JP2013212485A - Ozone water generating apparatus - Google Patents

Ozone water generating apparatus Download PDF

Info

Publication number
JP2013212485A
JP2013212485A JP2012095110A JP2012095110A JP2013212485A JP 2013212485 A JP2013212485 A JP 2013212485A JP 2012095110 A JP2012095110 A JP 2012095110A JP 2012095110 A JP2012095110 A JP 2012095110A JP 2013212485 A JP2013212485 A JP 2013212485A
Authority
JP
Japan
Prior art keywords
ozone
water
gas
ozone gas
dissolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012095110A
Other languages
Japanese (ja)
Other versions
JP5424225B2 (en
Inventor
Akio Atokawa
昭雄 後川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMEMIYA KIKI KK
Original Assignee
AMEMIYA KIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMEMIYA KIKI KK filed Critical AMEMIYA KIKI KK
Priority to JP2012095110A priority Critical patent/JP5424225B2/en
Publication of JP2013212485A publication Critical patent/JP2013212485A/en
Application granted granted Critical
Publication of JP5424225B2 publication Critical patent/JP5424225B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Accessories For Mixers (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ozone water generating apparatus having high ozone dissolving efficiency with a simple structure, and reducing an amount of ozone discharged to the atmosphere.SOLUTION: An ozone water generating apparatus is composed of a sealed ozone generating container 1 that generates and contains ozone, and an ozone dissolving/separating device 2 that dissolves ozone into tap water by sucking ozone by tap water pressure. An S-shaped trap is provided in the ozone dissolving/separating device to provide water seal, and ozone gas not dissolved into water in the ozone dissolving/separating device is gathered to one place and is discharged from an ozone gas discharging hole 58. Furthermore, in order to increase the ozone dissolving efficiency and suck ozone gas from the ozone gas generating container, a nozzle plate that forms tap water flow into a gas/liquid mixed flow comprising minute water droplets in the ozone dissolving/separating device is provided, and the gas/liquid mixed flow is made to pass through a wire mesh to generate negative pressure in the ozone dissolving/separating device.

Description

本発明は、水道管に接続し水道水圧を利用してオゾン水を生成し、生成したオゾン水で食材とか、手指の除菌、消毒を行うための装置に関するものである。  The present invention relates to an apparatus for connecting to a water pipe and generating ozone water using tap water pressure, and disinfecting and disinfecting foods and fingers with the generated ozone water.

水道管に接続してオゾン水を生成する装置には、放電方式または、紫外線方式のオゾン発生体により、空気中の酸素からオゾンガスを生成し、生成したオゾンガスを水に溶解させる方法と、水を電気分解してオゾン水を生成する方法とがある。
このなかでオゾンガスを生成し水に溶解させる方法には、一般にはエジェクター(エダクター)、アスピレータ等をもちいて、オゾンガスを吸引しながら流水と混合してオゾンの微細気泡を発生させて水に溶解する方法が採用されている(例えば、特許文献5、特許文献6参照)。
しかしこの方法は、高速の水流を作ってオゾンガスを吸入する方式なのでオゾンガスが水と接触する時間が短く、接触面積も少ないため、オゾンガスが水に溶解する量が少なく大部分のオゾンガスは大気中に放出されるという欠点がある。
The device that generates ozone water by connecting to a water pipe includes a method of generating ozone gas from oxygen in the air by a discharge type or ultraviolet type ozone generator, dissolving the generated ozone gas in water, and water. There is a method of generating ozone water by electrolysis.
In this method, ozone gas is generated and dissolved in water, generally using an ejector, an aspirator, etc., and mixing with running water while sucking ozone gas, generating fine ozone bubbles and dissolving in water. A method is employed (see, for example, Patent Document 5 and Patent Document 6).
However, because this method creates a high-speed water flow and inhales ozone gas, the ozone gas has a short contact time with water and the contact area is small, so the amount of ozone gas that dissolves in water is small and most ozone gas is in the atmosphere. There is a drawback of being released.

このためオゾン水濃度の高い実用的なオゾン水を生成するために、高濃度のオゾンガスと水を混合した後、気液分離器により溶解しなかったオゾンガスを分離し再循環して溶解させる方法(例えば、特許文献1参照。)。
気泡液流生成用スプレーノズル(例えば、特許文献2参照)を液中に設置して、このスプレーノズルに水道水を供給することによりオゾンガスの取り込み量を増やす方法(例えば、特許文献3参照)。
水を微細化して供給し、溶解槽内で微細化した水にオゾンガスを接触させてオゾン水を生成する方法(例えば、特許文献4参照)等が提案されているがオゾンを溶解させる作用は十分とはいえない。
For this reason, in order to produce practical ozone water with high ozone water concentration, after mixing ozone gas with high concentration and water, the ozone gas that was not dissolved by the gas-liquid separator is separated and recirculated and dissolved ( For example, see Patent Document 1.)
A method of increasing the amount of ozone gas taken in by installing a bubble liquid flow generation spray nozzle (for example, see Patent Document 2) in the liquid and supplying tap water to the spray nozzle (for example, see Patent Document 3).
There has been proposed a method for generating ozone water by supplying finely supplied water and bringing ozone gas into contact with the finely divided water in the dissolution tank (see, for example, Patent Document 4), but the effect of dissolving ozone is sufficient. That's not true.

特許第3381705号特許公報Japanese Patent No. 3381705 特許第4133021号特許公報Japanese Patent No. 4133021 特許第4156435号特許公報Japanese Patent No. 4156435 特許第3391560号特許公報Japanese Patent No. 3391560 特開2009−226323号公報JP 2009-226323 A 再公表2008−044262Republished 2008-042662

以上に述べたように、水道水圧だけで、オゾンガスを吸引して水道水に溶解させてオゾン水を生成する従来のエジェクター方式のオゾン水生成装置では、オゾンガスの吸入量が少なく、オゾンガスと水との接触面積と接触時間が短いためオゾンの溶解効率が悪く低濃度のオゾン水しか生成できず、殺菌作用が劣るという欠点がある。
殺菌作用のある濃度のオゾン水を生成しようとして、供給するオゾンガスの濃度を高くすれば、水に溶解しなかった気泡となっているオゾンガスがオゾン水の吐出時に、大気中に放出されるので安全衛生上問題があった。
As described above, in the conventional ejector-type ozone water generating device that generates ozone water by sucking ozone gas and dissolving it in tap water only by tap water pressure, the amount of ozone gas sucked is small, and ozone gas and water Since the contact area and the contact time are short, the ozone dissolution efficiency is poor and only low-concentration ozone water can be produced, resulting in inferior bactericidal action.
If you try to produce ozone water with a sterilizing concentration and increase the concentration of the ozone gas to be supplied, the ozone gas in the form of bubbles that did not dissolve in the water will be released into the atmosphere when the ozone water is discharged. There was a hygiene problem.

本発明は、このような問題を解決しようとするものであり、オゾン溶解室でのオゾンガスの溶解効率を向上するとともに、オゾンガスの大気への放出をなくしたオゾン水生成装置を実現することを目的とするものである。  The present invention is intended to solve such a problem, and an object of the present invention is to realize an ozone water generator that improves the efficiency of ozone gas dissolution in the ozone dissolution chamber and eliminates the release of ozone gas to the atmosphere. It is what.

そして本発明は上記目的を達成するためにオゾンランプを内包し空気流入弁が取り付けられた気密容器の内部で空気中の酸素からオゾンを生成して、このオゾンを含んだ空気(以下オゾン化空気と称する)を収容しているオゾンガス生成収容器と、外部から供給される水道水を一定流量の水流にしてオゾン溶解分離器に供給する給水器と、オゾンガス生成収容器からオゾン化空気を吸引して該水道水にオゾン化空気の一部を溶解させるとともに余剰のオゾン化空気をオゾン水から分離して回収できるように構成したオゾンガス溶解分離器とで構成し高濃度のオゾン水を安全に作れるようにした、以下にこれらの構成機器についてそれぞれ説明する。  In order to achieve the above object, the present invention generates ozone from oxygen in the air inside an airtight container containing an ozone lamp and attached with an air inflow valve. An ozone gas generation container, a water supply apparatus that supplies tap water supplied from the outside to the ozone dissolution separator, and ozonized air is sucked from the ozone gas generation container. It is possible to safely produce high-concentration ozone water by comprising an ozone gas dissolution separator configured to dissolve a part of ozonized air in the tap water and to separate and recover excess ozonated air from ozone water. Each of these components will be described below.

まずオゾンガス生成収容器は、外部からの空気は流入するが容器からはオゾン化空気が流出しないようにする空気流入弁が装着された気密容器であり、内部にはオゾンランプが配置されオゾンランプの点灯によりオゾンが生成される。
オゾンガス生成収容器のベースにはオゾン化空気供給孔が穿孔されており、それにオゾ化空気供給管が接続されている。
オゾンランプにより生成されたオゾン化空気はオゾンガス溶解分離器の内部で発生する負圧力により、オゾン化空気供給管を経てオゾンガス溶解分離器に送り出され、オゾンガス溶解分離器で溶解しなかったオゾン化空気はオゾン化空気排出孔から排出されて適正に処理される。
この作用により減少した気体の体積分は外部から空気流入弁を経て新たな空気が該オゾンガス生成収容器に流入する。
First, the ozone gas generation container is an airtight container equipped with an air inflow valve that prevents air from flowing in from outside but does not flow out ozonized air from the container. Ozone is generated by lighting.
An ozonized air supply hole is drilled in the base of the ozone gas generation container, and an ozonized air supply pipe is connected to it.
The ozonated air generated by the ozone lamp is sent to the ozone gas dissolving separator through the ozonized air supply pipe due to the negative pressure generated inside the ozone gas dissolving separator, and the ozonized air that has not been dissolved by the ozone gas dissolving separator Is discharged from the ozonated air discharge hole and properly processed.
The volume of the gas reduced by this action flows from the outside through the air inflow valve, and new air flows into the ozone gas generation container.

給水器は、オゾンガス溶解分離器の内部に設けられている気液分離室に溜まるオゾン水の水位が上がりすぎないように、水道水の流入量を一定にするための機器で、定流量弁とか減圧弁が用いられている。  The water supply is a device that keeps the inflow of tap water constant so that the water level of ozone water collected in the gas-liquid separation chamber provided inside the ozone gas dissolution separator does not rise too much. A pressure reducing valve is used.

オゾンガス溶解分離器は、上面に給水孔が下面にオゾン水吐出孔が穿孔され該給水孔から該オゾン水吐出孔までの流路の途中に円筒形状のオゾン溶解室と、該オゾン溶解室の下方に広い空間の気液分離室と、該気液分離室からS字形状の流路(S字トラップと称する)が形成され、該オゾン溶解室にはオゾン化空気吸入孔が、該気液分離室の上部にはオゾン化空気排出孔がそれぞれ穿孔されているケースと、ノズルプレートと、金網から構成されおり該オゾン溶解室の上部に該ノズルプレートが、下部に該金網が装着されている。  The ozone gas dissolution separator has a water supply hole on the upper surface, an ozone water discharge hole on the lower surface, and a cylindrical ozone dissolution chamber in the middle of the flow path from the water supply hole to the ozone water discharge hole. A gas-liquid separation chamber having a large space and an S-shaped flow path (referred to as an S-shaped trap) are formed from the gas-liquid separation chamber, and an ozonized air suction hole is provided in the ozone dissolution chamber. An ozonized air discharge hole is formed in the upper part of the chamber, a nozzle plate, and a wire mesh. The nozzle plate is attached to the upper part of the ozone dissolution chamber, and the wire mesh is attached to the lower part.

オゾンガス溶解分離器の作用は、給水器から供給される水道水でオゾンガス生成収容器に収容されているオゾン化空気を吸引して、水道水にオゾン化空気を溶解させてオゾン水を生成し、水に溶解しなかった余剰のオゾン化空気をオゾン水から分離して適正な処理ができるように一か所に集めて該オゾン溶解分離器から排出する。
これらのことを達成する手段に、ノズルプレート、金網、気液分離室が設けられている。次これらの作用を説明する。
The action of the ozone gas dissolving / separating device is to suck the ozonated air stored in the ozone gas generating container with the tap water supplied from the water supply device, dissolve the ozonized air in the tap water, and generate ozone water. Excess ozonized air that did not dissolve in water is separated from the ozone water, collected in one place so that it can be properly treated, and discharged from the ozone dissolution separator.
A nozzle plate, a wire mesh, and a gas-liquid separation chamber are provided as means for achieving these things. Next, these actions will be described.

ノズルプレートには複数の円錐台形状の孔が穿孔されている、この穴から吐出される水流は下方に向かって扇状に広がった水流となり、他の流路から吐出された水流と衝突しオゾン溶解室内で微細な水滴流となり、オゾン化空気を巻き込んだ気液混合流となって下方に設置された金網に向かって流れる。
気体の液体への溶解量は気液の接触面積、接触時間、気体の圧力等に比例するので、大きな水粒子よりも微細な水粒子の表面積のほうが、全体での表面積が大きくなり、オゾン化空気と水との接触面積が増えるのでオゾン化空気の水への溶解量が増大しより高い濃度のオゾン水が生成される。
A plurality of frustoconical holes are perforated in the nozzle plate. The water flow discharged from these holes is a fan-shaped water flow that collides with the water flow discharged from other flow paths and dissolves ozone. It becomes a fine water droplet flow in the room, and it flows toward the wire net installed below as a gas-liquid mixed flow involving ozonized air.
The amount of gas dissolved in the liquid is proportional to the gas-liquid contact area, contact time, gas pressure, etc., so the surface area of fine water particles is larger than that of large water particles, and the total surface area becomes larger, and it is ozonized. Since the contact area between air and water increases, the amount of ozonized air dissolved in water increases and ozone water with a higher concentration is generated.

次に金網の作用を説明する、金網に成形された格子穴を気液混合流が通過するとき、水滴流はオゾン化空気を巻き込んだ気泡を生成して金網から流出する。
この気泡を生成する現象は市販されている泡沫栓(例えば、特開平8−309234)と同じような作用であり、ノズルプレートと金網の間のオゾン溶解室の空間は負圧となり、この気泡となって流出した気体の体積に相当する量のオゾン化空気がオゾンガス生成収容器からオゾン化空気供給管を経由してオゾンガス溶解分離器に吸入される。
Next, when the gas-liquid mixed flow passes through the lattice holes formed in the wire mesh, which explains the operation of the wire mesh, the water droplet flow generates bubbles entrained with ozonized air and flows out of the wire mesh.
The phenomenon of generating bubbles is the same as that of a commercially available foam plug (for example, JP-A-8-309234), and the space in the ozone dissolution chamber between the nozzle plate and the wire mesh becomes negative pressure. The amount of ozonated air corresponding to the volume of the gas flowing out is sucked into the ozone gas dissolving / separating device through the ozonized air supply pipe from the ozone gas generation container.

気液分離室の作用を説明する、気液分離室からオゾン水吐出口までの流路には、S字状のS字トラップが形成されているので一定の水位で水が貯められ、オゾン化空気が該オゾン水吐出口から外部に流出しないように水封されている。
この気液分離室に貯められたオゾン水の水面上に金網を通過した気泡を含む気液混合流が吐出されると、気泡が破壊されて液体と気体に分離され、分離された気体はオゾン化空気排出孔からオゾンガス溶解分離器の外部に排出される。
一方、分離された液体は気液分離室の下部に溜まり水位を上昇させ、水位が上昇するとS字トラップを経て該オゾン水吐出口から外部に流出される。
Since the S-shaped S-shaped trap is formed in the flow path from the gas-liquid separation chamber to the ozone water discharge port, which explains the operation of the gas-liquid separation chamber, water is stored at a constant water level and ozonized. Water is sealed so that air does not flow out from the ozone water discharge port.
When a gas-liquid mixed flow containing bubbles that have passed through a wire mesh is discharged onto the surface of the ozone water stored in the gas-liquid separation chamber, the bubbles are destroyed and separated into a liquid and a gas. It is discharged to the outside of the ozone gas dissolution separator from the chemical air discharge hole.
On the other hand, the separated liquid accumulates in the lower part of the gas-liquid separation chamber and raises the water level. When the water level rises, it flows out from the ozone water outlet through the S-shaped trap.

上述したように本発明のオゾン水生成装置は、簡単な構造で高濃度のオゾン水を生成するとともに、オゾンガスの大気中への放出をなくすことが可能なオゾン水生成装置を提供することができる。  As described above, the ozone water generation apparatus of the present invention can provide an ozone water generation apparatus that can generate ozone water of high concentration with a simple structure and can eliminate the release of ozone gas into the atmosphere. .

本発明の一実施例に係るオゾン水生成装置の構成を示すブロック図。The block diagram which shows the structure of the ozone water generating apparatus which concerns on one Example of this invention. 本発明のオゾン水生成装置に係る排出オゾンガスの無害化を説明するためのブロック図。The block diagram for demonstrating the detoxification of the exhaust ozone gas which concerns on the ozone water generating apparatus of this invention. 本発明のオゾン水生成装置に係るオゾンの回収再利用を説明するためのブロック図。The block diagram for demonstrating the collection | recovery and reuse of ozone which concerns on the ozone water production | generation apparatus of this invention. 本発明のオゾンガス生成収容器の構造を示す断面図Sectional drawing which shows the structure of the ozone gas production | generation container of this invention 本発明のオゾンガス溶解分離器の構造を示す断面図Sectional drawing which shows the structure of the ozone gas dissolution separator of this invention 本発明のオゾンガス溶解分離器のケースの他の実施例を示す断面図Sectional drawing which shows the other Example of the case of the ozone gas melt | dissolution separator of this invention 本発明のオゾンガス溶解分離器のノズルプレートの実施例を示す断面図Sectional drawing which shows the Example of the nozzle plate of the ozone gas melt | dissolution separator of this invention 本発明のノズルプレートの他の実施例を示す断面図Sectional drawing which shows the other Example of the nozzle plate of this invention

以下、本発明の実施の形態を図1〜図8に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1において、水道水は給水器6を通して一定流量の水流にしてからオゾンガス溶解分離器2の上部から供給される。
1はオゾンガス生成収容器で空気中に含まれる酸素からオゾンを生成して容器内に収容している、2はオゾン溶解分離器でこの内部でオゾン化空気を水に溶解させ、溶解しなかった余剰のオゾン化空気とオゾン水とを分離する。
オゾン化空気はオゾンガス生成収容器1からオゾン化空気供給管3を通って供給され、溶解しなかった余剰のオゾン化空気はオゾン化空気排出孔58から排出され、生成されたオゾン水はオゾン水吐出口53から吐出される。
In FIG. 1, tap water is supplied from the upper part of the ozone gas dissolution separator 2 after having a constant flow rate through a water supply 6.
Reference numeral 1 denotes an ozone gas generation container that generates ozone from oxygen contained in the air and stores it in a container. Reference numeral 2 denotes an ozone dissolution separator that dissolves ozonated air in water and did not dissolve it. Separate excess ozonated air and ozone water.
The ozonized air is supplied from the ozone gas generation container 1 through the ozonized air supply pipe 3, excess ozonated air that has not been dissolved is discharged from the ozonized air discharge hole 58, and the generated ozone water is ozone water. It is discharged from the discharge port 53.

図2はオゾン化空気排出孔58にオゾン化空気回収管4を接続し、排出された余剰のオゾン化空気をオゾン分解器5で無害化してから大気中に放出するようにしている。
図3はオゾンガス溶解分離器2から排出される余剰のオゾン化空気をオゾンガス回収管4を通してオゾンガス生成収容器1に戻し、オゾンガス生成収容器1で生成されたオゾン化空気がオゾンガス溶解分離器2との間を循環するようにした。
こうすることによりオゾンガスが装置外部に放出されることなく、高濃度のオゾン水を安全に生成することができる。
In FIG. 2, the ozonized air recovery pipe 4 is connected to the ozonized air discharge hole 58 so that the discharged excess ozonized air is rendered harmless by the ozone decomposer 5 and then released into the atmosphere.
FIG. 3 shows that the excess ozonized air discharged from the ozone gas dissolving separator 2 is returned to the ozone gas generating container 1 through the ozone gas recovery pipe 4, and the ozonized air generated in the ozone gas generating container 1 is converted into the ozone gas dissolving separator 2. Cycled between.
By doing so, high-concentration ozone water can be safely generated without releasing ozone gas to the outside of the apparatus.

図4はオゾンガス生成収容器1の構造を示す図であって、図4においてカバー41とベース42とは気密構造になっていて内部にオゾンランプ43が配置されている。
ベース42はオゾン化空気を適正に処理するために、オゾンガス供給管3と接続するオゾン化空気供給孔44と、オゾン化空気回収管4と接続するオゾン化空気回収孔45とが穿孔されおり、外気は流入するが容器からはガスを流出しないようにする空気流入弁46が装着されている。
オゾンランプ43は交換できるようにソケット47を介してベース42に取り付けられている。
図2のオゾンを回収せずにオゾン分解器5でオゾンを無害化する実施例の場合はオゾン化空気回収管4がオゾン分解器5に接続されるのでオゾン化空気回収孔45は不要である。
FIG. 4 is a diagram showing the structure of the ozone gas generation container 1. In FIG. 4, the cover 41 and the base 42 have an airtight structure, and an ozone lamp 43 is arranged inside.
The base 42 has an ozonized air supply hole 44 connected to the ozone gas supply pipe 3 and an ozonized air recovery hole 45 connected to the ozonized air recovery pipe 4 in order to properly process the ozonized air. An air inflow valve 46 is installed to prevent outside air from flowing in but outflowing gas from the container.
The ozone lamp 43 is attached to the base 42 via a socket 47 so that it can be replaced.
In the case of the embodiment in which ozone is made harmless by the ozonolysis device 5 without collecting ozone in FIG. 2, the ozonation air recovery pipe 45 is connected to the ozonizer 5, so that the ozonization air recovery hole 45 is unnecessary. .

図5はオゾンガス解分離器2の構造を示す断面図であって図において、オゾンガス溶解分離器2は複数の穴が穿孔されているノズルプレート51と該ノズルプレート51の下方で数cmはなれたところに配置した金網52と該ノズルプレート51と該金網52とを保持するケース56とから構成されている。  FIG. 5 is a cross-sectional view showing the structure of the ozone gas deseparator 2. In the figure, the ozone gas dissolution separator 2 is separated from the nozzle plate 51 having a plurality of holes by a few cm below the nozzle plate 51. And the nozzle plate 51 and a case 56 for holding the wire mesh 52.

該ケース56は、上部に給水孔54と、それに続いて該ノズルプレート51と該金網52とで形成された溶解室50が、該溶解室50の下方に気液分離室59が、該気液分離室59の下部からS字形状をしたS字トラップ55が形成されオゾン水吐出口53へと連通している。
S字トラップのS字の上面BとS字の下面Cとの間には水が蓄えられて水封された状態となる。
蓄えられたオゾン水の水面Hは該気液分離室59に流入する水量とオゾン水吐出口53から流出する水量により変化するため給水器6でこの水面Hが一定になるようにしている。
The case 56 has a water supply hole 54 in the upper part, followed by a dissolution chamber 50 formed by the nozzle plate 51 and the wire mesh 52, and a gas-liquid separation chamber 59 below the dissolution chamber 50. An S-shaped trap 55 having an S-shape is formed from the lower part of the separation chamber 59 and communicates with the ozone water discharge port 53.
Water is stored and sealed between the S-shaped upper surface B and the S-shaped lower surface C of the S-shaped trap.
Since the water level H of the stored ozone water varies depending on the amount of water flowing into the gas-liquid separation chamber 59 and the amount of water flowing out of the ozone water discharge port 53, the water surface H is made constant by the water feeder 6.

さらに該ケース56にはノズルプレート51のすぐ下に穿孔されたオゾン化空気吸入孔57と、該気液分離室59の上部にオゾン化空気排出孔58が穿孔されている。Further, the case 56 has an ozonized air suction hole 57 perforated immediately below the nozzle plate 51, and an ozonized air discharge hole 58 perforated above the gas-liquid separation chamber 59.

図6はオゾンガス溶解分離器2のケース53の他の実施例で、
溶解室50の中心軸Eは気液分離室に蓄えられるオゾン水の水面Hに対して直角ではなく、80度から50度程度の傾きをもたせてある、これは気液分離室59で分離されたオゾン化空気が溶解室50から吐出される気液混合流に巻き込まれないようにして、オゾン水吐出口53から流出しないようにするためである。
オゾン化空気吸気孔57はオゾン溶解室50から、オゾン化空気排出孔58は気液分離室59からそれぞれケース56の上面まで穿孔されている、これは装置を設計するときのデザイン上の都合であり動作原理に変化はない、またオゾン水吐出口53の位置もS字トラップのB面より下であればどこに設けても問題はない。
FIG. 6 shows another embodiment of the case 53 of the ozone gas dissolution separator 2.
The central axis E of the dissolution chamber 50 is not perpendicular to the surface H of the ozone water stored in the gas-liquid separation chamber, but has an inclination of about 80 to 50 degrees. This is separated by the gas-liquid separation chamber 59. This is to prevent the ozonized air from being involved in the gas-liquid mixed flow discharged from the dissolution chamber 50 and from flowing out from the ozone water discharge port 53.
The ozonized air intake hole 57 is drilled from the ozone dissolution chamber 50, and the ozonized air discharge hole 58 is drilled from the gas-liquid separation chamber 59 to the upper surface of the case 56, respectively, for the convenience of design when designing the apparatus. There is no change in the operating principle, and there is no problem if the ozone water discharge port 53 is provided anywhere below the B surface of the S-shaped trap.

図7はノズルプレート51の断面図であって、図7に示す複数の円錐台形状の孔71が穿孔されている、この穴から吐出された水流は下方に向かって扇状に広がった水流となり、他の流路から吐出された水流と衝突し微細な水粒子を生成する。  FIG. 7 is a cross-sectional view of the nozzle plate 51, and a plurality of frustoconical holes 71 shown in FIG. 7 are perforated. The water flow discharged from these holes is a water flow spreading downward in a fan shape, It collides with the water flow discharged from other flow paths and generates fine water particles.

図8はノズルプレート51の他の実施例で、円錐台形状の孔71がオゾン溶解室50の中心軸Eに向かって互いに交差するように作られており、水流が互いに衝突するようにしている。
71 円錐台形状の孔
E オゾン溶解室中心軸
B S字トラップ上面
C S字トラップ下面
H 気液分離室に蓄えられたオゾン水の水面
FIG. 8 shows another embodiment of the nozzle plate 51. The frustoconical holes 71 are formed so as to intersect with each other toward the central axis E of the ozone dissolution chamber 50 so that the water flows collide with each other. .
71 Cone-shaped hole E Ozone dissolution chamber central axis B S-shaped trap upper surface C S-shaped trap lower surface H Water surface of ozone water stored in gas-liquid separation chamber

水道管に接続してオゾン水を生成する装置には、放電方式または、紫外線方式のオゾン発生体により、空気中の酸素からオゾンガスを生成し、生成したオゾンガスを水に溶解させる方法と、水を電気分解してオゾン水を生成する方法とがある。
このなかでオゾンガスを生成し水に溶解させる方法には、一般にはエジェクター(エダクター)、アスピレータ等をもちいて、オゾンガスを吸引しながら流水と混合してオゾンの微細気泡を発生させて水に溶解する方法が採用されている(例えば、特許文献5、特許文献6参照)。
このエジェクタ(ベンチェリ管)でオゾンを吸引する方式は、「非圧縮性で非粘性流体の定常流では、流れの速い部分の圧力が低くなるというベヌルーイの定理」を応用したものです、従って気体の吸入量を増やすためには、縮径部の流速を高速にする必要があり、水圧を高圧にしなければならない。
また1流路に複数のオリフィスを設置することができないので流量を増やすには、エジェクタを多数使用するか、水圧を高圧にするしか方法がないという弱点があります。
さらにこの方法は、高速の水流を作ってオゾンガスを吸入する方式なのでオゾンガスが水と接触する時間が短く、接触面積も少ないため、オゾンガスが水に溶解する量が少なく大部分のオゾンガスは大気中に放出されるという欠点がある。
The device that generates ozone water by connecting to a water pipe includes a method of generating ozone gas from oxygen in the air by a discharge type or ultraviolet type ozone generator, dissolving the generated ozone gas in water, and water. There is a method of generating ozone water by electrolysis.
In this method, ozone gas is generated and dissolved in water, generally using an ejector, an aspirator, etc., and mixing with running water while sucking ozone gas, generating fine ozone bubbles and dissolving in water. A method is employed (see, for example, Patent Document 5 and Patent Document 6).
The method of sucking ozone with this ejector (Benchery tube) is an application of "Benoului's theorem that the pressure of the fast-flowing part is lower in the steady flow of incompressible and non-viscous fluid". In order to increase the suction amount, it is necessary to increase the flow velocity of the reduced diameter portion, and it is necessary to increase the water pressure.
In addition, since multiple orifices cannot be installed in one flow path, the only way to increase the flow rate is to use a large number of ejectors or increase the water pressure.
Furthermore, since this method creates a high-speed water stream and inhales ozone gas, the time for ozone gas to contact with water is short and the contact area is small, so the amount of ozone gas that dissolves in water is small and most ozone gas is in the atmosphere. There is a drawback of being released.

次に金網の作用を説明する、金網に成形された格子穴を気液混合流が通過するとき、水滴流はオゾン化空気を巻き込んだ気泡を生成して金網から流出する。
この気泡を生成する現象は市販されている泡沫栓(例えば、特開平8−309234)と同じような作用であり、ノズルプレートと金網の間のオゾン溶解室の空間は負圧となり、この気泡となって流出した気体の体積に相当する量のオゾン化空気がオゾンガス生成収容器からオゾン化空気供給管を経由してオゾンガス溶解分離器に吸入される。
このオゾン化空気の吸引作用について、エジェクタによる吸引作用との違いについて詳しく説明する。
本発明では、オリフィスを通過した流水は金網に衝突し、金網の格子面上に水幕を形成する、この水幕が気液分離室に移動すると金網の格子の開口面積に比例した大きさの泡が生成され、溶解室内の気体の一部が泡となって溶解室から排出される。
つまり、オリフィスの穴の面積s、オリフィスを通過する水の速度v、単位時間当たりに通過する流体の体積mとするとm=svとなる。
金網の格子の開口部の面積S、金網を通過する泡の速度V、単位時間当たりに通過する流体の体積MとするとM=SVとなる。
M―m=SV−svが吸引された気体の体積となります、したがってSV−svが正となるように水道水の水圧とオリフィスの穴径、金網の開口部の面積を設定します。
Next, when the gas-liquid mixed flow passes through the lattice holes formed in the wire mesh, which explains the operation of the wire mesh, the water droplet flow generates bubbles entrained with ozonized air and flows out of the wire mesh.
The phenomenon of generating bubbles is the same as that of a commercially available foam plug (for example, JP-A-8-309234), and the space in the ozone dissolution chamber between the nozzle plate and the wire mesh becomes negative pressure. The amount of ozonated air corresponding to the volume of the gas flowing out is sucked into the ozone gas dissolving / separating device through the ozonized air supply pipe from the ozone gas generation container.
The difference between the ozonized air suction action and the suction action by the ejector will be described in detail.
In the present invention, the flowing water that has passed through the orifice collides with the wire mesh to form a water curtain on the lattice surface of the wire mesh, and when the water curtain moves to the gas-liquid separation chamber, the size is proportional to the opening area of the wire mesh lattice. Bubbles are generated, and part of the gas in the dissolution chamber becomes bubbles and is discharged from the dissolution chamber.
That is, if the area s of the orifice hole s, the velocity v of the water passing through the orifice, and the volume m of the fluid passing per unit time, m = sv.
When the area S of the openings of the mesh of the wire mesh, the velocity V of the bubbles passing through the wire mesh, and the volume M of the fluid passing per unit time, M = SV.
Mm = SV-sv is the volume of the sucked gas. Therefore, set the water pressure of the tap water, the hole diameter of the orifice, and the area of the opening of the wire mesh so that SV-sv becomes positive.

Claims (5)

上面に給水孔が下面にオゾン水吐出孔が穿孔され該給水孔から該オゾン水吐出孔までの流路の途中に複数の円錐台形状の孔が穿孔されているノズルプレ−トと金網を保持している円筒形状の溶解室があり該溶解室の下方に広い空間の気液分離室があり該気液分離室の下からS字形状の流路が該オゾン水吐出孔までつながり該ノズルプレ−トのすぐ下で溶解室の側壁にオゾン化空気吸入孔が該気液分離室の上部にオゾン化空気排出孔が穿孔されているケースと該溶解室内に保持されている該ノズルプレ−トと該ノズルプレートの下方で該溶解室内に保持されている該金網とから構成されているオゾンガス溶解分離器と、
空気中の酸素からオゾンを生成するオゾン発生器を内包し生成したオゾンを収容しているオゾンガス生成収容器と、
外部から供給される加圧された水を定流量でオゾンガス溶解分離器に供給する給水器と、前記オゾンガス生成収容器から前記オゾンガス溶解分離器に向かってオゾンガスが流れるように接続されたオゾン化空気供給管とで構成したことを特徴とするオゾン水生成装置
A nozzle plate and a wire mesh are held in which a water supply hole is formed on the upper surface, an ozone water discharge hole is formed on the lower surface, and a plurality of frustoconical holes are formed in the middle of the flow path from the water supply hole to the ozone water discharge hole. There is a large gas-liquid separation chamber below the dissolution chamber, and an S-shaped channel is connected from the bottom of the gas-liquid separation chamber to the ozone water discharge hole. A case in which an ozonized air suction hole is formed in the side wall of the dissolution chamber and an ozonization air discharge hole is formed in the upper portion of the gas-liquid separation chamber, and the nozzle plate and the nozzle held in the dissolution chamber An ozone gas dissolution separator composed of the wire mesh held in the dissolution chamber below the plate;
An ozone gas generation container that contains ozone generated by containing an ozone generator that generates ozone from oxygen in the air;
A water supply device for supplying pressurized water supplied from the outside to the ozone gas dissolution separator at a constant flow rate, and ozonized air connected so that ozone gas flows from the ozone gas generation container toward the ozone gas dissolution separator Ozone water generator characterized by comprising a supply pipe
前記ノズルプレートはノズルプレートから吐出される液流が溶解室の中心軸上で互いに衝突するように孔が穿孔されていることを特徴とする請求項1記載のオゾン水生成器。  2. The ozone water generator according to claim 1, wherein the nozzle plate is perforated so that the liquid flows discharged from the nozzle plate collide with each other on the central axis of the dissolution chamber. 前記オゾンガス溶解分離器から前記オゾンガス生成収容器に向かってオゾンガスが流れるように接続されたオゾン化空気回収管を設けたことを特徴とする請求項1記載のオゾン水生成器。  2. The ozone water generator according to claim 1, further comprising an ozonized air recovery pipe connected so that ozone gas flows from the ozone gas dissolution separator toward the ozone gas generation container. オゾン分解器を設け前記オゾンガス溶解分離器から該オゾン分解器に向かってオゾン化空気が流れるように接続されたオゾン化空気回収管を設けたことを特徴とする請求項1記載のオゾン水生成器。  The ozone water generator according to claim 1, further comprising an ozonized air recovery pipe provided with an ozonizer and connected so that ozonized air flows from the ozone gas dissolution separator toward the ozonizer. . 前記オゾンガス生成収容器はオゾンランプが取り付けられオゾン化空気供給孔とオゾン化空気回収孔とが穿孔されているベースと、該ベースとは着脱自在であるが気密が保てるようにして全体を覆うカバーと、外気は吸入できるが内部の気体は流出しないようにする空気流入弁とから構成されたことを特徴とする請求項3記載のオゾン水生成器。  The ozone gas generation container has a base to which an ozone lamp is attached and an ozonized air supply hole and an ozonized air recovery hole are perforated, and a cover that is detachable from the base but covers the whole so as to maintain airtightness. The ozone water generator according to claim 3, further comprising an air inflow valve that allows outside air to be inhaled but prevents internal gas from flowing out.
JP2012095110A 2012-04-03 2012-04-03 Ozone water generator Expired - Fee Related JP5424225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012095110A JP5424225B2 (en) 2012-04-03 2012-04-03 Ozone water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012095110A JP5424225B2 (en) 2012-04-03 2012-04-03 Ozone water generator

Publications (2)

Publication Number Publication Date
JP2013212485A true JP2013212485A (en) 2013-10-17
JP5424225B2 JP5424225B2 (en) 2014-02-26

Family

ID=49586268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012095110A Expired - Fee Related JP5424225B2 (en) 2012-04-03 2012-04-03 Ozone water generator

Country Status (1)

Country Link
JP (1) JP5424225B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106927558A (en) * 2017-05-09 2017-07-07 山东省城市供排水水质监测中心 The multiphase flow air-floating apparatus and processing method of a kind of ozone Multi-class propagation
CN107285417A (en) * 2017-08-10 2017-10-24 深圳市橘井舒泉技术有限公司 A kind of ozone water apparatus removes ozone mechanism and ozone water apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202247A (en) * 1997-01-27 1998-08-04 Toyota Auto Body Co Ltd Ozonized water production device
JP2002001074A (en) * 2000-06-21 2002-01-08 Toyota Auto Body Co Ltd Device for ozonized water
JP2005118542A (en) * 2003-09-24 2005-05-12 Matsushita Electric Works Ltd Microbubble generator
JP2008155156A (en) * 2006-12-26 2008-07-10 Hitachi Ltd Liquid treatment method and liquid treatment apparatus
JP2009226323A (en) * 2008-03-24 2009-10-08 Miyoko Kawai Ozone water generator
JP2010022919A (en) * 2008-07-17 2010-02-04 Shigen Kaihatsu Kenkyusho:Kk Microair bubble generating nozzle
JP2011062669A (en) * 2009-09-18 2011-03-31 Panasonic Electric Works Co Ltd Drinking water, using method of drinking water, refining method of drinking water and drinking water generating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202247A (en) * 1997-01-27 1998-08-04 Toyota Auto Body Co Ltd Ozonized water production device
JP2002001074A (en) * 2000-06-21 2002-01-08 Toyota Auto Body Co Ltd Device for ozonized water
JP2005118542A (en) * 2003-09-24 2005-05-12 Matsushita Electric Works Ltd Microbubble generator
JP2008155156A (en) * 2006-12-26 2008-07-10 Hitachi Ltd Liquid treatment method and liquid treatment apparatus
JP2009226323A (en) * 2008-03-24 2009-10-08 Miyoko Kawai Ozone water generator
JP2010022919A (en) * 2008-07-17 2010-02-04 Shigen Kaihatsu Kenkyusho:Kk Microair bubble generating nozzle
JP2011062669A (en) * 2009-09-18 2011-03-31 Panasonic Electric Works Co Ltd Drinking water, using method of drinking water, refining method of drinking water and drinking water generating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106927558A (en) * 2017-05-09 2017-07-07 山东省城市供排水水质监测中心 The multiphase flow air-floating apparatus and processing method of a kind of ozone Multi-class propagation
CN107285417A (en) * 2017-08-10 2017-10-24 深圳市橘井舒泉技术有限公司 A kind of ozone water apparatus removes ozone mechanism and ozone water apparatus

Also Published As

Publication number Publication date
JP5424225B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
WO2012132596A1 (en) Plasma generator and cleaning/purification apparatus using same
KR102229965B1 (en) Apparatus for collecting fine dust and sterilizing air using plasma
JP2005110703A (en) Air purifying device
US8273252B2 (en) Solution reactor and method for solution reaction
JP2009136864A (en) Microbubble generator
CN106178829A (en) A kind of air cleaner and air purification method
JP2008212334A (en) Air cleaning apparatus
JP5847424B2 (en) Gas processing equipment
KR102095107B1 (en) Apparatus for cleaning fine dust
KR101581236B1 (en) Dust Collector using Ozon Water
JP3223688U (en) Wet scrubber
JP5424225B2 (en) Ozone water generator
JP2018175740A (en) Air purification device
JP5808030B1 (en) Air purifier
JP2012164560A (en) Plasma generating device, and cleaning/purifying device and small electric appliance using plasma generating device
JP2012164557A (en) Plasma generating device, and cleaning/purifying device and small electric appliance using plasma generating device
JP2009131354A (en) Oxygen enriching apparatus
JP2019058256A (en) Air cleaner
JP2016002533A (en) Production apparatus and method of ozone water using dissolved oxygen contained in raw water as raw material
WO2013065355A1 (en) Ozone liquid generator and ozone liquid generation method
JP2012106166A (en) Gas/liquid mixing apparatus and water purifier equipped with the same
JP2013150966A (en) Ozone-containing liquid production unit and cleaning apparatus provided with the same, and ozone-containing liquid production method
CN201626882U (en) Sterilization deodorization oxygen-increasing machine capable of decomposing harmful gas
JP3228925U (en) Air cleaning device for removing viruses, bacteria, odorous substances, and suspended solids
JP2007038041A (en) Bubble washing and deodorization apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5424225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees