JP2013212477A - Catalyst and method for producing hydrogen - Google Patents

Catalyst and method for producing hydrogen Download PDF

Info

Publication number
JP2013212477A
JP2013212477A JP2012084897A JP2012084897A JP2013212477A JP 2013212477 A JP2013212477 A JP 2013212477A JP 2012084897 A JP2012084897 A JP 2012084897A JP 2012084897 A JP2012084897 A JP 2012084897A JP 2013212477 A JP2013212477 A JP 2013212477A
Authority
JP
Japan
Prior art keywords
hydrogen
catalyst
hydrogen production
sulfur
producing hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012084897A
Other languages
Japanese (ja)
Other versions
JP5888073B2 (en
Inventor
Takahide Haneda
貴英 羽田
Fumiyuki Hoshi
文之 星
Harukuni Kameda
治邦 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2012084897A priority Critical patent/JP5888073B2/en
Publication of JP2013212477A publication Critical patent/JP2013212477A/en
Application granted granted Critical
Publication of JP5888073B2 publication Critical patent/JP5888073B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for producing hydrogen, which is more inexpensive than a noble metal and has sulfur resistance and to provide a method for producing hydrogen by using the catalyst for producing hydrogen.SOLUTION: A catalyst for producing hydrogen contains barium titanate or strontium titanate. It does not matter if Fe and/or Sr are deposited on a barium titanate particle or a strontium titanate particle. Hydrogen is produced by reacting sulfur-containing fuel with steam by using the catalyst for producing hydrogen. The catalyst for producing hydrogen is not poisoned by a sulfur compound but allows hydrogen production efficiency, when the sulfur compound exists in the fuel, to be made higher than that when the fuel does not exist therein. As a result, hydrogen can efficiently be produced from the sulfur compound-containing fuel.

Description

本発明は、都市ガスやLPGなどの低級炭化水素よりなる燃料ガスを水蒸気と反応させて水素を製造するための水素製造用触媒と、この水素製造用触媒を用いた水素製造方法に関する。   The present invention relates to a hydrogen production catalyst for producing hydrogen by reacting a fuel gas composed of lower hydrocarbons such as city gas and LPG with water vapor, and a hydrogen production method using the hydrogen production catalyst.

近年、硫化水素、二酸化炭素等の不純物を多量に含む一部のシェールガス等を始めとする低質な天然ガス(Sub-quality natural gas)は、世界中に多量に存在することが知られている。しかしながら、安価にもかかわらず、精製(特に脱硫)が困難かつ高コストであることから有効利用されていないのが現状である。特に、これらの低質な天然ガスから水素を製造するには、改質触媒の硫化水素による硫黄被毒が大きな問題となる。硫黄被毒なく上記低質な天然ガスから水素を製造することが可能であれば、低コストで水素製造が可能となり、将来の水素社会に大きく貢献できる。   In recent years, it has been known that a large amount of low-quality natural gas (sub-quality natural gas) such as some shale gas containing a large amount of impurities such as hydrogen sulfide and carbon dioxide exists all over the world. . However, despite the low cost, refining (especially desulfurization) is difficult and expensive, so that it is not effectively used. In particular, in order to produce hydrogen from these low-quality natural gases, sulfur poisoning by hydrogen sulfide as a reforming catalyst becomes a big problem. If it is possible to produce hydrogen from the above-mentioned low-quality natural gas without sulfur poisoning, it will be possible to produce hydrogen at a low cost, which can greatly contribute to the future hydrogen society.

特許文献1,2には、硫黄に対して耐性を有するIr,Pt,又はPdよりなる貴金属を用いることが記載されている。   Patent Documents 1 and 2 describe the use of a noble metal made of Ir, Pt, or Pd that is resistant to sulfur.

特許文献3,4には、バイオマスのガス化ガス中のタール分をBaTiO触媒で分解することが記載されているが、低級炭化水素をBaTiOで分解することは記載されていない。 Patent Documents 3 and 4 describe that the tar content in the biomass gasification gas is decomposed with a BaTiO 3 catalyst, but does not describe that lower hydrocarbons are decomposed with BaTiO 3 .

特表2007−532305Special table 2007-532305 特表2009−543750Special table 2009-543750 特開2010−229271JP 2010-229271 A 特開2011−245426JP2011-245426

上記の貴金属触媒は高価であり、水素製造コストを増大させるおそれがある。   The noble metal catalyst is expensive and may increase the cost of hydrogen production.

本発明は、貴金属よりも安価な耐硫黄性を有した水素製造用触媒と、この水素製造用触媒を用いた水素製造方法を提供することを目的とする。   An object of the present invention is to provide a hydrogen production catalyst having sulfur resistance that is cheaper than a noble metal and a hydrogen production method using the hydrogen production catalyst.

第1発明の水素製造用触媒は、硫黄を含む燃料と水蒸気とを反応させて水素を製造するための触媒において、チタン酸バリウムを含有することを特徴とするものである。   The hydrogen production catalyst according to the first aspect of the present invention is a catalyst for producing hydrogen by reacting a fuel containing sulfur and water vapor, characterized by containing barium titanate.

第2発明の水素製造用触媒は、硫黄を含む燃料と水蒸気とを反応させて水素を製造するための触媒において、チタン酸ストロンチウムを含有することを特徴とするものである。   The hydrogen production catalyst of the second invention is a catalyst for producing hydrogen by reacting a fuel containing sulfur and water vapor, characterized in that it contains strontium titanate.

各水素製造用触媒は、粒状であることが好ましい。   Each hydrogen production catalyst is preferably granular.

粒状のチタン酸バリウムはFe及び/又はSrを担持してもよい。   Granular barium titanate may carry Fe and / or Sr.

粒状のチタン酸ストロンチウムはFe及び/又はBaを担持してもよい。   Granular strontium titanate may carry Fe and / or Ba.

本発明の水素製造方法は、かかる本発明の水素製造用触媒の存在下で硫黄を含む燃料を水蒸気と反応させて水素を製造するものである。   In the hydrogen production method of the present invention, hydrogen is produced by reacting a fuel containing sulfur with water vapor in the presence of the hydrogen production catalyst of the present invention.

本発明の水素製造用触媒は、硫黄を含む燃料、例えば硫黄化合物を含む低級炭化水素と水蒸気とを改質反応させる際の触媒として好適に用いられる。本発明者の研究結果によると、本発明の触媒は、硫黄化合物によって被毒しないだけでなく、低級炭化水素中に硫黄化合物が存在すると、硫黄化合物を含有しない低級炭化水素の場合よりも水素生成効率が向上することが認められた。本発明はかかる知見に基くものである。本発明によると、硫黄を含む燃料、例えば硫黄化合物を含む低級炭化水素から水素を効率よく製造することができる。
本発明は、特に、硫黄濃度が高い低質な天然ガス(一部のシェールガス等)、LPG、石炭改質ガス等から脱硫処理することなく水素を効率よく得ることができる。
The hydrogen production catalyst of the present invention is suitably used as a catalyst for reforming a fuel containing sulfur, for example, a lower hydrocarbon containing a sulfur compound and steam. According to the results of the inventor's research, the catalyst of the present invention not only is not poisoned by sulfur compounds, but when sulfur compounds are present in lower hydrocarbons, it produces more hydrogen than lower hydrocarbons that do not contain sulfur compounds. It was observed that efficiency was improved. The present invention is based on such knowledge. According to the present invention, hydrogen can be efficiently produced from a fuel containing sulfur, for example, a lower hydrocarbon containing a sulfur compound.
In particular, the present invention can efficiently obtain hydrogen without desulfurization treatment from low-quality natural gas (such as some shale gas) having a high sulfur concentration, LPG, coal reformed gas, or the like.

水素製造実験結果を示すグラフである。It is a graph which shows a hydrogen production experiment result. 水素製造実験結果を示すグラフである。It is a graph which shows a hydrogen production experiment result. 水素製造実験結果を示すグラフである。It is a graph which shows a hydrogen production experiment result. 水素製造実験結果を示すグラフである。It is a graph which shows a hydrogen production experiment result. 水素製造実験結果を示すグラフである。It is a graph which shows a hydrogen production experiment result. 水素製造実験結果を示すグラフである。It is a graph which shows a hydrogen production experiment result. チタン酸バリウム粒子のTEM写真である。It is a TEM photograph of barium titanate particles. チタン酸バリウムのX線回折チャートである。2 is an X-ray diffraction chart of barium titanate.

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

[チタン酸バリウム系水素製造用触媒]
第1発明の水素製造用触媒は、チタン酸バリウムを含有するものである。このチタン酸バリウムとしては、(BaO)・TiO(0.9≦X≦1.1)で表わされるものが好適である。なお、チタン酸バリウムのBaの一部は他の金属元素、例えばLa,Sr,Caの少なくとも1種と置換されていてもよい。また、チタン酸バリウムのTiの一部が他の金属元素、例えばCr,Mn,Fe,Co,Ni,Al,Zr,Nb,Sn,Ceの少なくとも1種と置換されていてもよい。
[Catalyst for barium titanate-based hydrogen production]
The hydrogen production catalyst of the first invention contains barium titanate. As this barium titanate, what is represented by (BaO) X · TiO 2 (0.9 ≦ X ≦ 1.1) is preferable. A part of Ba of barium titanate may be substituted with at least one other element such as La, Sr, and Ca. Moreover, a part of Ti of barium titanate may be substituted with at least one of other metal elements such as Cr, Mn, Fe, Co, Ni, Al, Zr, Nb, Sn, and Ce.

このチタン酸バリウムは平均粒径50〜200nm特に30〜50nm程度(測定方法はTEM法)の粒子よりなることが好ましいが、これに限定されない。   The barium titanate is preferably composed of particles having an average particle diameter of 50 to 200 nm, particularly about 30 to 50 nm (measurement method is TEM method), but is not limited thereto.

なお、チタン酸バリウムを製造するには、酸化チタン及び/又は焼成により酸化チタンとなるチタン化合物(例えば、炭酸塩、水酸化物など)と、酸化バリウム及び/又は焼成により酸化バリウムとなるバリウム化合物(例えば、炭酸塩、水酸化物など)とを混合し、焼成し、粉砕すればよい。   In order to produce barium titanate, titanium oxide and / or a titanium compound that becomes titanium oxide by firing (for example, carbonate, hydroxide, etc.) and barium oxide and / or a barium compound that becomes barium oxide by firing are produced. (For example, carbonate, hydroxide, etc.) may be mixed, fired, and pulverized.

チタン酸バリウム粒子は、Fe及び/又はSrを担持していてもよい。この場合のFeとしては、酸化鉄であることが好ましく、SrはSrOであることが好ましい。Fe及び/又はSrを担持させるには、酸化鉄、SrO、焼成により酸化鉄となるFe化合物(例えば炭酸鉄、硝酸鉄、塩化鉄、硫化鉄等)、焼成によりSrOとなるSr化合物(例えば炭酸ストロンチウム、硝酸ストロンチウム、塩化ストロンチウム等)をチタン酸バリウム粒子と混合し、好ましくは600〜750℃で焼成することが好ましいが、これに限定されない。   The barium titanate particles may carry Fe and / or Sr. In this case, Fe is preferably iron oxide, and Sr is preferably SrO. In order to support Fe and / or Sr, iron oxide, SrO, Fe compound that becomes iron oxide by firing (for example, iron carbonate, iron nitrate, iron chloride, iron sulfide, etc.), and Sr compound that becomes SrO by firing (for example, carbonic acid) Strontium, strontium nitrate, strontium chloride, etc.) are mixed with barium titanate particles and preferably fired at 600 to 750 ° C., but not limited thereto.

また、水などの溶媒にFe塩及び/又はSr塩を溶解させた溶液をチタン酸バリウム粒子に付着させ、乾燥後、上記と同様の焼成条件で焼成することによってFe及び/又はSrを担持させてもよい。好適な水可溶性のFe塩としては硝酸鉄、塩化鉄、が例示され、Sr塩としては硝酸ストロンチウム、塩化ストロンチウムが例示される。   In addition, a solution in which Fe salt and / or Sr salt is dissolved in a solvent such as water is attached to barium titanate particles, dried, and then fired under the same firing conditions as described above to carry Fe and / or Sr. May be. Examples of suitable water-soluble Fe salts include iron nitrate and iron chloride, and examples of Sr salts include strontium nitrate and strontium chloride.

チタン酸バリウム粒子に対するFe及び/又はSrの担持量は、Fe及び/又はSrの金属重量としてチタン酸バリウム粒子の10wt%以下、例えば0.5〜5wt%程度が好適である。   The amount of Fe and / or Sr supported on the barium titanate particles is preferably 10 wt% or less, for example, about 0.5 to 5 wt% of the barium titanate particles as the metal weight of Fe and / or Sr.

[チタン酸ストロンチウム系水素製造用触媒]
第2発明の水素製造用触媒は、チタン酸ストロンチウムを含有するものである。このチタン酸ストロンチウムとしては、(SrO)・TiO(0.9≦X≦1.1)で表わされるものが好適である。なお、チタン酸ストロンチウムのSrの一部は他の金属元素、例えばLa,Ba,Caの少なくとも1種と置換されていてもよい。また、チタン酸ストロンチウムのTiの一部が他の金属元素、例えばCr,Mn,Fe,Co,Ni,Al,Zr,Nb,Sn,Ceの少なくとも1種と置換されていてもよい。
[Strontium titanate-based hydrogen production catalyst]
The hydrogen production catalyst of the second invention contains strontium titanate. The strontium titanate is preferably represented by (SrO) X · TiO 2 (0.9 ≦ X ≦ 1.1). A part of Sr in strontium titanate may be substituted with at least one other element such as La, Ba, and Ca. Further, a part of Ti of strontium titanate may be substituted with at least one of other metal elements such as Cr, Mn, Fe, Co, Ni, Al, Zr, Nb, Sn, and Ce.

このチタン酸ストロンチウムは平均粒径50〜200nm程度の粒子よりなることが好ましいが、これに限定されない。   The strontium titanate is preferably composed of particles having an average particle diameter of about 50 to 200 nm, but is not limited thereto.

なお、チタン酸ストロンチウムを製造するには、酸化チタン及び/又は焼成により酸化チタンとなるチタン化合物(例えば、炭酸塩、水酸化物など)と、酸化ストロンチウム及び/又は焼成により酸化ストロンチウムとなるストロンチウム化合物(例えば、炭酸塩、水酸化物など)とを混合し、焼成し、粉砕すればよい。   In order to produce strontium titanate, titanium oxide and / or a titanium compound that becomes titanium oxide by firing (for example, carbonate, hydroxide, etc.) and strontium oxide and / or a strontium compound that becomes strontium oxide by firing (For example, carbonate, hydroxide, etc.) may be mixed, baked, and pulverized.

チタン酸ストロンチウム粒子は、Fe及び/又はBaを担持していてもよい。この場合のFeとしては、酸化鉄であることが好ましく、BaはBaOであることが好ましい。Fe及び/又はBaを担持させるには、酸化鉄、BaO、焼成により酸化鉄となるFe化合物(例えば炭酸鉄、硝酸鉄、塩化鉄、硫化鉄等)、焼成によりBaOとなるBa化合物(例えば炭酸バリウム、硝酸バリウム、塩化バリウム)をチタン酸ストロンチウム粒子と混合し、600〜750℃で焼成することが好ましいが、これに限定されない。   The strontium titanate particles may carry Fe and / or Ba. Fe in this case is preferably iron oxide, and Ba is preferably BaO. In order to carry Fe and / or Ba, iron oxide, BaO, an Fe compound that becomes iron oxide by firing (for example, iron carbonate, iron nitrate, iron chloride, iron sulfide, etc.), and a Ba compound that becomes BaO by firing (for example, carbonic acid). Barium, barium nitrate, and barium chloride) are preferably mixed with strontium titanate particles and fired at 600 to 750 ° C., but are not limited thereto.

また、水などの溶媒にFe塩及び/又はBa塩を溶解させた溶液をチタン酸ストロンチウム粒子に付着させ、乾燥後、上記と同様の焼成条件で焼成することによってFe及び/又はBaを担持させてもよい。好適な水可溶性のFe塩としては硝酸鉄、塩化鉄が例示され、Ba塩としては硝酸バリウム、塩化バリウムが例示される。   Further, a solution in which Fe salt and / or Ba salt is dissolved in a solvent such as water is attached to strontium titanate particles, dried, and then fired under the same firing conditions as described above to carry Fe and / or Ba. May be. Examples of suitable water-soluble Fe salts include iron nitrate and iron chloride, and examples of the Ba salt include barium nitrate and barium chloride.

チタン酸ストロンチウム粒子に対するFe及び/又はBaの担持量は、Fe及び/又はBaの金属重量としてチタン酸ストロンチウム粒子の10wt%以下、例えば0.5〜5wt%程度が好適である。   The amount of Fe and / or Ba supported on the strontium titanate particles is preferably 10 wt% or less, for example, about 0.5 to 5 wt% of the strontium titanate particles as the metal weight of Fe and / or Ba.

上記のチタン酸バリウム粒子、チタン酸ストロンチウム粒子は単独で用いられてもよく、混合されて用いられてもよい。チタン酸バリウム粒子及び/又はチタン酸ストロンチウム粒子は、各種の方法によって造粒又は成形されてもよい。造粒粒子形状は、球状、ペレット状、リング状、ロッド状など任意であり、均一形状であってもよく、非均一形状であってもよい。   The above barium titanate particles and strontium titanate particles may be used alone or in combination. Barium titanate particles and / or strontium titanate particles may be granulated or formed by various methods. The granulated particle shape may be any shape such as a spherical shape, a pellet shape, a ring shape, or a rod shape, and may be a uniform shape or a non-uniform shape.

成形体の形状もハニカム状など任意である。また、連通孔を有したスポンジ状多孔質成形体とされてもよい。   The shape of the molded body is also arbitrary such as a honeycomb shape. Alternatively, a sponge-like porous molded body having communication holes may be used.

[硫黄を含む燃料]
硫黄を含む燃料としては、硫黄濃度が高い低質な天然ガス(一部のシェールガス等)、LPG、石炭改質ガス等や、硫黄化合物を含んだ低級炭化水素ガスが例示される。低級炭化水素ガスとしては、メタン、エタン、エチレン、プロパン、ブタン等の炭素数4以下の低級炭化水素の1種又は2種以上、あるいはこれらを含む天然ガス、都市ガス、LPガス等のガスであって、好ましくは硫黄化合物を含有するものが用いられる。硫黄化合物としては、ジメチルサルファイド、エチルメチルサルファイド、ジエチルサルファイドなどのサルファイド類、テトラヒドロチオフェンなどのチオフェン類、ブチルメルカプタン、イソプロピルメルカプタン、ノルマルプロピルメルカプタン、アミルメルカプタン、ヘプチルメルカプタン、メチルメルカプタン、エチルメルカプタンなどのメルカプタン類などの付臭剤及び低質な天然ガスに多量に含まれるHSが例示される。
[Fuel containing sulfur]
Examples of the fuel containing sulfur include low-quality natural gas (such as some shale gas) having a high sulfur concentration, LPG, coal reformed gas, and the like, and lower hydrocarbon gas containing a sulfur compound. Examples of the lower hydrocarbon gas include one or more of lower hydrocarbons having 4 or less carbon atoms such as methane, ethane, ethylene, propane, and butane, or natural gas, city gas, LP gas, and the like containing these. Thus, those containing a sulfur compound are preferably used. Examples of sulfur compounds include sulfides such as dimethyl sulfide, ethyl methyl sulfide, and diethyl sulfide, thiophenes such as tetrahydrothiophene, mercaptans such as butyl mercaptan, isopropyl mercaptan, normal propyl mercaptan, amyl mercaptan, heptyl mercaptan, methyl mercaptan, and ethyl mercaptan. H 2 S contained in a large amount in odorants such as odors and low-quality natural gas.

[水素の製造方法]
上記触媒を用いて水素を製造するには、触媒を有する反応器に燃料ガスと水蒸気とを供給して反応させればよい。
[Method for producing hydrogen]
In order to produce hydrogen using the catalyst, fuel gas and water vapor may be supplied and reacted in a reactor having the catalyst.

反応器から流出したガスは、H、CO、CO、未反応のHO及び低級炭化水素等を含んでいる。この反応ガスを高温シフトコンバータに導入し、COと水蒸気とを反応させてHとCOとに転換する。その後、熱交換器、水分の分離槽などを経て水素分離装置にて水素を分離し、取り出す。水素分離装置としては分離膜又は吸着剤を用いたものなど各種のものを用いることができる。 The gas flowing out from the reactor contains H 2 , CO, CO 2 , unreacted H 2 O, lower hydrocarbons, and the like. This reaction gas is introduced into a high-temperature shift converter, and CO and water vapor are reacted to convert into H 2 and CO 2 . Thereafter, hydrogen is separated and removed by a hydrogen separator through a heat exchanger, a water separation tank, and the like. As the hydrogen separator, various devices such as those using a separation membrane or an adsorbent can be used.

[実施例1(BaTiO触媒)]
BaTiOとしてセラミックコンデンサ製造用の市販のものを用いた。このBaTiOのBaO/TiO比は0.99/1.01であり、BET比表面積は20〜22m/gであった。このBaTiOのTEM法による粒径は30〜50nmであった。
[Example 1 (BaTiO 3 catalyst)]
A commercially available product for producing a ceramic capacitor was used as BaTiO 3 . The BaTiO 3 had a BaO / TiO 2 ratio of 0.99 / 1.01, and a BET specific surface area of 20 to 22 m 2 / g. The particle size of this BaTiO 3 by TEM method was 30 to 50 nm.

<水素製造実験1>
直径10mm、長さ500mmの石英管を電気炉に通し、石英管の長手方向中央部に上記触媒3gよりなる触媒床を形成した。石英管内の該中央部の温度が700,750,800又は850℃となるように加熱すると共に、石英管内に次の組成の原料ガスを大気圧にて250mL/min(SV=5000/Hr)にて供給し、メタンの改質反応を行った。
CH 20体積%
O 20体積%
S 0ppm又は500ppm
残部
<Hydrogen production experiment 1>
A quartz tube having a diameter of 10 mm and a length of 500 mm was passed through an electric furnace, and a catalyst bed made of 3 g of the catalyst was formed at the center in the longitudinal direction of the quartz tube. The quartz tube is heated so that the temperature of the central portion is 700, 750, 800, or 850 ° C., and the source gas having the following composition is set to 250 mL / min (SV = 5000 / Hr) at atmospheric pressure in the quartz tube. The methane reforming reaction was carried out.
CH 4 20% by volume
20% by volume of H 2 O
H 2 S 0 ppm or 500 ppm
N 2 balance

生成ガス組成を分析し、水素収率を測定した。その結果を図1に示す。なお、水素収率は、[Hout/3[CHin×100(%)にて算出した。なお、「[Hout」は生成ガス(石英管流出ガス)中のHモル濃度を表わし、「[CHin」は原料ガス(石英管流入ガス)中のCHモル濃度を表わす。 The product gas composition was analyzed and the hydrogen yield was measured. The result is shown in FIG. The hydrogen yield was calculated by [H 2 ] out / 3 [CH 4 ] in × 100 (%). “[H 2 ] out ” represents the H 2 molar concentration in the product gas (quartz tube outflow gas), and “[CH 4 ] in ” represents the CH 4 molar concentration in the source gas (quartz tube inflow gas). Represent.

図1の通り、700〜850℃のいずれの反応温度においても、原料ガスがHSを含まないHS=0ppmの場合よりもHSを含むHS=500ppmの場合の方が水素の収率が高い。 As shown in FIG. 1, at any reaction temperature of 700 to 850 ° C., the case where H 2 S containing H 2 S = 500 ppm is higher than the case where H 2 S does not contain H 2 S = 0 ppm. Hydrogen yield is high.

<水素製造実験2>
上記実験1において、反応温度を650℃とした。そして、実験開始から2Hrの間はHS=0ppmの原料ガスとし、2Hr経過後はHS=500ppmの原料ガスとしたこと以外は同様とした。水素収率の経時変化を図6に示す。図6の通り、HSを添加することにより、水素収率が約2倍以上に増大する。
<Hydrogen production experiment 2>
In the experiment 1, the reaction temperature was 650 ° C. And, it was the same except that the raw material gas was H 2 S = 0 ppm for 2 hours from the start of the experiment, and the raw material gas was H 2 S = 500 ppm after the passage of 2 hours. The change over time in the hydrogen yield is shown in FIG. As shown in FIG. 6, by adding H 2 S, the hydrogen yield is increased about twice or more.

[実施例2(Fe・Sr/BaTiO触媒)]
<触媒の合成>
BaTiOとして実施例1で用いたものと同じ市販のものを用いた。このBaTiO100重量部に試薬特級のFe1重量部とSrCO1重量部とを、乳鉢にて20Hr混合し、次いで空気雰囲気下にて750℃で、1Hr仮焼した。
[Example 2 (Fe · Sr / BaTiO 3 catalyst)]
<Catalyst synthesis>
The same commercially available product as used in Example 1 was used as BaTiO 3 . 100 parts by weight of BaTiO 3, 1 part by weight of reagent-grade Fe 2 O 3 and 1 part by weight of SrCO 3 were mixed in a mortar for 20 hours, and then calcined at 750 ° C. in an air atmosphere for 1 hour.

得られたFe及びSr担持BaTiO(Fe・Sr/BaTiO)のTEM法による粒径は30〜50nmであった(図7)。エネルギー分散型X線分光測定(EDX)の結果、Fe及びSrがBaTiO粒子の表面に存在することが認められた。X線回折によると、結晶構造はペログスカイト構造であるが、少量のBaCOが存在することが認められた(図8)。BET比表面積は21m/gであった。 The obtained Fe and Sr-supported BaTiO 3 (Fe · Sr / BaTiO 3 ) had a particle size of 30 to 50 nm by the TEM method (FIG. 7). As a result of energy dispersive X-ray spectroscopy (EDX), it was confirmed that Fe and Sr were present on the surface of BaTiO 3 particles. According to X-ray diffraction, the crystal structure was a perogskite structure, but a small amount of BaCO 3 was observed (FIG. 8). The BET specific surface area was 21 m 2 / g.

<水素製造実験(メタン改質)>
触媒としてこのFe・Sr/BaTiOを用いた他は実施例1と同様にしてメタンの改質反応を行った。水素収率の測定結果を図2に示す。
<Hydrogen production experiment (methane reforming)>
A methane reforming reaction was carried out in the same manner as in Example 1 except that this Fe · Sr / BaTiO 3 was used as a catalyst. The measurement result of the hydrogen yield is shown in FIG.

図2の通り、700〜850℃のいずれの反応温度においても、HSを含まないHS=0ppmの原料ガスの場合よりもHSを含む原料ガスの場合の方が水素の収率が高い。 As Figure 2, 700-850 at any reaction temperature ° C., yield it is hydrogen in the case of raw material gas containing H 2 S than in the raw material gas H 2 S = 0 ppm free of H 2 S The rate is high.

<水素製造実験(エタン改質)>
原料ガス中のメタン(CH)の代りに同体積流量にてエタン(C)を供給するようにしたこと以外は上記と同様にしてエタンの改質を行った。水素収率の測定結果を図3に示す。なお、この場合の水素収率は、[Hout/5[Cin×100(%)にて算出した。
<Hydrogen production experiment (ethane reforming)>
Ethane was reformed in the same manner as above except that ethane (C 2 H 6 ) was supplied at the same volume flow rate instead of methane (CH 4 ) in the raw material gas. The measurement results of the hydrogen yield are shown in FIG. In addition, the hydrogen yield in this case was calculated by [H 2 ] out / 5 [C 2 H 6 ] in × 100 (%).

図3の通り、700〜850℃のいずれの反応温度においても、HSを含まないHS=0ppmの原料ガスの場合よりもHSを含む原料ガスの場合の方が水素の収率が高い。 As Figure 3, 700-850 at any reaction temperature ° C., yield it is hydrogen in the case of raw material gas containing H 2 S than in the raw material gas H 2 S = 0 ppm free of H 2 S The rate is high.

[実施例3(SrTiO触媒)]
BaTiOの代りに市販のSrTiOを用いたこと以外は実施例1と同様にして水素を製造し、収率を図4に示した。
[Example 3 (SrTiO 3 catalyst)]
Hydrogen was produced in the same manner as in Example 1 except that commercially available SrTiO 3 was used instead of BaTiO 3 , and the yield is shown in FIG.

図4の通り、700〜850℃のいずれの反応温度においても、HSを含まないHS=0ppmの原料ガスの場合よりもHSを含む原料ガスの場合の方が水素の収率が高い。 Figure as 4, in any of the reaction temperature of 700-850 ° C., yield it is hydrogen in the case of raw material gas containing H 2 S than in the raw material gas H 2 S = 0 ppm free of H 2 S The rate is high.

[実施例4(Fe・Ba/SrTiO触媒)]
<触媒の合成>
SrTiOとして実施例3で用いたものと同じ市販のものを用いた。このSrTiO100重量部に試薬特級のFe1重量部とBaCO1重量部とを、乳鉢にて20Hr混合し、次いで空気雰囲気下にて750℃で、1Hr仮焼してFe及びBa担持SrTiOを製造した。
[Example 4 (Fe · Ba / SrTiO 3 catalyst)]
<Catalyst synthesis>
The same commercially available SrTiO 3 as that used in Example 3 was used. 100 parts by weight of SrTiO 3 is mixed with 1 part by weight of reagent-grade Fe 2 O 3 and 1 part by weight of BaCO 3 in a mortar for 20 hours, and then calcined at 750 ° C. in an air atmosphere for 1 hour to obtain Fe and Ba-supported SrTiO 3 was produced.

エネルギー分散型X線分光測定(EDX)の結果、Fe及びBaがSrTiO粒子の表面に存在することが認められた。X線回折によると、結晶構造はペログスカイト構造であるが、少量のSrCOが存在することが認められた。 As a result of energy dispersive X-ray spectrometry (EDX), it was confirmed that Fe and Ba were present on the surface of SrTiO 3 particles. According to X-ray diffraction, the crystal structure was a perogskite structure, but a small amount of SrCO 3 was observed.

<水素製造実験>
触媒としてこのFe・Ba/SrTiOを用いたこと以外は実施例1と同様にして水素を製造し、収率を図5に示した。
<Hydrogen production experiment>
Hydrogen was produced in the same manner as in Example 1 except that this Fe · Ba / SrTiO 3 was used as a catalyst, and the yield is shown in FIG.

図5の通り、700〜850℃のいずれの反応温度においても、HSを含まないHS=0ppmの原料ガスの場合よりもHSを含む原料ガスの場合の方が水素の収率が高い。 As Figure 5, 700-850 at any reaction temperature ° C., towards hydrogen in the case of the raw material gas containing H 2 S than in the raw material gas H 2 S = 0 ppm free of H 2 S yield The rate is high.

Claims (9)

硫黄を含有する燃料と水蒸気とを反応させて水素を製造するための触媒において、チタン酸バリウムを含有することを特徴とする水素製造用触媒。   A catalyst for producing hydrogen by reacting a fuel containing sulfur with water vapor to produce hydrogen, comprising barium titanate. 請求項1において、チタン酸バリウムが粒子となっていることを特徴とする水素製造用触媒。   The catalyst for hydrogen production according to claim 1, wherein barium titanate is particles. 請求項2において、チタン酸バリウム粒子がFe及び/又はSrを担持していることを特徴とする水素製造用触媒。   3. The hydrogen production catalyst according to claim 2, wherein the barium titanate particles carry Fe and / or Sr. 硫黄を含有する燃料と水蒸気とを反応させて水素を製造するための触媒において、チタン酸ストロンチウムを含有することを特徴とする水素製造用触媒。   A catalyst for producing hydrogen by reacting a fuel containing sulfur with water vapor to produce hydrogen, comprising strontium titanate. 請求項4において、チタン酸ストロンチウムが粒子となっていることを特徴とする水素製造用触媒。   The catalyst for hydrogen production according to claim 4, wherein strontium titanate is particles. 請求項5において、チタン酸ストロンチウム粒子がFe及び/又はBaを担持していることを特徴とする水素製造用触媒。   6. The hydrogen production catalyst according to claim 5, wherein the strontium titanate particles carry Fe and / or Ba. 請求項1ないし6のいずれか1項に記載の水素製造用触媒の存在下で硫黄を含有する燃料と水蒸気とを反応させる工程を有する水素製造方法。   A hydrogen production method comprising a step of reacting a fuel containing sulfur and water vapor in the presence of the hydrogen production catalyst according to any one of claims 1 to 6. 請求項7において、硫黄を含有する燃料が天然ガス、LPG又は石炭改質ガスであることを特徴とする水素製造方法。   8. The method for producing hydrogen according to claim 7, wherein the fuel containing sulfur is natural gas, LPG, or coal reformed gas. 請求項7において、硫黄を含有する燃料が硫黄化合物を含有した低級炭化水素ガスであることを特徴とする水素製造方法。   8. The method for producing hydrogen according to claim 7, wherein the fuel containing sulfur is a lower hydrocarbon gas containing a sulfur compound.
JP2012084897A 2012-04-03 2012-04-03 Catalyst for producing hydrogen and method for producing hydrogen Active JP5888073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012084897A JP5888073B2 (en) 2012-04-03 2012-04-03 Catalyst for producing hydrogen and method for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012084897A JP5888073B2 (en) 2012-04-03 2012-04-03 Catalyst for producing hydrogen and method for producing hydrogen

Publications (2)

Publication Number Publication Date
JP2013212477A true JP2013212477A (en) 2013-10-17
JP5888073B2 JP5888073B2 (en) 2016-03-16

Family

ID=49586261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012084897A Active JP5888073B2 (en) 2012-04-03 2012-04-03 Catalyst for producing hydrogen and method for producing hydrogen

Country Status (1)

Country Link
JP (1) JP5888073B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113663665A (en) * 2021-08-09 2021-11-19 中国科学院大学 Organic sulfur hydrolysis catalyst suitable for Claus process and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059006A (en) * 2000-08-23 2002-02-26 National Institute Of Advanced Industrial & Technology Catalyst for manufacturing hydrogen and hydrogen manufacturing method
JP2004089812A (en) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Hydrogen producing catalyst and preparation method therefor
JP2006346598A (en) * 2005-06-16 2006-12-28 Nissan Motor Co Ltd Steam reforming catalyst
JP2010029822A (en) * 2008-07-31 2010-02-12 Nissan Motor Co Ltd Steam reforming catalyst
JP2011245426A (en) * 2010-05-27 2011-12-08 Tokyo Gas Co Ltd Tar decomposition catalyst and method of decomposing and removing tars in gasified gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059006A (en) * 2000-08-23 2002-02-26 National Institute Of Advanced Industrial & Technology Catalyst for manufacturing hydrogen and hydrogen manufacturing method
JP2004089812A (en) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Hydrogen producing catalyst and preparation method therefor
JP2006346598A (en) * 2005-06-16 2006-12-28 Nissan Motor Co Ltd Steam reforming catalyst
JP2010029822A (en) * 2008-07-31 2010-02-12 Nissan Motor Co Ltd Steam reforming catalyst
JP2011245426A (en) * 2010-05-27 2011-12-08 Tokyo Gas Co Ltd Tar decomposition catalyst and method of decomposing and removing tars in gasified gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
羽田貴英, 横井泰治, 松井徹: "バイオマスガス化システムのための高H2S耐性タール分解触媒の開発", 第107回触媒討論会 討論会A予稿集, JPN6015027441, 18 March 2011 (2011-03-18), JP, pages 54, ISSN: 0003111735 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113663665A (en) * 2021-08-09 2021-11-19 中国科学院大学 Organic sulfur hydrolysis catalyst suitable for Claus process and preparation method and application thereof
WO2023016145A1 (en) * 2021-08-09 2023-02-16 中国科学院大学 Organic sulfur hydrolysis catalyst suitable for claus process, preparation method therefor, and application thereof
CN113663665B (en) * 2021-08-09 2023-09-22 中国科学院大学 Organic sulfur hydrolysis catalyst suitable for Claus process, preparation method and application thereof

Also Published As

Publication number Publication date
JP5888073B2 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
Gao et al. A review of recent developments in hydrogen production via biogas dry reforming
KR101994152B1 (en) A Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, Preparation Method Thereof and Methane Reforming Method Threrewith
US10144000B2 (en) Sulfur resistant nickel based catalysts, methods of forming and using such catalysts
JP5592250B2 (en) Catalytic hydrogenation of carbon dioxide to synthesis gas.
JP5666777B2 (en) Carbon monoxide conversion catalyst and carbon monoxide conversion method using the same
JP5659537B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
JP5780271B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
US8038981B2 (en) Hydrogen production using complex metal oxide pellets
JP2011212574A (en) Reforming catalyst for tar-containing gas, method for manufacturing the reforming catalyst, and method for reforming tar-containing gas
US11958746B2 (en) Hydrocarbon reforming catalyst and hydrocarbon reforming apparatus
KR102053978B1 (en) High purity hydrogen production device and high purity hydrogen production method
JP2022153521A (en) Catalyst and process for producing hydrocarbon
Wang et al. Advances in methanation catalysis
EP4323085A1 (en) Process for purification and conversion of carbon dioxide using renewable energy
JP5888073B2 (en) Catalyst for producing hydrogen and method for producing hydrogen
KR102092736B1 (en) Preparation Method of Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, and Methane Reforming Method Threrewith
JP6631245B2 (en) Method for producing catalyst for reforming hydrocarbon and method for reforming light hydrocarbon
Shokrollahi Yancheshmeh et al. Sustainable production of high-purity hydrogen by sorption enhanced steam reforming of glycerol over CeO2-promoted Ca9Al6O18–CaO/NiO bifunctional material
KR101487387B1 (en) Preparation Method of Metal Carbide Methane Reforming Catalyst and Methane Reforming Catalyst Prepared by the Method
JP2019162619A (en) Catalyst for modifying tar-containing gas, manufacturing method of catalyst for modifying tar-containing gas, and modification method of tar-containing gas using the catalyst for modifying tar-containing gas
JP6701778B2 (en) Method for producing hydrogen by reforming hydrocarbons, apparatus for producing hydrogen, operating method for fuel cell, and operating apparatus for fuel cell
JP2010069434A (en) Autothermal reforming catalyst
JP2002121006A (en) Reforming catalyst and hydrogen generating device
JP5741510B2 (en) Fuel cell power generation system
JP4776403B2 (en) Hydrocarbon reforming catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5888073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250