical power generation and distribution systems and electrical systems and apparatus using same
EP3026775B1 (en) Control device for solar power generation inverter
KR101225198B1 (en) Grid connected power conversion system
US9337657B2 (en) Power unit control system
KR101704472B1 (en) Bi-lateral Uninterruptible Power Supply for Hybrid System and Method thereof
JP2009124836A (en) Controller of uninterrupted power supply system
US20120013190A1 (en) Grid-connected power conversion circuitry and power conversion method thereof
JP5398233B2 (en) Independent operation detection device for inverter and isolated operation detection method
JP5961932B2 (en) Electric power leveling device
JP5946035B2 (en) Solar power generation control system
Milczarek et al. Monitoring and control algorithms applied to small wind turbine with grid-connected/stand-alone mode of operation
JP5331399B2 (en) Power supply
CN104993687A (en) Start control method of grid-connected inverter
WO2016015243A1 (en) Photovoltaic grid connection control method and photovoltaic grid connection system
KR101568712B1 (en) An islanding detection apparatus and method with partial phase window monitoring method on grid connected inverter
JP2011139594A (en) System interconnection system
JP6041250B2 (en) Grid interconnection device
JP7209165B2 (en) POWER CONTROL DEVICE, CONTROL METHOD OF POWER CONTROL DEVICE
JP6631311B2 (en) Power generation system
JP6110093B2 (en) Inverter device and control method
JP7459627B2 (en) Power control device, control method for power control device, and AC power generation system.
US11923789B2 (en) Power converter
JP7073647B2 (en) Power generation system
Heo et al. Closed transition transfer switch based on multi-mode photovoltaic inverter for preventing power outage
Hong et al. Residential battery energy storage system with 3kWh Li-ion battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5946035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250