JP2004089812A - Hydrogen producing catalyst and preparation method therefor - Google Patents

Hydrogen producing catalyst and preparation method therefor Download PDF

Info

Publication number
JP2004089812A
JP2004089812A JP2002252808A JP2002252808A JP2004089812A JP 2004089812 A JP2004089812 A JP 2004089812A JP 2002252808 A JP2002252808 A JP 2002252808A JP 2002252808 A JP2002252808 A JP 2002252808A JP 2004089812 A JP2004089812 A JP 2004089812A
Authority
JP
Japan
Prior art keywords
salt
catalyst
hydrogen production
supported
production catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002252808A
Other languages
Japanese (ja)
Other versions
JP4202072B2 (en
Inventor
Satoru Watanabe
渡辺  悟
Satonobu Yasutake
安武 聡信
Shigeru Nojima
野島  繁
Masanao Yonemura
米村 将直
Hirohisa Yoshida
吉田 博久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002252808A priority Critical patent/JP4202072B2/en
Publication of JP2004089812A publication Critical patent/JP2004089812A/en
Application granted granted Critical
Publication of JP4202072B2 publication Critical patent/JP4202072B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen producing catalyst capable of avoiding the deterioration of a catalyst or the blocking of a reaction place caused by the accumulation of carbon even if hydrogen is produced by steam reforming reaction under a low S/C condition. <P>SOLUTION: The hydrogen producing catalyst is used in the steam reforming reaction of hydrocarbon. In this hydrogen producing catalyst, Ni or Ru is supported on a carrier as an active metal component and at least one component selected from the group consisting of Fe, Co, Cr and Ce is supported as a metal component other than the active metal component. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素の水蒸気改質による水素製造触媒およびその調製方法に関し、特に固体高分子型燃料電池システムの前段における水素製造装置に好適に用いられる触媒に関する。
【0002】
【従来の技術】
近年、地球環境問題の高まりの中で、固体高分子型燃料電池(PEFC)は低公害で、さらに電気エネルギーを効率的かつクリーンに生産できる方法として、分散電源等の幅広い分野での動力源としての適用が期待されている。このPEFCを含む燃料電池システムでは、例えば改質器において、原料ガスである炭化水素と水から、高温にて改質触媒を用いて水蒸気改質反応により水素を製造し、この水素を供給することが行われる。改質器で製造された水素含有ガスは、システムの後段に設けられるPEFCに燃料として供給される。
【0003】
例えば、改質器に送る水素原料としてメタンを用いる場合には、以下の反応式によって、水蒸気改質反応が行われる。
CH+H0→3H+CO (吸熱反応)        ・・・(1)
通常、この反応は、650〜800℃付近で行われ、水とメタンの炭素Cとのモル比であるS/C(steam/carbon比)が、S/C=3以上で行われる。上記(1)の反応は吸熱反応であり、温度が高い条件の方が反応を促進させ易い。
しかしながら、反応の温度を高めるには、メタンだけでなく水を高温に加熱するという熱エネルギーを必要とし、システムとして運転する場合には、エネルギーロスが大きくなる。よって、加熱する水の量が少ない運転条件として、S/Cが3未満の低S/Cにて運転することができれば、システムとしてのエネルギーロスが少なくなるので望ましい。
ところが、上記低S/C条件で水蒸気改質反応を行わせると、触媒上にカーボンが析出する現象が発生し、触媒活性が著しく低下する。この条件で運転を継続すると、触媒にカーボンが蓄積して、ガスの流通を閉塞させてしまうような事態も起こってしまっていた。
【0004】
【発明が解決しようとする課題】
本発明者らは、上記問題点に鑑み、水の量が少ない低S/C条件において水蒸気改質反応による水素製造を行っても、カーボンの蓄積による触媒劣化や反応場の閉塞が回避できる水素製造触媒を開発すべく、鋭意検討した。
その結果、本発明者らは、触媒成分に活性金属以外にFeを担持して、このFeの作用によって低S/Cでもカーボンの析出を防止することによって、上記問題点が解決されることを見出した。本発明は、かかる見地より完成されたものである。
【0005】
【課題を解決するための手段】
すなわち、本発明は、炭化水素の水蒸気改質反応に用いる水素製造触媒であって、担体上に、活性金属成分としてNi又はRuが担持され、さらに該活性金属以外の金属成分としてFe、Co、CrおよびCeからなる群より選ばれる少なくとも1種以上が担持されていることを特徴とする水素製造触媒を提供するものである。
ここで、前記担体としては、Fe等の活性金属以外の担持金属成分が溶け込まない担体、あるいは溶け込んだ後の飽和した状態の担体が好適である。具体的には、スピネル型構造またはペロブスカイト型構造を含む無機成分、又は、これら無機成分とMgOとを含むものであり、前記担持金属成分が溶け込まない構造を有する無機担体が挙げられる。本発明の担体としては、例えば、FeAl,NiAl若しくはMgAlとして表される成分のスピネル型構造、MgTiO若しくはCaTiOとして表される成分のペロブスカイト型構造、又は、これらにMgOを含む担体が好適に挙げられる。
【0006】
前記活性金属成分としてNi、前記活性金属以外の担持金属としてFeが用いられる場合、Niが5.0〜20重量%含まれ、前記活性金属以外の担持金属成分としてFeが該Ni1モルに対して0.5〜2モル担持する態様が好ましい。例えば、Feスピネル構造の担体(FeAl)に、活性金属成分としてNi、活性金属以外の成分としてFeが担持される場合には、担持Ni重量/(担持Ni重量+担持Fe重量+担体FeAl重量)×100の値が5.0〜20重量%となる。また、担体に担持されるFe量は、このNi1モルに対して、0.5〜2モルとなる。Feの代わりに、Co、CrおよびCeの少なくとも1種以上を用いても良いし、あるいは、Fe、Co、CrおよびCeの少なくとも2種以上用いても良い。
前記活性金属成分としてRuが用いられる場合には、Ruが0.3〜5.0重量%含まれ、前記 活性金属以外の担持 金属成分として例えばFeが該Ru1モルに対して0.5〜10モル含有する態様が好ましい。
【0007】
また、本発明は、塩基性溶液に、pH9〜11の範囲にてアルミニウム塩、マグネシウム塩、ニッケル塩およびFe塩の水溶液をそれぞれ滴下する工程と、溶液を熟成後、乾燥させて、ハイドロタルサイト型等の塩基性複塩からなる特定の構造を有する前駆体を作製する工程と、該前駆体を焼成して触媒粉体を得る工程と、を含むことを特徴とする水素製造触媒の調製方法を提供するものである。
さらに同様の調製方法として、本発明では、塩基性溶液に、pH9〜11の範囲にてアルミニウム塩、マグネシウム塩の水溶液と、ニッケル塩もしくはFe塩のいずれか一方の水溶液とを滴下する工程と、溶液を熟成後、乾燥させて、ハイドロタルサイト型等の塩基性複塩からなる特定の構造を有する前駆体を作製する工程と、該前駆体を焼成して触媒粉体を得る工程と、該触媒粉体にNiおよびFeが共に担持されるように、Ni塩もしくはFe塩の少なくとも一方を含有する水溶液に含浸して、乾燥・焼成させる工程と、を含む水素製造触媒の調製方法を採用することもできる。
ここでFe塩の代わりにCo塩、Cr塩およびCe塩からなる群より選ばれる少なくとも1種以上、あるいは、Fe塩、Co塩、Cr塩およびCe塩からなる群より選ばれる少なくとも2種以上を用いることもできる。さらに、Ni塩の代わりに、Ru塩、又は、Ni塩およびRu塩の組み合わせを用いることもできる。
【0008】
さらに、本発明は、アルミナ粉体を、Ni塩およびFe塩を含有する水溶液に加えてNiおよびFeを分散させる工程と、該アルミナ粉体を加熱して、NiFe塩含浸アルミナ粉を得る工程と、該含浸アルミナ粉を通常500℃〜1200℃にて1〜10時間焼成し、酸化ニッケルおよび酸化鉄が担持された触媒粉体とする工程とを含む水素製造触媒の調製方法をも提供するものである。また、アルミナ粉体にNiが担持された触媒を、Fe塩を含有する水溶液に含浸する工程と、該触媒を焼成して、酸化ニッケルおよび酸化鉄が担持された触媒粉体とする工程とを含む水素製造触媒の調製方法も挙げられる。
ここでは、前記触媒担体について、さらに加えて、酸化ニッケルおよび酸化鉄を還元ガスでNiおよびFeに還元する工程を含むこともできる。
【0009】
本発明の水素製造触媒によれば、水の量が少ない低S/C条件において水蒸気改質反応を行わせて水素製造を行っても、カーボンの蓄積による触媒劣化や反応場の閉塞が回避できる。そして、燃料電池システムの改質器に利用した場合に、低S/C条件で利用することができるので、水を加熱する熱エネルギーが通常より少なくても足りるため、運転による負荷が軽減される。
【0010】
【発明の実施の形態】
以下、本発明の水素製造触媒に関して、詳細に説明する。
本発明の水素製造触媒は、都市ガス、メタン、プロバン、灯油、ジメチルエーテル等の炭化水素を原料として、水蒸気改質反応を起こさせることによって、水素含有ガスが得られるものである。この反応は、燃料電池システムにおいては、通常、燃料電池本体の前段に設置される改質器内において行われる。
本発明の水素製造触媒は、担体上に、活性金属成分としてNi又はRuが担持されている。NiとRuは通常一方が用いられるが、両方の活性金属が担体上に担持されていても良い。
本発明の水素製造触媒には、活性金属成分以外の金属成分として、Fe、Co、CrおよびCeからなる群より選ばれる少なくとも1種以上が担持されている。ここでも、これら金属成分は2種以上が担持されていてもよい。この金属成分としては、Feが含まれていることが特に好ましい。
【0011】
本発明の担体としては、Fe等の活性金属以外の担持金属成分が溶け込まない担体、あるいは溶け込んだ後の飽和した状態の担体が好適である。具体的には、スピネル型構造またはペロブスカイト型構造を含む無機成分、又は、これら無機成分とMgOとを含むものであり、前記担持金属成分が溶け込まない構造を有する無機担体が挙げられる。例えばFeAl,NiAl若しくはMgAlとして表される成分のスピネル型構造、MgTiO若しくはCaTiOとして表される成分のペロブスカイト型構造、又は、これらにMgOを含む担体が好適に挙げられる。このようにスピネル型構造やペロブスカイト型構造の担体が好ましいのは、担体上にアルミナ成分などが単独で残っていると、その部分にFeなどの前記金属成分がさらに溶け込み、取り込まれた状態になってしまうことを防ぐためである。
【0012】
スピネル型構造とは、複酸化物で一般にAB型の化合物(AとBは金属元素)として表される結晶構造であり、例えばFeAl,NiAl又はMgAlとして表される。この構造は、立方格子に属し、酸素原子がほぼ立方最密パッキングに詰まるため、結晶構造を構成しない金属成分はスピネル型構造の内部に収まることはできず、外部表面等に存在することになる。
ペロブスカイト型構造は、厳密には立方格子をとらないが理想格子として単純立方格子の構造のものを指し、三次元骨組構造によって出来上がっている隙間に、金属元素が入る。これによって、酸素原子と金属元素を合わせると、立方最密パッキングで、その隙間に他の金属元素が入る構造となっている。よって、スピネル型構造と同様に、結晶構造を構成しない金属成分はペロブスカイト型構造の内部に収まることはできず、外部表面等に存在することになる。
【0013】
前記活性金属成分としてNi、前記活性金属以外の担持金属としてFeが用いられる場合、Niが5.0〜20重量%含まれ、前記活性金属以外の担持金属成分としてFeが該Ni1モルに対して0.5〜2モル担持する態様が好ましい。例えば、Feスピネル構造の担体(FeAl)に、活性金属成分としてNi、活性金属以外の成分としてFeが担持される場合には、担持Ni重量/(担持Ni重量+担持Fe重量+担体FeAl重量)×100の値が5.0〜20重量%となる。また、担体に担持されるFe量は、このNi1モルに対して、0.5〜2モルとなる。Feの代わりに、Co、CrおよびCeの少なくとも1種以上を用いても良いし、あるいは、Fe、Co、CrおよびCeの少なくとも2種以上用いても良い。
前記活性金属成分としてRuが用いられる場合には、Ruが0.3〜5.0重量%含まれ、前記 活性金属以外の担持 金属成分として例えばFeが該Ru1モルに対して0.5〜10モル含有する態様が好ましい。
上記範囲内で活性金属成分が含まれることによって、水蒸気改質反応が効率よく行われる。また、Fe等の金属成分が活性金属成分に対して、上記モル比で担持されることによって、カーボンの付着(コーキング)による触媒劣化を効果的に防止して、触媒活性を長期間維持することができる。
【0014】
次に、本発明の水素製造触媒を製造する方法について説明する。本発明の触媒は、含浸法あるいは共沈法のいずれの方法でも製造することができる。
含浸法の場合には、アルミナペレットをNiおよびFe塩水溶液に含浸後、焼成する方法の他、アルミナ粉をNiおよびFe塩水溶液に含浸、焼成後、ペレット化する方法が挙げられる。
このような含浸法による製法の場合には、焼成後に、Fe元素がすべてアルミナに取り込まれたとしても、Feが所定量担体上に残るような過剰のFe量を含むFe塩溶液に含浸する。その時の塩溶液濃度は限定しない。
【0015】
共沈法による水素製造触媒の製造では、先ず、塩基性溶液に、pH9〜11の範囲にてアルミニウム塩、マグネシウム塩、ニッケル塩およびFe塩の水溶液をそれぞれ滴下する。次いで、溶液を熟成後、乾燥させて、塩基性複塩の前駆体を作製する。最後に、得られた前駆体を、焼成して触媒粉体を得る。
塩基性溶液としては、例えば炭酸ナトリウム水溶液が挙げられる。
【0016】
また、他の共沈法による水素製造触媒の製造では、先ず、塩基性溶液に、pH9〜11の範囲にてアルミニウム塩、マグネシウム塩の水溶液と、ニッケル塩もしくはFe塩のいずれか一方の水溶液とを滴下する。次いで、溶液を熟成後、乾燥させて、前駆体を作製した後、この前駆体を、焼成して触媒粉体Aを得る。
最後に、得られた触媒粉体Aを、ニッケル塩もしくはFe塩の少なくとも一種以上を含む水溶液に含浸して、乾燥・焼成させる。この最後の工程では、例えば、(a)触媒粉AをNi塩又はFe塩、若しくはこれら両方の塩、の水溶液に含浸し、乾燥、焼成し、ペレット化する方法、(b)触媒粉Aをペレット化し、Ni塩又はFe塩、若しくはこれら両方の塩、の水溶液に含浸、乾燥・焼成 する方法、(c)触媒粉Aをハニカム等の基材にコート後、Ni塩(又はFe塩若しくはこれら両方の塩)水溶液に含浸、乾燥・焼成する方法、(d)触媒粉AをNi塩又はFe塩、若しくはこれら両方の塩、の水溶液に含浸、乾燥、焼成して得た粉を基材にコートする方法、のいずれを採用してもよい。ここで、Fe塩の代わりにCo塩、Cr塩およびCe塩からなる群より選ばれる少なくとも1種以上、あるいは、Fe塩、Co塩、Cr塩およびCe塩からなる群より選ばれる少なくとも2種以上を用いることもできる。さらに、Ni塩の代わりに、Ru塩、又は、Ni塩およびRu塩の組み合わせを用いることもできる。
ここで、ペレット化とは、打錠成型、加圧成型や造粒により粒化することである。
【0017】
以下、実施例により本発明をより詳細に説明するが、本発明はこれら実施例によって何ら制限されるものでない。
【0018】
【実施例】
実施例1および比較例1
〔触媒の調製法(含浸法による触媒の調製)〕
蒸発皿にアルミナ粉体85gを秤量し、これに硝酸Ni(II)6水和物138.7g、硝酸Fe(III)9水和物722.0gをイオン交換水1リットルに溶かした水溶液を加え、NiおよびFeイオンをアルミナに分散させる。これをホットプレートで加熱し、ニッケルおよび鉄塩が斑にならないように水を蒸発させ、NiFe塩含浸アルミナ粉を得る。これを、空気中で800℃〜1000℃、5時間焼成し、酸化ニッケル、酸化鉄が担持された触媒粉体とし、これをペレット化する。水蒸気改質触媒としての活性を得るためには、還元ガスで酸化ニッケルおよび酸化鉄を金属に還元した後、使用する。
【0019】
〔得られた触媒の性能評価〕
Feが担持されていないNi担持アルミナ触媒(比較例1)と、本実施例1のFe、Ni担持アルミナの性能を比較した。S/C=1.2、温度700℃、空間ガス速度10000h−1の条件で500℃で水素還元後、脱硫済み都市ガスを用いて、水蒸気改質反応を行った。
230時間の連続運転の結果、比較例1の触媒では、コーキングが発生して触媒劣化が起こったのに対し、実施例1の触媒はコーキングの発生が認められず、触媒の劣化も生じなかった。
図1に、実施例1および比較例1の触媒のメタン転化率の経時変化を示す。
【0020】
実施例2
〔触媒の調製法(共沈法による触媒の調製)〕
炭酸ナトリウム10水和物715.2gをイオン交換水5リットルに溶解させ、60℃に保温してこのアルカリ溶液をAとする。次に硝酸アルミニウム9水和物625.20g及び硝酸マグネシウム6水和物1068.3g、硝酸ニッケル(II)6水和物242.3g及び硝酸鉄(III)9水和物673.3gをイオン交換水10リットルに溶解させ、60℃に保温した酸性溶液を溶液Bとする。まず、攪拌しながら溶液Aに溶液Bを水酸化ナトリウム水溶液でpH10を保持しながら、ゆっくり均一に滴下し沈殿生成液Cを得る。
【0021】
沈殿生成液Cを2時間熟成し、沈殿生成液Cのろ液中にNaイオン、硝酸イオンが検出されない様十分ろ過洗浄する。その後、100℃で24時間乾燥後、乳鉢で粉砕し、850℃で5から10時間焼成することにより酸化ニッケルおよび酸化鉄がMgAl2O4およびMgOに担持したものが得られる。この触媒粉末を加圧成型して水蒸気改質触媒ペレットとする。水蒸気改質反応を行う前には、酸化ニッケルおよび酸化鉄を500℃で水素還元してから使用する。
【0022】
実施例3
〔触媒の調製法(共沈法による触媒の調製)〕
炭酸ナトリウム10水和物715.2gをイオン交換水5リットルに溶解させ、60℃に保温してこのアルカリ溶液をAとする。次に硝酸アルミニウム9水和物625.20g及び硝酸マグネシウム6水和物1068.3g、硝酸ニッケル(II)6水和物242.3gをイオン交換水15リットルに溶解させ、60℃に保温した酸性溶液を溶液Dとする。まず、攪拌しながら溶液Aに溶液Dを水酸化ナトリウム水溶液でpH10を保持しながら、ゆっくり均一に滴下し沈殿生成液Eを得る。
【0023】
沈殿生成液Eを2時間熟成し、沈殿生成液Eのろ液中にNaイオン、硝酸イオンが検出されない様十分ろ過洗浄する。その後、100℃で24時間乾燥後、乳鉢で粉砕し、850℃で5から10時間焼成し、酸化ニッケルがMgAlおよびMgOに担持された粉体Fを得る。粉体Fを蒸発皿にとり、硝酸鉄(III)9水和物673.3gを水1リットルに溶解した水溶液を加え、粉体Fに含浸し、ホットプレートで水を蒸発させる。その後、500℃、5時間、空気中で焼成し、粉体Gを得る。粉体Gを加圧成型して水蒸気改質触媒ペレットとする。水蒸気改質反応を行う前には、酸化ニッケルおよび酸化鉄を500℃で水素還元してから使用する。
【0024】
〔得られた触媒の性能評価〕
上記実施例2の触媒を500℃で水素還元し、酸化ニッケルおよび酸化鉄を還元した後、水蒸気改質反応を、低S/C条件(S/C=1.2)にて、温度700℃、空間ガス速度10000h−1で行った。
200時間の運転の結果、本実施例の触媒はコーキングの発生が認められず、触媒の劣化も生じなかった。
【0025】
【発明の効果】
本発明の水素製造触媒によれば、水の量が少ない低S/C条件において水蒸気改質反応を行わせて水素製造を行っても、カーボンの蓄積による触媒劣化や反応場の閉塞が回避できる。そして、燃料電池システムの改質器に利用した場合に、低S/C条件で利用することができるので、水を加熱する熱エネルギーが通常より少なくても足りるため、効率が向上する。
【図面の簡単な説明】
【図1】実施例1および比較例1の触媒のメタン転化率の経時変化を示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalyst for producing hydrogen by steam reforming of hydrocarbons and a method for preparing the same, and more particularly to a catalyst suitably used in a hydrogen producing apparatus in a preceding stage of a polymer electrolyte fuel cell system.
[0002]
[Prior art]
In recent years, with the increasing global environmental issues, polymer electrolyte fuel cells (PEFCs) are a low-pollution method that can produce electric energy efficiently and cleanly. The application of is expected. In a fuel cell system including this PEFC, for example, in a reformer, hydrogen is produced from a raw material gas hydrocarbon and water by a steam reforming reaction using a reforming catalyst at a high temperature, and the hydrogen is supplied. Is performed. The hydrogen-containing gas produced in the reformer is supplied as fuel to a PEFC provided at a later stage of the system.
[0003]
For example, when methane is used as a hydrogen source to be sent to the reformer, a steam reforming reaction is performed according to the following reaction formula.
CH 4 + H 20 → 3H 2 + CO (endothermic reaction) (1)
Usually, this reaction is carried out at about 650 to 800 ° C., and the S / C (steam / carbon ratio), which is a molar ratio of water and carbon C of methane, is carried out at S / C = 3 or more. The reaction (1) is an endothermic reaction, and the reaction is more easily promoted at a higher temperature.
However, raising the temperature of the reaction requires heat energy for heating not only methane but also water to a high temperature, and when operating as a system, energy loss increases. Therefore, as an operating condition in which the amount of water to be heated is small, it is desirable to be able to operate at a low S / C of S / C of less than 3, since energy loss as a system is reduced.
However, when the steam reforming reaction is performed under the low S / C conditions, a phenomenon occurs in which carbon is deposited on the catalyst, and the catalytic activity is significantly reduced. If the operation is continued under these conditions, carbon may accumulate in the catalyst and block the gas flow.
[0004]
[Problems to be solved by the invention]
In view of the above problems, the inventors of the present invention have proposed a hydrogen generation method capable of avoiding catalyst deterioration due to carbon accumulation and clogging of a reaction field even when performing hydrogen production by a steam reforming reaction under low S / C conditions with a small amount of water. We worked diligently to develop a production catalyst.
As a result, the present inventors have found that the above problems can be solved by supporting Fe on the catalyst component in addition to the active metal and preventing the precipitation of carbon even at low S / C by the action of Fe. I found it. The present invention has been completed from such a viewpoint.
[0005]
[Means for Solving the Problems]
That is, the present invention relates to a hydrogen production catalyst used for a steam reforming reaction of hydrocarbons, wherein Ni or Ru is supported on a carrier as an active metal component, and Fe, Co, An object of the present invention is to provide a hydrogen production catalyst characterized in that at least one selected from the group consisting of Cr and Ce is supported.
Here, as the carrier, a carrier in which a supported metal component other than an active metal such as Fe is not dissolved or a carrier in a saturated state after being dissolved is suitable. Specific examples include an inorganic component having a spinel structure or a perovskite structure, or an inorganic carrier containing these inorganic components and MgO and having a structure in which the supported metal component does not dissolve. As the carrier of the present invention, for example, a spinel structure of a component represented as FeAl 2 O 4 , NiAl 2 O 4 or MgAl 2 O 4 , a perovskite structure of a component represented as MgTiO 3 or CaTiO 3 , or Carriers containing MgO are preferred.
[0006]
When Ni is used as the active metal component and Fe is used as a supporting metal other than the active metal, Ni is contained in an amount of 5.0 to 20% by weight, and Fe is contained as a supporting metal component other than the active metal in an amount of 1 mol of the Ni. An embodiment supporting 0.5 to 2 mol is preferred. For example, when Ni as an active metal component and Fe as a component other than the active metal are supported on a Fe spinel structure carrier (FeAl 2 O 4 ), the weight of supported Ni / (weight of supported Ni + weight of supported Fe + support) The value of (FeAl 2 O 4 weight) × 100 is 5.0 to 20% by weight. The amount of Fe supported on the carrier is 0.5 to 2 mol per 1 mol of Ni. Instead of Fe, at least one or more of Co, Cr and Ce may be used, or at least two or more of Fe, Co, Cr and Ce may be used.
When Ru is used as the active metal component, the content of Ru is 0.3 to 5.0% by weight, and for example, Fe is 0.5 to 10 wt. An embodiment containing moles is preferred.
[0007]
In addition, the present invention provides a step of dropping aqueous solutions of aluminum salt, magnesium salt, nickel salt and Fe salt in a pH range of 9 to 11 to a basic solution, and aging and drying the solution to obtain hydrotalcite. A method for preparing a hydrogen production catalyst, comprising: a step of preparing a precursor having a specific structure composed of a basic double salt such as a mold; and a step of calcining the precursor to obtain a catalyst powder. Is provided.
Further, as a similar preparation method, in the present invention, a step of dropping an aqueous solution of an aluminum salt or a magnesium salt and an aqueous solution of one of a nickel salt and an Fe salt in a basic solution in a pH range of 9 to 11, After aging the solution, drying, to produce a precursor having a specific structure consisting of a basic double salt such as hydrotalcite type, calcining the precursor to obtain a catalyst powder, A method for preparing a hydrogen production catalyst including a step of impregnating with an aqueous solution containing at least one of a Ni salt and an Fe salt, and drying and calcining such that both Ni and Fe are supported on the catalyst powder. You can also.
Here, instead of the Fe salt, at least one member selected from the group consisting of Co salt, Cr salt and Ce salt, or at least two member selected from the group consisting of Fe salt, Co salt, Cr salt and Ce salt is used. It can also be used. Further, instead of the Ni salt, a Ru salt or a combination of a Ni salt and a Ru salt can be used.
[0008]
Further, the present invention provides a step of adding alumina powder to an aqueous solution containing a Ni salt and an Fe salt to disperse Ni and Fe, and a step of heating the alumina powder to obtain a NiFe salt impregnated alumina powder. Calcining the impregnated alumina powder at 500 ° C. to 1200 ° C. for 1 to 10 hours to obtain a catalyst powder carrying nickel oxide and iron oxide. It is. Further, a step of impregnating a catalyst in which Ni is supported on alumina powder with an aqueous solution containing an Fe salt, and a step of firing the catalyst to form a catalyst powder in which nickel oxide and iron oxide are supported are included. And a method for preparing a hydrogen production catalyst.
Here, the catalyst support may further include a step of reducing nickel oxide and iron oxide to Ni and Fe with a reducing gas.
[0009]
ADVANTAGE OF THE INVENTION According to the hydrogen production catalyst of this invention, even if it produces | generates hydrogen by performing a steam reforming reaction under low S / C conditions with a small amount of water, catalyst deterioration and blockage of a reaction field due to accumulation of carbon can be avoided. . When used in a reformer of a fuel cell system, it can be used under low S / C conditions, so that less heat energy for heating water is sufficient than usual, and the load due to operation is reduced. .
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the hydrogen production catalyst of the present invention will be described in detail.
The hydrogen production catalyst of the present invention is one in which a hydrogen-containing gas is obtained by causing a steam reforming reaction using a hydrocarbon such as city gas, methane, propane, kerosene, or dimethyl ether as a raw material. In a fuel cell system, this reaction is usually performed in a reformer installed in a stage preceding the fuel cell body.
In the hydrogen production catalyst of the present invention, Ni or Ru is supported as an active metal component on a carrier. Usually, one of Ni and Ru is used, but both active metals may be supported on a carrier.
In the hydrogen production catalyst of the present invention, at least one selected from the group consisting of Fe, Co, Cr and Ce is supported as a metal component other than the active metal component. Again, two or more of these metal components may be supported. It is particularly preferable that Fe is contained as the metal component.
[0011]
As the carrier of the present invention, a carrier in which a supported metal component other than an active metal such as Fe is not dissolved or a carrier in a saturated state after being dissolved is suitable. Specific examples include an inorganic component having a spinel structure or a perovskite structure, or an inorganic carrier containing these inorganic components and MgO and having a structure in which the supported metal component does not dissolve. For example, a spinel structure of a component represented as FeAl 2 O 4 , NiAl 2 O 4, or MgAl 2 O 4 , a perovskite structure of a component represented as MgTiO 3 or CaTiO 3 , or a carrier containing MgO therein is preferable. It is listed. As described above, a carrier having a spinel structure or a perovskite structure is preferable because, when an alumina component or the like remains alone on the carrier, the metal component such as Fe is further dissolved and taken into that portion. This is to prevent that.
[0012]
The spinel-type structure is a crystal structure generally represented as an AB 2 O 4 type compound (A and B are metal elements) in a double oxide, such as FeAl 2 O 4 , NiAl 2 O 4 or MgAl 2 O 4 Is represented as This structure belongs to a cubic lattice, and oxygen atoms are almost packed in the cubic close-packing, so that metal components that do not constitute a crystal structure cannot fit inside the spinel structure, but exist on the outer surface etc. .
The perovskite type structure does not strictly take a cubic lattice, but refers to a simple cubic lattice structure as an ideal lattice. A metal element enters a gap formed by a three-dimensional frame structure. As a result, when oxygen atoms and metal elements are combined, the structure is such that other metal elements enter the gaps by cubic close packing. Therefore, like the spinel structure, the metal component that does not constitute the crystal structure cannot fit inside the perovskite structure, but exists on the outer surface or the like.
[0013]
When Ni is used as the active metal component and Fe is used as a supporting metal other than the active metal, Ni is contained in an amount of 5.0 to 20% by weight, and Fe is contained as a supporting metal component other than the active metal in an amount of 1 mol of the Ni. An embodiment supporting 0.5 to 2 mol is preferred. For example, when Ni as an active metal component and Fe as a component other than the active metal are supported on a Fe spinel structure carrier (FeAl 2 O 4 ), the weight of supported Ni / (weight of supported Ni + weight of supported Fe + support) The value of (FeAl 2 O 4 weight) × 100 is 5.0 to 20% by weight. The amount of Fe supported on the carrier is 0.5 to 2 mol per 1 mol of Ni. Instead of Fe, at least one or more of Co, Cr and Ce may be used, or at least two or more of Fe, Co, Cr and Ce may be used.
When Ru is used as the active metal component, the content of Ru is 0.3 to 5.0% by weight, and for example, Fe is 0.5 to 10 wt. An embodiment containing moles is preferred.
When the active metal component is contained within the above range, the steam reforming reaction is efficiently performed. In addition, the metal component such as Fe is supported at the above molar ratio with respect to the active metal component, thereby effectively preventing catalyst deterioration due to carbon adhesion (caulking) and maintaining the catalyst activity for a long period of time. Can be.
[0014]
Next, a method for producing the hydrogen production catalyst of the present invention will be described. The catalyst of the present invention can be produced by either the impregnation method or the coprecipitation method.
In the case of the impregnation method, in addition to the method of impregnating alumina pellets with an aqueous solution of Ni and Fe salts and firing, the method of impregnating alumina powder with an aqueous solution of Ni and Fe salts, firing and then pelletizing is used.
In the case of the production method by such an impregnation method, after sintering, even if all of the Fe element is taken into alumina, a predetermined amount of Fe is impregnated with a Fe salt solution containing an excessive amount of Fe so as to remain on the carrier. The salt solution concentration at that time is not limited.
[0015]
In the production of a hydrogen production catalyst by the coprecipitation method, first, an aqueous solution of an aluminum salt, a magnesium salt, a nickel salt, and an Fe salt in a pH range of 9 to 11 is dropped into a basic solution. Next, after aging the solution, it is dried to prepare a precursor of a basic double salt. Finally, the obtained precursor is calcined to obtain a catalyst powder.
Examples of the basic solution include an aqueous solution of sodium carbonate.
[0016]
In the production of a hydrogen production catalyst by another coprecipitation method, first, an aqueous solution of an aluminum salt or a magnesium salt and an aqueous solution of one of a nickel salt and an Fe salt are added to a basic solution in a pH range of 9 to 11. Is dropped. Next, the solution is aged and dried to prepare a precursor, and the precursor is calcined to obtain a catalyst powder A.
Finally, the obtained catalyst powder A is impregnated with an aqueous solution containing at least one of a nickel salt and an Fe salt, and dried and calcined. In this last step, for example, (a) a method in which the catalyst powder A is impregnated with an aqueous solution of a Ni salt or an Fe salt, or both salts, dried, calcined, and pelletized; A method of pelletizing, impregnating with an aqueous solution of Ni salt or Fe salt, or both salts, drying and calcining; (c) coating the catalyst powder A on a substrate such as a honeycomb, and then coating the Ni salt (or Fe salt or these salts) A method of impregnating, drying and calcining an aqueous solution of both salts) (d) impregnating the catalyst powder A with an aqueous solution of Ni salt or Fe salt, or both of these salts, drying and calcining the obtained powder as a base material Any of coating methods may be adopted. Here, instead of the Fe salt, at least one or more selected from the group consisting of Co salt, Cr salt and Ce salt, or at least two or more selected from the group consisting of Fe salt, Co salt, Cr salt and Ce salt Can also be used. Further, instead of the Ni salt, a Ru salt or a combination of a Ni salt and a Ru salt can be used.
Here, pelletization refers to granulation by tablet molding, pressure molding or granulation.
[0017]
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0018]
【Example】
Example 1 and Comparative Example 1
[Catalyst preparation method (preparation of catalyst by impregnation method)]
85 g of alumina powder was weighed into an evaporating dish, and an aqueous solution in which 138.7 g of Ni (II) nitrate hexahydrate and 722.0 g of Fe (III) nitrate 9 hydrate were dissolved in 1 liter of ion-exchanged water was added thereto. , Ni and Fe ions are dispersed in alumina. This is heated on a hot plate to evaporate water so that nickel and iron salts are not spotted, thereby obtaining alumina powder impregnated with NiFe salts. This is fired in air at 800 ° C. to 1000 ° C. for 5 hours to obtain a catalyst powder carrying nickel oxide and iron oxide, and pelletized. In order to obtain the activity as a steam reforming catalyst, nickel oxide and iron oxide are reduced to metal with a reducing gas before use.
[0019]
[Performance evaluation of obtained catalyst]
The performance of the Ni-supported alumina catalyst not supporting Fe (Comparative Example 1) and the performance of the Fe and Ni-supported alumina of Example 1 were compared. After hydrogen reduction at 500 ° C. under the conditions of S / C = 1.2, temperature 700 ° C., and space gas velocity 10000 h −1 , a steam reforming reaction was performed using desulfurized city gas.
As a result of the continuous operation for 230 hours, in the catalyst of Comparative Example 1, coking occurred and the catalyst deteriorated, whereas in the catalyst of Example 1, the occurrence of coking was not recognized and the catalyst did not deteriorate. .
FIG. 1 shows the change over time of the methane conversion of the catalysts of Example 1 and Comparative Example 1.
[0020]
Example 2
[Catalyst preparation method (preparation of catalyst by coprecipitation method)]
715.2 g of sodium carbonate decahydrate is dissolved in 5 liters of ion-exchanged water, and the temperature is kept at 60 ° C. to make this alkali solution A. Next, 625.20 g of aluminum nitrate nonahydrate, 1068.3 g of magnesium nitrate hexahydrate, 242.3 g of nickel (II) nitrate hexahydrate and 673.3 g of iron (III) nitrate nonahydrate were ion-exchanged. An acidic solution dissolved in 10 liters of water and kept at 60 ° C. is referred to as solution B. First, the solution B is slowly and uniformly dropped into the solution A while maintaining the pH of the solution B with an aqueous solution of sodium hydroxide with stirring to obtain a precipitation product liquid C.
[0021]
The sedimentation solution C is aged for 2 hours, and sufficiently filtered and washed so that Na ion and nitrate ion are not detected in the filtrate of the sedimentation solution C. Then, after drying at 100 ° C. for 24 hours, it is pulverized in a mortar and calcined at 850 ° C. for 5 to 10 hours to obtain nickel oxide and iron oxide supported on MgAl 2 O 4 and MgO. This catalyst powder is pressed and formed into steam reforming catalyst pellets. Before performing the steam reforming reaction, nickel oxide and iron oxide are reduced with hydrogen at 500 ° C. before use.
[0022]
Example 3
[Catalyst preparation method (preparation of catalyst by coprecipitation method)]
715.2 g of sodium carbonate decahydrate is dissolved in 5 liters of ion-exchanged water, and the temperature is kept at 60 ° C. to make this alkali solution A. Next, 625.20 g of aluminum nitrate nonahydrate, 1068.3 g of magnesium nitrate hexahydrate, and 242.3 g of nickel (II) nitrate hexahydrate were dissolved in 15 liters of ion-exchanged water, and the acid was kept at 60 ° C. The solution is referred to as solution D. First, the solution D is slowly and uniformly dropped into the solution A while maintaining the pH of the solution D with an aqueous solution of sodium hydroxide with stirring to obtain a precipitation liquid E.
[0023]
The sedimentation solution E is aged for 2 hours, and is sufficiently filtered and washed so that Na ion and nitrate ion are not detected in the filtrate of the sedimentation solution E. Then, after drying at 100 ° C. for 24 hours, the mixture is pulverized in a mortar and calcined at 850 ° C. for 5 to 10 hours to obtain a powder F in which nickel oxide is supported on MgAl 2 O 4 and MgO. The powder F is placed in an evaporating dish, and an aqueous solution obtained by dissolving 673.3 g of iron (III) nitrate nonahydrate in 1 liter of water is added to impregnate the powder F, and the water is evaporated on a hot plate. Thereafter, the powder is fired in air at 500 ° C. for 5 hours to obtain a powder G. The powder G is pressed and formed into steam reforming catalyst pellets. Before performing the steam reforming reaction, nickel oxide and iron oxide are reduced with hydrogen at 500 ° C. before use.
[0024]
[Performance evaluation of obtained catalyst]
After reducing the catalyst of Example 2 with hydrogen at 500 ° C. to reduce nickel oxide and iron oxide, the steam reforming reaction was performed at a temperature of 700 ° C. under low S / C conditions (S / C = 1.2). At a space gas velocity of 10,000 h -1 .
As a result of the operation for 200 hours, no occurrence of coking was observed in the catalyst of this example, and no deterioration of the catalyst occurred.
[0025]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the hydrogen production catalyst of this invention, even if it produces | generates hydrogen by performing a steam reforming reaction under low S / C conditions with a small amount of water, catalyst deterioration and blockage of a reaction field due to accumulation of carbon can be avoided. . Then, when used in a reformer of a fuel cell system, it can be used under low S / C conditions, so that less heat energy for heating water is sufficient than usual, and the efficiency is improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing the change over time in the methane conversion of the catalysts of Example 1 and Comparative Example 1.

Claims (14)

炭化水素の水蒸気改質反応に用いる水素製造触媒であって、担体上に、活性金属成分としてNi又はRuが担持され、さらに該活性金属以外の金属成分としてFe、Co、CrおよびCeからなる群より選ばれる少なくとも1種以上が担持されていることを特徴とする水素製造触媒。A hydrogen production catalyst for use in a steam reforming reaction of hydrocarbons, wherein Ni or Ru is supported on a carrier as an active metal component, and a metal component other than the active metal is Fe, Co, Cr and Ce. A hydrogen production catalyst, wherein at least one member selected from the group consisting of at least two is supported. 前記担体が、スピネル型構造又はペロブスカイト型構造を含む無機担体であることを特徴とする請求項1記載の水素製造触媒。The hydrogen production catalyst according to claim 1, wherein the support is an inorganic support having a spinel structure or a perovskite structure. 前記担体が、FeAl,NiAl若しくはMgAlとして表される成分のスピネル構造、または、MgTiO、CaTiO、BaTiO若しくはSrTiOとして表される成分のペロブスカイト構造を含むことを特徴とする請求項1記載の水素製造触媒。The carrier includes a spinel structure of a component represented as FeAl 2 O 4 , NiAl 2 O 4 or MgAl 2 O 4 , or a perovskite structure of a component represented as MgTiO 3 , CaTiO 3 , BaTiO 3 or SrTiO 3. The hydrogen production catalyst according to claim 1, wherein: 前記担体が、FeAl,NiAl若しくはMgAlとして表される成分のスピネル構造とMgOとを含むことを特徴とする請求項1記載の水素製造触媒。Wherein said carrier, FeAl 2 O 4, NiAl 2 O 4 or claim 1, wherein the hydrogen production catalyst comprising a spinel structure and MgO components, expressed as MgAl 2 O 4. 前記担持活性金属成分としてNiが5.0〜20重量%含まれ、前記担持金属成分としてFeが担持Ni1モルに対して0.5〜2モル担持されていることを特徴とする請求項1〜3のいずれかに記載の水素製造触媒。The nickel is contained as 5.0 to 20% by weight as the supported active metal component, and 0.5 to 2 mol of Fe is supported as 1 mol of supported Ni as the supported metal component. 4. The catalyst for producing hydrogen according to any one of 3. 前記担持活性金属成分としてRuが0.3〜5.0重量%含まれることを特徴とする請求項1〜3のいずれかに記載の水素製造触媒。The hydrogen production catalyst according to any one of claims 1 to 3, wherein Ru is contained as 0.3 to 5.0% by weight as the supported active metal component. 塩基性溶液に、pH9〜11の範囲にてアルミニウム塩、マグネシウム塩、Ni塩およびFe塩の水溶液をそれぞれ滴下する工程と、
該溶液を熟成後、乾燥させて、前駆体を作製する工程と、
該前駆体を、焼成して水素製造触媒を得る工程と、
を含むことを特徴とする水素製造触媒の調製方法。
A step of dropping an aqueous solution of an aluminum salt, a magnesium salt, a Ni salt and an Fe salt in a pH range of 9 to 11, respectively,
After aging the solution, drying to produce a precursor,
Calcining the precursor to obtain a hydrogen production catalyst;
A method for preparing a hydrogen production catalyst, comprising:
塩基性溶液に、pH9〜11の範囲にてアルミニウム塩の水溶液と、マグネシウム塩の水溶液と、Ni塩もしくはFe塩のいずれか一方の水溶液とを滴下する工程と、
該溶液を熟成後、乾燥させて、前駆体を作製する工程と、
該前駆体を、焼成して触媒粉体を得る工程と、
該触媒粉体にNiおよびFeが共に担持されるように、Ni塩もしくはFe塩の少なくとも一方を含有する水溶液に含浸して、乾燥・焼成させる工程と、
を含むことを特徴とする水素製造触媒の調製方法。
A step of dropping an aqueous solution of an aluminum salt, an aqueous solution of a magnesium salt, and an aqueous solution of either a Ni salt or an Fe salt in a pH range of 9 to 11 to the basic solution;
After aging the solution, drying to produce a precursor,
A step of calcining the precursor to obtain a catalyst powder;
A step of impregnating with an aqueous solution containing at least one of a Ni salt and an Fe salt, and drying and calcining, so that the catalyst powder supports both Ni and Fe;
A method for preparing a hydrogen production catalyst, comprising:
前記Fe塩の代わりに、Co塩、Cr塩およびCe塩からなる群より選ばれれる少なくとも1種以上を用いることを特徴とする請求項7又は8に記載の水素製造触媒の調製方法。The method for preparing a hydrogen production catalyst according to claim 7, wherein at least one selected from the group consisting of a Co salt, a Cr salt, and a Ce salt is used instead of the Fe salt. 前記Fe塩の代わりに、Fe塩、Co塩、Cr塩およびCe塩からなる群より選ばれる少なくとも2種以上を用いることを特徴とする請求項7又は8に記載の水素製造触媒の調製方法。9. The method for preparing a hydrogen production catalyst according to claim 7, wherein at least two or more types selected from the group consisting of Fe salts, Co salts, Cr salts, and Ce salts are used instead of the Fe salts. 前記Ni塩の代わりに、Ru塩、又は、Ni塩およびRu塩の組み合わせを用いることを特徴とする請求項7又は8に記載の水素製造触媒の調製方法。The method for preparing a hydrogen production catalyst according to claim 7 or 8, wherein a Ru salt or a combination of a Ni salt and a Ru salt is used instead of the Ni salt. アルミナ粉体を、Ni塩およびFe塩を含有する水溶液に加えてNiおよびFeを分散させる工程と、
該アルミナ粉体を加熱して、NiFe塩含浸アルミナ粉を得る工程と、
該含浸アルミナ粉を焼成し、酸化ニッケルおよび酸化鉄が担持された触媒粉体とする工程と
を含むことを特徴とする水素製造触媒の調製方法。
Adding alumina powder to an aqueous solution containing Ni salt and Fe salt to disperse Ni and Fe;
Heating the alumina powder to obtain a NiFe salt impregnated alumina powder;
Calcining the impregnated alumina powder to form a catalyst powder carrying nickel oxide and iron oxide.
アルミナ粉体にNiが担持された触媒を、Fe塩を含有する水溶液に含浸する工程と、
該触媒を焼成して、酸化ニッケルおよび酸化鉄が担持された触媒粉体とする工程と
を含むことを特徴とする水素製造触媒の調製方法。
Impregnating a catalyst in which Ni is supported on alumina powder with an aqueous solution containing an Fe salt;
Calcining the catalyst to form a catalyst powder carrying nickel oxide and iron oxide.
さらに加えて、前記触媒担体について、酸化ニッケルおよび酸化鉄を還元ガスでNiおよびFeに還元する工程を含むことを特徴とする請求項12又は13に記載の水素製造触媒の調製方法。14. The method for preparing a hydrogen production catalyst according to claim 12, further comprising a step of reducing nickel oxide and iron oxide to Ni and Fe with a reducing gas for the catalyst carrier.
JP2002252808A 2002-08-30 2002-08-30 Method for preparing hydrogen production catalyst Expired - Lifetime JP4202072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002252808A JP4202072B2 (en) 2002-08-30 2002-08-30 Method for preparing hydrogen production catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002252808A JP4202072B2 (en) 2002-08-30 2002-08-30 Method for preparing hydrogen production catalyst

Publications (2)

Publication Number Publication Date
JP2004089812A true JP2004089812A (en) 2004-03-25
JP4202072B2 JP4202072B2 (en) 2008-12-24

Family

ID=32058989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002252808A Expired - Lifetime JP4202072B2 (en) 2002-08-30 2002-08-30 Method for preparing hydrogen production catalyst

Country Status (1)

Country Link
JP (1) JP4202072B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342580A (en) * 2004-06-01 2005-12-15 Toyota Central Res & Dev Lab Inc Catalyst carrier and its production method
JP2007055849A (en) * 2005-08-24 2007-03-08 Murata Mfg Co Ltd Carbon dioxide-absorbing material having function as steam reforming catalyst, its producing method, and fuel gas reforming method in hydrogen production system
JP2007275756A (en) * 2006-04-06 2007-10-25 Nippon Steel Corp Reforming catalyst of hydrocarbon
JP2008080246A (en) * 2006-09-27 2008-04-10 Idemitsu Kosan Co Ltd Method for pretreating hydrogen production catalyst and method for producing hydrogen for fuel cell
JP2009050847A (en) * 2007-07-20 2009-03-12 Pall Corp Catalyst component
JP2010507471A (en) * 2006-10-23 2010-03-11 ビーピー ピー・エル・シー・ Process and catalyst for hydrocarbon conversion
JP4496346B2 (en) * 2007-10-11 2010-07-07 石油資源開発株式会社 Hydrocarbon reforming catalyst and method for producing synthesis gas using the same
WO2010143676A1 (en) * 2009-06-12 2010-12-16 株式会社村田製作所 Hydrocarbon gas reforming catalyst, method for producing same, and method for producing synthetic gas
JP2012515078A (en) * 2009-01-13 2012-07-05 ハイナーグリーン・テクノロジーズ・ソシエダッド・アノニマ Catalyst for use in a method for producing hydrogen by hydrocarbon reforming using steam, method for producing the catalyst, and use of the catalyst in the method for producing hydrogen
JP2012196662A (en) * 2011-03-08 2012-10-18 Denso Corp Steam-reforming catalyst and reforming catalytic body
US8475684B2 (en) 2008-07-23 2013-07-02 Japan Petroleum Exploration Co., Ltd. Composite oxide for hydrocarbon reforming catalyst, process for producing the same, and process for producing syngas using the same
JP2013212477A (en) * 2012-04-03 2013-10-17 Tokyo Gas Co Ltd Catalyst and method for producing hydrogen
KR101421189B1 (en) 2012-08-28 2014-07-22 한국화학연구원 The modified catalyst for co2 conversion
KR101437072B1 (en) * 2011-12-26 2014-09-03 한국화학연구원 Catalyst for efficient co2 conversion and method for preparing thereof
KR20150076362A (en) * 2013-12-26 2015-07-07 재단법인 포항산업과학연구원 Cokes oven gas reforming catalyst for manufacturing synthesis gas, method for preparing the same and method for manufacturing synthesis gas from cokes oven gas using the same
CN110655399A (en) * 2019-09-06 2020-01-07 钟祥市中原电子有限责任公司 Breathable ceramic head for molten steel hydrogen determination probe and preparation method thereof
CN116393133A (en) * 2023-03-21 2023-07-07 华东理工大学 Supported nickel-based catalyst, preparation method and application

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111715235B (en) * 2019-03-19 2021-06-15 中国科学院大连化学物理研究所 High-temperature anti-loss ruthenium monatomic catalyst and preparation and application thereof

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342580A (en) * 2004-06-01 2005-12-15 Toyota Central Res & Dev Lab Inc Catalyst carrier and its production method
JP2007055849A (en) * 2005-08-24 2007-03-08 Murata Mfg Co Ltd Carbon dioxide-absorbing material having function as steam reforming catalyst, its producing method, and fuel gas reforming method in hydrogen production system
JP2007275756A (en) * 2006-04-06 2007-10-25 Nippon Steel Corp Reforming catalyst of hydrocarbon
JP2008080246A (en) * 2006-09-27 2008-04-10 Idemitsu Kosan Co Ltd Method for pretreating hydrogen production catalyst and method for producing hydrogen for fuel cell
JP2010507471A (en) * 2006-10-23 2010-03-11 ビーピー ピー・エル・シー・ Process and catalyst for hydrocarbon conversion
JP2009050847A (en) * 2007-07-20 2009-03-12 Pall Corp Catalyst component
JP4496346B2 (en) * 2007-10-11 2010-07-07 石油資源開発株式会社 Hydrocarbon reforming catalyst and method for producing synthesis gas using the same
JPWO2009048083A1 (en) * 2007-10-11 2011-02-24 石油資源開発株式会社 Hydrocarbon reforming catalyst and method for producing synthesis gas using the same
US8178003B2 (en) 2007-10-11 2012-05-15 Japan Petroleum Exploration Co., Ltd. Hydrocarbon-reforming catalyst and process for producing synthesis gas using the same
US8475684B2 (en) 2008-07-23 2013-07-02 Japan Petroleum Exploration Co., Ltd. Composite oxide for hydrocarbon reforming catalyst, process for producing the same, and process for producing syngas using the same
JP2012515078A (en) * 2009-01-13 2012-07-05 ハイナーグリーン・テクノロジーズ・ソシエダッド・アノニマ Catalyst for use in a method for producing hydrogen by hydrocarbon reforming using steam, method for producing the catalyst, and use of the catalyst in the method for producing hydrogen
CN102802789A (en) * 2009-06-12 2012-11-28 株式会社村田制作所 Hydrocarbon gas reforming catalyst, method for producing same, and method for producing synthetic gas
US8329612B2 (en) 2009-06-12 2012-12-11 Murata Manufacturing Co., Ltd. Catalyst for reforming hydrocarbon gas, method of manufacturing the same, and method of manufacturing synthesized gas
WO2010143676A1 (en) * 2009-06-12 2010-12-16 株式会社村田製作所 Hydrocarbon gas reforming catalyst, method for producing same, and method for producing synthetic gas
JP5327323B2 (en) * 2009-06-12 2013-10-30 株式会社村田製作所 Hydrocarbon gas reforming catalyst, method for producing the same, and method for producing synthesis gas
JP2012196662A (en) * 2011-03-08 2012-10-18 Denso Corp Steam-reforming catalyst and reforming catalytic body
KR101437072B1 (en) * 2011-12-26 2014-09-03 한국화학연구원 Catalyst for efficient co2 conversion and method for preparing thereof
JP2013212477A (en) * 2012-04-03 2013-10-17 Tokyo Gas Co Ltd Catalyst and method for producing hydrogen
KR101421189B1 (en) 2012-08-28 2014-07-22 한국화학연구원 The modified catalyst for co2 conversion
KR20150076362A (en) * 2013-12-26 2015-07-07 재단법인 포항산업과학연구원 Cokes oven gas reforming catalyst for manufacturing synthesis gas, method for preparing the same and method for manufacturing synthesis gas from cokes oven gas using the same
KR101594901B1 (en) 2013-12-26 2016-02-18 재단법인 포항산업과학연구원 Cokes oven gas reforming catalyst for manufacturing synthesis gas, method for preparing the same and method for manufacturing synthesis gas from cokes oven gas using the same
CN110655399A (en) * 2019-09-06 2020-01-07 钟祥市中原电子有限责任公司 Breathable ceramic head for molten steel hydrogen determination probe and preparation method thereof
CN116393133A (en) * 2023-03-21 2023-07-07 华东理工大学 Supported nickel-based catalyst, preparation method and application
CN116393133B (en) * 2023-03-21 2024-05-24 华东理工大学 Supported nickel-based catalyst, preparation method and application

Also Published As

Publication number Publication date
JP4202072B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
JP4202072B2 (en) Method for preparing hydrogen production catalyst
JP5354175B2 (en) Porous catalyst body for decomposing hydrocarbon and method for producing the same, method for producing mixed reformed gas containing hydrogen from hydrocarbon, and fuel cell system
KR101994152B1 (en) A Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, Preparation Method Thereof and Methane Reforming Method Threrewith
CN102574103B (en) Porous catalytic object for decomposing hydrocarbon and process for producing same, process for producing hydrogen-containing mixed reformed gas from hydrocarbon, and fuel cell system
Liu et al. Recent progress on Ni-based catalysts in partial oxidation of methane to syngas
Tu et al. Synthesis of flowerlike ceria–zirconia solid solution for promoting dry reforming of methane
CN114768859A (en) Nickel-silicon catalyst suitable for dry reforming of methane and preparation method thereof
Xie et al. Effect of oxygen vacancy influenced by CeO2 morphology on the methanol catalytic reforming for hydrogen production
JP2003320254A (en) Catalyst for water gas shift reaction and steam reforming reaction of methanol
JP2010029822A (en) Steam reforming catalyst
KR101794316B1 (en) Molded object of Ni-based Catalyst for Steam Methane Reforming and use thereof
KR20220052099A (en) High Efficiency Ni-based Catalyst for Steam Methane Reforming and Steam Methane Reforming Reaction using the Same
WO2014021224A1 (en) Hydrocarbon-cracking catalyst, method for producing hydrogen-containing mixed reformed gas using same, and fuel cell system
JP3717219B2 (en) Method for producing highly dispersed steam reforming catalyst and method for producing hydrogen
JP4016100B2 (en) Catalyst for water gas shift reaction
KR20190067146A (en) Preparation Method of Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, and Methane Reforming Method Threrewith
JP2007203159A (en) Catalyst for reforming hydrocarbon, its manufacturing method and hydrogen-manufacturing method using the catalyst
KR20190135799A (en) Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Alcohol Using the Same
TWI433722B (en) A method for producing hydrogen or a catalyst for the modification of oxygen-containing hydrocarbons, and a fuel cell system
JP5494910B2 (en) Hydrogen production catalyst and production method thereof
CN112717914B (en) Methane carbon dioxide reforming catalyst and preparation method and application thereof
JP2005044651A (en) Method of manufacturing hydrogen rich gas
KR100980591B1 (en) A mesoporous nickel-alumina co-precipitated catalyst, preparation method thereof and production method of hydrogen gas by steam reforming of liquefied natural gas using said catalyst
JP4767738B2 (en) Hydrocarbon reforming catalyst
JP2001185190A (en) Producing method of hydrogen for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080919

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081008

R151 Written notification of patent or utility model registration

Ref document number: 4202072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term