JP2011101455A - Device for controlling photovoltaic power generation facility - Google Patents

Device for controlling photovoltaic power generation facility Download PDF

Info

Publication number
JP2011101455A
JP2011101455A JP2009252892A JP2009252892A JP2011101455A JP 2011101455 A JP2011101455 A JP 2011101455A JP 2009252892 A JP2009252892 A JP 2009252892A JP 2009252892 A JP2009252892 A JP 2009252892A JP 2011101455 A JP2011101455 A JP 2011101455A
Authority
JP
Japan
Prior art keywords
power
solar cell
output
voltage
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009252892A
Other languages
Japanese (ja)
Inventor
Satoshi Miyazaki
聡 宮崎
Kenichi Suzuki
健一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2009252892A priority Critical patent/JP2011101455A/en
Publication of JP2011101455A publication Critical patent/JP2011101455A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for controlling photovoltaic power generation facilities for quick recovery up to the maximum output before short-time power failure when the short-time power failure occurs in a power system and the system recovers power. <P>SOLUTION: A system state decision unit 22 monitors a voltage of the power system 15 connected to a solar cell 11 to determine whether the power system 15 is in a power failure state, and stores an operating voltage V of the solar cell 11 immediately before power failure in an operating voltage memory 23 when the system state decision unit 22 determines that the power system 15 is in a power failure state. A maximum power following control unit 18 performs following control of voltage of the solar cell 11 to an optimum operating point from an operating voltage V1 of the solar cell 11 immediately before power failure stored in the operating voltage memory 23 when the power system 11 recovers from the power failure state. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、太陽光を利用して発電する太陽光発電設備を電力系統に連系して運転制御する太陽光発電設備の制御装置に関する。   The present invention relates to a control device for a photovoltaic power generation facility that controls the operation of a photovoltaic power generation facility that generates power using sunlight in conjunction with an electric power system.

太陽電池は、日射強度及び温度により最大電力を発生させる動作点が異なるため、太陽電池の発電電力を有効に活用するには、刻々変化していく最適動作点に追従させて発電することが重要となる。   Because solar cells have different operating points that generate maximum power depending on solar radiation intensity and temperature, it is important to follow the optimal operating point that changes every moment in order to effectively use the power generated by solar cells. It becomes.

このような最大電力を取り出す最適動作点を求めるには、太陽電池の出力が最大となる最適動作点に追従制御させる最大電力追従制御{MPPT(Maximum Power Point Tracking)制御}が用いられる。例えば、現状の動作点で得られる出力電力と、現状の動作点から少しだけ移動させた動作点で得られる出力電力とを比較して最適動作点への方向判断を行い、最適動作点へと追従させる山登り法などが用いられる(例えば、特許文献1参照)。   In order to obtain such an optimal operating point for extracting the maximum power, maximum power tracking control {MPPT (Maximum Power Point Tracking) control} for tracking control to the optimal operating point at which the output of the solar cell is maximum is used. For example, the output power obtained at the current operating point is compared with the output power obtained at the operating point slightly moved from the current operating point to determine the direction to the optimal operating point, and to the optimal operating point. A hill-climbing method to be followed is used (see, for example, Patent Document 1).

一方、太陽光発電設備が連系された電力系統に短時間停電が発生した場合、太陽光発電設備の出力を零にして短時間停電復帰後に再起動するようにしている。例えば、電力系統に2秒間の短時間停電に起因して単独運転状態が発生すると、太陽光発電設備を停止して系統復電300秒経過後に再起動するようにしている。   On the other hand, when a power failure occurs in the power system connected to the photovoltaic power generation facility, the output of the photovoltaic power generation facility is set to zero and the system is restarted after the power failure is restored for a short time. For example, when a single operation state occurs due to a short-time power failure for 2 seconds in the power system, the photovoltaic power generation equipment is stopped and restarted after 300 seconds of system power recovery.

図13は、太陽光発電設備の出力電圧Vと出力電流Iとの関係を示したV−I特性及び太陽光発電設備の出力電圧Vと出力電力Pとの関係を示したV−P特性の一例のグラフである。図13に示すように、太陽光発電設備は、日射強度及び温度が一定の場合には一定のV−I特性曲線C1及び一定のV−P特性曲線P1を有し、V−I特性曲線C1上の出力電力が最大出力P1maxとなる最適動作点C11{座標C11(V1,I1)}である。通常時は、この最適動作点C11となるように太陽光発電設備の出力電圧Vが制御される。   FIG. 13 shows a V-I characteristic showing the relationship between the output voltage V and the output current I of the photovoltaic power generation facility and a VP characteristic showing the relationship between the output voltage V and the output power P of the photovoltaic power generation facility. It is an example of a graph. As shown in FIG. 13, the solar power generation facility has a constant VI characteristic curve C1 and a constant VP characteristic curve P1 when the solar radiation intensity and temperature are constant, and the VI characteristic curve C1. It is the optimum operating point C11 {coordinate C11 (V1, I1)} at which the upper output power becomes the maximum output P1max. In normal times, the output voltage V of the photovoltaic power generation facility is controlled so as to reach the optimum operating point C11.

図14は太陽光発電設備の従来の運転特性を示す出力電圧V及び出力電力Pの特性図である。太陽光発電設備が電力系統に接続された初期状態においては、出力電圧Vは開放電圧Voに等しく、出力電圧Vを調整して出力電力Pを零から徐々に増加させる。つまり、時点t0で出力電圧目標値V1rを開放電圧Voから最大電力追従制御により段階的に下降していくことになる。これに伴い、太陽光発電設備の出力電力Pは段階的に上昇し、時点t1でV−I特性曲線C1上の最適動作点C11になると、太陽光発電設備の出力電力Pは最大出力P1maxでほぼ一定となる。   FIG. 14 is a characteristic diagram of the output voltage V and the output power P showing the conventional operation characteristics of the photovoltaic power generation facility. In the initial state where the photovoltaic power generation facility is connected to the power system, the output voltage V is equal to the open circuit voltage Vo, and the output voltage V is adjusted to gradually increase the output power P from zero. That is, at the time point t0, the output voltage target value V1r gradually decreases from the open voltage Vo by the maximum power tracking control. Along with this, the output power P of the photovoltaic power generation facility increases stepwise, and when the optimum operating point C11 on the VI characteristic curve C1 is reached at the time point t1, the output power P of the photovoltaic power generation facility is at the maximum output P1max. It becomes almost constant.

太陽光発電設備の出力電力Pが最大出力P1maxでほぼ一定で運転されている状態で、いま、時点t2において電力系統に短時間停電が発生したとすると、太陽光発電設備の出力電圧Vは開放電圧Voに調整される。これにより、太陽光発電設備の出力電力Pは最大出力P1maxから一挙に零に調整される。そして、時点t3で電力系統が復電すると、太陽光発電設備は再起動し、最大電力追従制御により出力電圧目標値V1rを開放電圧Voから最大電力追従制御により段階的に下降していく。これに伴い、太陽光発電設備の出力電力Pは段階的に上昇し、時点t4でV−I特性曲線C1上の最適動作点C11になると、太陽光発電設備の出力電力Pは短時間停電前の最大出力P1maxでほぼ一定となる。   If the output power P of the photovoltaic power generation facility is operating at a substantially constant maximum output P1max, and if a short interruption occurs in the power system at time t2, the output voltage V of the photovoltaic power generation facility is open. The voltage is adjusted to Vo. As a result, the output power P of the photovoltaic power generation facility is adjusted from the maximum output P1max to zero at once. When the power system is restored at time t3, the photovoltaic power generation facility is restarted, and the output voltage target value V1r is gradually lowered from the open voltage Vo by the maximum power tracking control by the maximum power tracking control. Along with this, the output power P of the photovoltaic power generation facility rises in stages, and when the optimum operating point C11 on the VI characteristic curve C1 is reached at time t4, the output power P of the solar power generation facility is short before the power failure. The maximum output P1max is substantially constant.

特開2004−295688号公報JP 2004-295688 A

しかし、大量の太陽光発電設備が導入された電力系統に短時間停電が発生すると、大量の太陽光発電設備が一斉に出力電圧Vは開放電圧Voに調整され出力電力Pが零となるので、電力需給バランスが崩れることになり電力系統の運用に大きな影響を及ぼす可能性ある。特に、太陽光発電設備は再起動にあたって最大電力追従制御により、最大出力動作電圧V1までゆっくり山登り制御となるので、短時間停電前の最大出力P1maxまで回復するまでに時間がかかり系統安定化に寄与できない。そこで、太陽光発電設備が短時間停電を乗り越え高速再起動するFRT(Fault Ride Through)機能を備えることが要請されている。   However, when a short interruption occurs in a power system in which a large amount of photovoltaic power generation equipment is introduced, the output voltage V is adjusted to the open voltage Vo and the output power P becomes zero at the same time. The power supply / demand balance may be disrupted, which may greatly affect the operation of the power system. In particular, since photovoltaic power generation equipment is slowly climbed up to the maximum output operating voltage V1 by maximum power tracking control when restarting, it takes time to recover to the maximum output P1max before a short interruption, contributing to system stabilization. Can not. Therefore, it is required that the photovoltaic power generation equipment has a FRT (Fault Ride Through) function for overcoming a power failure for a short time and restarting at high speed.

本発明の目的は、電力系統に短時間停電が発生し系統復電したときに短時間停電前の最大出力まで高速で回復できる太陽光発電設備の制御装置を提供することである。   The objective of this invention is providing the control apparatus of the solar power generation facility which can be recovered | restored at high speed to the maximum output before a short-time power failure, when a short-time power failure generate | occur | produces in an electric power system and a system power recovery.

請求項1の発明に係わる太陽光発電設備の制御装置は、太陽電池で発電した直流を電力変換器で交流に変換し電力系統に供給するようにした太陽光発電設備の制御装置において、太陽電池の出力が最大となる最適動作点に前記太陽電池の電圧を追従制御させ前記太陽電池の最大出力を得る最大電力追従制御部と、太陽電池が接続された電力系統の電圧を監視し電力系統が停電状態か否かを判定する前記系統状態判定部と、前記系統状態判定部により前記電力系統が停電状態であると判定されたときは停電直前の前記太陽電池の動作電圧を記憶する動作電圧記憶部と、前記電力系統が停電状態でないときは前記最大電力追従制御部で得られた最大出力になるように前記電力変換器の出力を制御し前記電力系統が停電状態であるときは前記太陽電池の電圧が前記太陽電池の開放電圧になるように前記電力変換器の出力を制御する出力制御部とを備え、前記電力系統が停電状態から復帰したときは、前記最大電力追従制御部は、前記動作電圧記憶部に記憶した停電直前の前記太陽電池の動作電圧から前記太陽電池の電圧を最適動作点に追従制御させることを特徴とする。   A control device for a photovoltaic power generation facility according to the invention of claim 1 is a control device for a photovoltaic power generation facility in which a direct current generated by a solar cell is converted into an alternating current by a power converter and supplied to an electric power system. The maximum power follow-up control unit that obtains the maximum output of the solar cell by tracking the voltage of the solar cell to the optimum operating point at which the output of the maximum is monitored, and the power system monitors the voltage of the power system to which the solar cell is connected. An operating voltage storage that stores the operating voltage of the solar cell immediately before the power failure when the power system is determined to be in a power outage state by the system state determining unit that determines whether or not it is in a power outage state And when the power system is not in a power outage state, the output of the power converter is controlled so that the maximum output obtained by the maximum power follow-up control unit is obtained. And an output control unit that controls the output of the power converter so that the voltage of the solar cell becomes an open voltage of the solar cell, and when the power system returns from a power failure state, the maximum power follow-up control unit is The voltage of the solar cell is controlled to follow the optimum operating point from the operating voltage of the solar cell immediately before the power failure stored in the operating voltage storage unit.

請求項2の発明に係わる太陽光発電設備の制御装置は、太陽電池で発電した直流を電力変換器で交流に変換し電力系統に供給するようにした太陽光発電設備の制御装置において、太陽電池の出力が最大となる最適動作点に前記太陽電池の電圧を追従制御させ前記太陽電池の最大出力を得る最大電力追従制御部と、太陽電池が接続された電力系統の電圧を監視し電力系統が停電状態か否かを判定する前記系統状態判定部と、前記系統状態判定部により前記電力系統が停電状態であると判定されたときは停電直前の前記太陽電池の動作電圧を記憶する動作電圧記憶部と、前記電力系統が停電状態でないときは前記最大電力追従制御部で得られた最大出力になるように前記電力変換器の出力を制御し前記電力系統が停電状態であるときは前記太陽電池の電圧が前記太陽電池の開放電圧になるように前記電力変換器の出力を制御する出力制御部とを備え、前記電力系統が停電状態から復帰したときは、前記最大電力追従制御部は、前記動作電圧記憶部に記憶した停電直前の前記太陽電池の動作電圧から電圧下降方向に移動させ前記太陽電池の電圧を最適動作点に追従制御させることを特徴とする。   A control device for a photovoltaic power generation facility according to a second aspect of the invention is a control device for a photovoltaic power generation facility in which a direct current generated by a solar cell is converted into an alternating current by a power converter and supplied to an electric power system. The maximum power follow-up control unit that obtains the maximum output of the solar cell by tracking the voltage of the solar cell to the optimum operating point at which the output of the maximum is monitored, and the power system monitors the voltage of the power system to which the solar cell is connected. An operating voltage storage that stores the operating voltage of the solar cell immediately before the power failure when the power system is determined to be in a power outage state by the system state determining unit that determines whether or not it is in a power outage state And when the power system is not in a power outage state, the output of the power converter is controlled so that the maximum output obtained by the maximum power follow-up control unit is obtained. And an output control unit that controls the output of the power converter so that the voltage of the solar cell becomes an open voltage of the solar cell, and when the power system returns from a power failure state, the maximum power follow-up control unit is The voltage of the solar cell is controlled to follow the optimum operating point by moving in the voltage decreasing direction from the operating voltage of the solar cell immediately before the power failure stored in the operating voltage storage unit.

請求項3の発明に係わる太陽光発電設備の制御装置は、太陽電池で発電した直流を電力変換器で交流に変換し電力系統に供給するようにした太陽光発電設備の制御装置において、太陽電池の出力が最大となる最適動作点に前記太陽電池の電圧を追従制御させ前記太陽電池の最大出力を得る最大電力追従制御部と、太陽電池が接続された電力系統の電圧を監視し電力系統が停電状態か否かを判定する前記系統状態判定部と、前記系統状態判定部により前記電力系統が停電状態であると判定されたときは停電直前の前記太陽電池の動作電圧を記憶する動作電圧記憶部と、前記系統状態判定部により前記電力系統が停電状態であると判定されたときは停電直前の前記太陽電池の出力電流値又は電力値を記憶する出力値記憶部と、前記電力系統が停電状態でないときは前記最大電力追従制御部で得られた最大出力になるように前記電力変換器の出力を制御し前記電力系統が停電状態であるときは前記太陽電池の電圧が前記太陽電池の開放電圧になるように前記電力変換器の出力を制御する出力制御部とを備え、前記電力系統が停電状態から復帰したときは、前記最大電力追従制御部は、前記動作電圧記憶部に記憶した停電直前の前記太陽電池の動作電圧での再起動時に前記太陽電池の出力値が前記出力値記憶部に記憶した停止直前の出力値以上かどうかを判定し、太陽電池の出力値が停止直前の出力値以上のときは、前記動作電圧記憶部に記憶した停電直前の前記太陽電池の動作電圧から電圧上昇方向に移動させ前記太陽電池の電圧を最適動作点に追従制御させることを特徴とする。   A control device for a photovoltaic power generation facility according to a third aspect of the invention is a control device for a photovoltaic power generation facility in which direct current generated by a solar cell is converted into alternating current by a power converter and supplied to an electric power system. The maximum power follow-up control unit that obtains the maximum output of the solar cell by tracking the voltage of the solar cell to the optimum operating point at which the output of the maximum is monitored, and the power system monitors the voltage of the power system to which the solar cell is connected. An operating voltage storage that stores the operating voltage of the solar cell immediately before the power failure when the power system is determined to be in a power outage state by the system state determining unit that determines whether or not it is in a power outage state And an output value storage unit that stores the output current value or power value of the solar cell immediately before the power outage when the power system is determined to be in a power outage state by the system state determination unit, and the power system is out of power When not in the state, the output of the power converter is controlled so that the maximum output obtained by the maximum power follow-up control unit is obtained, and when the power system is in a power failure state, the voltage of the solar cell is open to the solar cell. An output control unit that controls the output of the power converter so as to become a voltage, and when the power system is restored from the power failure state, the maximum power follow-up control unit stores the power failure stored in the operating voltage storage unit. It is determined whether or not the output value of the solar cell is equal to or greater than the output value immediately before the stop stored in the output value storage unit at the time of restart at the operating voltage of the solar cell immediately before, and the output value of the solar cell is the output immediately before the stop When the value is greater than or equal to the value, the voltage of the solar cell is controlled to follow the optimum operating point by moving in the direction of voltage increase from the operating voltage of the solar cell immediately before the power failure stored in the operating voltage storage unit.

請求項4の発明に係わる太陽光発電設備の制御装置は、太陽電池で発電した直流を電力変換器で交流に変換し電力系統に供給するようにした太陽光発電設備の制御装置において、太陽電池の出力が最大となる最適動作点に前記太陽電池の電圧を追従制御させ前記太陽電池の最大出力を得る最大電力追従制御部と、太陽電池が接続された電力系統の電圧を監視し電力系統が停電状態か否かを判定する前記系統状態判定部と、前記系統状態判定部により前記電力系統が停電状態であると判定されたときは停電直前の前記太陽電池の動作電圧を記憶する動作電圧記憶部と、前記系統状態判定部により前記電力系統が停電状態であると判定されたときは停電直前の前記太陽電池の出力値を記憶する出力値記憶部と、前記電力系統が停電状態でないときは前記最大電力追従制御部で得られた最大出力になるように前記電力変換器の出力を制御し前記電力系統が停電状態であるときは前記太陽電池の電圧が前記太陽電池の開放電圧になるように前記電力変換器の出力を制御する出力制御部とを備え、前記電力系統が停電状態から復帰したときは、前記最大電力追従制御部は、前記動作電圧記憶部に記憶した停電直前の前記太陽電池の動作電圧での再起動時に前記太陽電池の出力値が前記出力値記憶部に記憶した停止直前の出力値未満かどうかを判定し、太陽電池の出力値が停止直前の出力値未満のときは、前記動作電圧記憶部に記憶した停電直前の前記太陽電池の動作電圧から電圧下降方向に移動させ前記太陽電池の電圧を最適動作点に追従制御させることを特徴とする。   A control device for a photovoltaic power generation facility according to the invention of claim 4 is a control device for a photovoltaic power generation facility in which direct current generated by the solar cell is converted into alternating current by a power converter and supplied to an electric power system. The maximum power follow-up control unit that obtains the maximum output of the solar cell by tracking the voltage of the solar cell to the optimum operating point at which the output of the maximum is monitored, and the power system monitors the voltage of the power system to which the solar cell is connected. An operating voltage storage that stores the operating voltage of the solar cell immediately before the power failure when the power system is determined to be in a power outage state by the system state determining unit that determines whether or not it is in a power outage state An output value storage unit that stores the output value of the solar cell immediately before the power failure when the power system is determined to be in a power failure state by the power system state determination unit, and the power system is not in a power failure state The output of the power converter is controlled so as to be the maximum output obtained by the maximum power tracking control unit, and when the power system is in a power failure state, the voltage of the solar cell becomes the open voltage of the solar cell. And an output control unit for controlling the output of the power converter, and when the power system is restored from the power failure state, the maximum power follow-up control unit is configured to store the sun immediately before the power failure stored in the operating voltage storage unit. When restarting at the operating voltage of the battery, it is determined whether the output value of the solar cell is less than the output value immediately before stopping stored in the output value storage unit, and the output value of the solar cell is less than the output value immediately before stopping Is characterized in that it shifts the operating voltage of the solar cell immediately before the power failure stored in the operating voltage storage unit in the voltage decreasing direction to control the voltage of the solar cell to the optimum operating point.

請求項1の発明によれば、電力系統が停電状態であると判定されたときは停電直前の太陽電池の動作電圧を動作電圧記憶部に記憶し、電力系統が停電状態から復帰したときは、最大電力追従制御部は、動作電圧記憶部に記憶した停電直前の太陽電池の動作電圧から太陽電池の電圧を最適動作点に追従制御させるので、短時間停電前の最大出力まで高速で回復でき、電力系統の安定化に寄与できる。   According to the invention of claim 1, when it is determined that the power system is in a power outage state, the operating voltage of the solar cell immediately before the power outage is stored in the operating voltage storage unit, and when the power system is restored from the power outage state, The maximum power tracking control unit controls the solar cell voltage to the optimum operating point from the operating voltage of the solar cell immediately before the power failure stored in the operating voltage storage unit, so it can recover at high speed to the maximum output before the power failure for a short time, It can contribute to the stabilization of the power system.

請求項2の発明によれば、電力系統が停電状態から復帰して太陽電池の電圧を最適動作点に追従制御させる際に、動作電圧記憶部に記憶した停電直前の太陽電池の動作電圧から電圧下降方向に移動させ太陽電池の電圧を最適動作点に追従制御させるので、電力系統が停電状態から復帰したときの日射強度が短時間停電時の日射強度より小さくなっていた場合には、必ず出力電力が大きくなる方向となる。従って、電力系統が停電状態から復帰した際に日射強度が低下していた場合には、最大電力追従制御の制御再開時における一時的な出力電力の低下を防止できる。   According to the invention of claim 2, when the power system returns from the power failure state and controls the voltage of the solar cell to follow the optimum operating point, the voltage is calculated from the operating voltage of the solar cell immediately before the power failure stored in the operating voltage storage unit. Since the solar cell voltage is controlled to follow the optimum operating point by moving it in the downward direction, it is always output if the solar radiation intensity when the power system returns from the power failure state is smaller than the solar radiation intensity at the time of a short power failure. The power will increase. Therefore, when the solar radiation intensity is reduced when the power system returns from the power failure state, it is possible to prevent a temporary decrease in output power when the maximum power tracking control is resumed.

請求項3の発明によれば、電力系統が停電状態から復帰して太陽電池の電圧を最適動作点に追従制御させる際に、最大電力追従制御部は、再起動時の太陽電池の出力値が出力値記憶部に記憶した停止直前の出力値以上のときは、動作電圧記憶部に記憶した停電直前の太陽電池の動作電圧から電圧上昇方向に移動させ太陽電池の電圧を最適動作点に追従制御させるので、電力系統が停電状態から復帰したときの日射強度が短時間停電時の日射強度より大きくなっているV−I特性曲線に適合した最大電力追従制御が可能となる。   According to the invention of claim 3, when the power system returns from the power failure state and controls the voltage of the solar cell to the optimum operating point, the maximum power tracking control unit has the output value of the solar cell at the time of restarting. When the output value stored in the output value storage unit is greater than or equal to the output value immediately before the stop, the solar cell voltage is controlled to follow the optimal operating point by moving it from the operating voltage stored in the operating voltage storage unit immediately before the power failure. Therefore, the maximum power follow-up control adapted to the VI characteristic curve in which the solar radiation intensity when the power system returns from the power failure state is larger than the solar radiation intensity at the time of a short power failure becomes possible.

請求項4の発明によれば、電力系統が停電状態から復帰して太陽電池の電圧を最適動作点に追従制御させる際に、最大電力追従制御部は、再起動時の太陽電池の出力値が出力値記憶部に記憶した停止直前の出力値未満のときは、動作電圧記憶部に記憶した停電直前の太陽電池の動作電圧から電圧下降方向に移動させ太陽電池の電圧を最適動作点に追従制御させるので、電力系統が停電状態から復帰したときの日射強度が短時間停電時の日射強度より小さくなっているV−I特性曲線に適合した最大電力追従制御が可能となる。   According to the invention of claim 4, when the power system returns from the power failure state and controls the voltage of the solar cell to the optimum operating point, the maximum power tracking control unit is configured so that the output value of the solar cell at the time of restart is When the output value is less than the output value immediately before stopping stored in the output value storage unit, the solar cell voltage is controlled to follow the optimum operating point by moving it from the operating voltage stored in the operating voltage storage unit immediately before the power failure. Therefore, the maximum power follow-up control adapted to the VI characteristic curve in which the solar radiation intensity when the power system returns from the power failure state is smaller than the solar radiation intensity during the short power failure is possible.

本発明の第1の実施の形態に係わる太陽光発電設備の制御装置の構成図。The block diagram of the control apparatus of the solar power generation facility concerning the 1st Embodiment of this invention. 本発明の第1の実施の形態に係わる太陽光発電設備の制御装置の動作の一例を示す太陽光発電設備のV−I特性及びV−P特性の一例のグラフ。The graph of an example of the VI characteristic and VP characteristic of a solar power generation facility which shows an example of operation | movement of the control apparatus of the solar power generation facility concerning the 1st Embodiment of this invention. 図2に示した太陽光発電設備の運転特性での出力電圧V及び出力電力Pの一例の特性図。FIG. 3 is a characteristic diagram of an example of output voltage V and output power P in the operation characteristics of the photovoltaic power generation facility shown in FIG. 2. 本発明の第1の実施の形態に係わる太陽光発電設備の制御装置の動作の他の一例を示す日射強度をパラメータとしたV−I特性及びV−P特性の一例のグラフ。The graph of an example of VI characteristic and VP characteristic which made the solar radiation intensity the parameter which shows another example of operation | movement of the control apparatus of the solar power generation facility concerning the 1st Embodiment of this invention. 電力系統が復電したときの日照強度が短時間停電が発生したときの日照強度より小さい場合の太陽光発電設備の出力電圧V及び出力電力Pの一例の特性図。The characteristic diagram of an example of the output voltage V and the output power P of a photovoltaic power generation facility in case the sunshine intensity | strength when a power grid | system returns to power is smaller than the sunshine intensity | strength when a power failure occurs for a short time. 電力系統が復電したときの日照強度が短時間停電が発生したときの日照強度と同じである場合の太陽光発電設備の出力電圧V及び出力電力Pの一例の特性図。The characteristic diagram of an example of the output voltage V and the output power P of a photovoltaic power generation equipment in case the sunshine intensity | strength when an electric power grid returns is the same as the sunshine intensity | strength when a power failure occurs for a short time. 電力系統が復電したときの日照強度が短時間停電が発生したときの日照強度より大きい場合の太陽光発電設備の出力電圧V及び出力電力Pの一例の特性図。The characteristic diagram of an example of the output voltage V and the output power P of the photovoltaic power generation equipment when the sunshine intensity when the power system is restored is greater than the sunshine intensity when the power failure occurs for a short time. 本発明の第2の実施の形態に係わる太陽光発電設備の制御装置の構成図。The block diagram of the control apparatus of the solar power generation facility concerning the 2nd Embodiment of this invention. 本発明の第2の実施の形態で再起動時の太陽電池の出力電力が停止直前の出力電力以上のときの太陽光発電設備のV−I特性及びV−P特性の一例のグラフ。The graph of an example of the VI characteristic and VP characteristic of solar power generation equipment when the output electric power of the solar cell at the time of restart in the 2nd Embodiment of this invention is more than the output electric power just before a stop. 図9に示した太陽光発電設備の運転特性での出力電圧V及び出力電力Pの一例の特性図。The characteristic view of an example of the output voltage V and the output electric power P in the driving | running characteristic of the solar power generation equipment shown in FIG. 本発明の第2の実施の形態で再起動時の太陽電池の出力電力が停止直前の出力電力未満のときの太陽光発電設備のV−I特性及びV−P特性の一例のグラフ。The graph of an example of the VI characteristic and VP characteristic of solar power generation equipment when the output power of the solar cell at the time of restart in the 2nd Embodiment of this invention is less than the output power just before a stop. 図11に示した太陽光発電設備の運転特性での出力電圧V及び出力電力Pの一例の特性図。The characteristic view of an example of the output voltage V and the output electric power P in the driving | running characteristic of the solar power generation equipment shown in FIG. 太陽光発電設備の出力電圧Vと出力電流Iとの関係を示したV−I特性及び太陽光発電設備の出力電圧Vと出力電力Pとの関係を示したV−P特性の一例のグラフ。The graph of an example of the VP characteristic which showed the relationship between the output voltage V of solar power generation equipment, and the output voltage V of solar power generation equipment, and the relationship between the output voltage V of solar power generation equipment, and output electric power P. 太陽光発電設備の従来の運転特性を示す出力電圧V及び出力電力Pの特性図。The characteristic diagram of the output voltage V and the output electric power P which show the conventional driving | running characteristic of a solar power generation facility.

以下、本発明の実施の形態について説明する。図1は本発明の第1の実施の形態に係わる太陽光発電設備の制御装置の構成図である。   Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of a control device for a photovoltaic power generation facility according to the first embodiment of the present invention.

太陽光発電設備の太陽電池11で発電した直流電力は電力変換器12で交流電力に変換され、変圧器13及び開閉器14を介して電力系統15に連系される。太陽電池11の出力電圧Vdは電圧検出器16で検出され、また太陽電池11の出力電流Idは電流検出器17で検出され、最大電力追従制御部18に入力される。最大電力追従制御部18は、太陽電池11の出力が最大となる最適動作点に太陽電池11の出力電圧Vdを追従制御させ、太陽電池11の最大出力Pmaxを得るための出力目標値Prを求め出力制御部19に出力する。出力制御部19は電力変換器12の出力が最大電力追従制御部18からの出力目標値Prになるようにゲート駆動回路20にゲート駆動信号を出力し、電力変換器12はゲート駆動信号により駆動制御する。   The DC power generated by the solar battery 11 of the photovoltaic power generation facility is converted into AC power by the power converter 12 and linked to the power system 15 via the transformer 13 and the switch 14. The output voltage Vd of the solar cell 11 is detected by the voltage detector 16, and the output current Id of the solar cell 11 is detected by the current detector 17 and input to the maximum power tracking control unit 18. The maximum power tracking control unit 18 performs tracking control of the output voltage Vd of the solar cell 11 at the optimum operating point where the output of the solar cell 11 is maximum, and obtains an output target value Pr for obtaining the maximum output Pmax of the solar cell 11. Output to the output control unit 19. The output control unit 19 outputs a gate drive signal to the gate drive circuit 20 so that the output of the power converter 12 becomes the output target value Pr from the maximum power follow-up control unit 18, and the power converter 12 is driven by the gate drive signal. Control.

また、太陽電池11が接続された電力系統16の接続端の交流電圧Vaは電圧検出器21で検出され系統状態判定部22に入力される。系統状態判定部22は太陽電池が接続された電力系統15の接続端の交流電圧Vaを監視し、電力系統15が停電状態か否かを判定する。系統状態判定部22は電力系統15が停電状態となったと判定したときは、出力制御部19及び動作電圧記憶部23に停電状態になったことを通知する。   The AC voltage Va at the connection end of the power system 16 to which the solar battery 11 is connected is detected by the voltage detector 21 and input to the system state determination unit 22. The system state determination unit 22 monitors the AC voltage Va at the connection end of the power system 15 to which the solar battery is connected, and determines whether the power system 15 is in a power failure state. When it is determined that the power system 15 is in a power failure state, the system state determination unit 22 notifies the output control unit 19 and the operating voltage storage unit 23 that a power failure state has occurred.

動作電圧記憶部23は、系統状態判定部22により電力系統15が停電状態となったことの通知を受けると、停電直前の太陽電池11の動作電圧V1を記憶する。一方、出力制御部19は、系統状態判定部22により電力系統15が停電状態となったことの通知を受けると、太陽電池11の出力電圧Vdが太陽電池11の開放電圧Voになるように、つまり太陽電池11の出力電力Pが零になるようにゲート駆動回路20を介して電力変換器12の出力を制御する。これにより、太陽電池11の出力電力Pは最大電力追従制御部18からの出力目標値Prから零に制御される。   The operating voltage storage unit 23 stores the operating voltage V <b> 1 of the solar cell 11 immediately before the power failure when receiving a notification that the power system 15 is in a power failure state by the system state determination unit 22. On the other hand, when the output control unit 19 receives a notification that the power system 15 is in a power failure state by the system state determination unit 22, the output voltage Vd of the solar cell 11 becomes the open voltage Vo of the solar cell 11. That is, the output of the power converter 12 is controlled via the gate drive circuit 20 so that the output power P of the solar cell 11 becomes zero. Thereby, the output power P of the solar cell 11 is controlled to zero from the output target value Pr from the maximum power follow-up control unit 18.

次に、系統状態判定部22は電力系統15が停電状態から復電したことを検出すると、最大電力追従制御部18に電力系統15が復電したことを通知する。最大電力追従制御部18は系統状態判定部22から電力系統15が復電したことの通知を受けると、動作電圧記憶部23に記憶した停電直前の太陽電池11の動作電圧V1から最大電力追従制御を再開する。このように、電力系統15の停電直前の太陽電池11の動作電圧V1から最大電力追従制御を再開するので、短時間停電前の最大出力まで高速で回復でき、電力系統の安定化に寄与できる。   Next, when detecting that the power system 15 has recovered from the power failure state, the system state determination unit 22 notifies the maximum power tracking control unit 18 that the power system 15 has recovered. When the maximum power follow-up control unit 18 receives a notification from the system state determination unit 22 that the power system 15 has been restored, the maximum power follow-up control is performed from the operation voltage V1 of the solar cell 11 immediately before the power failure stored in the operation voltage storage unit 23. To resume. Thus, since maximum power follow-up control is restarted from the operating voltage V1 of the solar cell 11 immediately before the power failure of the power system 15, it is possible to recover to the maximum output before the power failure for a short time at high speed and contribute to the stabilization of the power system.

図2は本発明の第1の実施の形態に係わる太陽光発電設備の制御装置の動作の一例を示す太陽光発電設備のV−I特性及びV−P特性の一例のグラフである。図2に示すように、通常時は、出力制御部19は、V−I特性曲線C1上の出力電力が最大出力P1maxとなる最適動作点C11{座標C11(V1,I1)}で運転制御している。この状態で、電力系統15が停電状態となると、動作電圧記憶部23はそのときの太陽電池11の動作電圧V1を記憶し、出力制御部19は太陽電池11の出力電圧Vdが太陽電池11の開放電圧Voになるように、つまり太陽電池11の出力電力P1が零になるように、ゲート駆動回路20を介して電力変換器12を制御する。   FIG. 2 is a graph of an example of the VI characteristic and the VP characteristic of the solar power generation facility showing an example of the operation of the control device for the solar power generation facility according to the first embodiment of the present invention. As shown in FIG. 2, during normal times, the output control unit 19 controls the operation at the optimum operating point C11 {coordinate C11 (V1, I1)} at which the output power on the VI characteristic curve C1 is the maximum output P1max. ing. In this state, when the power system 15 is in a power failure state, the operating voltage storage unit 23 stores the operating voltage V1 of the solar cell 11 at that time, and the output control unit 19 sets the output voltage Vd of the solar cell 11 to that of the solar cell 11. The power converter 12 is controlled via the gate drive circuit 20 so that the open circuit voltage Vo is obtained, that is, the output power P1 of the solar battery 11 is zero.

そして、電力系統15が停電状態から復帰したときは、最大電力追従制御部18は動作電圧記憶部23に記憶した停電直前の太陽電池11の動作電圧V1から太陽電池の電圧を最適動作点に追従制御させるので、V−I特性曲線C1上の出力電力P1が最大出力P1maxとなる最適動作点C11に短時間で到達することができる。   When the power system 15 returns from the power failure state, the maximum power tracking control unit 18 tracks the solar cell voltage to the optimum operating point from the operating voltage V1 of the solar cell 11 immediately before the power failure stored in the operating voltage storage unit 23. Since the control is performed, the optimum operating point C11 at which the output power P1 on the VI characteristic curve C1 becomes the maximum output P1max can be reached in a short time.

図3は、図2に示した太陽光発電設備の運転特性での出力電圧V及び出力電力Pの一例の特性図である。太陽光発電設備が電力系統15に接続された初期状態の時点t0においては、出力電圧Vは零であり出力電圧Vを開放電圧Voに調整してから出力電力Pを零から徐々に増加させる。つまり、時点t0で出力電圧目標値V1rを開放電圧Voから最大電力追従制御により段階的に下降していくことになる。これに伴い、太陽光発電設備の出力電力Pは段階的に上昇し、時点t1でV−I特性曲線C1上の最適動作点C11になると、太陽光発電設備の出力電力Pは最大出力P1maxでほぼ一定となる。   FIG. 3 is a characteristic diagram of an example of the output voltage V and the output power P in the operation characteristics of the photovoltaic power generation facility shown in FIG. At the time point t0 in the initial state when the photovoltaic power generation facility is connected to the power system 15, the output voltage V is zero, and the output voltage P is gradually increased from zero after adjusting the output voltage V to the open circuit voltage Vo. That is, at the time point t0, the output voltage target value V1r gradually decreases from the open voltage Vo by the maximum power tracking control. Along with this, the output power P of the photovoltaic power generation facility increases stepwise, and when the optimum operating point C11 on the VI characteristic curve C1 is reached at the time point t1, the output power P of the photovoltaic power generation facility is at the maximum output P1max. It becomes almost constant.

太陽光発電設備の出力電力Pが最大出力P1maxでほぼ一定で運転されている状態で、いま、時点t2において電力系統に短時間停電が発生したとすると、太陽光発電設備の出力電圧Vは開放電圧Voに調整される。これにより、太陽光発電設備の出力電力Pは最大出力P1maxから一挙に零に調整される。そして、時点t3で電力系統が復電すると、太陽光発電設備は再起動し、最大電力追従制御により出力電圧目標値V1rを停電直前の太陽電池11の動作電圧V1から最大電力追従制御が再開される。従って、V−I特性曲線C1上の最適動作点C11の近傍から、太陽光発電設備の出力電力Pは最大出力P1maxに制御される。   If the output power P of the photovoltaic power generation facility is operating at a substantially constant maximum output P1max, and if a short interruption occurs in the power system at time t2, the output voltage V of the photovoltaic power generation facility is open. The voltage is adjusted to Vo. As a result, the output power P of the photovoltaic power generation facility is adjusted from the maximum output P1max to zero at once. When the power system is restored at time t3, the photovoltaic power generation facility is restarted, and the maximum power follow-up control is restarted from the operating voltage V1 of the solar cell 11 immediately before the power failure by the maximum power follow-up control. The Therefore, the output power P of the photovoltaic power generation facility is controlled to the maximum output P1max from the vicinity of the optimum operating point C11 on the VI characteristic curve C1.

このように、電力系統15が停電状態から復帰したときは、電力系統15の停電直前の太陽電池11の動作電圧V1から最大電力追従制御を再開するので、短時間停電前の最大出力まで高速で回復でき、電力系統の安定化に寄与できる。   Thus, when the power system 15 returns from the power failure state, the maximum power follow-up control is resumed from the operating voltage V1 of the solar cell 11 immediately before the power system 15 power failure. It can recover and contribute to the stabilization of the power system.

以上の説明では、停電直前の太陽電池11の動作電圧V1から太陽電池11の電圧を最適動作点に追従制御させるにあたり、停電直前の動作点V1から電圧を移動させる方向は特に定めていないので、そのときの状態により電圧上昇方向または電圧下降方向を選択することになるが、停電直前の動作電圧V1から電圧を移動させる方向として、最大電力追従制御の開始時の1ステップ目は、必ず電圧下降方向に移動させて最適動作点に追従制御させるようにしてもよい。   In the above description, the direction in which the voltage is moved from the operating point V1 immediately before the power failure is not particularly determined in order to control the voltage of the solar cell 11 to follow the optimum operating point from the operating voltage V1 of the solar cell 11 immediately before the power failure. The voltage rising direction or voltage decreasing direction is selected depending on the state at that time, but as the direction to move the voltage from the operating voltage V1 immediately before the power failure, the first step at the start of the maximum power tracking control is always the voltage decreasing You may make it move to a direction and follow-up control to an optimal operating point.

これは、電力系統15が停電状態から復帰し太陽光発電設備を電力系統15に併入したときは、太陽光発電設備の出力電力Pが大きいほど電力系統15にとって好ましい状態であり、電力系統15が停電状態から復帰したときの日射強度が短時間停電時の日射強度より小さくなっていた場合には、必ず出力電力が大きくなる方向となるようにするためである。   This is a preferable state for the power system 15 as the output power P of the solar power generation facility is larger when the power system 15 returns from the power failure state and the solar power generation facility is inserted into the power system 15. This is to ensure that the output power is always increased when the solar radiation intensity at the time of recovery from the power failure state is smaller than the solar radiation intensity at the time of a short power failure.

図4は、日射強度をパラメータとした太陽電池の出力電圧Vと出力電流Iとの関係を示したV−I特性及び太陽電池の出力電圧Vと出力電力Pとの関係を示したV−P特性の一例のグラフである。図4では太陽電池の温度を一定とした場合の日射強度をパラメータとしたV−I特性曲線及びV−P特性曲線を示している。V−I特性曲線C1は日射強度が中間の場合の特性曲線、V−I特性曲線C2は日射強度が大きい場合の特性曲線、V−I特性曲線C3は日射強度が小さい場合の特性曲線である。   FIG. 4 shows a V-I characteristic showing the relationship between the output voltage V and the output current I of the solar cell with the solar radiation intensity as a parameter, and V-P showing the relationship between the output voltage V and the output power P of the solar cell. It is a graph of an example of a characteristic. FIG. 4 shows a VI characteristic curve and a VP characteristic curve using the solar radiation intensity as a parameter when the temperature of the solar cell is constant. The VI characteristic curve C1 is a characteristic curve when the solar radiation intensity is intermediate, the VI characteristic curve C2 is a characteristic curve when the solar radiation intensity is high, and the VI characteristic curve C3 is a characteristic curve when the solar radiation intensity is low. .

日射強度が中間の場合には、V−I特性曲線C1上の座標C11(V1,I1)のときに出力電力が最大となる最適動作点であり、V−P特性曲線P1が最大電力P1maxとなり開放電圧はVo1である。また、日射強度が大きい場合には、V−I特性曲線C2上の座標C22(V2,I2)が出力電力が最大となる最適動作点であり、V−P特性曲線P2が最大電力P2maxとなり開放電圧はVo2である。同様に、日射強度が小さい場合には、V−I特性曲線C3上の座標C33(V3,I3)が出力電力が最大となる最適動作点であり、V−P特性曲線P3が最大電力P3maxとなり開放電圧はVo3である。   When the solar radiation intensity is intermediate, it is the optimum operating point at which the output power becomes maximum at the coordinates C11 (V1, I1) on the VI characteristic curve C1, and the VP characteristic curve P1 becomes the maximum power P1max. The open circuit voltage is Vo1. When the solar radiation intensity is high, the coordinate C22 (V2, I2) on the VI characteristic curve C2 is the optimum operating point at which the output power becomes maximum, and the VP characteristic curve P2 becomes the maximum power P2max and is opened. The voltage is Vo2. Similarly, when the solar radiation intensity is small, the coordinates C33 (V3, I3) on the VI characteristic curve C3 are the optimum operating points at which the output power becomes maximum, and the VP characteristic curve P3 becomes the maximum power P3max. The open circuit voltage is Vo3.

図5は、電力系統が復電したときの日照強度が短時間停電が発生したときの日照強度より小さい場合の太陽光発電設備の出力電圧V及び出力電力Pの一例の特性図である。いま、日射強度が中間であり、V−I特性曲線C1上で運転されるものとする。太陽光発電設備が電力系統15に接続された初期状態の時点t0においては、出力電圧Vは零であり出力電圧Vを開放電圧Voに調整してから出力電力Pを零から徐々に増加させる。つまり、時点t0で出力電圧目標値V1rを開放電圧Voから最大電力追従制御により段階的に下降していくことになる。これに伴い、太陽光発電設備の出力電力Pは段階的に上昇し、時点t1でV−I特性曲線C1上の最適動作点C11になると、太陽光発電設備の出力電力Pは最大出力P1maxでほぼ一定となる。   FIG. 5 is a characteristic diagram of an example of the output voltage V and the output power P of the photovoltaic power generation facility when the sunshine intensity when the power system is restored is smaller than the sunshine intensity when the power failure occurs for a short time. Now, it is assumed that the solar radiation intensity is intermediate and the vehicle is operated on the VI characteristic curve C1. At the time point t0 in the initial state when the photovoltaic power generation facility is connected to the power system 15, the output voltage V is zero, and the output voltage P is gradually increased from zero after adjusting the output voltage V to the open circuit voltage Vo. That is, at the time point t0, the output voltage target value V1r gradually decreases from the open voltage Vo by the maximum power tracking control. Along with this, the output power P of the photovoltaic power generation facility increases stepwise, and when the optimum operating point C11 on the VI characteristic curve C1 is reached at the time point t1, the output power P of the photovoltaic power generation facility is at the maximum output P1max. It becomes almost constant.

太陽光発電設備の出力電力Pが最大出力P1maxでほぼ一定で運転されている状態で、時点t2において電力系統に短時間停電が発生したとすると、太陽光発電設備の出力電圧VはV−I特性曲線C1上の開放電圧Vo1に調整される。これにより、太陽光発電設備の出力電力Pは最大出力P1maxから一挙に零に調整される。そして、電力系統15が復電する時点t3以前の時点t2’で日照強度が小さくなりV−I特性曲線C3となったとすると、開放電圧がVo1からVo3に変化し、時点t3で電力系統が復電すると太陽光発電設備は再起動する。この場合、時点t3での日射強度が小さくなってV−I特性曲線C3となっているので、太陽光発電設備は、停電直前の太陽電池11の動作電圧V1からV−I特性曲線C3上で最大電力追従制御が再開される。   Assuming that a short interruption occurs in the power system at time t2 in a state where the output power P of the solar power generation facility is operating at a substantially constant maximum output P1max, the output voltage V of the solar power generation facility is V−I. It is adjusted to the open circuit voltage Vo1 on the characteristic curve C1. As a result, the output power P of the photovoltaic power generation facility is adjusted from the maximum output P1max to zero at once. Then, if the sunshine intensity decreases and becomes the VI characteristic curve C3 at time t2 ′ before time t3 when the power system 15 recovers, the open circuit voltage changes from Vo1 to Vo3, and the power system recovers at time t3. When the power is turned on, the photovoltaic power generation equipment restarts. In this case, since the solar radiation intensity at the time point t3 becomes small and becomes the VI characteristic curve C3, the solar power generation facility has changed from the operating voltage V1 of the solar cell 11 immediately before the power failure to the VI characteristic curve C3. Maximum power tracking control is resumed.

最大電力追従制御の開始時の1ステップ目は、必ず電圧下降方向に移動させて最適動作点に追従制御させるので、動作点は、図4に示すように、日照強度が小さいV−I特性曲線C3上の停電直前の動作電圧V1との交点X3から電圧下降方向に移動する。従って、出力電力Pは大きくなる方向となり、V−I特性曲線C3上の最適動作点C33で、太陽光発電設備の出力電力Pは最大出力P3maxに制御される。このように、電力系統15が停電状態から復帰した際に日射強度が低下していた場合には、最大電力追従制御の制御再開時の時点t3における出力電力Pは大きくなる方向に制御されるので、一時的な出力電力Pの低下を防止できる。   Since the first step at the start of the maximum power tracking control is always moved in the voltage decreasing direction to control the tracking to the optimum operating point, the operating point is a VI characteristic curve with low sunshine intensity as shown in FIG. It moves in the voltage decreasing direction from the intersection X3 with the operating voltage V1 immediately before the power failure on C3. Accordingly, the output power P is increased, and the output power P of the photovoltaic power generation facility is controlled to the maximum output P3max at the optimum operating point C33 on the VI characteristic curve C3. As described above, when the solar radiation intensity is reduced when the power system 15 returns from the power failure state, the output power P at the time t3 when the control of the maximum power follow-up control is resumed is controlled to increase. Thus, it is possible to prevent a temporary decrease in the output power P.

図6は、電力系統が復電したときの日照強度が短時間停電が発生したときの日照強度と同じである場合の太陽光発電設備の出力電圧V及び出力電力Pの一例の特性図である。この場合、最大電力追従制御の開始時の1ステップ目は、必ず電圧下降方向に移動させて最適動作点に追従制御させるので、動作点は、図4に示すように、短時間停電前と同じ日照強度であるV−I特性曲線C1上の停電直前の動作電圧V1との交点C11から電圧下降方向に移動する。従って、出力電力Pは小さくなる方向となるが、2ステップ目からは出力電力Pが大きくなる方向の電圧上昇方向に移動するので、図6の時点t3’からはV−I特性曲線C1上の最適動作点C11に向けた最大電力追従制御が行われ、太陽光発電設備の出力電力Pは最大出力P1maxに制御される。このように、電力系統15が停電状態から復帰した際に日射強度が同じである場合には、1ステップ目は太陽光発電設備の出力電力Pは一時的に下がる方向になるが、日射強度が小さくなっている場合よりは出力電力Pは大きいので特に問題はない。   FIG. 6 is a characteristic diagram of an example of the output voltage V and the output power P of the photovoltaic power generation facility when the sunshine intensity when the power system is restored is the same as the sunshine intensity when the power failure occurs for a short time. . In this case, the first step at the start of the maximum power follow-up control is always moved in the voltage decreasing direction and controlled to follow the optimum operating point, so that the operating point is the same as that before the short interruption as shown in FIG. It moves in the voltage decreasing direction from the intersection C11 with the operating voltage V1 immediately before the power failure on the VI characteristic curve C1 that is the sunshine intensity. Accordingly, the output power P decreases, but from the second step, the output power P moves in the direction of increasing voltage so that the output power P increases on the VI characteristic curve C1 from time t3 ′ in FIG. The maximum power follow-up control toward the optimum operating point C11 is performed, and the output power P of the photovoltaic power generation facility is controlled to the maximum output P1max. Thus, when the solar radiation intensity is the same when the power system 15 returns from the power failure state, the output power P of the photovoltaic power generation facility is temporarily reduced in the first step, but the solar radiation intensity is There is no particular problem because the output power P is larger than when it is small.

図7は、電力系統が復電したときの日照強度が短時間停電が発生したときの日照強度より大きい場合の太陽光発電設備の出力電圧V及び出力電力Pの一例の特性図である。図7に示すように、電力系統15が復電する時点t3以前の時点t2’で日照強度が大きくなりV−I特性曲線C2となったとすると、開放電圧がVo1からVo3に変化する。この場合、最大電力追従制御の開始時の1ステップ目は、必ず電圧下降方向に移動させて最適動作点に追従制御させるので、動作点は、図4に示すように、日照強度が大きいV−I特性曲線C2上の停電直前の動作電圧V1との交点X2から電圧下降方向に移動する。従って、出力電力Pは小さくなる方向となるが、2ステップ目からは出力電力Pが大きくなる方向の電圧上昇方向に移動するので、図7の時点t3’からはV−I特性曲線C2上の最適動作点C22に向けた最大電力追従制御が行われ、太陽光発電設備の出力電力Pは最大出力P2maxに制御される。このように、電力系統15が停電状態から復帰した際に日射強度が大きい場合には、1ステップ目は太陽光発電設備の出力電力Pは一時的に下がる方向になるが、日射強度が小さくなっている場合よりは出力電力Pは大きいので特に問題はない。   FIG. 7 is a characteristic diagram of an example of the output voltage V and the output power P of the photovoltaic power generation facility when the sunshine intensity when the power system is restored is larger than the sunshine intensity when the power failure occurs for a short time. As shown in FIG. 7, when the sunshine intensity increases and becomes the VI characteristic curve C2 at a time point t2 'before the time point t3 when the power system 15 recovers, the open circuit voltage changes from Vo1 to Vo3. In this case, the first step at the start of the maximum power follow-up control is always moved in the voltage decreasing direction to perform follow-up control to the optimum operating point. Therefore, as shown in FIG. It moves in the voltage decreasing direction from the intersection X2 with the operating voltage V1 immediately before the power failure on the I characteristic curve C2. Accordingly, the output power P decreases, but from the second step, the output power P moves in the direction of increasing the voltage so that the output power P increases. Therefore, from the time point t3 ′ in FIG. 7 on the VI characteristic curve C2. Maximum power follow-up control toward the optimum operating point C22 is performed, and the output power P of the photovoltaic power generation facility is controlled to the maximum output P2max. Thus, when the solar radiation intensity is large when the power system 15 returns from the power failure state, the output power P of the photovoltaic power generation facility is temporarily reduced in the first step, but the solar radiation intensity is reduced. Since the output power P is larger than that of the case, there is no problem.

このように、電力系統15が停電状態から復帰して太陽電池の電圧を最適動作点に追従制御させる際に、短時間停電直前の太陽電池の動作電圧から電圧下降方向に移動させるので、電力系統15が停電状態から復帰したときの日射強度が短時間停電時の日射強度より小さくなっていた場合には、必ず出力電力が大きくなる方向となる。これにより、日射強度が減少しているときは、1ステップ分だけ早く最適動作点に到達することができ、最大出力P3maxに到達するのが早くなる。なお、日射強度が減少していないときは1ステップ分だけ遅く最適動作点に到達することになるが、太陽光発電設備の出力電力Pは日射強度が小さくなっている場合よりは大きいので、その遅れは許容する。   In this way, when the power system 15 returns from the power failure state and controls the solar cell voltage to follow the optimum operating point, the power system 15 is moved in the voltage decreasing direction from the operating voltage of the solar cell immediately before the power failure. When the solar radiation intensity when 15 returns from the power failure state is smaller than the solar radiation intensity during a short power failure, the output power always increases. Thereby, when the solar radiation intensity is decreasing, the optimum operating point can be reached earlier by one step, and the maximum output P3max can be reached earlier. When the solar radiation intensity is not decreasing, the optimum operating point is reached later by one step, but the output power P of the photovoltaic power generation equipment is larger than when the solar radiation intensity is small, so that Delay is allowed.

次に、図8は本発明の第2の実施の形態に係わる太陽光発電設備の制御装置の構成図である。この第2の実施の形態は、図1に示した第1の実施の形態に対し、系統状態判定部22により電力系統15が停電状態であると判定されたときは停電直前の太陽電池11の出力値を記憶する出力値記憶部24を追加して設け、最大電力追従制御部18は、電力系統15が停電状態から復帰したときは、停電直前の太陽電池の動作電圧での再起動時に太陽電池11の出力値が出力値記憶部24に記憶した停止直前の出力値以上かどうかを判定し、太陽電池11の出力値が停止直前の出力値以上のときは、動作電圧記憶部23に記憶した停電直前の太陽電池11の動作電圧から電圧上昇方向に移動させ、一方、太陽電池11の出力値が停止直前の出力値未満のときは、動作電圧記憶部23に記憶した停電直前の太陽電池11の動作電圧から電圧下降方向に移動させ、太陽電池11の電圧を最適動作点に追従制御させるようにしたものである。図1と同一要素には、同一符号を付し重複する説明は省略する。   Next, FIG. 8 is a block diagram of a control device for a photovoltaic power generation facility according to the second embodiment of the present invention. This second embodiment is different from the first embodiment shown in FIG. 1 when the power system 15 is determined to be in a power outage state by the system state determination unit 22 of the solar cell 11 immediately before the power outage. An output value storage unit 24 for storing the output value is additionally provided. When the power system 15 returns from the power failure state, the maximum power follow-up control unit 18 performs solar power when restarting at the operating voltage of the solar cell immediately before the power failure. It is determined whether or not the output value of the battery 11 is greater than or equal to the output value immediately before stopping stored in the output value storage unit 24. When the output value of the solar cell 11 is equal to or greater than the output value immediately before stopping, the operation voltage storage unit 23 stores the output value. When the output value of the solar cell 11 is less than the output value immediately before stopping, the solar cell immediately before the power failure stored in the operating voltage storage unit 23 is moved. 11 working voltage to under voltage It is moved in a direction, in which so as to follow the control voltage of the solar cell 11 to the optimum operating point. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

出力値記憶部24は、系統状態判定部22により電力系統15が停電状態であると判定されたときは、太陽電池11の出力電圧Vd及び出力電流Idに基づいて停電直前の太陽電池11の出力電力P1を演算して記憶する。すなわち、出力値記憶部24は、太陽電池11の出力電圧Vd及び出力電流Idに基づいて、常時、太陽電池11の出力電力Pを演算しており、系統状態判定部22から電力系統15が停電状態である旨の通知を受けると、そのときの出力電力Pを停電直前の太陽電池11の出力電力Pxとして記憶する。   When the system state determination unit 22 determines that the power system 15 is in a power failure state, the output value storage unit 24 outputs the solar cell 11 immediately before the power failure based on the output voltage Vd and the output current Id of the solar cell 11. The power P1 is calculated and stored. That is, the output value storage unit 24 always calculates the output power P of the solar cell 11 based on the output voltage Vd and the output current Id of the solar cell 11, and the power system 15 is disconnected from the system state determination unit 22. When the notification of the state is received, the output power P at that time is stored as the output power Px of the solar cell 11 immediately before the power failure.

最大電力追従制御部18は、系統状態判定部22から電力系統15が復帰した旨の通知を受けると、太陽電池11の出力電圧Vd及び出力電流Idに基づいて、動作電圧記憶部23に記憶した停電直前の太陽電池の動作電圧V1での出力電力Pを再起動時の太陽電池11の出力電力Pyとして求め、再起動時の太陽電池11の出力電力Pyが出力値記憶部24に記憶した停止直前の出力電力Px以上かどうかを判定する。   When the maximum power follow-up control unit 18 receives notification from the system state determination unit 22 that the power system 15 has been restored, the maximum power tracking control unit 18 stores it in the operating voltage storage unit 23 based on the output voltage Vd and the output current Id of the solar cell 11. The output power P at the operating voltage V1 of the solar cell immediately before the power failure is obtained as the output power Py of the solar cell 11 at the time of restart, and the output power Py of the solar cell 11 at the time of restart is stored in the output value storage unit 24 It is determined whether or not the output power Px is equal to or greater than the previous output power.

再起動時の太陽電池11の出力電力Pyが停止直前の出力電力Px以上のときは、動作電圧記憶部23に記憶した停電直前の太陽電池11の動作電圧から電圧上昇方向に移動させる。これにより、電力系統15が停電状態から復帰したときの日射強度が短時間停電時の日射強度より大きくなっているV−I特性曲線に適合した最大電力追従制御が可能となる。   When the output power Py of the solar cell 11 at the time of restart is equal to or higher than the output power Px immediately before the stop, the operation voltage is moved from the operating voltage of the solar cell 11 immediately before the power failure stored in the operating voltage storage unit 23 in the voltage increasing direction. Thereby, the maximum power follow-up control adapted to the VI characteristic curve in which the solar radiation intensity when the power system 15 returns from the power failure state is larger than the solar radiation intensity at the time of the power failure for a short time becomes possible.

一方、再起動時の太陽電池11の出力電力Pyが停止直前の出力値未満のときは、動作電圧記憶部23に記憶した停電直前の太陽電池11の動作電圧から電圧下降方向に移動させ、太陽電池11の電圧を最適動作点に追従制御させるようにしたものである。これにより、電力系統15が停電状態から復帰したときの日射強度が短時間停電時の日射強度より小さくなっているV−I特性曲線に適合した最大電力追従制御が可能となる。   On the other hand, when the output power Py of the solar cell 11 at the time of restart is less than the output value immediately before the stop, the solar cell 11 is moved in the voltage decreasing direction from the operating voltage of the solar cell 11 immediately before the power failure stored in the operating voltage storage unit 23. The voltage of the battery 11 is controlled to follow the optimum operating point. Thereby, the maximum power follow-up control adapted to the VI characteristic curve in which the solar radiation intensity when the power system 15 returns from the power failure state is smaller than the solar radiation intensity at the time of the power failure for a short time becomes possible.

図9は本発明の第2の実施の形態で再起動時の太陽電池11の出力電力Pyが停止直前の出力電力Px以上のときの太陽光発電設備のV−I特性及びV−P特性の一例のグラフである。図9に示すように、通常時は、出力制御部19は、V−I特性曲線C1上の出力電力が最大出力P1maxとなる最適動作点C11{座標C11(V1,I1)}で運転制御している。この状態で、電力系統15が停電状態となると、動作電圧記憶部23はそのときの太陽電池11の動作電圧V1を記憶し、出力制御部19は太陽電池11の出力電圧Vdが太陽電池11の開放電圧Vo1になるように、つまり太陽電池11の出力電力P1が零になるように、ゲート駆動回路20を介して電力変換器12を制御する。   FIG. 9 shows the VI characteristics and VP characteristics of the photovoltaic power generation facility when the output power Py of the solar cell 11 at the time of restart is equal to or higher than the output power Px immediately before the stop in the second embodiment of the present invention. It is an example of a graph. As shown in FIG. 9, during normal times, the output control unit 19 controls the operation at the optimum operating point C11 {coordinate C11 (V1, I1)} at which the output power on the VI characteristic curve C1 is the maximum output P1max. ing. In this state, when the power system 15 is in a power failure state, the operating voltage storage unit 23 stores the operating voltage V1 of the solar cell 11 at that time, and the output control unit 19 sets the output voltage Vd of the solar cell 11 to that of the solar cell 11. The power converter 12 is controlled via the gate drive circuit 20 so that the open circuit voltage Vo1 is obtained, that is, the output power P1 of the solar battery 11 is zero.

そして、電力系統15が復電する以前に日照強度が大きくなったとすると、V−I特性曲線C1はV−I特性曲線C2となり、開放電圧がVo1からVo2に変化する。この状態で、電力系統15が停電状態から復帰したときは、最大電力追従制御部18は、日照強度が大きくなったV−I特性曲線C2上で、動作電圧記憶部23に記憶した停電直前の太陽電池11の動作電圧V1での太陽電池11の出力電力Pyを求める。そして、この出力電力Pyが停電直前の出力電力Px以上かどうかを判定することになる。この場合、出力電力Pyが出力電力Px以上であるので、最大電力追従制御部18は、動作電圧記憶部23に記憶した停電直前の太陽電池11の動作電圧から電圧上昇方向に移動させることになる。これにより、電力系統15が停電状態から復帰したときの日射強度が短時間停電時の日射強度より大きくなっているV−I特性曲線C2に適合した最大電力追従制御が可能となり、日射強度が大きいV−I特性曲線C2上の出力電力P2が最大出力P2maxとなる最適動作点C22に最大電力追従制御される。   If the sunshine intensity increases before the power system 15 recovers, the VI characteristic curve C1 becomes the VI characteristic curve C2, and the open circuit voltage changes from Vo1 to Vo2. In this state, when the power system 15 returns from the power failure state, the maximum power follow-up control unit 18 immediately before the power failure stored in the operating voltage storage unit 23 on the VI characteristic curve C2 where the sunshine intensity has increased. The output power Py of the solar cell 11 at the operating voltage V1 of the solar cell 11 is obtained. And it will be determined whether this output electric power Py is more than the output electric power Px immediately before a power failure. In this case, since the output power Py is equal to or higher than the output power Px, the maximum power follow-up control unit 18 moves in the voltage increasing direction from the operating voltage of the solar cell 11 immediately before the power failure stored in the operating voltage storage unit 23. . Thereby, the maximum power follow-up control adapted to the VI characteristic curve C2 in which the solar radiation intensity when the power system 15 returns from the power failure state is larger than the solar radiation intensity at the time of a short power failure becomes possible, and the solar radiation intensity is large. Maximum power follow-up control is performed at the optimum operating point C22 at which the output power P2 on the VI characteristic curve C2 becomes the maximum output P2max.

図10は、図9に示した太陽光発電設備の運転特性での出力電圧V及び出力電力Pの一例の特性図である。太陽光発電設備が電力系統15に接続された初期状態の時点t0においては、出力電圧Vは零であり出力電圧Vを開放電圧Voに調整してから出力電力Pを零から徐々に増加させる。つまり、時点t0で出力電圧目標値V1rを開放電圧Vo1から最大電力追従制御により段階的に下降していくことになる。これに伴い、太陽光発電設備の出力電力Pは段階的に上昇し、時点t1でV−I特性曲線C1上の最適動作点C11になると、太陽光発電設備の出力電力Pは最大出力P1maxでほぼ一定となる。   FIG. 10 is a characteristic diagram of an example of the output voltage V and the output power P in the operation characteristics of the photovoltaic power generation facility shown in FIG. At the time point t0 in the initial state when the photovoltaic power generation facility is connected to the power system 15, the output voltage V is zero, and the output voltage P is gradually increased from zero after adjusting the output voltage V to the open circuit voltage Vo. That is, at the time point t0, the output voltage target value V1r is gradually lowered from the open voltage Vo1 by the maximum power tracking control. Along with this, the output power P of the photovoltaic power generation facility increases stepwise, and when the optimum operating point C11 on the VI characteristic curve C1 is reached at the time point t1, the output power P of the photovoltaic power generation facility is at the maximum output P1max. It becomes almost constant.

太陽光発電設備の出力電力Pが最大出力P1maxでほぼ一定で運転されている状態で、いま、時点t2において電力系統に短時間停電が発生したとすると、太陽光発電設備の出力電圧Vは開放電圧Vo1に調整される。これにより、太陽光発電設備の出力電力Pは最大出力P1maxから一挙に零に調整される。そして、電力系統15が復電する時点t3以前の時点t2’で日照強度が大きくなりV−I特性曲線C1からV−I特性曲線C2に変化したとすると、開放電圧がVo1からVo2に変化する。   If the output power P of the photovoltaic power generation facility is operating at a substantially constant maximum output P1max, and if a short interruption occurs in the power system at time t2, the output voltage V of the photovoltaic power generation facility is open. The voltage is adjusted to Vo1. As a result, the output power P of the photovoltaic power generation facility is adjusted from the maximum output P1max to zero at once. If the sunshine intensity increases and changes from the VI characteristic curve C1 to the VI characteristic curve C2 at time t2 ′ before time t3 when the power system 15 recovers, the open circuit voltage changes from Vo1 to Vo2. .

その後の時点t3で電力系統が復電すると太陽光発電設備は再起動することになるが、この場合、時点t3では日射強度が大きいV−I特性曲線C2となっているので、太陽光発電設備は、停電直前の太陽電池11の動作電圧V1からV−I特性曲線C2上で最大電力追従制御が再開される。その場合、再起動時の太陽電池11の出力電力Pyが停止直前の出力電力Px以上であるので、停電直前の太陽電池11の動作電圧V1から電圧上昇方向に電圧を移動する。これは、日射強度が大きいV−I特性曲線C2の場合は、V−I特性曲線C1より電圧上昇方向に最大出力点があるからである。これにより、1ステップ分だけ早く最大出力点C22に到達する。   After that, when the power system is restored at the time t3, the solar power generation facility is restarted. In this case, the solar power generation facility is at the time t3 because the solar radiation intensity is a VI characteristic curve C2 having a high solar radiation intensity. The maximum power follow-up control is resumed on the VI characteristic curve C2 from the operating voltage V1 of the solar cell 11 immediately before the power failure. In that case, since the output power Py of the solar cell 11 at the time of restart is equal to or higher than the output power Px immediately before the stop, the voltage is moved in the direction of increasing voltage from the operating voltage V1 of the solar cell 11 immediately before the power failure. This is because in the case of the VI characteristic curve C2 having a high solar radiation intensity, there is a maximum output point in the direction of voltage increase from the VI characteristic curve C1. Thus, the maximum output point C22 is reached earlier by one step.

図11は本発明の第2の実施の形態で再起動時の太陽電池11の出力電力Pyが停止直前の出力電力Px未満のときの太陽光発電設備のV−I特性及びV−P特性の一例のグラフである。図11に示すように、通常時は、出力制御部19は、V−I特性曲線C1上の出力電力が最大出力P1maxとなる最適動作点C11{座標C11(V1,I1)}で運転制御している。この状態で、電力系統15が停電状態となると、動作電圧記憶部23はそのときの太陽電池11の動作電圧V1を記憶し、出力制御部19は太陽電池11の出力電圧Vdが太陽電池11の開放電圧Vo1になるように、つまり太陽電池11の出力電力P1が零になるように、ゲート駆動回路20を介して電力変換器12を制御する。   FIG. 11 shows the VI characteristics and VP characteristics of the photovoltaic power generation facility when the output power Py of the solar cell 11 at the time of restart is less than the output power Px immediately before stopping in the second embodiment of the present invention. It is an example of a graph. As shown in FIG. 11, in normal times, the output control unit 19 controls the operation at the optimum operating point C11 {coordinate C11 (V1, I1)} at which the output power on the VI characteristic curve C1 is the maximum output P1max. ing. In this state, when the power system 15 is in a power failure state, the operating voltage storage unit 23 stores the operating voltage V1 of the solar cell 11 at that time, and the output control unit 19 sets the output voltage Vd of the solar cell 11 to that of the solar cell 11. The power converter 12 is controlled via the gate drive circuit 20 so that the open circuit voltage Vo1 is obtained, that is, the output power P1 of the solar battery 11 is zero.

そして、電力系統15が復電する以前に日照強度が小さくなったとすると、V−I特性曲線C1はV−I特性曲線C3となり、開放電圧がVo1からVo3に変化する。この状態で、電力系統15が停電状態から復帰したときは、最大電力追従制御部18は、日照強度が小さくなったV−I特性曲線C3上で、動作電圧記憶部23に記憶した停電直前の太陽電池11の動作電圧V1での太陽電池11の出力電力Pyを求める。そして、この出力電力Pyが停電直前の出力電力Px以上かどうかを判定することになる。この場合、出力電力Pyが出力電力Px未満であるので、最大電力追従制御部18は、動作電圧記憶部23に記憶した停電直前の太陽電池11の動作電圧から電圧下降方向に移動させることになる。これにより、電力系統15が停電状態から復帰したときの日射強度が短時間停電時の日射強度より小さくなっているV−I特性曲線C3に適合した最大電力追従制御が可能となり、日射強度が小さいV−I特性曲線C3上の出力電力P3が最大出力P3maxとなる最適動作点C33に最大電力追従制御される。   If the sunshine intensity decreases before the power system 15 recovers, the VI characteristic curve C1 becomes the VI characteristic curve C3, and the open circuit voltage changes from Vo1 to Vo3. In this state, when the power system 15 returns from the power failure state, the maximum power follow-up control unit 18 immediately before the power failure stored in the operating voltage storage unit 23 on the VI characteristic curve C3 on which the sunshine intensity is reduced. The output power Py of the solar cell 11 at the operating voltage V1 of the solar cell 11 is obtained. And it will be determined whether this output electric power Py is more than the output electric power Px immediately before a power failure. In this case, since the output power Py is less than the output power Px, the maximum power follow-up control unit 18 moves in the voltage decreasing direction from the operating voltage of the solar cell 11 immediately before the power failure stored in the operating voltage storage unit 23. . Thereby, the maximum power follow-up control adapted to the VI characteristic curve C3 in which the solar radiation intensity when the power system 15 returns from the power failure state is smaller than the solar radiation intensity at the time of the power failure for a short time becomes possible, and the solar radiation intensity is small. Maximum power follow-up control is performed at the optimum operating point C33 at which the output power P3 on the VI characteristic curve C3 becomes the maximum output P3max.

図12は、図11に示した太陽光発電設備の運転特性での出力電圧V及び出力電力Pの一例の特性図である。太陽光発電設備が電力系統15に接続された初期状態の時点t0においては、出力電圧Vは零であり出力電圧Vを開放電圧Voに調整してから出力電力Pを零から徐々に増加させる。つまり、時点t0で出力電圧目標値V1rを開放電圧Vo1から最大電力追従制御により段階的に下降していくことになる。これに伴い、太陽光発電設備の出力電力Pは段階的に上昇し、時点t1でV−I特性曲線C1上の最適動作点C11になると、太陽光発電設備の出力電力Pは最大出力P1maxでほぼ一定となる。   FIG. 12 is a characteristic diagram of an example of the output voltage V and the output power P in the operation characteristics of the photovoltaic power generation facility shown in FIG. At the time point t0 in the initial state when the photovoltaic power generation facility is connected to the power system 15, the output voltage V is zero, and the output voltage P is gradually increased from zero after adjusting the output voltage V to the open circuit voltage Vo. That is, at the time point t0, the output voltage target value V1r is gradually lowered from the open voltage Vo1 by the maximum power tracking control. Along with this, the output power P of the photovoltaic power generation facility increases stepwise, and when the optimum operating point C11 on the VI characteristic curve C1 is reached at the time point t1, the output power P of the photovoltaic power generation facility is at the maximum output P1max. It becomes almost constant.

太陽光発電設備の出力電力Pが最大出力P1maxでほぼ一定で運転されている状態で、いま、時点t2において電力系統に短時間停電が発生したとすると、太陽光発電設備の出力電圧Vは開放電圧Vo1に調整される。これにより、太陽光発電設備の出力電力Pは最大出力P1maxから一挙に零に調整される。そして、電力系統15が復電する時点t3以前の時点t2’で日照強度が小さくなりV−I特性曲線C1からV−I特性曲線C3に変化したとすると、開放電圧がVo1からVo3に変化する。   If the output power P of the photovoltaic power generation facility is operating at a substantially constant maximum output P1max, and if a short interruption occurs in the power system at time t2, the output voltage V of the photovoltaic power generation facility is open. The voltage is adjusted to Vo1. As a result, the output power P of the photovoltaic power generation facility is adjusted from the maximum output P1max to zero at once. Then, assuming that the sunshine intensity becomes small and changes from the VI characteristic curve C1 to the VI characteristic curve C3 at the time t2 ′ before the time t3 when the power system 15 recovers, the open circuit voltage changes from Vo1 to Vo3. .

その後の時点t3で電力系統が復電すると太陽光発電設備は再起動することになるが、この場合、時点t3では日射強度が小さいV−I特性曲線C3となっているので、太陽光発電設備は、停電直前の太陽電池11の動作電圧V1からV−I特性曲線C3上で最大電力追従制御が再開される。その場合、再起動時の太陽電池11の出力電力Pyが停止直前の出力電力Px未満であるので、停電直前の太陽電池11の動作電圧V1から電圧下降方向に電圧を移動する。これは、日射強度が小さいV−I特性曲線C3の場合は、V−I特性曲線C1より電圧下降方向に最大出力点があるからである。これにより、1ステップ分だけ早く最大出力点C22に到達する。   After that, when the power system is restored at the time t3, the solar power generation facility is restarted. In this case, the solar power generation facility is at the time t3 because the solar radiation intensity is a V-I characteristic curve C3. The maximum power follow-up control is resumed on the VI characteristic curve C3 from the operating voltage V1 of the solar cell 11 immediately before the power failure. In that case, since the output power Py of the solar cell 11 at the time of restart is less than the output power Px immediately before the stop, the voltage is moved in the voltage decreasing direction from the operating voltage V1 of the solar cell 11 immediately before the power failure. This is because in the case of the VI characteristic curve C3 having a low solar radiation intensity, there is a maximum output point in the voltage decreasing direction from the VI characteristic curve C1. Thus, the maximum output point C22 is reached earlier by one step.

このように、電力系統15が停電状態から復帰して太陽電池11の電圧を最適動作点に追従制御させる際に、再起動時の太陽電池11の出力電力Pyが出力値記憶部24に記憶した停止直前の出力電力Px以上のときは、停電直前の動作電圧V1から電圧上昇方向に移動させ、停止直前の出力電力Px未満のときは、停電直前の動作電圧V1から電圧下降方向に移動させるので、1ステップ分だけ早く最大出力点に到達することができ、電力系統の安定化に寄与できる。   Thus, when the power system 15 returns from the power failure state and controls the voltage of the solar cell 11 to follow the optimum operating point, the output power Py of the solar cell 11 at the time of restart is stored in the output value storage unit 24. When the output power Px immediately before the stop is greater than or equal to the operating voltage V1 immediately before the power failure, the voltage is increased in the direction of voltage increase. The maximum output point can be reached by one step earlier, which can contribute to the stabilization of the power system.

11…太陽電池、12…電力変換器、13…変圧器、14…開閉器、15…電力系統、16…電圧検出器、17…電流検出器、18…最大電力追従制御部、19…出力制御部、20…ゲート駆動回路、21…電圧検出器、22…系統状態判定部、23…動作電圧記憶部、24…出力値記憶部 DESCRIPTION OF SYMBOLS 11 ... Solar cell, 12 ... Power converter, 13 ... Transformer, 14 ... Switch, 15 ... Electric power system, 16 ... Voltage detector, 17 ... Current detector, 18 ... Maximum power tracking control part, 19 ... Output control , 20 ... Gate drive circuit, 21 ... Voltage detector, 22 ... System state determination unit, 23 ... Operating voltage storage unit, 24 ... Output value storage unit

Claims (4)

太陽電池で発電した直流を電力変換器で交流に変換し電力系統に供給するようにした太陽光発電設備の制御装置において、太陽電池の出力が最大となる最適動作点に前記太陽電池の電圧を追従制御させ前記太陽電池の最大出力を得る最大電力追従制御部と、太陽電池が接続された電力系統の電圧を監視し電力系統が停電状態か否かを判定する前記系統状態判定部と、前記系統状態判定部により前記電力系統が停電状態であると判定されたときは停電直前の前記太陽電池の動作電圧を記憶する動作電圧記憶部と、前記電力系統が停電状態でないときは前記最大電力追従制御部で得られた最大出力になるように前記電力変換器の出力を制御し前記電力系統が停電状態であるときは前記太陽電池の電圧が前記太陽電池の開放電圧になるように前記電力変換器の出力を制御する出力制御部とを備え、前記電力系統が停電状態から復帰したときは、前記最大電力追従制御部は、前記動作電圧記憶部に記憶した停電直前の前記太陽電池の動作電圧から前記太陽電池の電圧を最適動作点に追従制御させることを特徴とする太陽光発電設備の制御装置。 In a control device for a photovoltaic power generation facility in which direct current generated by a solar cell is converted into alternating current by a power converter and supplied to an electric power system, the voltage of the solar cell is set to an optimum operating point at which the output of the solar cell is maximized. A maximum power tracking control unit that obtains a maximum output of the solar cell by performing tracking control, the system state determination unit that monitors the voltage of the power system to which the solar cell is connected and determines whether the power system is in a power failure state, and When it is determined by the system state determination unit that the power system is in a power outage state, an operating voltage storage unit that stores the operating voltage of the solar cell immediately before the power outage, and when the power system is not in a power outage state, the maximum power follow-up The output of the power converter is controlled so as to obtain the maximum output obtained by the control unit, and when the power system is in a power outage state, the power of the solar cell becomes the open circuit voltage of the solar cell. An output control unit that controls the output of the converter, and when the power system returns from the power failure state, the maximum power follow-up control unit operates the solar cell immediately before the power failure stored in the operating voltage storage unit. A control device for photovoltaic power generation equipment, which controls the voltage of the solar cell to follow an optimum operating point from the voltage. 太陽電池で発電した直流を電力変換器で交流に変換し電力系統に供給するようにした太陽光発電設備の制御装置において、太陽電池の出力が最大となる最適動作点に前記太陽電池の電圧を追従制御させ前記太陽電池の最大出力を得る最大電力追従制御部と、太陽電池が接続された電力系統の電圧を監視し電力系統が停電状態か否かを判定する前記系統状態判定部と、前記系統状態判定部により前記電力系統が停電状態であると判定されたときは停電直前の前記太陽電池の動作電圧を記憶する動作電圧記憶部と、前記電力系統が停電状態でないときは前記最大電力追従制御部で得られた最大出力になるように前記電力変換器の出力を制御し前記電力系統が停電状態であるときは前記太陽電池の電圧が前記太陽電池の開放電圧になるように前記電力変換器の出力を制御する出力制御部とを備え、前記電力系統が停電状態から復帰したときは、前記最大電力追従制御部は、前記動作電圧記憶部に記憶した停電直前の前記太陽電池の動作電圧から電圧下降方向に移動させ前記太陽電池の電圧を最適動作点に追従制御させることを特徴とする太陽光発電設備の制御装置。 In a control device for a photovoltaic power generation facility in which direct current generated by a solar cell is converted into alternating current by a power converter and supplied to an electric power system, the voltage of the solar cell is set to an optimum operating point at which the output of the solar cell is maximized. A maximum power tracking control unit that obtains a maximum output of the solar cell by performing tracking control, the system state determination unit that monitors the voltage of the power system to which the solar cell is connected and determines whether the power system is in a power failure state, and When it is determined by the system state determination unit that the power system is in a power outage state, an operating voltage storage unit that stores the operating voltage of the solar cell immediately before the power outage, and when the power system is not in a power outage state, the maximum power follow-up The output of the power converter is controlled so as to obtain the maximum output obtained by the control unit, and when the power system is in a power outage state, the power of the solar cell becomes the open circuit voltage of the solar cell. An output control unit that controls the output of the converter, and when the power system returns from the power failure state, the maximum power follow-up control unit operates the solar cell immediately before the power failure stored in the operating voltage storage unit. A control device for photovoltaic power generation equipment, wherein the voltage of the solar cell is controlled to follow the optimum operating point by moving the voltage in a voltage decreasing direction. 太陽電池で発電した直流を電力変換器で交流に変換し電力系統に供給するようにした太陽光発電設備の制御装置において、太陽電池の出力が最大となる最適動作点に前記太陽電池の電圧を追従制御させ前記太陽電池の最大出力を得る最大電力追従制御部と、太陽電池が接続された電力系統の電圧を監視し電力系統が停電状態か否かを判定する前記系統状態判定部と、前記系統状態判定部により前記電力系統が停電状態であると判定されたときは停電直前の前記太陽電池の動作電圧を記憶する動作電圧記憶部と、前記系統状態判定部により前記電力系統が停電状態であると判定されたときは停電直前の前記太陽電池の出力値を記憶する出力値記憶部と、前記電力系統が停電状態でないときは前記最大電力追従制御部で得られた最大出力になるように前記電力変換器の出力を制御し前記電力系統が停電状態であるときは前記太陽電池の電圧が前記太陽電池の開放電圧になるように前記電力変換器の出力を制御する出力制御部とを備え、前記電力系統が停電状態から復帰したときは、前記最大電力追従制御部は、前記動作電圧記憶部に記憶した停電直前の前記太陽電池の動作電圧での再起動時に前記太陽電池の出力値が前記出力値記憶部に記憶した停止直前の出力値以上かどうかを判定し、太陽電池の出力値が停止直前の出力値以上のときは、前記動作電圧記憶部に記憶した停電直前の前記太陽電池の動作電圧から電圧上昇方向に移動させ前記太陽電池の電圧を最適動作点に追従制御させることを特徴とする太陽光発電設備の制御装置。 In a control device for a photovoltaic power generation facility in which direct current generated by a solar cell is converted into alternating current by a power converter and supplied to an electric power system, the voltage of the solar cell is set to an optimum operating point at which the output of the solar cell is maximized. A maximum power tracking control unit that obtains a maximum output of the solar cell by performing tracking control, the system state determination unit that monitors the voltage of the power system to which the solar cell is connected and determines whether the power system is in a power failure state, and When it is determined by the system state determination unit that the power system is in a power failure state, an operating voltage storage unit that stores the operating voltage of the solar cell immediately before the power failure, and the power system is in a power outage state by the system state determination unit When it is determined that there is an output value storage unit that stores the output value of the solar cell immediately before the power failure, and when the power system is not in a power failure state, the maximum output obtained by the maximum power tracking control unit is obtained. An output control unit for controlling the output of the power converter so that the output of the power converter is controlled so that when the power system is in a power failure state, the voltage of the solar cell becomes the open voltage of the solar cell. When the power system returns from the power failure state, the maximum power follow-up control unit outputs the output value of the solar cell at the time of restart at the operating voltage of the solar cell immediately before the power failure stored in the operating voltage storage unit Is greater than or equal to the output value immediately before the stop stored in the output value storage unit, and when the output value of the solar cell is equal to or greater than the output value immediately before the stop, the sun immediately before the power failure stored in the operating voltage storage unit A control apparatus for a photovoltaic power generation facility, wherein the control voltage of the solar battery is controlled to follow an optimum operating point by moving the battery from an operating voltage in a voltage increasing direction. 太陽電池で発電した直流を電力変換器で交流に変換し電力系統に供給するようにした太陽光発電設備の制御装置において、太陽電池の出力が最大となる最適動作点に前記太陽電池の電圧を追従制御させ前記太陽電池の最大出力を得る最大電力追従制御部と、太陽電池が接続された電力系統の電圧を監視し電力系統が停電状態か否かを判定する前記系統状態判定部と、前記系統状態判定部により前記電力系統が停電状態であると判定されたときは停電直前の前記太陽電池の動作電圧を記憶する動作電圧記憶部と、前記系統状態判定部により前記電力系統が停電状態であると判定されたときは停電直前の前記太陽電池の出力値を記憶する出力値記憶部と、前記電力系統が停電状態でないときは前記最大電力追従制御部で得られた最大出力になるように前記電力変換器の出力を制御し前記電力系統が停電状態であるときは前記太陽電池の電圧が前記太陽電池の開放電圧になるように前記電力変換器の出力を制御する出力制御部とを備え、前記電力系統が停電状態から復帰したときは、前記最大電力追従制御部は、前記動作電圧記憶部に記憶した停電直前の前記太陽電池の動作電圧での再起動時に前記太陽電池の出力値が前記出力値記憶部に記憶した停止直前の出力値未満かどうかを判定し、太陽電池の出力値が停止直前の出力値未満のときは、前記動作電圧記憶部に記憶した停電直前の前記太陽電池の動作電圧から電圧下降方向に移動させ前記太陽電池の電圧を最適動作点に追従制御させることを特徴とする太陽光発電設備の制御装置。 In a control device for a photovoltaic power generation facility in which direct current generated by a solar cell is converted into alternating current by a power converter and supplied to an electric power system, the voltage of the solar cell is set to an optimum operating point at which the output of the solar cell is maximized. A maximum power tracking control unit that obtains a maximum output of the solar cell by performing tracking control, the system state determination unit that monitors the voltage of the power system to which the solar cell is connected and determines whether the power system is in a power failure state, and When it is determined by the system state determination unit that the power system is in a power failure state, an operating voltage storage unit that stores the operating voltage of the solar cell immediately before the power failure, and the power system is in a power outage state by the system state determination unit When it is determined that there is an output value storage unit that stores the output value of the solar cell immediately before the power failure, and when the power system is not in a power failure state, the maximum output obtained by the maximum power tracking control unit is obtained. An output control unit for controlling the output of the power converter so that the output of the power converter is controlled so that when the power system is in a power failure state, the voltage of the solar cell becomes the open voltage of the solar cell. When the power system returns from the power failure state, the maximum power follow-up control unit outputs the output value of the solar cell at the time of restart at the operating voltage of the solar cell immediately before the power failure stored in the operating voltage storage unit Is less than the output value immediately before the stop stored in the output value storage unit, and when the output value of the solar cell is less than the output value immediately before the stop, the sun immediately before the power failure stored in the operating voltage storage unit A control device for a photovoltaic power generation facility, wherein the control voltage of the solar battery is controlled to follow the optimum operating point by moving the battery from the operating voltage in a voltage decreasing direction.
JP2009252892A 2009-11-04 2009-11-04 Device for controlling photovoltaic power generation facility Pending JP2011101455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009252892A JP2011101455A (en) 2009-11-04 2009-11-04 Device for controlling photovoltaic power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009252892A JP2011101455A (en) 2009-11-04 2009-11-04 Device for controlling photovoltaic power generation facility

Publications (1)

Publication Number Publication Date
JP2011101455A true JP2011101455A (en) 2011-05-19

Family

ID=44192168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009252892A Pending JP2011101455A (en) 2009-11-04 2009-11-04 Device for controlling photovoltaic power generation facility

Country Status (1)

Country Link
JP (1) JP2011101455A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102609008A (en) * 2012-04-06 2012-07-25 郭敏强 Novel automatic solar tracking method and photovoltaic power generation device
JP2013215075A (en) * 2012-03-30 2013-10-17 Toshiba It & Control Systems Corp Photovoltaic power generation control system
JP2014072947A (en) * 2012-09-28 2014-04-21 Mitsubishi Electric Corp Detection and removal device of single line-to-ground fault of distribution line
JP2015052966A (en) * 2013-09-09 2015-03-19 田淵電機株式会社 Power conversion equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215075A (en) * 2012-03-30 2013-10-17 Toshiba It & Control Systems Corp Photovoltaic power generation control system
CN102609008A (en) * 2012-04-06 2012-07-25 郭敏强 Novel automatic solar tracking method and photovoltaic power generation device
JP2014072947A (en) * 2012-09-28 2014-04-21 Mitsubishi Electric Corp Detection and removal device of single line-to-ground fault of distribution line
JP2015052966A (en) * 2013-09-09 2015-03-19 田淵電機株式会社 Power conversion equipment

Similar Documents

Publication Publication Date Title
JP6063031B2 (en) Power conditioner and control method thereof
US8058746B2 (en) Converter for electrical power recovery
JPWO2013121618A1 (en) Power converter
JP2009148014A (en) Method for interconnection photovoltaic power generation system
JP2011101455A (en) Device for controlling photovoltaic power generation facility
JP5349687B2 (en) Grid-connected inverter
JP2011101454A (en) Device and method for controlling distributed power supply facility
JP2009177961A (en) Uninterruptible power supply device
JP5869312B2 (en) Load device and power consumption control method thereof
JP5410213B2 (en) Control circuit for power conversion circuit and power supply system provided with the control circuit
JP4468371B2 (en) Photovoltaic power generation system and its boosting unit
KR100963521B1 (en) Minimize Method for Stop and Operation of Photovoltaic Inverter
JP2011160610A (en) Photovoltaic power generation device
JP5331399B2 (en) Power supply
CN112994055B (en) Storage medium, photovoltaic power generation system and control method thereof
KR101821495B1 (en) A device for solar generation of electric power
JP2012182868A (en) Photovoltaic power generator
JP2012221151A (en) Control device for photovoltaic power generation device
JP6168854B2 (en) Grid interconnection device
JP2015057022A (en) Dispersed power supply device, power switching device and power supply system
WO2023159687A1 (en) Shutdown device control method, system and apparatus, and shutdown controller
JP6242128B2 (en) Power converter
JP5784470B2 (en) Power conditioner and control method thereof
JP2009169800A (en) Control device of photovoltaic power system
JP6082667B2 (en) Power conditioner