JP2013215056A - Stator cooling structure - Google Patents

Stator cooling structure Download PDF

Info

Publication number
JP2013215056A
JP2013215056A JP2012084928A JP2012084928A JP2013215056A JP 2013215056 A JP2013215056 A JP 2013215056A JP 2012084928 A JP2012084928 A JP 2012084928A JP 2012084928 A JP2012084928 A JP 2012084928A JP 2013215056 A JP2013215056 A JP 2013215056A
Authority
JP
Japan
Prior art keywords
stator
stator core
holding cylinder
axial direction
cooling structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012084928A
Other languages
Japanese (ja)
Other versions
JP5958029B2 (en
Inventor
Naoki Tanaka
直樹 田中
Naoto Nakahara
直人 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012084928A priority Critical patent/JP5958029B2/en
Publication of JP2013215056A publication Critical patent/JP2013215056A/en
Application granted granted Critical
Publication of JP5958029B2 publication Critical patent/JP5958029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a stator cooling structure capable of ensuring a large flow passage area by providing a cooling passageway between a stator core tightly fastened in the axial direction and a holding cylinder or a pressing member.SOLUTION: A stator cooling structure includes: cylindrical stator cores 30 to 32; holding cylinders 20 to 23 each of which has a cylindrical body with a bottom surface at one end in the axial direction, and into which the stator cores 30 to 32 are inserted so that the end surfaces of one sides of the stator cores 30 to 32 in the axial direction are in contact with the inner surfaces of the bottom surfaces; pressing members 10 to 13 being in contact with the end surfaces of the other sides of the stator cores 30 to 32 in the axial direction and fixed to a housing 1 along with the holding cylinders 20 to 23, for tightly fastening the stator cores 30 to 32 in the axial direction; and cooling passageways 40 to 44 formed between the holding cylinders 20, 22, and 23, or an inner peripheral surface of the pressing member 11, and the outer peripheral surfaces of the stator cores 30 to 32.

Description

本発明は、ステータコアを軸方向に圧締して固定する回転電機用ステータの冷却構造に関する。   The present invention relates to a cooling structure for a stator for a rotating electrical machine in which a stator core is axially clamped and fixed.

回転電機のステータのコイルは回転駆動時の通電に基づく銅損によって発熱し、コイルを卷回するステータコアも鉄損によって発熱する。発熱したステータコアを冷却する手段としては、例えば、特許文献1に開示された技術がある。   The stator coil of the rotating electrical machine generates heat due to copper loss based on energization during rotation driving, and the stator core that winds the coil also generates heat due to iron loss. As a means for cooling the generated stator core, for example, there is a technique disclosed in Patent Document 1.

特許文献1の技術は、冷却手段として、ステータコアの外周面を内周面で接触保持するコアホルダと、コアホルダの内周面に設けられステータコアの外周面に冷媒を流通させる冷媒流路と、コアホルダの外周面と内周面とを連通してステータコアの外周面に冷媒を導入する複数の貫通孔とを有するというものである。   The technology of Patent Document 1 includes, as cooling means, a core holder that contacts and holds the outer peripheral surface of the stator core on the inner peripheral surface, a refrigerant flow path that is provided on the inner peripheral surface of the core holder and distributes the refrigerant to the outer peripheral surface of the stator core, The outer peripheral surface communicates with the inner peripheral surface, and has a plurality of through holes for introducing the refrigerant into the outer peripheral surface of the stator core.

特開2011−36024号公報JP 2011-36024 A

しかしながら、特許文献1に開示された技術によれば、コアホルダはステータコアを確実に締め付けるに足る強度を有せねばならないので、その断面積を所定以上のものとする必要がある。そのため、コアホルダの内周面に形成する冷媒流路の断面積は小さく制限されたものとなる。その結果、冷媒とステータコアとの接触面積が減少して冷却能力が低下し、最大出力時など発熱が大きい動作状態では冷却能力不足により回転電機の出力が制限されるのである。   However, according to the technique disclosed in Patent Document 1, since the core holder must have sufficient strength to securely clamp the stator core, the cross-sectional area needs to be greater than a predetermined value. Therefore, the cross-sectional area of the refrigerant flow path formed on the inner peripheral surface of the core holder is limited to be small. As a result, the contact area between the refrigerant and the stator core is reduced, the cooling capacity is reduced, and the output of the rotating electrical machine is limited due to insufficient cooling capacity in an operating state where heat generation is large, such as at maximum output.

本発明は、上述した問題に鑑みてなされたものであり、軸方向に圧締して固定するステータコアと保持筒又は押さえ部材との間に冷却通路を設けることで大きな流路面積が確保できるステータの冷却構造を提供することを目的とする。   The present invention has been made in view of the above-described problems, and a stator that can secure a large flow path area by providing a cooling passage between a stator core that is pressed and fixed in the axial direction and a holding cylinder or a pressing member. An object of the present invention is to provide a cooling structure.

上記目的を達成するためになされた請求項1に記載の発明は、円筒状のステータコア(30〜32)と、軸方向一端に底面をもつ円筒状を有し、前記底面の内面に前記ステータコア(30〜32)の軸方向一方側端面が当接するように前記ステータコア(30〜32)が内部に挿入される保持筒(20〜23)と、前記ステータコア(30〜32)の軸方向他方側端面が当接し、前記保持筒(20〜23)とともにハウジング(1)に締着され前記ステータコア(30〜32)を軸方向に圧締する押さえ部材(10〜13)と、前記保持筒(20,22,23)又は前記押さえ部材(11)の内周面と前記ステータコア(30〜32)の外周面との間に形成される冷却通路(40〜44)とを備えることを特徴とする。   The invention according to claim 1, which has been made to achieve the above object, has a cylindrical stator core (30-32) and a cylindrical shape having a bottom surface at one end in the axial direction, and the stator core ( 30 to 32) the holding cylinder (20 to 23) into which the stator core (30 to 32) is inserted so that the one end face in the axial direction abuts, and the other end face in the axial direction of the stator core (30 to 32). A holding member (10-13) that is fastened to the housing (1) together with the holding cylinder (20-23) and presses the stator core (30-32) in the axial direction, and the holding cylinder (20, 22, 23) or a cooling passage (40 to 44) formed between the inner peripheral surface of the pressing member (11) and the outer peripheral surface of the stator core (30 to 32).

この構成によれば、ステータコア(30〜32)は軸方向に挟持され圧締されるとともに、保持筒(20,22,23)又は押さえ部材(11)の内周面とステータコア(30〜32)の外周面との間に冷却通路(40〜44)が形成される。そのため、ステータコア(30〜32)の外周面に広い接触面積を有する冷却通路が形成され、冷媒の大きな流路面積が確保されるので、ステータコア(30〜32)の冷却が極めて効果的に行われるという優れた効果を奏する。   According to this configuration, the stator cores (30 to 32) are clamped and pressed in the axial direction, and the inner peripheral surface of the holding cylinder (20, 22, 23) or the pressing member (11) and the stator cores (30 to 32). Cooling passages (40 to 44) are formed between the outer peripheral surfaces of the two. Therefore, a cooling passage having a wide contact area is formed on the outer peripheral surface of the stator core (30 to 32), and a large flow passage area of the refrigerant is ensured, so that the stator core (30 to 32) is cooled extremely effectively. There is an excellent effect.

本発明のステータ冷却構造の第1実施形態を示す正面図である。It is a front view which shows 1st Embodiment of the stator cooling structure of this invention. 図1におけるII―II断面図である。It is II-II sectional drawing in FIG. 本発明の第1実施形態によるステータ冷却構造を分解して示す斜視図である。1 is an exploded perspective view showing a stator cooling structure according to a first embodiment of the present invention. 本発明のステータ冷却構造の第2実施形態を示す正面図である。It is a front view which shows 2nd Embodiment of the stator cooling structure of this invention. 図4におけるV―V断面図である。FIG. 5 is a VV cross-sectional view in FIG. 4. 本発明の第2実施形態によるステータ冷却構造を分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows the stator cooling structure by 2nd Embodiment of this invention. 本発明のステータ冷却構造の第3実施形態を示す正面図である。It is a front view which shows 3rd Embodiment of the stator cooling structure of this invention. 図7におけるVIII―VIII断面図である。It is VIII-VIII sectional drawing in FIG. 本発明の第3実施形態によるステータ冷却構造を分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows the stator cooling structure by 3rd Embodiment of this invention. 本発明のステータ冷却構造の第4実施形態を示す正面図である。It is a front view which shows 4th Embodiment of the stator cooling structure of this invention. 図10におけるXI―XI断面図である。It is XI-XI sectional drawing in FIG. 本発明の第4実施形態によるステータ冷却構造を分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows the stator cooling structure by 4th Embodiment of this invention. 本発明のステータ冷却構造の第5実施形態を示す正面図である。It is a front view which shows 5th Embodiment of the stator cooling structure of this invention. 図13におけるXIV―XIV断面図である。It is XIV-XIV sectional drawing in FIG. 本発明の第5実施形態によるステータ冷却構造を分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows the stator cooling structure by 5th Embodiment of this invention. 図14のXVI―XVI断面図である。It is XVI-XVI sectional drawing of FIG. 図13,図14及び図15における分割コア33の斜視図である。FIG. 16 is a perspective view of the split core 33 in FIGS. 13, 14, and 15. 図17におけるA部(溝)の第1変形態様を示す部分拡大図である。It is the elements on larger scale which show the 1st deformation | transformation aspect of the A section (groove) in FIG. 図17におけるA部(溝)の第2変形態様を示す部分拡大図である。It is the elements on larger scale which show the 2nd deformation | transformation aspect of the A section (groove) in FIG.

以下、本発明を具体化した一実施形態について、図面を参照しつつ説明する。但し、本明細書中の全図において相互に対応する部分には同一符号を付し、重複部分においては後述での説明を適時省略する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. However, parts corresponding to each other in all the drawings in this specification are denoted by the same reference numerals, and description of the overlapping parts will be omitted as appropriate.

本実施形態の回転電機のステータは、電磁鋼板又は圧粉鉄心からなるステータコア30〜32のスロット6に図示しないコイルが卷回されてなる。円筒状のステータコア30〜32は保持筒20〜23に挿入され、その一方の端面は保持筒20〜23の底面の内面に当接する。ステータコア30〜32の他方の端面は、ステータコア30〜32を収容する保持筒20〜23に蓋をするような押さえ部材10〜13に当接する。   The stator of the rotating electrical machine of this embodiment is formed by winding a coil (not shown) in slots 6 of stator cores 30 to 32 made of an electromagnetic steel plate or a dust core. Cylindrical stator cores 30 to 32 are inserted into holding cylinders 20 to 23, and one end face thereof is in contact with the inner surface of the bottom surface of holding cylinders 20 to 23. The other end surfaces of the stator cores 30 to 32 abut against pressing members 10 to 13 that cover the holding cylinders 20 to 23 that accommodate the stator cores 30 to 32.

保持筒20〜23及び押さえ部材10〜13は、それぞれの取付孔5が連穿される状態でハウジング1(図2にのみ記載し、図5、8、11,14では記載を省略する。)にボルト7によって締着される。このとき、保持筒20〜23の鍔4と押さえ部材10〜13の鍔4との間には、僅かな間隙が生ずるようにステータコア30〜32の軸方向の寸法及び保持筒20〜23の深さ寸法が設定されているので、ボルト7の締着力によってステータコア30〜32には軸方向の圧締力が付与される。これにより、ステータコア30〜32はハウジング1に固定される。   The holding cylinders 20 to 23 and the pressing members 10 to 13 are in the housing 1 in a state in which the respective mounting holes 5 are continuously formed (described only in FIG. 2 and omitted in FIGS. 5, 8, 11, and 14). Are fastened by bolts 7. At this time, the axial dimension of the stator cores 30 to 32 and the depth of the holding cylinders 20 to 23 are set so that a slight gap is generated between the flange 4 of the holding cylinders 20 to 23 and the flange 4 of the holding members 10 to 13. Since the dimension is set, the axial pressing force is applied to the stator cores 30 to 32 by the tightening force of the bolt 7. Thereby, the stator cores 30 to 32 are fixed to the housing 1.

ハウジング1は、ステータコア30〜32の中心孔内壁に接近して回転する円柱状の図示しないロータをステータコア30〜32の中心軸に軸支する。また、ハウジング1は、冷却通路40〜44の入口8及び出口9に液密で連結する冷媒通路を備える。   The housing 1 supports a columnar rotor (not shown) that rotates close to the inner wall of the center hole of the stator cores 30 to 32 on the center axis of the stator cores 30 to 32. The housing 1 also includes a refrigerant passage that is liquid-tightly connected to the inlet 8 and the outlet 9 of the cooling passages 40 to 44.

次に、第1実施形態を図1,図2及び図3に基づいて説明する。   Next, a first embodiment will be described with reference to FIGS.

保持筒20は、その一方端である底部分に開口部24を有し、その他方端に、取付孔5が穿孔された複数の鍔4を有する筒状体である。保持筒20の筒状部分には、軸方向の長孔である入口8及び出口9が筒状部分の直径位置にそれぞれ穿孔して設けられている。入口8及び出口9の開口部24側の端部位置から鍔4までの保持筒20の筒状部分内周面は、拡径された段部50となっている。   The holding cylinder 20 is a cylindrical body having an opening 24 at the bottom, which is one end thereof, and a plurality of flanges 4 in which mounting holes 5 are drilled at the other end. In the cylindrical portion of the holding cylinder 20, an inlet 8 and an outlet 9, which are long holes in the axial direction, are provided by being drilled at diameter positions of the cylindrical portion. The inner peripheral surface of the cylindrical portion of the holding cylinder 20 from the end position on the opening 24 side of the inlet 8 and the outlet 9 to the flange 4 is a stepped portion 50 having an enlarged diameter.

ステータコア30は、保持筒20の段部50を除く内周部分に挿入できるようにその直径が設定されているので、ステータコア30の端面が保持筒20の底面に当接可能となる。   Since the diameter of the stator core 30 is set so that the stator core 30 can be inserted into the inner peripheral portion excluding the step portion 50 of the holding cylinder 20, the end surface of the stator core 30 can come into contact with the bottom surface of the holding cylinder 20.

押さえ部材10は、ステータコア30の直径とスロット6の谷径との中間寸法の内径と、保持筒20の直径に略等しい外径とを有する円環板を備える。押さえ部材10の円環板の外周には、複数の鍔4が径方向に突設されている。鍔4には、保持筒20の取付孔5と連穿されるように取付孔5が穿孔されている。押さえ部材10の円環板には、ステータコア30の外径より僅かに大きい内径と、保持筒20の段部50の内径より僅かに小さい外径とを有する円筒部2が円環板と同芯に立設されている。円筒部2が段部50とステータコア30との間に嵌挿されたとき、円筒部2の先端が入口8及び出口9の長手方向の端面に位置するように、円筒部2の高さが設定されている。   The holding member 10 includes an annular plate having an inner diameter that is intermediate between the diameter of the stator core 30 and the valley diameter of the slot 6 and an outer diameter that is substantially equal to the diameter of the holding cylinder 20. On the outer periphery of the annular plate of the pressing member 10, a plurality of flanges 4 project in the radial direction. A mounting hole 5 is drilled in the flange 4 so as to be continuous with the mounting hole 5 of the holding cylinder 20. In the annular plate of the holding member 10, the cylindrical portion 2 having an inner diameter slightly larger than the outer diameter of the stator core 30 and an outer diameter slightly smaller than the inner diameter of the stepped portion 50 of the holding cylinder 20 is concentric with the annular plate. Is erected. When the cylindrical portion 2 is fitted between the step portion 50 and the stator core 30, the height of the cylindrical portion 2 is set so that the tip of the cylindrical portion 2 is positioned on the longitudinal end surfaces of the inlet 8 and the outlet 9. Has been.

このような保持筒20、ステータコア30及び押さえ部材10が図2に示すように組み立てられたとき、保持筒20の内周面である段部50とステータコア30の外周面との間には環状の冷却通路40が形成される。そして、冷却通路40の幅は、段部50と円筒部2によって入口8及び出口9の長手方向の寸法に区画される。冷媒は、入口8から流入して半周の冷却通路40に分流し、出口9で合流して流出する。この構成によれば、押さえ部材10が円筒部2を備えるので剛性が向上することにより、ステータコア30の圧締力を増強させることができ、ステータコア30の固定を強固なものとすることができる。   When the holding cylinder 20, the stator core 30, and the pressing member 10 are assembled as shown in FIG. 2, there is an annular shape between the step portion 50 that is the inner peripheral surface of the holding cylinder 20 and the outer peripheral surface of the stator core 30. A cooling passage 40 is formed. The width of the cooling passage 40 is divided into dimensions in the longitudinal direction of the inlet 8 and the outlet 9 by the step portion 50 and the cylindrical portion 2. Refrigerant flows in from the inlet 8 and diverts to the half-circular cooling passage 40, and merges and flows out at the outlet 9. According to this configuration, since the pressing member 10 includes the cylindrical portion 2, the rigidity is improved, whereby the pressing force of the stator core 30 can be increased, and the stator core 30 can be firmly fixed.

次に、第2実施形態を図4,図5及び図6に基づいて説明する。   Next, a second embodiment will be described based on FIG. 4, FIG. 5 and FIG.

保持筒21は、その一方端である底部分に開口部24を有し、その他方端に、取付孔5が穿孔された複数の鍔4を有する筒状体である。保持筒21の筒状部分には、軸方向の長孔である入口8及び出口9が筒状部分の直径位置にそれぞれ穿孔して設けられている。   The holding cylinder 21 is a cylindrical body having an opening 24 at a bottom portion, which is one end thereof, and a plurality of flanges 4 in which attachment holes 5 are drilled at the other end. The cylindrical portion of the holding cylinder 21 is provided with an inlet 8 and an outlet 9, which are long holes in the axial direction, drilled in diameter positions of the cylindrical portion.

押さえ部材11は、ステータコア30の直径とスロット6の谷径との中間寸法の内径と、保持筒21の直径に略等しい外径とを有する円環板を備える。押さえ部材11の円環板の外周には、複数の鍔4が径方向に突設されている。鍔4には、保持筒21の取付孔5と連穿されるように取付孔5が穿孔されている。押さえ部材11の円環板には、ステータコア30の外径より僅かに大きい内径と、保持筒21の内径より僅かに小さい外径とを有する円筒部3が円環板と同芯に立設されている。円筒部3には、軸方向の長孔である入口8及び出口9が円筒部3の直径位置に保持筒21の入口8及び出口9と連穿するようにそれぞれ穿孔して設けられている。円筒部3の内周面には、入口8及び出口9の長手方向と同一幅寸法の溝部51が拡径して形成されている。円筒部3が保持筒21に挿入されて、円筒部3と保持筒21の鍔4同士を当接させたとき、円筒部3の先端が保持筒21の底面に接触しないように、円筒部3の高さが設定されている。   The holding member 11 includes an annular plate having an inner diameter that is intermediate between the diameter of the stator core 30 and the valley diameter of the slot 6 and an outer diameter that is substantially equal to the diameter of the holding cylinder 21. On the outer periphery of the annular plate of the pressing member 11, a plurality of flanges 4 project in the radial direction. A mounting hole 5 is drilled in the flange 4 so as to be continuous with the mounting hole 5 of the holding cylinder 21. A cylindrical portion 3 having an inner diameter slightly larger than the outer diameter of the stator core 30 and an outer diameter slightly smaller than the inner diameter of the holding cylinder 21 is erected on the annular plate of the holding member 11 concentrically with the annular plate. ing. In the cylindrical portion 3, an inlet 8 and an outlet 9, which are long holes in the axial direction, are provided by being drilled at the diameter position of the cylindrical portion 3 so as to be continuous with the inlet 8 and the outlet 9 of the holding cylinder 21. On the inner peripheral surface of the cylindrical portion 3, a groove portion 51 having the same width as the longitudinal direction of the inlet 8 and the outlet 9 is formed in an enlarged diameter. When the cylindrical part 3 is inserted into the holding cylinder 21 and the flanges 4 of the cylindrical part 3 and the holding cylinder 21 are brought into contact with each other, the cylindrical part 3 is arranged so that the tip of the cylindrical part 3 does not contact the bottom surface of the holding cylinder 21. The height of is set.

ステータコア30は、押さえ部材11の円筒部3に挿入可能な直径寸法を有している。そして、円筒部3にステータコア30を収納した押さえ部材11は、保持筒21に挿入され、ステータコア30の端面が保持筒21の底面に当接可能となる。   The stator core 30 has a diameter dimension that can be inserted into the cylindrical portion 3 of the pressing member 11. The holding member 11 in which the stator core 30 is accommodated in the cylindrical portion 3 is inserted into the holding cylinder 21 so that the end surface of the stator core 30 can come into contact with the bottom surface of the holding cylinder 21.

このような保持筒21、ステータコア30及び押さえ部材11が図5に示すように組み立てられたとき、押さえ部材11の内周面である溝部51とステータコア30の外周面との間には環状の冷却通路41が形成される。そして、冷却通路41の幅は、溝部51によって入口8及び出口9の長手方向の寸法に区画される。冷媒は、入口8から流入して半周の冷却通路41に分流し、出口9で合流して流出する。この構成によれば、押さえ部材11が大きな円筒部3を備えるので剛性がより向上することにより、ステータコア30の圧締力をさらに増強させることができ、ステータコア30の固定をより強固なものとすることができる。   When the holding cylinder 21, the stator core 30, and the pressing member 11 are assembled as shown in FIG. 5, an annular cooling is provided between the groove portion 51 that is the inner peripheral surface of the pressing member 11 and the outer peripheral surface of the stator core 30. A passage 41 is formed. The width of the cooling passage 41 is partitioned by the groove 51 into the longitudinal dimensions of the inlet 8 and the outlet 9. The refrigerant flows in from the inlet 8, splits into the half-circular cooling passage 41, joins at the outlet 9, and flows out. According to this configuration, since the pressing member 11 includes the large cylindrical portion 3, the rigidity is further improved, whereby the pressing force of the stator core 30 can be further increased, and the stator core 30 can be fixed more firmly. be able to.

次に、第3実施形態を図7、図8及び図9に基づいて説明する。   Next, a third embodiment will be described based on FIG. 7, FIG. 8, and FIG.

保持筒22は、その一方端である底部分に開口部24を有し、その他方端に、取付孔5が穿孔された複数の鍔4を有する筒状体である。保持筒22の筒状部分には、軸方向の長孔である入口8及び出口9が筒状部分の直径位置にそれぞれ穿孔して設けられている。保持筒22の筒状部の内周面には、入口8及び出口9の長手方向寸法と同一の幅寸法を有する拡径された溝部52が形成されている。   The holding cylinder 22 is a tubular body having an opening 24 at a bottom portion which is one end thereof and a plurality of flanges 4 in which mounting holes 5 are drilled at the other end. In the cylindrical portion of the holding cylinder 22, an inlet 8 and an outlet 9, which are long holes in the axial direction, are provided by being drilled at the diameter position of the cylindrical portion. On the inner peripheral surface of the cylindrical portion of the holding cylinder 22, an enlarged groove portion 52 having the same width dimension as the longitudinal dimension of the inlet 8 and the outlet 9 is formed.

ステータコア30は、保持筒22の溝部52を除く内周部分に挿入できるようにその直径が設定されているので、ステータコア30の端面が保持筒22の底面に当接可能となる。   The diameter of the stator core 30 is set so that the stator core 30 can be inserted into the inner peripheral portion excluding the groove portion 52 of the holding cylinder 22, so that the end surface of the stator core 30 can come into contact with the bottom surface of the holding cylinder 22.

押さえ部材12は、ステータコア30の直径とスロット6谷径との中間寸法の内径と、保持筒22の直径に略等しい外径とを有する円環板を備える。押さえ部材12の円環板の外周には、複数の鍔4が径方向に突設されている。鍔4には、保持筒22の取付孔5と連穿されるように取付孔5が穿孔されている。   The holding member 12 includes an annular plate having an inner diameter that is intermediate between the diameter of the stator core 30 and the slot 6 valley diameter, and an outer diameter that is substantially equal to the diameter of the holding cylinder 22. On the outer periphery of the annular plate of the pressing member 12, a plurality of flanges 4 project in the radial direction. A mounting hole 5 is drilled in the flange 4 so as to be continuous with the mounting hole 5 of the holding cylinder 22.

このような保持筒22、ステータコア30及び押さえ部材12が図8に示すように組み立てられたとき、保持筒22の内周面である溝部52とステータコア30の外周面との間には環状の冷却通路42が形成される。そして、冷却通路42の幅は、溝部52によって入口8及び出口9の長手方向の寸法に区画される。冷媒は、入口8から流入して半周の冷却通路42に分流し、出口9で合流して流出する。この構成によれば、押さえ部材12が円筒部を備えないので、低コストにステータの冷却構造を得ることができる。   When the holding cylinder 22, the stator core 30, and the pressing member 12 are assembled as shown in FIG. 8, an annular cooling is provided between the groove portion 52 that is the inner peripheral surface of the holding cylinder 22 and the outer peripheral surface of the stator core 30. A passage 42 is formed. The width of the cooling passage 42 is partitioned by the groove 52 into the dimensions of the inlet 8 and the outlet 9 in the longitudinal direction. The refrigerant flows in from the inlet 8, splits into the half-circumferential cooling passage 42, joins at the outlet 9, and flows out. According to this configuration, since the pressing member 12 does not include a cylindrical portion, a stator cooling structure can be obtained at a low cost.

次に、第4実施形態を図10,図11及び図12に基づいて説明する。   Next, 4th Embodiment is described based on FIG.10, FIG11 and FIG.12.

保持筒21は、その一方端である底部分に開口部24を有し、その他方端に、取付孔5が穿孔された複数の鍔4を有する筒状体である。保持筒21の筒状部分には、軸方向の長孔である入口8及び出口9が筒状部分の直径位置にそれぞれ穿孔して設けられている。   The holding cylinder 21 is a cylindrical body having an opening 24 at a bottom portion, which is one end thereof, and a plurality of flanges 4 in which attachment holes 5 are drilled at the other end. The cylindrical portion of the holding cylinder 21 is provided with an inlet 8 and an outlet 9, which are long holes in the axial direction, drilled in diameter positions of the cylindrical portion.

ステータコア31は、保持筒21の内周部分に挿入できるようにその直径が設定されているので、ステータコア31の端面が保持筒21の底面に当接可能となる。ステータコア31の外周面には、ステータコア31の外径を縮径して形成した溝部53が設けられている。溝部53の幅寸法は、保持筒21の入口8及び出口9の長手方向寸法と同一である。ステータコア31が保持筒21に挿入されステータコア31の端面が保持筒21の底面に当接したとき、入口8及び出口9と溝部53とが両者の全幅で連通するように、両者の軸方向の位置が設定されている。   Since the stator core 31 has a diameter that can be inserted into the inner peripheral portion of the holding cylinder 21, the end surface of the stator core 31 can come into contact with the bottom surface of the holding cylinder 21. A groove 53 formed by reducing the outer diameter of the stator core 31 is provided on the outer peripheral surface of the stator core 31. The width dimension of the groove 53 is the same as the longitudinal dimension of the inlet 8 and outlet 9 of the holding cylinder 21. When the stator core 31 is inserted into the holding cylinder 21 and the end face of the stator core 31 abuts against the bottom surface of the holding cylinder 21, the axial positions of the inlet 8 and the outlet 9 and the groove 53 are communicated with each other in their full width. Is set.

押さえ部材12は、ステータコア31の直径とスロット6谷径との中間寸法の内径と、保持筒21の直径に略等しい外径とを有する円環板を備える。押さえ部材12の円環板の外周には、複数の鍔4が径方向に突設されている。鍔4には、保持筒21の取付孔5と連穿されるように取付孔5が穿孔されている。   The holding member 12 includes an annular plate having an inner diameter that is intermediate between the diameter of the stator core 31 and the slot 6 valley diameter, and an outer diameter that is substantially equal to the diameter of the holding cylinder 21. On the outer periphery of the annular plate of the pressing member 12, a plurality of flanges 4 project in the radial direction. A mounting hole 5 is drilled in the flange 4 so as to be continuous with the mounting hole 5 of the holding cylinder 21.

このような保持筒21、ステータコア31及び押さえ部材12が図11に示すように組み立てられたとき、保持筒21の内周面とステータコア31の外周面である溝部53との間には環状の冷却通路43が形成される。そして、冷却通路43の幅は、溝部53によって入口8及び出口9の長手方向の寸法に区画される。冷媒は、入口8から流入して半周の冷却通路43に分流し、出口9で合流して流出する。この構成によれば、押さえ部材12が円筒部を備えないので、低コストにステータの冷却構造を得ることができる。   When such a holding cylinder 21, the stator core 31, and the pressing member 12 are assembled as shown in FIG. 11, an annular cooling is provided between the inner peripheral surface of the holding cylinder 21 and the groove portion 53 that is the outer peripheral surface of the stator core 31. A passage 43 is formed. The width of the cooling passage 43 is partitioned by the groove 53 into the longitudinal dimensions of the inlet 8 and the outlet 9. The refrigerant flows in from the inlet 8, splits into the half-circumferential cooling passage 43, joins at the outlet 9, and flows out. According to this configuration, since the pressing member 12 does not include a cylindrical portion, a stator cooling structure can be obtained at a low cost.

次に、第5実施形態を図13、図14及び図15に基づいて説明する。   Next, 5th Embodiment is described based on FIG.13, FIG14 and FIG.15.

保持筒23は、その一方端である底部分に開口部24を有し、その他方端に、取付孔5が穿孔された複数の鍔4を有する筒状体である。保持筒23の筒状部分には、軸方向の長孔である入口8が穿孔して設けられている。入口8の開口部24側の端部位置から鍔4までの保持筒23の筒状部分内周面は、拡径された段部54となっている。保持筒23の底面には、複数の貫通孔47が設けられている。貫通孔47は、ステータコア32径方向のスロット6の谷と外周との中間位置でステータコア32軸方向に貫通する複数の貫通路46に連通するように穿孔される。貫通孔47の形状は、貫通路46の断面形状と同じであることが好ましいが、冷媒が流通可能であれば、異なった形状であってもよい。   The holding cylinder 23 is a cylindrical body having an opening 24 at a bottom portion, which is one end thereof, and a plurality of flanges 4 in which attachment holes 5 are drilled at the other end. The cylindrical portion of the holding cylinder 23 is provided with an inlet 8 that is a long hole in the axial direction. The cylindrical portion inner peripheral surface of the holding cylinder 23 from the end position on the opening 24 side of the inlet 8 to the flange 4 is a stepped portion 54 having an enlarged diameter. A plurality of through holes 47 are provided on the bottom surface of the holding cylinder 23. The through hole 47 is drilled to communicate with a plurality of through passages 46 penetrating in the axial direction of the stator core 32 at an intermediate position between the valley of the slot 6 in the radial direction of the stator core 32 and the outer periphery. The shape of the through-hole 47 is preferably the same as the cross-sectional shape of the through-passage 46, but may be a different shape as long as the refrigerant can flow therethrough.

ステータコア32は、保持筒23の段部54を除く内周部分に挿入できるようにその直径が設定されているので、ステータコア32の端面が保持筒23の底面に当接可能となる。   Since the stator core 32 has a diameter set so that it can be inserted into an inner peripheral portion excluding the step portion 54 of the holding cylinder 23, the end surface of the stator core 32 can come into contact with the bottom surface of the holding cylinder 23.

ステータコア32は、複数の分割コア33を円環状に積層したものを軸方向に連接させた構成を有する。分割コア33は、図17に示すように、スロット6と、スロット6の半割の一方と、貫通路46の半割である溝48と、連通路45の四分割である溝49とを有する。すなわち、ステータコア32は、周方向に相互に当接する分割コア33間に形成され径方向のスロット6の谷と外周との中間位置で軸方向に貫通する複数の貫通路46を有する。貫通路46は、図16に示すように、ステータコア32における磁路の断面積を確保するため、磁束方向である周方向に細長い断面形状を有することが好ましい。分割コア33は、電磁鋼板を軸方向に積層して形成される。   The stator core 32 has a configuration in which a plurality of divided cores 33 stacked in an annular shape are connected in the axial direction. As shown in FIG. 17, the split core 33 has a slot 6, one half of the slot 6, a groove 48 that is a half of the through passage 46, and a groove 49 that is a quadrant of the communication path 45. . That is, the stator core 32 has a plurality of through passages 46 that are formed between the split cores 33 that are in contact with each other in the circumferential direction and penetrate in the axial direction at intermediate positions between the valleys of the radial slots 6 and the outer circumference. As shown in FIG. 16, the through passage 46 preferably has an elongated cross-sectional shape in the circumferential direction that is the magnetic flux direction in order to ensure the cross-sectional area of the magnetic path in the stator core 32. The split core 33 is formed by stacking electromagnetic steel plates in the axial direction.

また、ステータコア32は連通路45を有する。連通路45は、周方向と軸方向に当接する四個の分割コア33の溝49で形成され、冷却通路44と各貫通路46とを連通させる。連通路45は、図17に示す溝49によれば断面形状が円形となるが、図18に示す溝50によれば、断面形状が正方形となる。また、図19に示す溝51によれば、連通路45の断面形状は正方形又は矩形となる。溝49,50を備えた分割コア33は、溝49,50の形状と配設位置に起因して、電磁鋼板による製造が困難である。そのため、溝49,50を備えた分割コア33は、プレス成型による圧粉鉄心からなることが好ましい。   The stator core 32 has a communication path 45. The communication passage 45 is formed by grooves 49 of four divided cores 33 that are in contact with each other in the circumferential direction and the axial direction, and allows the cooling passage 44 and each through passage 46 to communicate with each other. The cross-sectional shape of the communication path 45 is circular according to the groove 49 shown in FIG. 17, but the cross-sectional shape is square according to the groove 50 shown in FIG. Moreover, according to the groove | channel 51 shown in FIG. 19, the cross-sectional shape of the communicating path 45 becomes a square or a rectangle. The split core 33 provided with the grooves 49 and 50 is difficult to manufacture with a magnetic steel sheet due to the shape and the arrangement position of the grooves 49 and 50. Therefore, it is preferable that the split core 33 provided with the grooves 49 and 50 is made of a pressed iron core by press molding.

押さえ部材13は、ステータコア32の直径とスロット6の谷径との中間寸法の内径と、保持筒23の直径に略等しい外径とを有する円環板を備える。押さえ部材13の円環板の外周には、複数の鍔4が径方向に突設されている。鍔4には、保持筒23の取付孔5と連穿されるように取付孔5が穿孔されている。押さえ部材13の円環板には、ステータコア32の外径より僅かに大きい内径と、保持筒23の段部54の内径より僅かに小さい外径とを有する円筒部2が円環板と同芯に立設されている。円筒部2が段部54とステータコア32との間に嵌挿されたとき、円筒部2の先端が入口8の長手方向の端面に位置するように、円筒部2の高さが設定されている。押さえ部材13の円環板の内周近傍には、ステータコア32の外周近傍で軸方向に貫通する各貫通路46に連通するように穿孔された複数の貫通孔47が設けられている。貫通孔47の形状は、貫通路46の断面形状と同じであることが好ましいが、冷媒が流通可能であれば、異なった形状であってもよい。   The holding member 13 includes an annular plate having an inner diameter that is an intermediate dimension between the diameter of the stator core 32 and the valley diameter of the slot 6 and an outer diameter that is substantially equal to the diameter of the holding cylinder 23. On the outer periphery of the annular plate of the pressing member 13, a plurality of flanges 4 project in the radial direction. A mounting hole 5 is drilled in the flange 4 so as to be continuous with the mounting hole 5 of the holding cylinder 23. The annular plate of the pressing member 13 has a cylindrical portion 2 having an inner diameter slightly larger than the outer diameter of the stator core 32 and an outer diameter slightly smaller than the inner diameter of the step portion 54 of the holding cylinder 23, which is concentric with the annular plate. Is erected. The height of the cylindrical portion 2 is set such that when the cylindrical portion 2 is fitted between the stepped portion 54 and the stator core 32, the tip of the cylindrical portion 2 is positioned on the longitudinal end surface of the inlet 8. . In the vicinity of the inner periphery of the annular plate of the pressing member 13, a plurality of through holes 47 that are perforated so as to communicate with the respective through passages 46 that penetrate in the axial direction in the vicinity of the outer periphery of the stator core 32 are provided. The shape of the through-hole 47 is preferably the same as the cross-sectional shape of the through-passage 46, but may be a different shape as long as the refrigerant can flow therethrough.

このような保持筒23、ステータコア32及び押さえ部材13が図14に示すように組み立てられたとき、保持筒23の内周面である段部54とステータコア32の外周面との間には環状の冷却通路44が形成される。そして、冷却通路44の幅は、段部54と円筒部2によって入口8の長手方向の寸法に区画される。この構成によれば、押さえ部材13が円筒部2を備えるので剛性が向上することにより、ステータコア32の圧締力を増強させることができ、ステータコア32の固定を強固なものとすることができる。さらに、入口8から流入した冷媒は、冷却通路44、連通路45、貫通路46を順次に経由して、ステータコア32の両側にある保持筒23の底面及び押さえ部材13の各貫通孔47から吐出し、スロット6に卷回されたコイルのコイルエンドに雨飛するので、ステータコア23とともにコイルも効果的に冷却することができるという優れた効果を奏する。   When the holding cylinder 23, the stator core 32, and the pressing member 13 are assembled as shown in FIG. 14, there is an annular shape between the step portion 54 that is the inner peripheral surface of the holding cylinder 23 and the outer peripheral surface of the stator core 32. A cooling passage 44 is formed. The width of the cooling passage 44 is defined by the step portion 54 and the cylindrical portion 2 in the longitudinal dimension of the inlet 8. According to this configuration, since the pressing member 13 includes the cylindrical portion 2, the rigidity is improved, whereby the pressing force of the stator core 32 can be increased and the stator core 32 can be firmly fixed. Further, the refrigerant flowing in from the inlet 8 passes through the cooling passage 44, the communication passage 45, and the through passage 46 in order, and is discharged from the bottom surface of the holding cylinder 23 on both sides of the stator core 32 and the through holes 47 of the pressing member 13. And since it rains on the coil end of the coil wound by the slot 6, there exists an outstanding effect that a coil can also be cooled effectively with the stator core 23. FIG.

以上詳述したことから明らかなように、本実施形態のステータの冷却構造によれば、ステータコア30〜32は軸方向に挟持され圧締されるとともに、保持筒20,22,23又は押さえ部材11の内周面とステータコア30〜32の外周面との間に冷却通路40〜44が形成される。そのため、ステータコア30〜32の外周面に広い接触面積を有する冷却通路が形成され、冷媒の大きな流路面積が確保されるので、ステータコア30〜32の冷却が極めて効果的に行われるという優れた効果を奏する。   As is clear from the above detailed description, according to the stator cooling structure of the present embodiment, the stator cores 30 to 32 are clamped and pressed in the axial direction, and the holding cylinders 20, 22, 23 or the pressing member 11. The cooling passages 40 to 44 are formed between the inner peripheral surface of the stator and the outer peripheral surfaces of the stator cores 30 to 32. Therefore, a cooling passage having a wide contact area is formed on the outer peripheral surfaces of the stator cores 30 to 32, and a large flow passage area of the refrigerant is ensured, so that the stator cores 30 to 32 are cooled extremely effectively. Play.

なお、本発明は、当業者の知識に基づいて様々な変更、修正、改良等を加えた態様において実施され得るものを含む。また、前記変更等を加えた実施態様が、本発明の趣旨を逸脱しない限りいずれも本発明の範囲内に含まれるものであることは言うまでもない。   In addition, this invention includes what can be implemented in the aspect which added various change, correction, improvement, etc. based on the knowledge of those skilled in the art. Further, it goes without saying that any of the embodiments to which the above-mentioned changes are added is included in the scope of the present invention without departing from the gist of the present invention.

1 ハウジング
10,11,12,13 押さえ部材
20,21,22,23 保持筒
30,31,32, ステータコア
40,41,42,43,44 冷却通路
1 Housing 10, 11, 12, 13 Holding member 20, 21, 22, 23 Holding cylinder 30, 31, 32, Stator core 40, 41, 42, 43, 44 Cooling passage

Claims (10)

円筒状のステータコア(30〜32)と、
軸方向一端に底面をもつ円筒状を有し、前記底面の内面に前記ステータコア(30〜32)の軸方向一方側端面が当接するように前記ステータコア(30〜32)が内部に挿入される保持筒(20〜23)と、
前記ステータコア(30〜32)の軸方向他方側端面が当接し、前記保持筒(20〜23)とともにハウジング(1)に締着され前記ステータコア(30〜32)を軸方向に圧締する押さえ部材(10〜13)と、
前記保持筒(20,22,23)又は前記押さえ部材(11)の内周面と前記ステータコア(30〜32)の外周面との間に形成される冷却通路(40〜44)と、
を備えることを特徴とするステータの冷却構造。
A cylindrical stator core (30-32);
The stator core (30-32) has a cylindrical shape with a bottom surface at one end in the axial direction, and the stator core (30-32) is inserted into the inner surface of the bottom surface so that one end surface in the axial direction of the stator core (30-32) is in contact with the inner surface. A tube (20-23),
A holding member that abuts the other axial end surface of the stator core (30-32) and is fastened to the housing (1) together with the holding cylinder (20-23) to clamp the stator core (30-32) in the axial direction. (10-13),
A cooling passage (40-44) formed between an inner peripheral surface of the holding cylinder (20, 22, 23) or the pressing member (11) and an outer peripheral surface of the stator core (30-32);
A stator cooling structure comprising:
前記押さえ部材(10)は、前記保持筒(20)に挿入される円筒部(2)を有し、前記冷却通路(40)は、その入口(8)及び出口(9)を備えた前記保持筒(20)内周面の段部(50)と前記円筒部(2)とにより軸方向に区画されることを特徴とする請求項1に記載のステータの冷却構造。   The holding member (10) has a cylindrical portion (2) inserted into the holding cylinder (20), and the cooling passage (40) has the inlet (8) and the outlet (9). 2. The stator cooling structure according to claim 1, wherein the stator is cooled in the axial direction by a step portion (50) on the inner peripheral surface of the tube (20) and the cylindrical portion (2). 前記押さえ部材(11)は、前記保持筒(21)に挿入される円筒部(3)を有し、前記冷却通路(41)は、前記円筒部(3)の内周面に設けた溝部(51)を含めて形成され、前記保持筒(21)及び前記円筒部(3)の外周に連穿された入口(8)及び出口(9)に連通することを特徴とする請求項1に記載のステータの冷却構造。   The pressing member (11) has a cylindrical portion (3) inserted into the holding cylinder (21), and the cooling passage (41) is a groove portion (provided on the inner peripheral surface of the cylindrical portion (3)). 51, and includes an inlet (8) and an outlet (9) that are formed in the outer periphery of the holding cylinder (21) and the cylindrical portion (3). Stator cooling structure. 前記冷却通路(42)は、前記保持筒(22)の内周面に設けた溝部(52)を含めて形成されることを特徴とする請求項1に記載のステータの冷却構造。   The stator cooling structure according to claim 1, wherein the cooling passage (42) is formed including a groove (52) provided on an inner peripheral surface of the holding cylinder (22). 前記冷却通路(43)は、前記ステータコア(31)の外周面に設けた溝部(53)を含めて形成されることを特徴とする請求項1に記載のステータの冷却構造。   The stator cooling structure according to claim 1, wherein the cooling passage (43) is formed including a groove (53) provided on an outer peripheral surface of the stator core (31). 前記ステータコア(32)の径方向の外周近傍で軸方向に貫通する複数の貫通路(46)と、前記各貫通路(46)に前記冷却通路(44)から連通させる連通路(45)とを備えることを特徴とする請求項1に記載のステータの冷却構造。   A plurality of through passages (46) penetrating in the axial direction near the radial outer periphery of the stator core (32), and a communication passage (45) communicating with each through passage (46) from the cooling passage (44). The stator cooling structure according to claim 1, wherein the stator cooling structure is provided. 前記貫通路(46)は、前記ステータコア(32)の周方向に細長い断面形状を有するものであることを特徴とする請求項6に記載のステータの冷却構造。   The stator cooling structure according to claim 6, wherein the through passage (46) has a cross-sectional shape elongated in a circumferential direction of the stator core (32). 前記ステータコア(32)は、複数の分割コア(33)を周方向に積層してなり、前記貫通路(46)は、前記分割コア(33)の積層面に設けた溝(48)により形成されることを特徴とする請求項6又は7に記載のステータの冷却構造。   The stator core (32) is formed by laminating a plurality of divided cores (33) in the circumferential direction, and the through passage (46) is formed by a groove (48) provided on a laminated surface of the divided core (33). The stator cooling structure according to claim 6 or 7, wherein: 前記分割コア(33)は、電磁鋼板を軸方向に積層したものであることを特徴とする請求項6乃至8のいずれか1項に記載のステータの冷却構造。   The stator cooling structure according to any one of claims 6 to 8, wherein the divided core (33) is formed by laminating electromagnetic steel plates in an axial direction. 前記分割コア(33)は、圧粉磁心からなり、軸方向の前記分割コア(33)同士の当接面に前記貫通路(46)を形成する溝(49)を備えることを特徴とする請求項6乃至8のいずれか1項に記載のステータの冷却構造。   The said division | segmentation core (33) consists of a powder magnetic core, and is provided with the groove | channel (49) which forms the said through-passage (46) in the contact surface of the said division | segmentation cores (33) of an axial direction. Item 9. The stator cooling structure according to any one of Items 6 to 8.
JP2012084928A 2012-04-03 2012-04-03 Stator cooling structure Active JP5958029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012084928A JP5958029B2 (en) 2012-04-03 2012-04-03 Stator cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012084928A JP5958029B2 (en) 2012-04-03 2012-04-03 Stator cooling structure

Publications (2)

Publication Number Publication Date
JP2013215056A true JP2013215056A (en) 2013-10-17
JP5958029B2 JP5958029B2 (en) 2016-07-27

Family

ID=49588019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012084928A Active JP5958029B2 (en) 2012-04-03 2012-04-03 Stator cooling structure

Country Status (1)

Country Link
JP (1) JP5958029B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017045478A1 (en) * 2015-09-14 2017-03-23 舍弗勒技术股份两合公司 Coolant sleeve and fixing device thereof and electric machine
JPWO2018216168A1 (en) * 2017-05-25 2019-11-07 三菱電機株式会社 Electric motor, compressor and air conditioner
JP2022527245A (en) * 2019-06-04 2022-06-01 華為数字能源技術有限公司 Motors, motor cooling systems, and electric vehicles
DE102021212361A1 (en) 2021-11-03 2023-05-04 Zf Friedrichshafen Ag Stator with a stiffening ring and electric drive train with the stator

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108512U (en) * 1976-02-16 1977-08-18
JPS62152659U (en) * 1986-03-18 1987-09-28
JPH03500839A (en) * 1987-10-26 1991-02-21 ブルーム、アルベルト electric motor
JPH03261348A (en) * 1990-03-12 1991-11-21 Hitachi Ltd Oil-cooled alternator
JPH09154257A (en) * 1995-11-28 1997-06-10 Nippei Toyama Corp Built-in motor
JPH10117451A (en) * 1996-10-11 1998-05-06 Hitachi Ltd Concentrated winding dynamo-electric machine, and electric vehicle
JP2005143268A (en) * 2003-11-10 2005-06-02 Toyota Central Res & Dev Lab Inc Rotary electric machine
JP2006101672A (en) * 2004-09-30 2006-04-13 Hitachi Industrial Equipment Systems Co Ltd Rotating machine containing fluid flow path
JP2009022145A (en) * 2007-07-13 2009-01-29 Aisin Aw Co Ltd Cooling structure of rotating electric machine
WO2010026726A1 (en) * 2008-09-03 2010-03-11 Ntn株式会社 Vehicle drive motor
JP2011167045A (en) * 2010-02-15 2011-08-25 Nsk Ltd Motor cooling structure and in-wheel motor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108512U (en) * 1976-02-16 1977-08-18
JPS62152659U (en) * 1986-03-18 1987-09-28
JPH03500839A (en) * 1987-10-26 1991-02-21 ブルーム、アルベルト electric motor
JPH03261348A (en) * 1990-03-12 1991-11-21 Hitachi Ltd Oil-cooled alternator
JPH09154257A (en) * 1995-11-28 1997-06-10 Nippei Toyama Corp Built-in motor
JPH10117451A (en) * 1996-10-11 1998-05-06 Hitachi Ltd Concentrated winding dynamo-electric machine, and electric vehicle
JP2005143268A (en) * 2003-11-10 2005-06-02 Toyota Central Res & Dev Lab Inc Rotary electric machine
JP2006101672A (en) * 2004-09-30 2006-04-13 Hitachi Industrial Equipment Systems Co Ltd Rotating machine containing fluid flow path
JP2009022145A (en) * 2007-07-13 2009-01-29 Aisin Aw Co Ltd Cooling structure of rotating electric machine
WO2010026726A1 (en) * 2008-09-03 2010-03-11 Ntn株式会社 Vehicle drive motor
JP2011167045A (en) * 2010-02-15 2011-08-25 Nsk Ltd Motor cooling structure and in-wheel motor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017045478A1 (en) * 2015-09-14 2017-03-23 舍弗勒技术股份两合公司 Coolant sleeve and fixing device thereof and electric machine
US10468939B2 (en) 2015-09-14 2019-11-05 Schaeffler Technologies AG & Co. KG Coolant sleeve and fixing device thereof and electric machine
JPWO2018216168A1 (en) * 2017-05-25 2019-11-07 三菱電機株式会社 Electric motor, compressor and air conditioner
US11296560B2 (en) 2017-05-25 2022-04-05 Mitsubishi Electric Corporation Motor, compressor, and air conditioner
JP7090605B2 (en) 2017-05-25 2022-06-24 三菱電機株式会社 Motors, compressors and air conditioners
JP2022527245A (en) * 2019-06-04 2022-06-01 華為数字能源技術有限公司 Motors, motor cooling systems, and electric vehicles
JP7231758B2 (en) 2019-06-04 2023-03-01 華為数字能源技術有限公司 Motors, motor cooling systems, and electric vehicles
DE102021212361A1 (en) 2021-11-03 2023-05-04 Zf Friedrichshafen Ag Stator with a stiffening ring and electric drive train with the stator
WO2023078800A1 (en) 2021-11-03 2023-05-11 Zf Friedrichshafen Ag Stator with a reinforcing ring and electrical drive train with the stator

Also Published As

Publication number Publication date
JP5958029B2 (en) 2016-07-27

Similar Documents

Publication Publication Date Title
US11387710B2 (en) Stator for an axial flux machine and method for producing the same
EP2961043B1 (en) Rotor of rotary electric machine
JP4664737B2 (en) Cooling structure of rotating electric machine
JP6079733B2 (en) Rotating electrical machine rotor
JP5958029B2 (en) Stator cooling structure
JP2013017280A (en) Stator, rotary machine, and insulation member manufacturing method
JP2015177706A (en) Rotor structure of rotary electric machine
JP5740416B2 (en) Rotating electric machine
US10868453B2 (en) Rotor of rotating electric machine
JP5354780B2 (en) Stator
JP2012005180A (en) Cooling structure of rotary electric machine
JP2012235546A (en) Rotor and rotating electric machine
JP2013099222A (en) Rotor and rotary electric machine
JP2019216555A (en) Rotor and rotary electric machine
JP2008086130A (en) Motor
JP2013013225A (en) Rotating electric machine
JP2011004586A (en) Power generation hub
JP6309178B1 (en) Stator core piece and rotating electric machine
JP5710886B2 (en) Rotating electric machine
JP2011254616A (en) Laminated stator core
JP2016025674A (en) Rotary electric machine and rotator
JP2010213387A (en) Stator and motor
JP2015180150A (en) Stator core, rotary electric machine, and method of manufacturing stator core
JP2016005305A (en) Rotary electric machine rotor
JP2018186604A (en) Rotor core of rotary electric machine and rotor of rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160606

R151 Written notification of patent or utility model registration

Ref document number: 5958029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250