JP2013214640A - Temperature control device - Google Patents

Temperature control device Download PDF

Info

Publication number
JP2013214640A
JP2013214640A JP2012084674A JP2012084674A JP2013214640A JP 2013214640 A JP2013214640 A JP 2013214640A JP 2012084674 A JP2012084674 A JP 2012084674A JP 2012084674 A JP2012084674 A JP 2012084674A JP 2013214640 A JP2013214640 A JP 2013214640A
Authority
JP
Japan
Prior art keywords
temperature
conversion element
thermoelectric conversion
temperature control
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012084674A
Other languages
Japanese (ja)
Other versions
JP6031802B2 (en
Inventor
Akihiro Morimoto
晃弘 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2012084674A priority Critical patent/JP6031802B2/en
Publication of JP2013214640A publication Critical patent/JP2013214640A/en
Application granted granted Critical
Publication of JP6031802B2 publication Critical patent/JP6031802B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a temperature control device that achieves low power consumption using a thermoelectric conversion element.SOLUTION: A temperature control device includes: a temperature measurement element 3 that measures a temperature of a thermoelectric conversion element 1 disposed so as to be capable of exchanging heat with a temperature adjustment object 9; and a driving circuit 2 that switches between ON and OFF of power supply to the thermoelectric conversion element 1 and outputs current or voltage corresponding to a difference between the measured temperature and a target temperature. The temperature control device controls a temperature of the temperature adjustment object 9 by driving the thermoelectric conversion element by means of the output of the driving circuit 2 so as to perform temperature adjustment driving in a cooling or heating mode. The temperature control device includes: extraction means 4 for, when the output from the drive circuit 2 to the thermoelectric conversion element 1 is OFF, extracting power by voltage generated by the temperature difference occurring at the thermoelectric conversion element 1; and polarity matching means 5 for establishing matching of a polarity of the voltage generated by the temperature difference occurring at the thermoelectric conversion element 1.

Description

本発明は、温調対象物の温度を制御する温度制御装置に関する。   The present invention relates to a temperature control device that controls the temperature of a temperature control object.

ペルチェ素子等の熱電変換素子を用いて温調対象物の温度制御を行う装置が知られている。熱電変換素子を採用することにより精密な温度調整が実現できる。   An apparatus that performs temperature control of a temperature-controlled object using a thermoelectric conversion element such as a Peltier element is known. Precise temperature adjustment can be realized by employing a thermoelectric conversion element.

熱電変換素子の性質を利用して温調対象物の熱を電力として回収することができる温度制御装置が特許文献1及び2などに開示されている。また、特許文献3には、熱源の廃熱を利用して発電を行う熱発電装置が開示されている。   Patent Documents 1 and 2 disclose temperature control devices that can recover the heat of a temperature-controlled object as electric power using the properties of thermoelectric conversion elements. Patent Document 3 discloses a thermoelectric generator that generates power using waste heat of a heat source.

ところで、今日、CO排出量削減のために、様々な電子機器の低消費電力化が要求されている。特に、パソコンや携帯電話などの端末を用いたインターネットは、年々全世界の利用者人口が増加し、動画配信による情報量も増加している。そして、利用者や情報量の増加に伴い、光ファイバーを用いた通信網の敷設が増加し、伝送距離も増加し続けているため、光通信システムの低消費電力化の要求が高い。光通信システムには温度により特性が変化する光学素子(能動部品)が用いられることがあり、その温度を安定化させるために温度制御装置が採用されることが多い。前述のように、光通信システムは多数施設する必要が有り、そこに採用される温度制御装置も多数になるため、温度制御装置の1つ1つでは僅かな省電力化であっても全体として考えると膨大な省エネルギー化を実現することができる。従って温度制御装置については、低消費電力化の装置の需要が高い。 By the way, today, in order to reduce CO 2 emissions, it is required to reduce the power consumption of various electronic devices. In particular, with the Internet using terminals such as personal computers and mobile phones, the worldwide user population is increasing year by year, and the amount of information distributed through video distribution is also increasing. As the number of users and the amount of information increase, the laying of communication networks using optical fibers increases and the transmission distance continues to increase. Therefore, there is a high demand for lower power consumption in optical communication systems. In an optical communication system, an optical element (active component) whose characteristics change depending on the temperature may be used, and a temperature control device is often employed to stabilize the temperature. As described above, since it is necessary to provide a large number of optical communication systems and a large number of temperature control devices are employed there, even if each of the temperature control devices has a small amount of power saving, as a whole. Considering this, enormous energy savings can be realized. Therefore, as for the temperature control device, there is a high demand for a device with low power consumption.

特開2008−71879号公報JP 2008-71879 A 特開2003−265626号公報JP 2003-265626 A 特開2011−239638号公報JP 2011-239638 A

本発明は、上記状況に鑑みてなされたもので、熱電変換素子を用いた低消費電力となる温度制御装置を提供することを解決すべき課題とする。   This invention is made | formed in view of the said situation, and makes it the subject which should be solved to provide the temperature control apparatus used as a low power consumption using a thermoelectric conversion element.

上記課題を解決するための請求項1に係る発明の構成上の特徴は、温調対象物との間で熱の授受ができるように配設される熱電変換素子の温度、及び/又は前記温調対象物の温度を測定する温度測定素子と、前記熱電変換素子への電力供給のON及びOFFを切り替え前記測定温度及び目標温度の差分に応じた電流又は電圧を出力する駆動回路と、前記駆動回路の前記出力で前記熱電変換素子を冷却又は加熱モードの温調駆動で駆動して前記温調対象物の温度を制御する装置であって、
前記駆動回路から前記熱電変換素子への前記出力がOFFの時、前記熱電変換素子に生じる温度差によって生じる電圧による電力を取り出す取り出し手段と、
前記熱電変換素子に生じる温度差によって生じる前記電圧の極性を整合させる極性整合手段と、
を有することである。
The structural feature of the invention according to claim 1 for solving the above-described problems is that the temperature of a thermoelectric conversion element disposed so as to be able to exchange heat with an object to be controlled and / or the temperature. A temperature measuring element that measures the temperature of the target object, a drive circuit that switches ON and OFF of power supply to the thermoelectric conversion element and outputs a current or voltage corresponding to a difference between the measured temperature and the target temperature, and the drive A device for controlling the temperature of the temperature control object by driving the thermoelectric conversion element by cooling or heating mode temperature control drive with the output of the circuit,
A take-out means for taking out electric power due to a voltage generated by a temperature difference generated in the thermoelectric conversion element when the output from the drive circuit to the thermoelectric conversion element is OFF;
Polarity matching means for matching the polarity of the voltage generated by a temperature difference generated in the thermoelectric conversion element;
It is to have.

また請求項2に係る発明の構成上の特徴は、請求項1において、前記取り出し手段が、前記熱電変換素子を前記温調駆動するための前記駆動回路の前記出力の供給電圧と、前記熱電変換素子に生じる温度差によって生じる前記電圧の極性が一致するときのみ、前記熱電変換素子に生じる温度差によって生じる前記電圧による前記電力を取り出すことである。   According to a second aspect of the present invention, there is provided a structural feature according to the first aspect, wherein in the first aspect, the take-out means supplies the output voltage of the drive circuit for temperature-controlling the thermoelectric conversion element, and the thermoelectric conversion. Only when the polarities of the voltage generated by the temperature difference generated in the elements coincide with each other, the electric power by the voltage generated by the temperature difference generated in the thermoelectric conversion element is taken out.

また請求項3に係る発明の構成上の特徴は、請求項1又は2において、前記電力を前記駆動回路又は前記温調対象物へ供給することである。   A structural feature of the invention according to claim 3 is that, in claim 1 or 2, the power is supplied to the drive circuit or the temperature control object.

また請求項4に係る発明の構成上の特徴は、請求項1〜3の何れか1項において、前記電力を充電するバッテリを有することである。   A structural feature of the invention according to claim 4 is that in any one of claims 1 to 3, the battery has a battery for charging the electric power.

また請求項5に係る発明の構成上の特徴は、請求項4において、前記熱電変換素子に生じる温度差によって生じる前記電圧による前記電力とは異なる電力を前記熱電変換素子に供給可能な給電手段を有し、
前記給電手段の所定の給電値を超える電力を前記熱電変換素子に供給必要な場合、超過分を前記バッテリから供給することである。
A structural feature of the invention according to claim 5 is the power supply means according to claim 4, wherein the thermoelectric conversion element can supply power different from the power due to the voltage caused by a temperature difference generated in the thermoelectric conversion element. Have
When it is necessary to supply power exceeding the predetermined power supply value of the power supply means to the thermoelectric conversion element, the excess is supplied from the battery.

また請求項6に係る発明の構成上の特徴は、請求項4において、温調開始時、前記バッテリから前記熱電変換素子へ電力を供給して前記温調対象物を所定温度範囲内に温調後、前記温調対象物への通電を開始することである。   In addition, the structural feature of the invention according to claim 6 is that in claim 4, at the start of temperature control, power is supplied from the battery to the thermoelectric conversion element, so that the temperature control object is controlled within a predetermined temperature range. Thereafter, energization of the temperature control object is started.

また請求項7に係る発明の構成上の特徴は、請求項1〜6の何れか1項において、光通信用レーザダイオード又は光通信用送受信装置と一体装置であることである。   A structural feature of the invention according to claim 7 is that, in any one of claims 1 to 6, the optical communication laser diode or the optical communication transmitting / receiving device is an integrated device.

請求項1に係る発明においては、温調対象物の温度を制御するために熱電変換素子を冷却モード又は加熱モードの温調駆動する駆動回路が、熱電変換素子を駆動していない時、熱電変換素子に生じる温度差によって生じる電圧による電力を取り出す取り出し手段を有する。取り出した電力は、温度制御装置の駆動にも温調対象物の駆動にもその他どんな用途にも利用することができる。発電用に熱電変換素子を追加したりすることなく、1つの熱電変換素子によって装置が構成できるため、モジュール増加に伴うコストの増加もなく、且つ発電された電力を利用することで、低消費電力の装置を実現することができる。   In the invention which concerns on Claim 1, when the drive circuit which drives the thermoelectric conversion element in the cooling mode or the heating mode in order to control the temperature of the temperature adjustment object does not drive the thermoelectric conversion element, the thermoelectric conversion It has a take-out means for taking out electric power due to a voltage generated by a temperature difference generated in the element. The extracted electric power can be used for driving the temperature control device, driving the temperature control object, or any other purpose. The device can be configured with one thermoelectric conversion element without adding a thermoelectric conversion element for power generation, so there is no increase in cost due to an increase in modules, and low power consumption is achieved by using the generated power. Can be realized.

請求項2に係る発明においては、熱電変換素子を温調駆動するための駆動回路の出力の供給電圧と、熱電変換素子に生じる温度差によって生じる電圧との極性が一致するときのみ、取り出し手段が熱電変換素子に生じる温度差によって生じる電圧による電力を取り出す。例えば、温調対象物の測定温度から、駆動回路が熱電変換素子を加熱モードで制御する極性の供給電圧を出力しているにも関わらず、熱電変換素子に生じる温度差によって生じる電圧の極性が冷却モードである場合、熱電変換素子は冷却モードで駆動するため、温調対象物の温度制御に悪影響を与えることになる。よって、供給電圧の極性と熱電変換素子に生じる電圧の極性とが一致するときのみ電力を取り出すことで、温度制御に影響を与えず、温度制御の精度を維持した発電併用システムを構築することができる。   In the invention according to claim 2, the take-out means is provided only when the polarity of the supply voltage of the output of the drive circuit for temperature-controlled driving of the thermoelectric conversion element and the voltage generated by the temperature difference generated in the thermoelectric conversion element match. The electric power by the voltage produced by the temperature difference which arises in a thermoelectric conversion element is taken out. For example, although the drive circuit outputs a supply voltage having a polarity for controlling the thermoelectric conversion element in the heating mode from the measured temperature of the temperature control object, the polarity of the voltage generated by the temperature difference generated in the thermoelectric conversion element is In the cooling mode, since the thermoelectric conversion element is driven in the cooling mode, the temperature control of the temperature control object is adversely affected. Therefore, it is possible to construct a combined power generation system that maintains the accuracy of temperature control without affecting temperature control by extracting power only when the polarity of the supply voltage matches the polarity of the voltage generated in the thermoelectric conversion element. it can.

請求項3に係る発明においては、取り出し手段によって取り出した電力を、熱電変換素子を駆動する駆動回路や温調対象物の駆動へ供給することで、温度制御装置の低消費電力化や温調対象物の低消費電力化ができる。   In the invention which concerns on Claim 3, the electric power taken out by the taking-out means is supplied to the drive circuit for driving the thermoelectric conversion element and the drive of the temperature adjustment object, thereby reducing the power consumption of the temperature control device and the temperature adjustment object. Power consumption can be reduced.

請求項4に係る発明においては、取り出した電力をバッテリに充電することができるため、電力が必要でない場合は充電しておき、電力が必要なときにその充電した電力を利用することができ、充電した電力を有効利用することができる。   In the invention according to claim 4, since it is possible to charge the battery with the extracted power, if the power is not necessary, the battery is charged, and when the power is necessary, the charged power can be used. The charged power can be used effectively.

請求項5に係る発明においては、熱電変換素子を温調駆動するための電力が給電手段の供給可能な給電値を超えた場合に、バッテリから供給することができるため、給電手段が小型なものであっても温調駆動できる。つまり、消費電力の低い給電手段を利用しても温調駆動に影響を与えずに温度制御することができる。   In the invention which concerns on Claim 5, since the electric power for carrying out the temperature control drive of the thermoelectric conversion element exceeds the electric power feeding value which can supply the electric power feeding means, it can supply from a battery, Therefore The electric power feeding means is small However, temperature control can be performed. That is, temperature control can be performed without affecting the temperature control drive even when power supply means with low power consumption is used.

請求項6に係る発明においては、温調開始時、バッテリから熱電変換素子へ電力を供給して温調対象物を所定温度範囲内に温調後、温調対象物への通電を開始する。バッテリに充電されている電力のみで温調駆動することで、バッテリ以外の電力の消費を低減できる。更には、熱電変換素子を加熱モードで使用する場合、同一消費電力のヒータと比較した場合の発熱量は熱電変換素子の方が大きいため、温調完了までの時間を短縮でき、温調対象物が温調されている状態で始動でき、また始動も早い。   In the invention according to claim 6, at the start of temperature control, power is supplied from the battery to the thermoelectric conversion element, and the temperature control object is temperature-controlled within a predetermined temperature range, and then energization to the temperature control object is started. By controlling the temperature only with the electric power charged in the battery, it is possible to reduce the consumption of electric power other than the battery. Furthermore, when using a thermoelectric conversion element in the heating mode, the amount of heat generated when compared to a heater with the same power consumption is greater in the thermoelectric conversion element, so the time to complete the temperature adjustment can be shortened and the temperature adjustment object The engine can be started with the temperature adjusted, and the start is also fast.

請求項7に係る発明においては、光通信用のシステムと一体装置とすることで、光通信用のシステムを低消費電力で安定駆動させることができる。   According to the seventh aspect of the present invention, the system for optical communication can be stably driven with low power consumption by forming an integrated device with the system for optical communication.

実施形態1の温度制御装置の構成を示す回路図である。1 is a circuit diagram illustrating a configuration of a temperature control device according to a first embodiment. 実施形態2の温度制御装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the temperature control apparatus of Embodiment 2. 実施形態2の温度制御装置に駆動回路の駆動モード及び熱電変換素子に生じる電圧の極性を各温度状況で場合分けした表である。5 is a table in which the drive mode of the drive circuit and the polarity of the voltage generated in the thermoelectric conversion element are classified according to each temperature condition in the temperature control apparatus of the second embodiment. 実施形態3の温度制御装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the temperature control apparatus of Embodiment 3. 実施形態4の温度制御装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the temperature control apparatus of Embodiment 4.

以下、実施形態を用いて本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described using embodiments.

(実施形態1)
本実施形態の温度制御装置の構成を図1に示す。本実施形態の温度制御装置は温調対象物9の温度を所定範囲内に制御する装置であり、熱電変換素子を構成要素に含む熱電変換モジュール(Thermo Electric Cooler:以下「TEC」と適宜称する)1と、TECコントローラ(駆動回路)2と、温度測定素子3と、駆動・発電切替手段(取り出し手段)4と、極性整合手段5とを有する。ここで、所定範囲は温調対象物9に要求される特性に応じて決定される。温調対象物9としてはレーザー発振器などが例示される。
(Embodiment 1)
The configuration of the temperature control apparatus of this embodiment is shown in FIG. The temperature control device of this embodiment is a device that controls the temperature of the temperature control object 9 within a predetermined range, and includes a thermoelectric conversion module (Thermo Electric Cooler: hereinafter referred to as “TEC” as appropriate) including a thermoelectric conversion element as a component. 1, a TEC controller (drive circuit) 2, a temperature measuring element 3, a drive / power generation switching means (extraction means) 4, and a polarity matching means 5. Here, the predetermined range is determined according to the characteristics required for the temperature control object 9. Examples of the temperature control object 9 include a laser oscillator.

本実施形態の温度制御装置が温度を制御する温調対象物9は、TEC1との間で熱の授受ができるように配設されている。TEC1が備える熱電変換素子としては、2種類の異なる、金属・半導体を接合したペルチェ素子を採用することが望ましく、特にN型・P型が対になった半導体素子によって構成された冷却素子を採用することが望ましい。N型に接続する端子とP型に接続する端子とに直流電流を流すことで一方の面(N型半導体素子側又はP型半導体素子側。印加する電圧の極性により反転する。図面では上方側)が吸熱(冷却)し、反対の面(図面では下方側)が放熱する(ペルチェ効果)。ここで、温調対象物9はTECの一方の面又は他方の面(温調対象物9側)に接合される。そしてTECの温調対象物9が接合された面とは反対の面にヒートシンク(図略)が接合される。   The temperature control object 9 whose temperature is controlled by the temperature control device of the present embodiment is arranged so that heat can be exchanged with the TEC 1. As the thermoelectric conversion element provided in TEC1, it is desirable to employ two different types of Peltier elements in which metals and semiconductors are joined. In particular, a cooling element composed of a pair of N-type and P-type semiconductor elements is adopted. It is desirable to do. By applying a direct current to a terminal connected to the N type and a terminal connected to the P type, one surface (N type semiconductor element side or P type semiconductor element side is inverted depending on the polarity of the applied voltage. ) Absorbs heat (cools), and the opposite surface (lower side in the drawing) dissipates heat (Peltier effect). Here, the temperature control object 9 is joined to one surface of the TEC or the other surface (temperature control object 9 side). And a heat sink (not shown) is joined to the surface opposite to the surface to which the temperature control object 9 of TEC is joined.

熱電変換素子は電源の極性を逆にすることで、吸熱・放熱の切り替えも可能となる。また、両面に温度差を与えることによって発電することも可能となる(ゼーベック効果)。TEC1は、TEC1に直流電流を流すための2つの端子、端子cと端子dとが取り付けられている。   The thermoelectric conversion element can switch between heat absorption and heat dissipation by reversing the polarity of the power source. It is also possible to generate power by giving a temperature difference on both sides (Seebeck effect). The TEC 1 is provided with two terminals, a terminal c and a terminal d, for passing a direct current through the TEC 1.

温度測定素子3は、TEC1に取り付けられており、温調対象物9の温度やその温度に関連する温度(温調対象物側温度)を測定する。なお、温調対象物9の温度を直接測定してもよい。   The temperature measuring element 3 is attached to the TEC 1 and measures the temperature of the temperature adjustment object 9 and the temperature related to the temperature (temperature adjustment object side temperature). In addition, you may measure the temperature of the temperature control target object 9 directly.

TECコントローラ2は、温度測定素子3によって測定された温調対象物側温度が予め設定された目標温度になるようTEC1へ出力する電力の制御を行う。電力制御の方法としては少なくともTEC1への電力の出力を行わないOFFの状態をもつ制御を行う。具体的には単純なオンオフ制御の他、PWM制御などのOFF状態を含む制御を用いる。また、ON状態においては100%の出力を行うほか、PID制御のような大きさを連続的に制御する方法、PAM制御などの公知の制御方法を組み合わせて採用することもできる。特にOFF状態をTECコントローラ2により作成しなくても駆動・発電切替手段4により、端子(a,b)と端子(c、d)との間を切断することによりOFF状態を実現する構成であっても良い。本実施形態の装置はOFFの時間があるとその時間に電力の回収を行う装置である。   The TEC controller 2 controls electric power output to the TEC 1 so that the temperature adjustment target side temperature measured by the temperature measuring element 3 becomes a preset target temperature. As a power control method, at least control with an OFF state in which power output to the TEC 1 is not performed is performed. Specifically, in addition to simple on / off control, control including OFF state such as PWM control is used. In addition, 100% output is performed in the ON state, and a method of continuously controlling the magnitude such as PID control and a known control method such as PAM control can be used in combination. In particular, the OFF state can be realized by cutting the terminal (a, b) and the terminal (c, d) by the drive / power generation switching means 4 without creating the OFF state by the TEC controller 2. May be. The apparatus according to the present embodiment is an apparatus that collects power during an OFF time.

TECコントローラ2は、後述する駆動・発電切替手段4を介してTEC1の端子cと断続される出力aと、TEC1の端子dと断続される出力bとを有する。TECコントローラ2は、目標温度と温調対象物側温度との大小関係に応じてTEC1を冷却又は加熱モードで駆動するため、TEC1への供給電力の電圧の極性を反転する機能を有する。TECコントローラ2には、TEC1を温調駆動するためにTECコントローラ2が電力を出力する(H)か出力しない(L)かのどちらかの信号を出力するTEC電圧モニタ21が取り付けられており、TEC電圧モニタ21からの信号がトランジスタ71のベースに接続されている。トランジスタ71は、信号がHigh(H)のであればONになり、Aの電位(出力)がLow(L)になる。信号がLであれればトランジスタ71はOFFになり、Aの出力はHになる。ここで、TEC電圧モニタ21は温調対象物側温度(温度測定素子3から算出される)と目標温度との差が所定の範囲(目標温度範囲)内にある場合にはLを出力しそれ以上の温度制御は必要無いと判断し、目標温度範囲を超えている場合にはHを出力し継続的な温度制御を行う必要があると判断する。TECコントローラ2の端子a及び端子bからTEC1に出力される電力の極性は、温調対象物側温度が目標温度範囲を超えているときには冷却されるように、反対に目標温度範囲を下回っている場合には加熱するように制御される。TEC電圧モニタ21の出力がL(すなわち温調を行う必要が無いと判断した場合)には端子a及び端子bの状態はどのような状態であってもよく特に限定しない。   The TEC controller 2 has an output a that is intermittently connected to the terminal c of the TEC1 and an output b that is intermittently connected to the terminal d of the TEC1 via a drive / power generation switching unit 4 described later. The TEC controller 2 has a function of inverting the polarity of the voltage of the power supplied to the TEC 1 in order to drive the TEC 1 in the cooling or heating mode according to the magnitude relationship between the target temperature and the temperature adjustment target side temperature. The TEC controller 2 is equipped with a TEC voltage monitor 21 that outputs either a signal (H) or no output (L) from the TEC controller 2 to power-control the TEC 1. A signal from the TEC voltage monitor 21 is connected to the base of the transistor 71. The transistor 71 is turned on when the signal is High (H), and the potential (output) of A is Low (L). If the signal is L, the transistor 71 is turned OFF and the output of A is H. Here, the TEC voltage monitor 21 outputs L when the difference between the temperature adjustment object side temperature (calculated from the temperature measuring element 3) and the target temperature is within a predetermined range (target temperature range). It is determined that the above temperature control is not necessary, and if it exceeds the target temperature range, it is determined that it is necessary to output H and perform continuous temperature control. On the contrary, the polarity of the electric power output from the terminals a and b of the TEC controller 2 to the TEC 1 is lower than the target temperature range so that the temperature is controlled when the temperature adjustment target side temperature exceeds the target temperature range. In some cases, the heating is controlled. When the output of the TEC voltage monitor 21 is L (that is, when it is determined that it is not necessary to perform temperature control), the terminal a and the terminal b may be in any state and are not particularly limited.

駆動・発電切替手段4は、TEC1の端子(c、d)がTECコントローラ2の端子(a、b)と接続するか、TEC1の端子(c、d)がTECコントローラ2の端子(a、b)とは切断されて後述する極性整合手段5に接続するかを切り替えることができる手段である。駆動・発電切替手段4の切り替えは、Aから入力される電圧がHigh(H)かLow(L)かで行われる。駆動・発電切替手段4は、例えば、セレクタICやリレーなどを用いることができる。温調対象物側温度が目標温度範囲内に到達していない場合、TECコントローラ2は、TEC1を冷却モードか加熱モードかで駆動しようとするための出力がある。TECコントローラ2の出力があることで、TEC電圧モニタ21もトランジスタ71へHの信号を出力するのでトランジスタ71がONし、駆動・発電切替手段4にLが入力される。このようにLが入力されたときに駆動・発電切替手段4は、TEC1とTECコントローラ2とを接続して温度調節を行う。   The drive / power generation switching means 4 is configured such that the terminals (c, d) of the TEC 1 are connected to the terminals (a, b) of the TEC controller 2, or the terminals (c, d) of the TEC 1 are connected to the terminals (a, b) of the TEC controller 2. ) Is a means that can be switched between being disconnected and connected to the polarity matching means 5 described later. The drive / power generation switching means 4 is switched depending on whether the voltage input from A is High (H) or Low (L). As the drive / power generation switching unit 4, for example, a selector IC, a relay, or the like can be used. When the temperature adjustment target side temperature does not reach the target temperature range, the TEC controller 2 has an output for driving the TEC 1 in the cooling mode or the heating mode. Since the output of the TEC controller 2 is output, the TEC voltage monitor 21 also outputs an H signal to the transistor 71, so that the transistor 71 is turned on and L is input to the drive / power generation switching means 4. Thus, when L is input, the drive / power generation switching means 4 connects the TEC 1 and the TEC controller 2 to adjust the temperature.

温調対象物側温度が目標温度範囲内に到達した場合、TEC1が冷却モードか加熱モードかのどちらでも駆動しないように、TECコントローラ2は出力を停止する。TEC電圧モニタ21は、TECコントローラ2の出力がないため、Lが出力され、トランジスタ71のベースには入力がなく、トランジスタ71はOFFする。そして、駆動・発電切替手段4を制御するためのAの電位はHとなり、駆動・発電切替手段4はTEC1と極性整合手段5とを接続する。   When the temperature adjustment target side temperature reaches the target temperature range, the TEC controller 2 stops the output so that the TEC 1 is not driven in either the cooling mode or the heating mode. Since there is no output from the TEC controller 2, the TEC voltage monitor 21 outputs L, there is no input at the base of the transistor 71, and the transistor 71 is turned off. Then, the potential of A for controlling the drive / power generation switching unit 4 becomes H, and the drive / power generation switching unit 4 connects the TEC 1 and the polarity matching unit 5.

極性整合手段5は、駆動・発電切替手段4を介してTEC1の2つの端子、端子cと端子dと断続可能に接続し、出力がTECコントローラ2の入力側に接続される。極性整合手段5は、ダイオードブリッジで構成され、TECに加わる温度差によって生じる電圧の極性に関わらず、一定の極性を出力するように整合させる。TEC1に発生した温度差によって生じる電圧による電力は、極性整合手段5を介してTECコントローラ2を駆動する電力として、TECコントローラ2に入力される。なお、極性整合手段5から出力された電圧は、昇圧部72によって適宜昇圧され、TECコントローラ2に入力される。通常、TEC1から出力される電圧は小さいことが多いため、昇圧部72によって昇圧されてからTECコントローラ2に入力される。TECコントローラ2には、TEC1に生じる電圧による電力以外の電力、外部電源(給電手段)Vccからの電力が入力される構成である。   The polarity matching unit 5 is connected to the two terminals of the TEC 1, the terminal c and the terminal d via the drive / power generation switching unit 4 in an intermittent manner, and the output is connected to the input side of the TEC controller 2. The polarity matching means 5 is composed of a diode bridge and performs matching so as to output a constant polarity regardless of the polarity of the voltage generated by the temperature difference applied to the TEC. The electric power due to the voltage generated by the temperature difference generated in the TEC 1 is input to the TEC controller 2 as electric power for driving the TEC controller 2 via the polarity matching means 5. The voltage output from the polarity matching unit 5 is appropriately boosted by the booster 72 and input to the TEC controller 2. Usually, the voltage output from the TEC 1 is often small, so that it is boosted by the booster 72 and then input to the TEC controller 2. The TEC controller 2 is configured to receive power other than power generated by the voltage generated in the TEC 1 and power from an external power supply (power supply unit) Vcc.

本実施形態の温度制御装置によれば、TEC1が温調駆動しないとき(TECコントローラ2からの出力がないとき)、TEC1に加わる温度差によって生じる電圧による電力を駆動・発電切替手段4の接続を切り替えて、TECコントローラ2に入力する(取り出して使う)ことができる。なお、生じた電圧は、極性整合手段5を介することで一定の極性で出力され、また昇圧部72において昇圧される。当該温度制御装置では、温調駆動されるのも発電された電力を取り出すのも1つのTEC1であり、別のTECを追加するコストの増加もなく、且つ発電された電力をTECコントローラ2に入力して電力を補助することができる。つまり、低消費電力の装置である。   According to the temperature control apparatus of the present embodiment, when the TEC 1 is not temperature-controlled (when there is no output from the TEC controller 2), the electric power generated by the temperature difference applied to the TEC 1 is connected to the drive / power generation switching unit 4. It can be switched and input (taken out and used) to the TEC controller 2. The generated voltage is output with a constant polarity via the polarity matching means 5 and boosted by the booster 72. In the temperature control device, the temperature-controlled drive and the generated power are taken out by one TEC 1, there is no increase in the cost of adding another TEC, and the generated power is input to the TEC controller 2. Power can be subsidized. That is, it is a device with low power consumption.

(実施形態2)
本実施形態2の温調制御装置は、図2に示されるように、基本的な構成は実施形態1の温調制御装置と同じ構成及び作用効果を有する。以下では、異なる構成を中心に説明していく。
(Embodiment 2)
As shown in FIG. 2, the temperature control device of the second embodiment has the same configuration and operational effects as the temperature control device of the first embodiment. Below, it demonstrates focusing on a different structure.

本実施形態2の温調制御装置は、TEC1を温調駆動するためのTECコントロール2の出力の供給電圧の極性と、TEC1に生じる電圧の極性とが一致するときのみ、TEC1によって生じる電力を取り出す取り出し手段を有する点で実施形態1と異なる。   The temperature control device according to the second embodiment extracts the electric power generated by the TEC 1 only when the polarity of the supply voltage of the output of the TEC control 2 for driving the TEC 1 to adjust the temperature matches the polarity of the voltage generated in the TEC 1. It differs from the first embodiment in that it has a take-out means.

取り出し手段は、駆動・発電切替手段4、コンパレータ73、論理回路74〜76及びスイッチ77から構成される。そして、TECコントローラ2は、TEC1を冷却モードで駆動する出力の場合は電圧のLow(L)、加熱モードで駆動する出力の場合は電圧のHigh(H)を出力するTEC駆動モードモニタ22を有する。コンパレータ73には、TEC1の端子cと端子dとが駆動・発電切替手段4を介して接続されており、TEC1に生じた電圧の極性を判断した結果が出力され、論理回路74と論理回路75とに入力される。具体的には(温調対象物側温度)>(温調対象物9側の面とは異なる放熱側の面の温度)であり、TEC1より電力を取出すと温調対象物側温度が低下するような場合には(出力cの電位)>(出力dの電位)となりコンパレータ73の出力はHになる。反対に、(温調対象物側温度)<(温調対象物9側の面とは異なる放熱側の面の温度)であり、TEC1より電力を取出すと温調対象物側温度が上昇するような場合には(出力cの電位)<(出力dの電位)となりコンパレータ73の出力はLになる。   The take-out means includes the drive / power generation switching means 4, the comparator 73, logic circuits 74 to 76, and a switch 77. The TEC controller 2 includes a TEC drive mode monitor 22 that outputs a voltage Low (L) in the case of an output that drives the TEC 1 in the cooling mode, and outputs a voltage High (H) in the case of an output that drives the TEC 1 in the heating mode. . The comparator 73 is connected to the terminal c and the terminal d of the TEC 1 via the drive / power generation switching means 4, and outputs the result of judging the polarity of the voltage generated in the TEC 1, and the logic circuit 74 and the logic circuit 75. And input. Specifically, (temperature control object side temperature)> (temperature of the heat dissipation side surface different from the surface of the temperature control object 9 side), and when the electric power is taken out from the TEC 1, the temperature adjustment object side temperature decreases. In such a case, (potential of output c)> (potential of output d), and the output of the comparator 73 becomes H. On the other hand, (temperature control object side temperature) <(temperature of the heat dissipation side surface different from the surface of the temperature control object 9 side), and when the electric power is taken out from the TEC1, the temperature adjustment object side temperature rises. In this case, (potential of output c) <(potential of output d), and the output of the comparator 73 becomes L.

結果、論理回路74〜76により、(a)TECコントローラ2が冷却モードの時であって、TEC1から電力を取出すと温調対象物側温度が下がる場合には論理回路76の出力はHになり、(b)TECコントローラ2が加熱モードの時であって、TEC1から電力を取出すと温調対象物側温度が上がる場合にも論理回路76の出力はHになる。   As a result, when the TEC controller 2 is in the cooling mode by the logic circuits 74 to 76 and the temperature of the temperature adjustment object decreases when the electric power is extracted from the TEC 1, the output of the logic circuit 76 becomes H. (B) When the TEC controller 2 is in the heating mode and the electric power is taken out from the TEC 1, the output of the logic circuit 76 becomes H even when the temperature adjustment target side temperature rises.

論理回路76の出力はスイッチ77に入力されており、Hの入力で接続状態になる。従って、TECコントローラ2がTEC1を駆動しようとするモードに対応する電圧の極性と、TEC1の起電圧の極性とが一致するときのみ、TEC1とスイッチ77とを接続し、極性が一致しない場合は、スイッチ77はTEC1とスイッチ77とを切断する。   The output of the logic circuit 76 is input to the switch 77, and the connection state is established by the input of H. Accordingly, only when the polarity of the voltage corresponding to the mode in which the TEC controller 2 tries to drive the TEC 1 matches the polarity of the electromotive voltage of the TEC 1, the TEC 1 and the switch 77 are connected. The switch 77 disconnects the TEC1 and the switch 77.

図3は、TEC1をペルチェモジュール及びゼーベックモジュールで併用した場合の、TECコントローラ2の駆動モードとTEC1に生じた電圧の極性とを、各温度状況で場合分けした結果である。考えられるケースとして4つある。以下、その4つの場合について説明する。なお、目標温度は45℃として説明する。   FIG. 3 shows the result of dividing the drive mode of the TEC controller 2 and the polarity of the voltage generated in the TEC 1 in each temperature situation when the TEC 1 is used in combination with the Peltier module and the Seebeck module. There are four possible cases. Hereinafter, the four cases will be described. Note that the target temperature is assumed to be 45 ° C.

(ケース1)
温度測定素子3の測定温度(TEC1の一方の面:温調対象物9側の面)は50℃、TEC1の温度測定素子3によって測定される温調対象物9とは反対側(以下、「放熱側」とする)の面の温度が75℃の場合、TECコントローラ2はTEC1の端子c−d間に端子cを正(+)とする電圧(TEC1の一方の面が冷却される極性)を印加し、TEC1は冷却モードで駆動する。デューティ制御などのOFF周期時、TEC1の温調対象物側温度と放熱側の温度との大小関係から、TEC1の端子c−d間に端子dを正とする電圧が発生する。そのため、負荷抵抗を有する閉回路に接続して電力を取り出そうとすると、TEC1の端子c及び端子dには冷却モードで駆動するのとは反対の極性の電流が流れ(端子cは負、端子dは正)、温調対象物側温度は加熱側に加速される。従って、TEC1への電力出力がOFFであってもTEC1から電力を回収しない方が温度調整精度の向上及び投入電力の低減の観点からは望ましい。
(Case 1)
The measurement temperature of the temperature measurement element 3 (one surface of the TEC 1: the surface on the temperature adjustment object 9 side) is 50 ° C., and is opposite to the temperature adjustment object 9 measured by the temperature measurement element 3 of the TEC 1 (hereinafter, “ When the temperature of the surface on the “heat dissipating side” is 75 ° C., the TEC controller 2 sets the voltage at which the terminal c is positive (+) between the terminals cd of the TEC 1 (polarity with which one surface of the TEC 1 is cooled) TEC1 is driven in the cooling mode. During an OFF cycle such as duty control, a voltage with terminal d positive is generated between terminals cd of TEC1 due to the magnitude relationship between the temperature-controlled object side temperature of TEC1 and the temperature of the heat dissipation side. Therefore, when the power is taken out by connecting to a closed circuit having a load resistance, a current having a polarity opposite to that of driving in the cooling mode flows through the terminal c and the terminal d of the TEC 1 (terminal c is negative, terminal d Is positive), the temperature of the temperature controlled object is accelerated to the heating side. Therefore, it is desirable not to collect power from the TEC 1 even when the power output to the TEC 1 is OFF from the viewpoint of improving the temperature adjustment accuracy and reducing the input power.

そのため、本実施形態ではTEC駆動モードモニタ22の出力(TECコントローラ2が端子a及び端子bから出力する電力の極性に応じてHとLとに切り替わる)とTEC1に生じた温度差により端子c及び端子dとの間に生成した電圧の極性(コンパレータ73によりH又はLとに対応づけて出力している)とを論理回路(論理回路74〜76で形成している論理回路)にて比較し、結果、極性が一致しないためスイッチ77は切断状態になるように信号を出力する。   Therefore, in this embodiment, the output of the TEC drive mode monitor 22 (the TEC controller 2 switches between H and L according to the polarity of power output from the terminal a and the terminal b) and the temperature difference generated in the TEC 1 cause the terminals c and The polarity of the voltage generated with respect to the terminal d (output in correspondence with H or L by the comparator 73) is compared with a logic circuit (logic circuit formed by the logic circuits 74 to 76). As a result, since the polarities do not match, the switch 77 outputs a signal so as to be in a disconnected state.

(ケース2)
温度測定素子3の測定温度は40℃、TEC1の放熱側の温度が75℃の場合、TECコントローラ2はTEC1の端子c−d間に端子dを正(+)とする電圧を印加し、TEC1は加熱モードで駆動する。デューティ制御などのOFF周期時、TEC1の温調対象物9側の温度と放熱側の温度との大小関係から、TEC1の端子c−d間に端子dを正とする電圧が発生する。そのため、負荷抵抗を有する閉回路に接続して電力を取り出そうとすると、TEC1の端子c及び端子dには加熱モードで駆動するのと同じ極性の電流が流れ(端子cは負、端子dは正)、温調対象物9側を加熱する加熱モードとなる。よって、供給電圧の極性は端子cが負で端子dが正、TEC1の電圧の極性は端子cが負で端子dが正となり、極性が一致する。この場合、温調対象物9の温度制御の精度が向上し、且つ、温度差を電力として有効に取出すことができる。
(Case 2)
When the measurement temperature of the temperature measuring element 3 is 40 ° C. and the temperature on the heat dissipation side of the TEC 1 is 75 ° C., the TEC controller 2 applies a voltage that makes the terminal d positive (+) between the terminals cd of the TEC 1, Is driven in heating mode. During an OFF cycle such as duty control, a voltage with the terminal d being positive is generated between the terminals cd of the TEC 1 due to the magnitude relationship between the temperature on the temperature control object 9 side of the TEC 1 and the temperature on the heat dissipation side. Therefore, when trying to extract power by connecting to a closed circuit having a load resistance, a current having the same polarity as that of driving in the heating mode flows through the terminal c and the terminal d of the TEC 1 (terminal c is negative and terminal d is positive). ), A heating mode for heating the temperature control object 9 side. Therefore, the polarity of the supply voltage is negative at the terminal c and the terminal d is positive, and the polarity of the voltage at the TEC1 is negative at the terminal c and positive at the terminal d. In this case, the accuracy of temperature control of the temperature control object 9 is improved, and the temperature difference can be effectively taken out as electric power.

(ケース3)
温度測定素子3の温調対象物側温度は50℃、TEC1の放熱側の温度が30℃の場合、TECコントローラ2はTEC1の端子c−d間に端子cを正(+)とする電圧を印加し、TEC1は冷却モードで駆動する。デューティ制御などのOFF周期時、TEC1の温調対象物9側の温度と放熱側の温度との大小関係から、TEC1の端子c−d間に端子cを正とする電圧が発生する。そのため、負荷抵抗を有する閉回路に接続して電力を取り出そうとすると、TEC1の端子c及び端子dには冷却モードで駆動するのと同じ極性の電流が流れ(端子cは正、端子dは負)、温調対象物側温度を冷却する冷却モードとなる。よって、供給電圧の極性は端子cが正で端子dが負、TEC1の電圧の極性は端子cが正で端子dが負となり、極性が一致する。この場合、温調対象物9の温度制御の精度が向上し、且つ、温度差を電力として有効に取出すことができる。
(Case 3)
When the temperature of the temperature measuring object 3 of the temperature measuring element 3 is 50 ° C. and the temperature of the heat dissipation side of the TEC 1 is 30 ° C., the TEC controller 2 sets a voltage that makes the terminal c positive (+) between the terminals cd of the TEC 1. When applied, the TEC1 is driven in a cooling mode. During an OFF cycle such as duty control, a voltage with the terminal c being positive is generated between the terminals cd of the TEC 1 due to the magnitude relationship between the temperature on the temperature adjustment target 9 side of the TEC 1 and the temperature on the heat dissipation side. Therefore, when trying to extract power by connecting to a closed circuit having a load resistance, a current having the same polarity as that of driving in the cooling mode flows through terminals c and d of TEC1 (terminal c is positive and terminal d is negative). ), A cooling mode for cooling the temperature adjustment object side temperature. Therefore, the polarity of the supply voltage is positive at the terminal c and negative at the terminal d, and the polarity of the voltage at the TEC1 is positive at the terminal c and negative at the terminal d. In this case, the accuracy of temperature control of the temperature control object 9 is improved, and the temperature difference can be effectively taken out as electric power.

(ケース4)
温度測定素子3の温調対象物側温度は40℃、TEC1の放熱側の温度が30℃の場合、TECコントローラ2はTEC1の端子c−d間に端子dを正(+)とする電圧を印加し、TEC1は加熱モードで駆動する。デューティ制御などのOFF周期時、TEC1の温調対象物側温度と放熱側の温度との大小関係から、TEC1の端子c−d間に端子cを正とする電圧が発生する。そのため、負荷抵抗を有する閉回路に接続して電力を取り出そうとすると、TEC1は冷却モードで駆動するのと同じ向きの電流が流れ(端子cは正、端子dは負)、温調対象物側温度を冷却する冷却モードとなる。よって、供給電圧の極性は端子cが負で端子dが正、TEC1の電圧の極性は端子cが正で端子dが負となり、極性が一致しない。この場合、温調対象物9を更に冷却するように温調対象物側温度を低下させ、温度制御に影響を及ぼし、温度制御の精度が充分で無くなるおそれがある。
(Case 4)
When the temperature control object side temperature of the temperature measuring element 3 is 40 ° C. and the temperature of the heat dissipation side of the TEC 1 is 30 ° C., the TEC controller 2 sets a voltage that makes the terminal d positive (+) between the terminals cd of the TEC 1. Applied, TEC1 is driven in heating mode. During an OFF cycle such as duty control, a voltage with terminal c positive is generated between terminals cd of TEC1 due to the magnitude relationship between the temperature-controlled object side temperature of TEC1 and the temperature of the heat dissipation side. Therefore, when connecting to a closed circuit having a load resistance and trying to extract power, the current flowing in the same direction as TEC1 is driven in the cooling mode flows (terminal c is positive, terminal d is negative), and the temperature adjustment object side It becomes the cooling mode which cools temperature. Therefore, the polarity of the supply voltage is negative at the terminal c and the terminal d is positive, and the polarity of the voltage at the TEC1 is positive at the terminal c and negative at the terminal d. In this case, the temperature adjustment object side temperature is lowered so as to further cool the temperature adjustment object 9, which affects the temperature control, and the accuracy of the temperature control may be insufficient.

(作用効果)
本実施形態2の温度制御装置は、ケース1〜4のうちケース2とケース3の場合、つまり、TECコントローラ2の出力の供給電圧とTEC1に生じる電圧の極性とが一致する場合のみ、TEC1に生じる電圧による電力を取り出し手段によって取り出し、バッテリに充電する。ケース2とケース3とでは、取り出す電力に係る電圧の極性が異なることが分かる。取り出した電力は、極性整合手段5によって一定の極性で出力され、昇圧部72で昇圧され、バッテリ6に入力される。なお、ケース2及び3の場合にはTECコントローラ2から積極的に電力を供給しないこともできる(つまり、OFF状態を継続する)。そうすると、電力を消費せずに最大限の電力を取出すことができる。TECコントローラ2から電力を供給すると(取出す電力よりも大きな電力を取出した場合)単純に電力を取出した場合と比べて温度制御を速やかに行うことができる。駆動・発電切替手段4による切替は温調精度と電力の取出し量の増大とのバランス(電力の取出し量(取出し時間:OFF状態時間)を増やせばエネルギーの回収量が増大し、TECコントローラ2からの電力投入量(ON時間)を増やせば温度調整をより速やかに行うことができる)を考慮して決定できる。
(Function and effect)
The temperature control apparatus according to the second embodiment is used only in cases 2 and 3 among cases 1 to 4, that is, only when the output voltage of the TEC controller 2 matches the polarity of the voltage generated in TEC 1. Electric power due to the generated voltage is taken out by the take-out means, and the battery is charged. It can be seen that Case 2 and Case 3 have different polarities of the voltage related to the extracted power. The extracted power is output with a certain polarity by the polarity matching means 5, boosted by the booster 72, and input to the battery 6. In cases 2 and 3, it is also possible not to actively supply power from the TEC controller 2 (that is, to keep the OFF state). Then, the maximum power can be taken out without consuming power. When electric power is supplied from the TEC controller 2 (when electric power larger than electric power to be extracted is taken out), temperature control can be performed more quickly than when electric power is simply taken out. Switching by the drive / power generation switching means 4 increases the balance between the temperature control accuracy and the increase in the amount of electric power (if the amount of electric power extracted (extraction time: OFF state time) is increased, the amount of energy recovered increases. The temperature can be adjusted more quickly if the amount of power input (ON time) is increased.

本実施形態2の温度制御装置によれば、TECコントローラ2の出力の供給電圧とTEC1に生じる電圧の極性とが一致する場合のみ、TEC1に生じる電圧による電力を取り出す。そのため、温度制御に悪影響を及ぼさず、温度制御の精度を維持した発電併用システムを構築できる。また、取り出した電力をバッテリ6に一旦蓄電し、温調対象物9の温調開始時などの測定温度と目標温度との差が大きい場合などに蓄電した電力と外部電源Vccの電力とを併用することで本装置の最大消費電力を低減できるため、外部電源を小型化できる。   According to the temperature control apparatus of the second embodiment, the power generated by the voltage generated in TEC1 is taken out only when the supply voltage of the output of TEC controller 2 matches the polarity of the voltage generated in TEC1. Therefore, it is possible to construct a power generation combined system that does not adversely affect temperature control and maintains the accuracy of temperature control. Further, the extracted power is temporarily stored in the battery 6, and the stored power and the power of the external power source Vcc are used in combination when the temperature difference between the measured temperature and the target temperature of the temperature control target 9 is large. As a result, the maximum power consumption of the apparatus can be reduced, and the external power supply can be downsized.

(実施形態3)
本実施形態3の温度制御装置は、図4に示されるように、基本的な構成は実施形態2の温調制御装置と同じ構成及び作用効果を有する。以下では、異なる構成を中心に説明していく。
(Embodiment 3)
As shown in FIG. 4, the temperature control device of the third embodiment has the same configuration and operational effects as the temperature control device of the second embodiment. Below, it demonstrates focusing on a different structure.

本実施形態3の温度制御装置は、新たなトランジスタ78と第2スイッチ79とを有する。トランジスタ78のベースには、TEC電圧モニタ21の出力が入力される。第2スイッチ79は、バッテリ6と外部電源Vcc(TECコントローラ2)との間に位置し、バッテリ6の電力を外部電源Vccに供給するかどうかを、トランジスタ78の出力によって切り替える。TEC1をTECコントローラ2が駆動するかどうかをTEC電圧モニタ21で検知する。TEC電圧モニタ21の出力が所定の値を超えたときにトランジスタ78がONになり、第2スイッチ79はバッテリ6と外部電源Vccとの回路を接続する。第2スイッチ79が接続状態でバッテリ6の電力が外部電源Vccに供給される。バッテリ6の電力を供給するかどうかの開始条件は、トランジスタ78に接続する外部抵抗81及び外部抵抗82の値で設定することができる。また、トランジスタ78はオペアンプでコンパレータを構成し、バッテリ6の電力を供給開始する条件に、ヒステリシスを設ける構成でもよい。   The temperature control apparatus according to the third embodiment includes a new transistor 78 and a second switch 79. The output of the TEC voltage monitor 21 is input to the base of the transistor 78. The second switch 79 is located between the battery 6 and the external power supply Vcc (TEC controller 2), and switches whether the power of the battery 6 is supplied to the external power supply Vcc according to the output of the transistor 78. The TEC voltage monitor 21 detects whether the TEC controller 2 drives the TEC 1. When the output of the TEC voltage monitor 21 exceeds a predetermined value, the transistor 78 is turned on, and the second switch 79 connects the circuit of the battery 6 and the external power supply Vcc. With the second switch 79 connected, the power of the battery 6 is supplied to the external power source Vcc. The start condition for determining whether or not to supply power to the battery 6 can be set by the values of the external resistor 81 and the external resistor 82 connected to the transistor 78. In addition, the transistor 78 may be configured by an operational amplifier to form a comparator, and a hysteresis may be provided as a condition for starting the supply of the battery 6 power.

(実施形態4)
本実施形態4の温度制御装置は、図5に示されるように、基本的な構成は実施形態2の温調制御装置と同じ構成及び作用効果を有する。以下では、異なる構成を中心に説明していく。
(Embodiment 4)
As shown in FIG. 5, the temperature control device according to the fourth embodiment has the same configuration and operational effects as the temperature control device according to the second embodiment. Below, it demonstrates focusing on a different structure.

本実施形態4の温度制御装置は、新たなコンパレータ83と第2スイッチ79とを有する。コンパレータ83は、温度測定素子3の測定温度と、コンパレータ73に接続した外部抵抗84で予め設定した温度閾値とを比較する。温調開始時などの測定温度と目標温度との差が大きい場合に、コンパレータ83の出力電圧がHigh(H)となると、第2スイッチ79はバッテリ6と外部電源Vccとの回路を接続する。第2スイッチ79が接続状態でバッテリ6の電力が外部電源Vccに供給される。なお、バッテリ6の電力を供給するかどうかの開始条件は、コンパレータ83に接続した外部抵抗84の値で設定することができる。外部抵抗84の設定(温度閾値)をマイコンやDACで構成することができ、バッテリ6の充電状態に応じて外部抵抗84の温度閾値を変更できるように可変式を採用することもできる。   The temperature control apparatus according to the fourth embodiment includes a new comparator 83 and a second switch 79. The comparator 83 compares the measured temperature of the temperature measuring element 3 with a temperature threshold set in advance by an external resistor 84 connected to the comparator 73. When the difference between the measured temperature and the target temperature at the start of temperature control or the like is large, when the output voltage of the comparator 83 becomes High (H), the second switch 79 connects the circuit of the battery 6 and the external power supply Vcc. With the second switch 79 connected, the power of the battery 6 is supplied to the external power source Vcc. Note that the start condition for determining whether or not to supply power to the battery 6 can be set by the value of the external resistor 84 connected to the comparator 83. The setting (temperature threshold value) of the external resistor 84 can be configured by a microcomputer or a DAC, and a variable type can be adopted so that the temperature threshold value of the external resistor 84 can be changed according to the state of charge of the battery 6.

本実施形態4の温度制御装置によれば、測定温度と目標温度との差が大きく、温度上昇又は温度下降の幅が大きい、すなわち電力消費量が大きい際に、バッテリ6の電力を供給することで、外部電源のピーク電力を低減することができる。   According to the temperature control apparatus of the fourth embodiment, the power of the battery 6 is supplied when the difference between the measured temperature and the target temperature is large and the range of temperature increase or temperature decrease is large, that is, the power consumption is large. Thus, the peak power of the external power supply can be reduced.

(その他の実施形態)
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、TEC1に生じた温度差によって発生する電圧による電力は、TECコントローラ2に入力されるのではなく、温調対象物9に入力される構成でもよい。
(Other embodiments)
The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, the power generated by the voltage generated by the temperature difference generated in the TEC 1 may be input to the temperature adjustment object 9 instead of being input to the TEC controller 2.

1:熱電変換素子(TEC)、
2:TECコントローラ(駆動回路)、 21:TEC電圧モニタ、
22:TEC駆動モードモニタ、
3:温度測定素子、
4:駆動・発電切替手段(取り出し手段)、
5:極性整合手段、
6:バッテリ、
71、78:トランジスタ、 72:昇圧部、 73、83:コンパレータ、
75〜76:論理回路、 77:スイッチ、 79:第2スイッチ、
81、82、84:外部抵抗、
9:温調対象物。
1: Thermoelectric conversion element (TEC),
2: TEC controller (drive circuit), 21: TEC voltage monitor,
22: TEC drive mode monitor,
3: Temperature measuring element,
4: Driving / power generation switching means (extraction means),
5: Polarity matching means,
6: Battery
71, 78: Transistor, 72: Boosting unit, 73, 83: Comparator,
75 to 76: logic circuit, 77: switch, 79: second switch,
81, 82, 84: external resistance,
9: Temperature control object.

Claims (7)

温調対象物との間で熱の授受ができるように配設される熱電変換素子の温度、及び/又は前記温調対象物の温度を測定する温度測定素子と、前記熱電変換素子への電力供給のON及びOFFを切り替え前記測定温度及び目標温度の差分に応じた電流又は電圧を出力する駆動回路と、前記駆動回路の前記出力で前記熱電変換素子を冷却又は加熱モードの温調駆動で駆動して前記温調対象物の温度を制御する装置であって、
前記駆動回路から前記熱電変換素子への前記出力がOFFの時、前記熱電変換素子に生じる温度差によって生じる電圧による電力を取り出す取り出し手段と、
前記熱電変換素子に生じる温度差によって生じる前記電圧の極性を整合させる極性整合手段と、
を有することを特徴とする温度制御装置。
A temperature measuring element for measuring the temperature of a thermoelectric conversion element disposed so as to be able to transfer heat to and from the temperature control object, and / or a temperature of the temperature control object, and power to the thermoelectric conversion element A drive circuit that switches supply ON and OFF and outputs a current or voltage corresponding to the difference between the measured temperature and the target temperature, and the thermoelectric conversion element is driven by temperature control drive in a cooling or heating mode with the output of the drive circuit A device for controlling the temperature of the temperature control object,
A take-out means for taking out electric power due to a voltage generated by a temperature difference generated in the thermoelectric conversion element when the output from the drive circuit to the thermoelectric conversion element is OFF;
Polarity matching means for matching the polarity of the voltage generated by a temperature difference generated in the thermoelectric conversion element;
A temperature control device comprising:
前記取り出し手段は、前記熱電変換素子を前記温調駆動するための前記駆動回路の前記出力の供給電圧と、前記熱電変換素子に生じる温度差によって生じる前記電圧の極性が一致するときのみ、前記熱電変換素子に生じる温度差によって生じる前記電圧による前記電力を取り出す請求項1に記載の温度制御装置。   The take-out means is provided only when the supply voltage of the output of the drive circuit for temperature-controlling the thermoelectric conversion element matches the polarity of the voltage generated by the temperature difference generated in the thermoelectric conversion element. The temperature control device according to claim 1, wherein the electric power is extracted from the voltage generated by a temperature difference generated in the conversion element. 前記電力を前記駆動回路又は前記温調対象物へ供給する請求項1又は2に記載の温度制御装置。   The temperature control apparatus according to claim 1, wherein the electric power is supplied to the drive circuit or the temperature control object. 前記電力を充電するバッテリを有する請求項1〜3の何れか1項に記載の温度制御装置。   The temperature control apparatus of any one of Claims 1-3 which have a battery which charges the said electric power. 前記熱電変換素子に生じる温度差によって生じる前記電圧による前記電力とは異なる電力を前記熱電変換素子に供給可能な給電手段を有し、
前記給電手段の所定の給電値を超える電力を前記熱電変換素子に供給必要な場合、超過分を前記バッテリから供給する前記請求項4に記載の温度制御装置。
Power supply means capable of supplying the thermoelectric conversion element with power different from the power due to the voltage generated by the temperature difference generated in the thermoelectric conversion element;
The temperature control device according to claim 4, wherein when it is necessary to supply power exceeding a predetermined power supply value of the power supply means to the thermoelectric conversion element, the excess is supplied from the battery.
温調開始時、前記バッテリから前記熱電変換素子へ電力を供給して前記温調対象物を所定温度範囲内に温調後、前記温調対象物への通電を開始する請求項4に記載の温度制御装置。   The power supply to the said thermoelectric conversion element is started after supplying electric power from the said battery to the said thermoelectric conversion element at the time of temperature regulation start, and temperature-controlling the said temperature regulation object in a predetermined temperature range. Temperature control device. 光通信用レーザダイオード又は光通信用送受信装置と一体装置である請求項1〜6に記載の温度制御装置。   The temperature control device according to claim 1, wherein the temperature control device is an integrated device with an optical communication laser diode or an optical communication transceiver device.
JP2012084674A 2012-04-03 2012-04-03 Temperature control device Expired - Fee Related JP6031802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012084674A JP6031802B2 (en) 2012-04-03 2012-04-03 Temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012084674A JP6031802B2 (en) 2012-04-03 2012-04-03 Temperature control device

Publications (2)

Publication Number Publication Date
JP2013214640A true JP2013214640A (en) 2013-10-17
JP6031802B2 JP6031802B2 (en) 2016-11-24

Family

ID=49587780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012084674A Expired - Fee Related JP6031802B2 (en) 2012-04-03 2012-04-03 Temperature control device

Country Status (1)

Country Link
JP (1) JP6031802B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015091214A (en) * 2013-11-07 2015-05-11 Smc株式会社 Temperature adjustment device
WO2017019301A1 (en) * 2015-07-27 2017-02-02 Sunpower Corporation Thermal management of systems with electric components
KR20190057107A (en) * 2016-09-28 2019-05-27 예다 리서치 앤드 디벨럽먼트 캄파니 리미티드 Diode-based thermoelectric devices

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288351A (en) * 1994-04-19 1995-10-31 Fujitsu Ltd Peltier control circuit and element structure thereof
JP2000081493A (en) * 1998-07-08 2000-03-21 Citizen Watch Co Ltd Power generating system
JP2002050727A (en) * 2000-08-01 2002-02-15 Hitachi Maxell Ltd Electronic apparatus
JP2002354785A (en) * 2001-05-21 2002-12-06 Daikin Ind Ltd Voltage control apparatus, temperature control apparatus, method for controlling voltage and method for controlling temperature
JP2003124500A (en) * 2001-10-15 2003-04-25 Sharp Corp Optocoupler
JP2003208231A (en) * 2002-01-11 2003-07-25 Sii Printek Inc Temperature controller and temperature control method and ink jet type recorder
JP2004361553A (en) * 2003-06-03 2004-12-24 Seiko Epson Corp Display device
US20050121064A1 (en) * 2003-12-08 2005-06-09 Samsung Electronics Co., Ltd. Cooling and electricity generation apparatus, a portable terminal adopting the same, and a method of operating the portable terminal
JP2006003487A (en) * 2004-06-16 2006-01-05 Kyocera Mita Corp Image forming apparatus
JP2008071879A (en) * 2006-09-13 2008-03-27 Yamaha Corp Thermoelectric conversion system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288351A (en) * 1994-04-19 1995-10-31 Fujitsu Ltd Peltier control circuit and element structure thereof
JP2000081493A (en) * 1998-07-08 2000-03-21 Citizen Watch Co Ltd Power generating system
JP2002050727A (en) * 2000-08-01 2002-02-15 Hitachi Maxell Ltd Electronic apparatus
JP2002354785A (en) * 2001-05-21 2002-12-06 Daikin Ind Ltd Voltage control apparatus, temperature control apparatus, method for controlling voltage and method for controlling temperature
JP2003124500A (en) * 2001-10-15 2003-04-25 Sharp Corp Optocoupler
JP2003208231A (en) * 2002-01-11 2003-07-25 Sii Printek Inc Temperature controller and temperature control method and ink jet type recorder
JP2004361553A (en) * 2003-06-03 2004-12-24 Seiko Epson Corp Display device
US20050121064A1 (en) * 2003-12-08 2005-06-09 Samsung Electronics Co., Ltd. Cooling and electricity generation apparatus, a portable terminal adopting the same, and a method of operating the portable terminal
JP2006003487A (en) * 2004-06-16 2006-01-05 Kyocera Mita Corp Image forming apparatus
JP2008071879A (en) * 2006-09-13 2008-03-27 Yamaha Corp Thermoelectric conversion system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015091214A (en) * 2013-11-07 2015-05-11 Smc株式会社 Temperature adjustment device
TWI641938B (en) * 2013-11-07 2018-11-21 日本商Smc股份有限公司 Temperature adjustment apparatus
WO2017019301A1 (en) * 2015-07-27 2017-02-02 Sunpower Corporation Thermal management of systems with electric components
US9985582B2 (en) 2015-07-27 2018-05-29 Sunpower Corporation Thermal management of systems with electric components
KR20190057107A (en) * 2016-09-28 2019-05-27 예다 리서치 앤드 디벨럽먼트 캄파니 리미티드 Diode-based thermoelectric devices
CN110100322A (en) * 2016-09-28 2019-08-06 耶达研究及发展有限公司 Thermoelectric device
KR102395545B1 (en) * 2016-09-28 2022-05-06 예다 리서치 앤드 디벨럽먼트 캄파니 리미티드 Thermoelectric devices based on diodes

Also Published As

Publication number Publication date
JP6031802B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
CN103703327B (en) Electronic light/temp controller, use the cooler of this electronic light/temp controller, use the heater of this electronic light/temp controller and its control method
TWI378628B (en) Battery systems, charging /discharging circuits and methods for controlling battery charge /discharge
US8018200B2 (en) Control apparatus and method of regulating power
KR20130009599A (en) Battery charging apparatus with a common control loop for a low drop-out voltage regulator and a boost regulator
JP5792552B2 (en) Power supply control system and semiconductor integrated circuit
JP2006223030A (en) Charge control circuit and charging apparatus
JP6031802B2 (en) Temperature control device
TW201240294A (en) Converter including a bootstrap circuit and method
US20220140621A1 (en) Charging integrated circuit for charging battery device and electronic device including the same
KR20160009475A (en) Wireless charging
US8248036B2 (en) Battery charging circuit for improving operating stability
US20110068735A1 (en) Systems and Methods of Accurate Control of Battery Pre-charge Current
US20170346298A1 (en) Voltage control system
EP2592741A1 (en) Integrated circuit adapted to perform power path control in a mobile equipment
KR20130060949A (en) Cooling device in system discharging battery depending on discharge profile and manufacturing method thereof
KR102096132B1 (en) Apparatus and Method for balancing of battery cell
JP2008131803A (en) Portable terminal device
JP2004356449A (en) Method for controlling peltier element and control circuit for peltier circuit
KR20130072888A (en) Energy harvesting device in system discharging battery depending on discharge profile and manufacturing method thereof
CN109378873B (en) Battery charging system and charging method
US20090283125A1 (en) Method and apparatus for charging thermoelectricity using a plurality of thermoelectric generators
JP2012196057A (en) Charger and charging method
JP2010110200A (en) Battery charging system
JPWO2003055034A1 (en) Charging circuit
JP4333658B2 (en) Power circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161010

R151 Written notification of patent or utility model registration

Ref document number: 6031802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees