JP2013212474A - Gas separation apparatus - Google Patents

Gas separation apparatus Download PDF

Info

Publication number
JP2013212474A
JP2013212474A JP2012084816A JP2012084816A JP2013212474A JP 2013212474 A JP2013212474 A JP 2013212474A JP 2012084816 A JP2012084816 A JP 2012084816A JP 2012084816 A JP2012084816 A JP 2012084816A JP 2013212474 A JP2013212474 A JP 2013212474A
Authority
JP
Japan
Prior art keywords
gas
hydrate
aqueous solution
gas collection
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012084816A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ida
博之 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2012084816A priority Critical patent/JP2013212474A/en
Publication of JP2013212474A publication Critical patent/JP2013212474A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a gas separation apparatus capable of suppressing an increase in equipment scale or reducing equipment costs and operation costs, in a gas separation apparatus separating target gas from processed gas through generation of a hydrate.SOLUTION: A gas separation apparatus comprises: a first gas collection discharge device receiving processed gas; and a second gas collection discharge device receiving the gas discharged by the first gas collection discharge device. The first and second gas collection discharge devices each have: a hydrate generation device bringing aqueous solution of a guest compound generating a hydrate into contact with the gas, and performing cooling, thereby generating the hydrate in which the gas is collected; and a hydrate melting device heating and melting the hydrate generated in the hydrate generation device to thereby release the gas. The hydrate generation device of the second gas collection discharge device has smaller hydrate generation capability than the hydrate generation device of the first gas collection discharge device.

Description

本発明は、水和物の生成を通じて被処理気体から目的とする気体(以下「目的気体」という)を分離する気体分離装置に関し、より詳しくは、設備規模の拡大を抑える又は設備費用及び運転費用を低減できる気体分離装置に関する。   The present invention relates to a gas separation device that separates a target gas (hereinafter referred to as “target gas”) from a gas to be treated through the formation of a hydrate, and more specifically, suppresses the expansion of the facility scale or the facility and operating costs. It is related with the gas separation apparatus which can reduce.

本明細書において、用語の意味又は解釈は以下のとおりとする。これらの用語の意味又は解釈は、本発明の技術的範囲が均等の範囲にまで及ぶことを妨げるものではない。   In this specification, the meaning or interpretation of terms is as follows. The meaning or interpretation of these terms does not preclude the technical scope of the present invention from reaching an equivalent scope.

(1)「水和物」とは、包接水和物の略称である。ホストまたはホスト物質と呼ばれる分子又は化合物(即ち、ホスト分子又はホスト化合物)が構成するトンネル形、層状、網状、籠状などの構造(包接格子)内に、ゲスト物質と呼ばれる他の分子または化合物(即ち、ゲスト分子又はゲスト化合物)が入り込む又は取り込まれることで形成され、生成される物質を包接化合物という。ゲスト化合物の例としては、テトラnブチルアンモニウム塩、テトラisoペンチルアンモニウム塩、トリnブチル・ペンチルアンモニウム塩等のアルキルアンモニウム塩に代表される第四級アンモニウム塩、アルキルホスホニウム塩、アルキルスルホニウム塩などがある。ホスト分子の例としては、水やシクロデキストリンがある。ホスト分子が水である包接化合物が包接水和物である。本発明における「水和物」には、準包接水和物が含まれる。   (1) “Hydrate” is an abbreviation for clathrate hydrate. Other molecules or compounds called guest substances in tunnel-type, layer-like, network-like or cage-like structures (inclusion lattices) formed by molecules or compounds called hosts or host substances (ie, host molecules or host compounds) A substance formed and formed by entering (or guest molecule or guest compound) is referred to as an inclusion compound. Examples of guest compounds include quaternary ammonium salts typified by alkyl ammonium salts such as tetra-n-butylammonium salt, tetra-isopentylammonium salt, tri-n-butyl-pentylammonium salt, alkylphosphonium salts, and alkylsulfonium salts. is there. Examples of host molecules include water and cyclodextrin. An inclusion compound in which the host molecule is water is an inclusion hydrate. The “hydrate” in the present invention includes quasi-clathrate hydrate.

(2)水和物のゲスト分子の水溶液、より詳しくは一種又は二種以上のゲスト化合物を溶質とし、水を溶媒とする水溶液を冷却すると水和物が生成される。本発明において、「水和物を生成するゲスト化合物の水溶液」とは、冷却されて水和物を生成するゲスト化合物を含む水溶液をいう。   (2) An aqueous solution of a hydrate guest molecule, more specifically, an aqueous solution containing one or more guest compounds as a solute and water as a solvent forms a hydrate. In the present invention, “an aqueous solution of a guest compound that forms a hydrate” refers to an aqueous solution containing a guest compound that forms a hydrate upon cooling.

(3)「水和物スラリー」とは、水和物がそのゲスト化合物の水溶液又は水溶媒の中に分散又は懸濁してスラリー状を呈するに至ったものをいう。   (3) “Hydrate slurry” refers to a hydrate dispersed or suspended in an aqueous solution or aqueous solvent of the guest compound to form a slurry.

目的気体を含む水和物を生成することにより、被処理気体から目的気体を捕集し、分離する技術としては、その水和物の典型例が、ゲスト分子を当該気体とするガスハイドレートや、例えば第4級アンモニウム塩をゲスト分子とする水和物であり、このような水和物の生成を通じて当該気体を分離する技術が検討されている(例えば、特許文献1〜4参照)。   As a technique for collecting and separating the target gas from the gas to be treated by generating a hydrate containing the target gas, typical examples of the hydrate include gas hydrates having guest molecules as the gas, For example, it is a hydrate containing a quaternary ammonium salt as a guest molecule, and a technique for separating the gas through the formation of such a hydrate has been studied (for example, see Patent Documents 1 to 4).

これらの技術において、被処理気体中の目的気体の濃度が低い場合や、分離して回収する気体中の目的気体の濃度が高いものが要望される場合には、水和物生成による分離操作を二段階で行うようにされている。 In these techniques, when the concentration of the target gas in the gas to be treated is low, or when a high concentration of the target gas in the gas to be separated and recovered is desired, a separation operation by hydrate formation is performed. It is supposed to be done in two stages.

特開2006−282403号公報JP 2006-282403 A 特開2003−138281号公報JP 2003-138281 A 特開2010−2055号公報JP 2010-2055 A 特開2011−231002号公報JP 2011-231002 A

水和物生成による分離操作を二段階で行う気体分離装置において、一段目の分離操作により被処理気体から分離された気体中の目的気体の濃度は高められており、その濃度が高くなった気体を二段目の分離操作によりさらに目的気体の濃度を高くする処理を行う。一段目と二段目の分離操作を行う水和物生成装置の水和物生成能力が同じであると、二段目の水和物生成装置の処理能力が処理対象気体に対して過剰になるので、無駄であり、ひいては設備費用及び運転費用の低減の妨げとなる。   In the gas separation device that performs the separation operation by hydrate generation in two stages, the concentration of the target gas in the gas separated from the gas to be treated by the first separation operation is increased, and the gas whose concentration has increased The concentration of the target gas is further increased by the second separation operation. If the hydrate generating capacity of the hydrate generator that performs the separation operation of the first stage and the second stage is the same, the processing capacity of the second stage hydrate generator is excessive with respect to the gas to be processed. Therefore, it is useless, and consequently hinders reduction in equipment costs and operating costs.

本発明は、以上のような問題に鑑みてなされたものであり、設備規模の拡大を抑える又は設備費用及び運転費用を低減できる気体分離装置を提供することを目的とする。   This invention is made | formed in view of the above problems, and it aims at providing the gas separation apparatus which can suppress the expansion of an installation scale or can reduce an installation cost and an operating cost.

上記課題を解決するため、本発明の一態様は、水和物を用いて被処理気体から目的気体を分離する気体分離装置であって、被処理気体を受け入れる第一の気体捕集放出装置と、 該第一の気体捕集放出装置により放出された気体を受け入れる第二の気体捕集放出装置とを備え、前記第一の気体捕集放出装置及び第二の気体捕集放出装置は、それぞれ、水和物を生成するゲスト化合物の水溶液を気体とを接触させ、冷却し、これにより気体を捕集した水和物を生成する水和物生成装置と、該水和物生成装置において生成した水和物を加熱して融解し、これにより気体を放出する水和物融解装置とを備え、前記第二の気体捕集放出装置の水和物生成装置は、前記第一の気体捕集放出装置の水和物生成装置に比べて水和物生成能力が小さいことを特徴とする気体分離装置を提供する。   In order to solve the above-described problem, one aspect of the present invention is a gas separation device that separates a target gas from a gas to be processed using a hydrate, and a first gas collection and discharge device that receives the gas to be processed; And a second gas collection / release device for receiving the gas emitted by the first gas collection / release device, wherein the first gas collection / release device and the second gas collection / release device are respectively The aqueous solution of the guest compound that forms a hydrate is brought into contact with a gas and cooled, thereby generating a hydrate that collects the gas, and the hydrate generating device that generates the hydrate. A hydrate melting device that heats and melts the hydrate and thereby releases the gas, and the hydrate generating device of the second gas collection and release device is the first gas collection and release Compared to the hydrate generation device of the device, the hydrate generation capacity is small. Providing a gas separation apparatus according to.

以上のように構成される気体分離装置において、前記水和物生成装置は、二重管式熱交換器で構成された水和物生成管路装置であって、内管にゲスト化合物の水溶液と被処理気体の混合流体を流通させ、外管に冷熱媒体を流通させて混合流体を冷却し、水和物を生成するものであり、前記第二の気体捕集放出装置の水和物生成管路装置は、前記第一の気体捕集放出装置の水和物生成管路装置に比べて、生成管路長さが短く伝熱面積が少ないこと、生成管路の内管断面積が大きく混合流体の流速が低いこと、水溶液ポンプを送液量が低いものとし混合流体の供給流速が低いこと、生成管路の冷熱媒体流路断面積が大きく冷熱媒体の流速が低いこと、冷熱媒体供給ポンプを送液量が低いものとし冷熱媒体の供給流速が低いこと、冷熱媒体の種類を変更すること、冷熱媒体の供給温度を変更すること、水溶液の濃度を変更すること、のうち少なくとも一つにより、熱交換能力を低くすることができる。   In the gas separation apparatus configured as described above, the hydrate generating apparatus is a hydrate generating pipeline apparatus configured with a double-tube heat exchanger, and an aqueous solution of a guest compound and an inner pipe A hydrate generation tube of the second gas collection and discharge device is used for generating a hydrate by circulating a mixed fluid of a gas to be treated and flowing a cooling medium through an outer tube to cool the mixed fluid. Compared with the hydrate generation line device of the first gas collection and release device, the line device has a short generation line length and a small heat transfer area, and the internal pipe cross-sectional area of the generation line is large and mixed. Low flow rate of fluid, low feed rate of aqueous solution pump, low supply flow rate of mixed fluid, large cross-sectional area of cooling medium flow path of production pipe, low flow rate of cooling medium, cooling medium supply pump The amount of liquid to be fed should be low, the cooling medium supply flow rate should be low, and the type of cooling medium Further to that, to change the supply temperature of the chilling medium, changing the concentration of the aqueous solution by at least one of, it is possible to reduce the heat exchange capacity.

本発明の別の態様は、水和物を用いて被処理気体から目的気体を分離する気体分離装置であって、直列に配設する複数段の気体捕集放出装置を備え、最初の段の気体捕集放出装置は被処理気体を受け入れ、二段目以降の気体捕集放出装置は、前段の気体捕集放出装置により放出された気体を受け入れ、前記複数段の気体捕集放出装置は、それぞれ、水和物を生成するゲスト化合物の水溶液を気体とを接触させ、冷却し、これにより気体を捕集した水和物を生成する水和物生成装置と、該水和物生成装置において生成した水和物を加熱して融解し、これにより気体を放出する水和物融解装置とを備え、前記二段目以降の気体捕集放出装置の水和物生成装置は、前段の気体捕集放出装置の水和物生成装置に比べて水和物生成能力が小さいことを特徴とする気体分離装置を提供する。   Another aspect of the present invention is a gas separation device for separating a target gas from a gas to be treated using a hydrate, comprising a plurality of gas collection and discharge devices arranged in series. The gas collection / release device accepts the gas to be treated, the gas collection / release devices after the second stage accept the gas released by the gas collection / release device of the previous stage, and the gas collection / release devices of the plurality of stages are: The aqueous solution of the guest compound that produces a hydrate is brought into contact with the gas and cooled, thereby producing a hydrate that collects the gas, and a hydrate production device that produces the hydrate. A hydrate melting device that heats and melts the hydrate that has been heated and thereby releases the gas. Compared to the hydrate generator of the release device, the hydrate generation capacity is small. Providing a gas separation apparatus according to.

本発明によると、水和物生成による分離操作を二段階で行う気体分離装置であって、設備規模の拡大を抑える又は設備費用及び運転費用を低減できる気体分離装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is a gas separation apparatus which performs the separation operation by hydrate production | generation in two steps, Comprising: The gas separation apparatus which can suppress the expansion of an installation scale or can reduce an installation cost and an operating cost can be provided.

本発明の一実施形態に係る気体分離装置を示す図である。It is a figure which shows the gas separation apparatus which concerns on one Embodiment of this invention.

以下、本発明の種々の実施形態により本発明を詳細に説明する。なお、本発明の技術的範囲は、これらの実施形態によって限定されるものではなく、発明の要旨を変更することなく様々な形態で実施することができる。また、本発明の技術的範囲は、均等の範囲にまで及ぶものである。   Hereinafter, the present invention will be described in detail according to various embodiments of the present invention. The technical scope of the present invention is not limited by these embodiments, and can be implemented in various forms without changing the gist of the invention. Further, the technical scope of the present invention extends to an equivalent range.

<実施形態>
図1は本発明の一実施形態に係る気体分離装置を示す系統図である。
<Embodiment>
FIG. 1 is a system diagram showing a gas separation device according to an embodiment of the present invention.

図1に示す気体分離装置は、目的気体を含む被処理気体Aを受け入れ、目的気体を含む水和物を生成して被処理気体Aから目的気体を捕集し、次いで水和物を加熱して融解し、水和物から目的気体を放出し、目的気体の濃度を高めた濃縮気体Bを得る第一の気体捕集放出装置100と、
第一の気体捕集放出装置100により処理された濃縮気体Bを受け入れ、目的気体を含む水和物を生成して濃縮気体Bから目的気体を捕集し、次いで水和物を加熱して融解し、水和物から目的気体を放出し、目的気体の濃度をさらに高めた高濃縮気体Cを得る第二の気体捕集放出装置200とを備える。
The gas separation device shown in FIG. 1 receives a gas to be processed A containing a target gas, generates a hydrate containing the target gas, collects the target gas from the gas to be processed A, and then heats the hydrate. A first gas collection and release device 100 that melts and releases the target gas from the hydrate to obtain a concentrated gas B with an increased concentration of the target gas;
The concentrated gas B processed by the first gas collection and release device 100 is received, a hydrate containing the target gas is generated, the target gas is collected from the concentrated gas B, and then the hydrate is heated and melted. And a second gas collection and release device 200 that releases the target gas from the hydrate and obtains the highly concentrated gas C in which the concentration of the target gas is further increased.

第一の気体捕集放出装置100と第二の気体捕集放出装置200は、水和物を生成するゲスト化合物の水溶液D,E(以下、単に「水溶液」という場合がある)を目的気体と接触させ、冷却し、目的気体分子を包接格子内の空隙に取り込んだ水和物を生成することにより、目的気体を含む水和物を生成し、これにより目的気体を捕集する水和物生成装置101,201と、
該水和物生成装置101,201において生成した水和物を加熱して融解し、これにより目的気体を放出する水和物融解装置102,202とをそれぞれ備える。
The first gas collecting / releasing device 100 and the second gas collecting / releasing device 200 use an aqueous solution D or E of a guest compound that generates a hydrate (hereinafter sometimes simply referred to as “aqueous solution”) as a target gas. A hydrate containing a target gas is produced by contacting and cooling to produce a hydrate that takes in the target gas molecules into the voids in the inclusion lattice, thereby collecting the target gas. Generators 101 and 201;
The hydrate generating apparatuses 101 and 201 are respectively provided with hydrate melting apparatuses 102 and 202 that heat and melt the hydrates generated to release the target gas.

また、水和物生成装置101,201において、水和物が水溶液に分散又は懸濁している水和物のスラリーが生成される。   In the hydrate generating apparatuses 101 and 201, a hydrate slurry in which the hydrate is dispersed or suspended in the aqueous solution is generated.

<第一の気体捕集放出装置100>
第一の気体捕集放出装置100は、目的気体を含む被処理気体Aの圧力を昇圧し、混合器104へ送気する昇圧機103、
水和物を生成するゲスト化合物の水溶液を水溶液貯槽105から混合器104に供給する水溶液ポンプ106、
水溶液に被処理気体を混合する混合器104、及び
混合器104で被処理気体Aと水溶液Dとが混合された混合流体を受け入れ、冷却し、目的気体分子を包接格子内の空隙に取り込んだ水和物を生成し、目的気体を捕集する水和物生成装置(生成管路)101、
水和物生成装置で生成された水和物が水溶液に分散又は懸濁している水和物スラリーと、水和物に取り込まれない被処理気体中の残気体とを受け入れ、これらを分離する残気体分離器107、
残気体分離器107で残気体111を分離した水和物スラリーを水和物融解装置102に供給する水和物スラリーポンプ108、
水和物スラリーを加熱し、水和物を融解して、水和物から取り込んだ目的気体を放出する水和物融解装置102、
水和物融解装置102で水和物が融解した水溶液と目的気体とを受け入れ、これらを分離し、目的気体の濃度が高められた濃縮気体Bを得る目的気体分離器109、及び
目的気体分離器109で分離された水溶液Dを貯留する水溶液貯槽105
を備える。
<First gas collection and release device 100>
The first gas collection and release device 100 increases the pressure of the gas A to be processed including the target gas and supplies the pressure to the mixer 104.
An aqueous solution pump 106 for supplying an aqueous solution of a guest compound that forms a hydrate to the mixer 104 from the aqueous solution storage tank 105;
The mixer 104 for mixing the gas to be processed into the aqueous solution, and the mixed fluid in which the gas to be processed A and the aqueous solution D are mixed by the mixer 104 are received, cooled, and the target gas molecules are taken into the voids in the inclusion lattice. Hydrate generating device (generation line) 101 for generating a hydrate and collecting a target gas,
A hydrate slurry in which a hydrate produced by a hydrate producing apparatus is dispersed or suspended in an aqueous solution and a residual gas in a gas to be treated that is not taken into the hydrate are received and separated to separate them. Gas separator 107,
A hydrate slurry pump 108 for supplying the hydrate slurry from which the residual gas 111 has been separated by the residual gas separator 107 to the hydrate melting apparatus 102;
A hydrate melting apparatus 102 for heating the hydrate slurry, melting the hydrate, and releasing a target gas taken in from the hydrate;
A target gas separator 109 that receives an aqueous solution in which a hydrate has been melted by the hydrate melting apparatus 102 and a target gas, separates them, and obtains a concentrated gas B with an increased concentration of the target gas, and a target gas separator Aqueous solution storage tank 105 for storing the aqueous solution D separated in 109
Is provided.

<第二の気体捕集放出装置200>
第一の気体捕集放出装置100とほぼ同じ構成である。
<Second gas collection / release device 200>
The configuration is substantially the same as that of the first gas collection / release device 100.

混合器204に第一の気体捕集放出装置100により目的気体の濃度が高められた濃縮気体Bが供給される。   Concentrated gas B whose concentration of the target gas has been increased by the first gas collection / release device 100 is supplied to the mixer 204.

目的気体分離器209で目的気体の濃度をさらに高めた高濃縮気体Cを得る。   The target gas separator 209 obtains a highly concentrated gas C in which the concentration of the target gas is further increased.

第二の気体捕集放出装置200の水和物生成装置201は、第一の気体捕集放出装置100の水和物生成装置101に比べて水和物生成能力が低いものとすることが好ましい。   It is preferable that the hydrate generation device 201 of the second gas collection / release device 200 has a lower hydrate generation capability than the hydrate generation device 101 of the first gas collection / release device 100. .

ここで、水和物生成能力とは、単位時間当たりの水和物の生成量をいう。 Here, the hydrate production ability refers to the amount of hydrate produced per unit time.

第二の気体捕集放出装置200の水和物生成装置201には、第一の気体捕集放出装置100により目的気体の濃度が高められた濃縮気体Bと水溶液Eの混合流体が供給され、目的気体を含む水和物を生成する。第二の気体捕集放出装置200の水和物生成装置201では、第一の気体捕集放出装置100の水和物生成装置101において水和物を生成する場合に比べて、目的気体の濃度が高められており、また被処理気体から未反応の残気体が除かれていて処理対象となる気体量が減少しているため、第一の気体捕集放出装置100の水和物生成装置101と同程度の水和物生成能力である必要がなく、適度な水和物生成能力の水和物生成装置とすることにより、設備規模の拡大を抑え、設備費用と運転費用を削減することができる。   The hydrate generating device 201 of the second gas collection / release device 200 is supplied with a mixed fluid of the concentrated gas B and the aqueous solution E whose concentration of the target gas is increased by the first gas collection / release device 100, A hydrate containing the target gas is produced. The concentration of the target gas in the hydrate generating device 201 of the second gas collection / release device 200 is higher than that in the case where the hydrate is generated in the hydrate generation device 101 of the first gas collection / release device 100. Since the unreacted residual gas is removed from the gas to be treated and the amount of gas to be treated is reduced, the hydrate generating device 101 of the first gas collection and release device 100 is reduced. It is not necessary to have the same hydrate production capacity as in the case of hydration production equipment with a moderate hydrate production capacity, thereby suppressing the expansion of equipment scale and reducing equipment costs and operating costs. it can.

さらに、第二の気体捕集放出装置200の水和物生成装置201を適度な水和物生成能力の水和物生成装置とすることに伴い、第二の気体捕集放出装置200の水和物融解装置202は、第一の気体捕集放出装置100の水和物融解装置102に比べて水和物融解能力が低いものとすることが好ましい。これにより、設備規模の拡大を抑え、設備費用と運転費用を削減することができる。ここで、水和物分解能力とは、単位時間当たりの水和物の分解量をいう。   Further, as the hydrate generation device 201 of the second gas collection / release device 200 is changed to a hydrate generation device having an appropriate hydrate generation capability, the hydration of the second gas collection / release device 200 is performed. It is preferable that the object melting apparatus 202 has a lower hydrate melting ability than the hydrate melting apparatus 102 of the first gas collection and release apparatus 100. Thereby, expansion of an equipment scale can be suppressed and an installation cost and an operating cost can be reduced. Here, the hydrate decomposition ability refers to the amount of hydrate decomposition per unit time.

第二の気体捕集放出装置200の水和物生成装置201と水和物融解装置202とを、第一の気体捕集放出装置100のものに比べて水和物生成能力と水和物融解能力とが低いものとすることに伴い、昇圧機203、水溶液ポンプ206、混合器204、残気体分離器207、目的気体分離器209とを、それぞれの処理能力が低いものとすることができ、設備費用と運転費用を削減することができる。   The hydrate generating device 201 and the hydrate melting device 202 of the second gas collection / release device 200 are compared with those of the first gas collection / release device 100 in terms of hydrate generation capability and hydrate melting. As the capacity is low, the booster 203, the aqueous solution pump 206, the mixer 204, the residual gas separator 207, and the target gas separator 209 can each have a low processing capacity, Equipment costs and operating costs can be reduced.

以下、これらの各機器について説明する。   Hereinafter, each of these devices will be described.

<第一の気体捕集放出装置100>
〔混合器104〕
水溶液ポンプ106により後述する水溶液貯槽105から水溶液Dの供給を受け、この水溶液Dに昇圧機103により被処理気体Aの供給を受け、これらを混合する。
<First gas collection and release device 100>
[Mixer 104]
An aqueous solution pump 106 receives supply of an aqueous solution D from an aqueous solution storage tank 105, which will be described later.

水溶液Dへの被処理気体Aの供給は相対的なものであり、水溶液Dに向けて気体Aを放出する場合は勿論、被処理気体Aに向けて水溶液Dを放出する場合もこれに該当する。前者の典型例は、水溶液Dが存在する領域への当該領域外からの気体Aのバブリングであり、その場合、気泡粒径は小さいほど好ましい。これを実現する混合器104の一つの態様としては、混合器104が水溶液Dを充填したタンクからなり、気体が微細な気泡として水溶液中に分散されるようなものがある。この場合、気液接触面積が大きく取れるように気泡径は小さいほうが好ましい。   The supply of the gas A to be treated to the aqueous solution D is relative, and this applies to the case where the gas A is released toward the aqueous solution D and the case where the aqueous solution D is released toward the gas A to be treated. . A typical example of the former is bubbling of the gas A from outside the region to the region where the aqueous solution D exists, and in that case, the smaller the bubble particle size, the better. As one aspect of the mixer 104 that realizes this, the mixer 104 is composed of a tank filled with the aqueous solution D, and the gas is dispersed in the aqueous solution as fine bubbles. In this case, it is preferable that the bubble diameter is small so that the gas-liquid contact area can be increased.

後者すなわち被処理気体Aに向けて水溶液Dを放出する場合の典型例は、気体Aが存在する領域への当該領域外からの水溶液Dの噴霧であり、その場合水溶液滴径は小さいほど好ましい。これを実現する混合器104の態様として、気体Aを充填した容器内に水溶液Dをスプレーノズルにより噴霧して気体Aと接触させ、水溶液Dに気体Aを溶解させるようなものがある。   A typical example of the latter case where the aqueous solution D is released toward the gas A to be treated is spraying of the aqueous solution D from outside the region to the region where the gas A exists. As an aspect of the mixer 104 that realizes this, there is a type in which the aqueous solution D is sprayed by a spray nozzle in a container filled with the gas A and brought into contact with the gas A, and the gas A is dissolved in the aqueous solution D.

前者、後者のいずれの場合においても、水溶液Dへの気体Aの供給は、気体Aと水溶液Dとの接触面積をより高める手法により行われることが好ましい。   In either case of the former and the latter, it is preferable that the supply of the gas A to the aqueous solution D is performed by a technique for further increasing the contact area between the gas A and the aqueous solution D.

また、混合器104としてラインミキサーを用いてもよい。ラインミキサーにおいて水溶液Dは筒状体に供給され内面に設けられた翼体等により旋回流が形成され、水溶液Dの旋回流に被処理気体Aが巻き込まれて超微細な気泡群になるように砕かれ、水溶液Dと被処理気体Aとが混合される。   Further, a line mixer may be used as the mixer 104. In the line mixer, the aqueous solution D is supplied to the cylindrical body, and a swirl flow is formed by a blade body or the like provided on the inner surface. It is crushed and the aqueous solution D and the gas A to be processed are mixed.

混合器104によって水溶液Dに被処理気体Aが混合された後、混合流体は水和物生成装置101に送られる。   After the gas A to be treated is mixed with the aqueous solution D by the mixer 104, the mixed fluid is sent to the hydrate generator 101.

〔水和物生成装置101〕
水和物生成装置101は、冷却機能を備えており、混合器104で混合された水溶液Dと被処理気体Aとの混合流体を冷却して目的気体を含む水和物を生成し、その水和物が水溶液に分散又は懸濁してなる水和物スラリーを生成する。冷却機能としては冷熱媒体110を供給して冷却する熱交換機能を備えることが好ましい。
[Hydrate generator 101]
The hydrate generating apparatus 101 has a cooling function, generates a hydrate containing the target gas by cooling the mixed fluid of the aqueous solution D and the gas to be processed A mixed in the mixer 104, and the water. A hydrate slurry is produced in which a hydrate is dispersed or suspended in an aqueous solution. As a cooling function, it is preferable to provide a heat exchange function for supplying and cooling the cooling medium 110.

図1の実施形態では、水和物生成装置101は二重管式熱交換器で構成された生成管路であり、内管に水溶液Dと被処理気体Aの混合流体を流通させ、外管に冷熱媒体110を流通させ混合流体を冷却し、水和物を生成する。また、水和物生成装置101はシェルアンドチューブ式熱交換器であってもよく、伝熱管内に混合流体を流通させ、シェル内に冷熱媒体110を流通させ、伝熱管内の周面を介して、冷熱媒体110との熱交換により冷却するようにしてもよい。   In the embodiment of FIG. 1, the hydrate generating device 101 is a generating pipe composed of a double-pipe heat exchanger, and a mixed fluid of an aqueous solution D and a gas to be processed A is circulated through the inner pipe, and the outer pipe Then, the cooling medium 110 is circulated to cool the mixed fluid to form a hydrate. Further, the hydrate generator 101 may be a shell and tube heat exchanger, and the mixed fluid is circulated in the heat transfer tube, the cooling medium 110 is circulated in the shell, and the peripheral surface in the heat transfer tube is interposed. Thus, cooling may be performed by heat exchange with the cooling medium 110.

また、水和物生成装置101においては、被処理気体Aのうち水和物に含まれず捕集されなかった残りの気体が存在するが、これは未反応の残気体として水和物スラリーとともに水和物生成装置101から抜き出され、後述の分離器107によって水和物スラリーと分離される。   In addition, in the hydrate generating apparatus 101, there is a remaining gas that is not included in the hydrate and is not collected in the gas A to be treated, and this is water together with the hydrate slurry as an unreacted residual gas. It is extracted from the hydrate generator 101 and separated from the hydrate slurry by a separator 107 described later.

水和物生成装置101において、水溶液を冷却する冷却温度は0℃より高い温度とすることが好ましい。つまり生成するスラリーの温度が0℃より高い温度になるようにする。冷却温度を0℃より高い温度で冷却するようにすれば、冷媒を供給するために用いる装置として、冷凍機または外気と冷水とで熱交換させるクーリングタワーを用いることができ、容易に冷熱を得て冷熱媒体110を供給することができる。特にゲスト分子として第四級アンモニウム塩の一つである臭化テトラisoペンチルアンモニウム(TiPAB)を用いた場合は15℃以上で水和物を生成できるので、外気の熱エネルギーを利用することが可能であり、より経済的な手法を選択することができる。   In the hydrate production | generation apparatus 101, it is preferable that the cooling temperature which cools aqueous solution shall be higher than 0 degreeC. That is, the temperature of the slurry to be generated is set to a temperature higher than 0 ° C. If the cooling temperature is cooled to a temperature higher than 0 ° C., a cooling tower that exchanges heat between the refrigerator or the outside air and cold water can be used as an apparatus used to supply the refrigerant. A cold medium 110 can be supplied. In particular, when tetraisopentylammonium bromide (TiPAB), which is one of the quaternary ammonium salts, is used as a guest molecule, hydrates can be generated at 15 ° C or higher, so the thermal energy of the outside air can be used. Therefore, a more economical method can be selected.

〔残気体分離器107〕
残気体分離器107は、水和物生成装置101から水和物スラリーと未反応の残気体の供給を受けて未反応の残気体111を分離する。
[Residual gas separator 107]
The residual gas separator 107 receives supply of the hydrate slurry and the unreacted residual gas from the hydrate generator 101 and separates the unreacted residual gas 111.

残気体分離器107の形式は任意であり、例えばデカンター、サイクロンセパレータ、遠心分離機などを利用することができるが、分離した残気体111中へのスラリー液滴混入を可能な限り少なくするため、例えば衝突分離式のミストセパレータを併せて用いることが望ましい。   The form of the residual gas separator 107 is arbitrary. For example, a decanter, a cyclone separator, a centrifugal separator, or the like can be used, but in order to minimize the mixing of slurry droplets into the separated residual gas 111, For example, it is desirable to use a collision separation type mist separator together.

残気体分離器107で残気体111を分離された水和物スラリーは、水和物スラリーポンプ108により水和物融解装置102に供給される。   The hydrate slurry from which the residual gas 111 has been separated by the residual gas separator 107 is supplied to the hydrate melting apparatus 102 by the hydrate slurry pump 108.

<水和物融解装置102>
水和物融解装置102は、加熱機能を備えており、残気体分離器107で残気体111が分離された水和物スラリーを導入し、これを加熱して、水和物を融解させて水溶液を生成し、水和物に捕集されていた目的気体を放出させる。加熱機能としては加熱媒体を供給して加熱する熱交換器を備えることが好ましい。
<Hydrate melting apparatus 102>
The hydrate melting apparatus 102 has a heating function, introduces a hydrate slurry from which the residual gas 111 has been separated by the residual gas separator 107, heats the hydrate slurry, melts the hydrate, and forms an aqueous solution. And the target gas collected in the hydrate is released. As a heating function, it is preferable to provide a heat exchanger that supplies and heats a heating medium.

水和物生成装置101と同様の構造の二重管式熱交換器とし、冷熱媒体110の代わりに加熱媒体113を供給する構成としてもよい。   A double tube heat exchanger having the same structure as that of the hydrate generator 101 may be used, and the heating medium 113 may be supplied instead of the cooling medium 110.

水和物融解装置102から排出される気体分は、水和物から放出された目的気体と残存する残気体との混合物であり、被処理気体に比べて目的気体の濃度が高められた濃縮気体となっている。   The gas discharged from the hydrate melting apparatus 102 is a mixture of the target gas released from the hydrate and the remaining residual gas, and is a concentrated gas whose concentration of the target gas is higher than that of the gas to be processed. It has become.

〔目的気体分離器109〕
目的気体の濃縮気体と水溶液からなる混合流体は目的気体分離器109に導入され、水溶液Dと目的気体の濃縮気体Bとに分離され、水溶液Dは水溶液ポンプ112により水溶液貯槽105に送られる。分離された目的気体の濃縮気体Bは第二の気体捕集放出装置200に導入される。
[Target gas separator 109]
The mixed fluid composed of the concentrated gas of the target gas and the aqueous solution is introduced into the target gas separator 109 and separated into the aqueous solution D and the concentrated gas B of the target gas, and the aqueous solution D is sent to the aqueous solution storage tank 105 by the aqueous solution pump 112. The separated concentrated gas B of the target gas is introduced into the second gas collection / release device 200.

水溶液貯槽105に貯留される水溶液Dは水溶液ポンプ106により混合器104に供給される。   The aqueous solution D stored in the aqueous solution storage tank 105 is supplied to the mixer 104 by the aqueous solution pump 106.

目的気体分離器109の形式は任意であり、例えばデカンター、サイクロンセパレータ、遠心分離機などを利用することができるが、分離した目的気体の濃縮気体中へのスラリー液滴混入を可能な限り少なくするため、例えば衝突分離式のミストセパレータを併せて用いることが望ましい。   The form of the target gas separator 109 is arbitrary. For example, a decanter, a cyclone separator, a centrifuge, or the like can be used, but mixing of the slurry droplets into the concentrated gas of the separated target gas is minimized. For this reason, for example, it is desirable to use a collision separation type mist separator together.

<第二の気体捕集放出装置200>
各機器は第一の気体捕集放出装置100とほぼ同じ構成である。
<Second gas collection / release device 200>
Each device has substantially the same configuration as the first gas collection / release device 100.

混合器204に、第一の気体捕集放出装置100により目的気体の濃度が高められた濃縮気体Bが供給される。   A concentrated gas B whose concentration of the target gas has been increased by the first gas collection / release device 100 is supplied to the mixer 204.

目的気体分離器209で目的気体の濃度をさらに高めた高濃縮目的気体Cを放出する。   The target gas separator 209 discharges the highly concentrated target gas C having a higher target gas concentration.

第二の気体捕集放出装置200の水和物生成装置201は、第一の気体捕集放出装置100の水和物生成装置101に比べて水和物生成能力が低いものとなっている。   The hydrate generation device 201 of the second gas collection / release device 200 has a lower hydrate generation capability than the hydrate generation device 101 of the first gas collection / release device 100.

水和物生成装置201の水和物生成能力は、水溶液Eと濃縮気体Bとの混合流体と、冷熱媒体210との熱交換能力に影響を大きく受ける。混合流体と冷熱媒体210との熱交換能力を低くすることにより、水和物生成装置201の水和物生成能力を低くすることができる。   The hydrate production capacity of the hydrate production device 201 is greatly affected by the heat exchange capacity between the mixed fluid of the aqueous solution E and the concentrated gas B and the cooling medium 210. By reducing the heat exchange capability between the mixed fluid and the cooling medium 210, the hydrate generation capability of the hydrate generator 201 can be reduced.

具体的には、
水和物生成装置201に流通する混合流体と冷熱媒体210のうち少なくとも一つの流速を減少させること、
伝熱面積を減少させること、
冷熱媒体210の種類を変更すること、
冷熱媒体210の供給温度を変更すること、
水溶液Eの濃度を変更すること
のうち少なくとも一つにより熱交換能力を低くすることができる。
In particular,
Reducing the flow rate of at least one of the mixed fluid flowing through the hydrate generating device 201 and the cooling medium 210;
Reducing the heat transfer area,
Changing the type of the cooling medium 210;
Changing the supply temperature of the cooling medium 210;
The heat exchange capacity can be lowered by at least one of changing the concentration of the aqueous solution E.

水和物生成装置101と水和物生成装置201が二重管式熱交換器で構成された生成管路である場合には、第二の気体捕集放出装置200の水和物生成管路は、
第一の気体捕集放出装置100の水和物生成管路に比べて、生成管路長さが短く、伝熱面積が少ないこと、
生成管路の内管断面積が大きく混合流体の流速が低いこと、
水溶液ポンプ206を送液量が低いものとし、混合流体の供給流速が低いこと、
生成管路の冷熱媒体流路断面積が大きく、冷熱媒体210の流速が低いこと、
冷熱媒体供給ポンプを送液量が低いものとし、冷熱媒体210の供給流速が低いこと、
冷熱媒体210の種類を変更すること、
冷熱媒体210の供給温度を変更すること、
水溶液Eの濃度を変更すること
のうち少なくとも一つにより、熱交換能力を低くするようにされている。
In the case where the hydrate generating device 101 and the hydrate generating device 201 are generation pipes configured by a double-tube heat exchanger, the hydrate generation pipe of the second gas collection / release device 200 Is
Compared to the hydrate production pipeline of the first gas collection and release device 100, the production pipeline length is short and the heat transfer area is small,
The inner pipe cross-sectional area of the production pipe is large and the flow rate of the mixed fluid is low.
The aqueous solution pump 206 has a low liquid feeding amount, the supply flow rate of the mixed fluid is low,
The cross-sectional area of the cooling medium passage of the production pipe is large, and the flow rate of the cooling medium 210 is low,
The cooling medium supply pump has a low liquid feeding amount, the supply flow rate of the cooling medium 210 is low,
Changing the type of the cooling medium 210;
Changing the supply temperature of the cooling medium 210;
The heat exchange capacity is lowered by at least one of changing the concentration of the aqueous solution E.

第二の気体捕集放出装置200の水和物生成装置201を、第一の気体捕集放出装置100の水和物生成装置101に比べて水和物生成能力が低いものとし、適度な水和物生成能力の水和物生成装置とすることにより、設備規模の拡大を抑え、設備費用と運転費用を削減することができる。   The hydrate generation device 201 of the second gas collection / release device 200 is assumed to have a lower hydrate generation capability than the hydrate generation device 101 of the first gas collection / release device 100, and appropriate water. By using a hydrate generating device with a hydrate generating ability, it is possible to suppress the expansion of the facility scale and to reduce the facility cost and the operating cost.

第二の気体捕集放出装置200の水和物生成装置201を適度な水和物生成能力の水和物生成装置とすることに伴い、第二の気体捕集放出装置200の水和物融解装置202は、第一の気体捕集放出装置100の水和物融解装置102に比べて水和物融解能力が低いものとなっている。   As the hydrate generating device 201 of the second gas collecting / releasing device 200 is changed to a hydrate generating device having an appropriate hydrate generating capacity, the hydrate melting of the second gas collecting / releasing device 200 is performed. The device 202 has a lower hydrate melting ability than the hydrate melting device 102 of the first gas collection and release device 100.

水和物融解装置202の水和物融解能力は、水和物スラリーと加熱媒体213との熱交換能力に影響を大きく受ける。水和物スラリーと加熱媒体213との熱交換能力を低くすることにより、水和物融解装置202の水和物融解能力を低くすることができる。   The hydrate melting capacity of the hydrate melting apparatus 202 is greatly affected by the heat exchange capacity between the hydrate slurry and the heating medium 213. By reducing the heat exchange capacity between the hydrate slurry and the heating medium 213, the hydrate melting capacity of the hydrate melting apparatus 202 can be lowered.

具体的には、
水和物融解装置202に流通する水和物スラリーと加熱媒体213のうち少なくとも一つの流速を減少させること、
伝熱面積を減少させること、
加熱媒体213の種類を変更すること、
加熱媒体213の供給温度を変更すること、
水和物スラリーの濃度を変更すること
のうち少なくとも一つにより熱交換能力を低くすることができる。
In particular,
Reducing the flow rate of at least one of the hydrate slurry and the heating medium 213 flowing through the hydrate melting apparatus 202;
Reducing the heat transfer area,
Changing the type of heating medium 213;
Changing the supply temperature of the heating medium 213;
The heat exchange capacity can be lowered by at least one of changing the concentration of the hydrate slurry.

水和物融解装置102と水和物融解装置202が二重管式熱交換器で構成された融解管路である場合には、第二の気体捕集放出装置200の水和物融解管路は、
第一の気体捕集放出装置100の水和物融解管路に比べて、融解管路長さが短く、伝熱面積が少ないこと、
融解管路の内管断面積が大きく水和物スラリーの流速が低いこと、
水和物スラリーポンプ208を送液量が低いものとし、水和物スラリーの供給流速が低いこと、
融解管路の加熱媒体流路断面積が大きく、加熱媒体213の流速が低いこと、
加熱媒体供給ポンプを送液量が低いものとし、加熱媒体213の供給流速が低いこと、
加熱媒体213の種類を変更すること、
加熱媒体213の供給温度を変更すること、
水和物スラリーの濃度を変更すること
のうち少なくとも一つにより、熱交換能力を低くするようにされている。
In the case where the hydrate melting apparatus 102 and the hydrate melting apparatus 202 are melting pipes composed of a double-tube heat exchanger, the hydrate melting pipe of the second gas collection / release apparatus 200 Is
Compared to the hydrate melting line of the first gas collection and release device 100, the melting line length is short and the heat transfer area is small,
The inner pipe cross-sectional area of the melting pipe is large and the flow rate of the hydrate slurry is low,
The hydrate slurry pump 208 has a low liquid feeding amount, and the supply flow rate of the hydrate slurry is low.
The heating medium channel cross-sectional area of the melting pipe is large, and the flow rate of the heating medium 213 is low,
The heating medium supply pump has a low liquid feeding amount, the supply flow rate of the heating medium 213 is low,
Changing the type of heating medium 213;
Changing the supply temperature of the heating medium 213;
The heat exchange capacity is lowered by at least one of changing the concentration of the hydrate slurry.

第二の気体捕集放出装置200の水和物融解装置202を、第一の気体捕集放出装置100の水和物融解装置102に比べて水和物融解能力が低いものとし、適度な水和物融解能力の水和物融解装置とすることにより、設備規模の拡大を抑え、設備費用と運転費用を削減することができる。   The hydrate melting device 202 of the second gas collection / release device 200 has a lower hydrate melting ability than the hydrate melting device 102 of the first gas collection / release device 100, and has an appropriate water content. By using a hydrate melting apparatus with a Japanese melting ability, it is possible to suppress the expansion of the facility scale and to reduce the facility cost and the operating cost.

<気体分離方法>
上記のように構成された気体分離装置によって被処理気体Aから目的気体を分離する方法を説明する。
<Gas separation method>
A method for separating the target gas from the gas A to be processed by the gas separation apparatus configured as described above will be described.

捕集目的の成分である目的気体を含む被処理気体Aを、まず、第一の気体捕集放出装置100に供給し、目的気体の濃縮気体Bを得て、濃縮気体Bを第二の気体捕集放出装置200に供給し、所望の濃度にまで濃縮された目的気体Cを分離して得る。   First, the target gas A containing the target gas, which is a component for collection, is supplied to the first gas collection / release device 100 to obtain the concentrated gas B of the target gas, and the concentrated gas B is used as the second gas. The target gas C supplied to the collection / release device 200 and concentrated to a desired concentration is separated and obtained.

被処理気体Aは第一の気体捕集放出装置100に導入され、昇圧機103により昇圧され、混合器104により水溶液Dと混合される。混合器104により水溶液Dに被処理気体Aが混合され、混合流体とされた後、混合流体は水和物生成装置101に送られる。水和物生成装置101において、混合流体を冷熱媒体110との熱交換などにより冷却して目的気体を含む水和物を生成し、目的気体を捕集し、水和物が水溶液に分散又は懸濁した水和物スラリーが生成される。   The gas A to be treated is introduced into the first gas collection / release device 100, pressurized by the booster 103, and mixed with the aqueous solution D by the mixer 104. After the gas A to be processed is mixed with the aqueous solution D by the mixer 104 to form a mixed fluid, the mixed fluid is sent to the hydrate generating device 101. In the hydrate generating apparatus 101, the mixed fluid is cooled by heat exchange with the cooling medium 110 to generate a hydrate containing the target gas, the target gas is collected, and the hydrate is dispersed or suspended in the aqueous solution. A cloudy hydrate slurry is produced.

水和物生成装置101で生成された水和物スラリーと未反応の残気体が残気体分離器107に供給され、水和物スラリーと未反応の残気体111が分離される。分離された水和物スラリーは水和物融解装置102に導入される。なお、分離された残気体111に目的気体が残存している場合には、例えば残存量が一定量以下になるまで、分離された残気体111を再循環して被処理気体に合流させ、混合器104に供給することができる。   The hydrate slurry generated by the hydrate generator 101 and the unreacted residual gas are supplied to the residual gas separator 107, and the hydrate slurry and the unreacted residual gas 111 are separated. The separated hydrate slurry is introduced into the hydrate melting apparatus 102. When the target gas remains in the separated residual gas 111, for example, the separated residual gas 111 is recirculated and joined to the gas to be processed until the remaining amount becomes a certain amount or less, and mixed. Can be supplied to the vessel 104.

残気体111と分離された水和物スラリーは水和物融解装置102に導入され、加熱媒体113との熱交換により加熱される。この加熱によって、水和物が融解し、水和物に捕集されていた目的気体が放出される。目的気体が放出されることにより、水和物融解装置102において目的気体の濃度が高められた濃縮気体と水溶液からなる混合流体が生成する。この混合流体は目的気体分離器109に導入され、水溶液Dと濃縮気体Bとに分離される。分離された水溶液Dは水溶液貯槽105に送られ、混合器104に循環供給される。分離された濃縮気体Bは第二の気体捕集放出装置200に導入される。   The hydrate slurry separated from the residual gas 111 is introduced into the hydrate melting apparatus 102 and heated by heat exchange with the heating medium 113. By this heating, the hydrate is melted, and the target gas collected in the hydrate is released. By releasing the target gas, a mixed fluid composed of the concentrated gas and the aqueous solution in which the concentration of the target gas is increased in the hydrate melting apparatus 102 is generated. This mixed fluid is introduced into the target gas separator 109 and separated into the aqueous solution D and the concentrated gas B. The separated aqueous solution D is sent to the aqueous solution storage tank 105 and circulated and supplied to the mixer 104. The separated concentrated gas B is introduced into the second gas collection / release device 200.

第二の気体捕集放出装置200において、昇圧機203により昇圧された濃縮気体Bは、混合器204に導入され、水溶液Eと混合される。混合器204によって水溶液Eに濃縮気体Bが混合され、混合流体とされた後、混合流体は水和物生成装置201に送られる。水和物生成装置201においては、混合流体を冷熱媒体210との熱交換などにより冷却して、目的気体を含む水和物を生成し、水和物が水溶液に分散又は懸濁した水和物スラリーが生成される。   In the second gas collection / release device 200, the concentrated gas B pressurized by the pressure booster 203 is introduced into the mixer 204 and mixed with the aqueous solution E. After the concentrated gas B is mixed with the aqueous solution E by the mixer 204 to form a mixed fluid, the mixed fluid is sent to the hydrate generator 201. In the hydrate generator 201, the mixed fluid is cooled by heat exchange with the cooling medium 210 to generate a hydrate containing the target gas, and the hydrate is dispersed or suspended in an aqueous solution. A slurry is produced.

水和物生成装置201で生成された水和物スラリーと未反応の残気体が残気体分離器207に供給され、水和物スラリーと未反応の残気体211が分離される。分離された水和物スラリーは水和物融解装置202に導入される。   The hydrate slurry and unreacted residual gas generated by the hydrate generator 201 are supplied to the residual gas separator 207, and the hydrate slurry and unreacted residual gas 211 are separated. The separated hydrate slurry is introduced into the hydrate melting apparatus 202.

残気体211と分離された水和物スラリーは水和物融解装置202に導入され、加熱媒体213との熱交換により加熱される。この加熱によって、水和物が融解し、水和物に捕集されていた目的気体が放出される。目的気体が放出されることにより、水和物融解装置202において目的気体の濃度がさらに高められた高濃縮気体と水溶液からなる混合流体が生成する。この混合流体は目的気体分離器209に導入され、水溶液Eと高濃縮気体Cとに分離される。分離された水溶液Eは水溶液貯槽205に送られ、混合器204に循環供給される。分離された高濃縮気体Cは貯留されるか次のプロセスに導入される。   The hydrate slurry separated from the residual gas 211 is introduced into the hydrate melting device 202 and heated by heat exchange with the heating medium 213. By this heating, the hydrate is melted, and the target gas collected in the hydrate is released. When the target gas is released, a mixed fluid composed of a highly concentrated gas whose concentration of the target gas is further increased and an aqueous solution is generated in the hydrate melting apparatus 202. This mixed fluid is introduced into the target gas separator 209 and separated into the aqueous solution E and the highly concentrated gas C. The separated aqueous solution E is sent to the aqueous solution storage tank 205 and circulated and supplied to the mixer 204. The separated highly concentrated gas C is stored or introduced into the next process.

かくして、被処理気体Aから目的気体を分離でき、第二の気体捕集放出装置200の水和物生成装置201と水和物融解装置202とを、第一の気体捕集放出装置100のものに比べて水和物生成能力と水和物融解能力とが低いものとすることにより、設備規模の拡大を抑え、設備費用と運転費用を削減することができる。   Thus, the target gas can be separated from the gas A to be treated, and the hydrate generating device 201 and the hydrate melting device 202 of the second gas collection and release device 200 are the same as those of the first gas collection and release device 100. By making the hydrate generation ability and the hydrate melting ability low as compared with the above, the expansion of the equipment scale can be suppressed, and the equipment cost and the operation cost can be reduced.

上記の実施形態では、気体捕集放出装置を二段階に設けて気体分離を行ったが、三段階以上に気体捕集放出装置を設けることにより、さらに高濃度に濃縮された目的気体を分離することができる。   In the above embodiment, gas separation is performed by providing the gas collection / release device in two stages. However, by providing the gas collection / release apparatus in three or more stages, the target gas concentrated to a higher concentration is separated. be able to.

100…第一の気体捕集放出装置、101,201…水和物生成装置、102,202…水和物融解装置、103,203…昇圧機、104,204…混合器、105,205…水溶液貯槽、106,112,206,212…水溶液ポンプ、107,207…残気体分離器、108,208…水和物スラリーポンプ、109,209…目的気体分離器、110,210…冷熱媒体、111,211…残気体、113,213…加熱媒体、200…第二の気体捕集放出装置、A…被処理気体、B…濃縮気体、C…高濃縮目的気体、D,E…水溶液。   DESCRIPTION OF SYMBOLS 100 ... 1st gas collection-release apparatus, 101,201 ... Hydrate production | generation apparatus, 102,202 ... Hydrate melt | dissolution apparatus, 103,203 ... Booster, 104,204 ... Mixer, 105,205 ... Aqueous solution Storage tank, 106, 112, 206, 212 ... aqueous solution pump, 107, 207 ... residual gas separator, 108, 208 ... hydrate slurry pump, 109, 209 ... target gas separator, 110, 210 ... cold medium, 111, 211 ... residual gas, 113,213 ... heating medium, 200 ... second gas collection / release device, A ... gas to be treated, B ... concentrated gas, C ... highly concentrated target gas, D, E ... aqueous solution.

Claims (3)

水和物を用いて被処理気体から目的気体を分離する気体分離装置であって、
被処理気体を受け入れる第一の気体捕集放出装置と、
該第一の気体捕集放出装置により放出された気体を受け入れる第二の気体捕集放出装置とを備え、
前記第一の気体捕集放出装置及び第二の気体捕集放出装置は、それぞれ、
水和物を生成するゲスト化合物の水溶液を気体とを接触させ、冷却し、これにより気体を捕集した水和物を生成する水和物生成装置と、
該水和物生成装置において生成した水和物を加熱して融解し、これにより気体を放出する水和物融解装置とを備え、
前記第二の気体捕集放出装置の水和物生成装置は、前記第一の気体捕集放出装置の水和物生成装置に比べて水和物生成能力が小さいことを特徴とする気体分離装置。
A gas separation device for separating a target gas from a gas to be treated using a hydrate,
A first gas collection and release device for receiving the gas to be treated;
A second gas collection / release device for receiving the gas emitted by the first gas collection / release device,
The first gas collection / release device and the second gas collection / release device are respectively
A hydrate generator for generating a hydrate by bringing an aqueous solution of a guest compound that generates a hydrate into contact with a gas and cooling it, thereby collecting the gas;
A hydrate melting device that heats and melts the hydrate produced in the hydrate production device, thereby releasing gas.
The hydrate generating device of the second gas collecting / releasing device has a smaller hydrate generating ability than the hydrate generating device of the first gas collecting / releasing device. .
前記水和物生成装置は、二重管式熱交換器で構成された水和物生成管路装置であって、内管にゲスト化合物の水溶液と被処理気体の混合流体を流通させ、外管に冷熱媒体を流通させて混合流体を冷却し、水和物を生成するものであり、前記第二の気体捕集放出装置の水和物生成管路装置は、前記第一の気体捕集放出装置の水和物生成管路装置に比べて、生成管路長さが短く伝熱面積が少ないこと、生成管路の内管断面積が大きく混合流体の流速が低いこと、水溶液ポンプを送液量が低いものとし混合流体の供給流速が低いこと、生成管路の冷熱媒体流路断面積が大きく冷熱媒体の流速が低いこと、冷熱媒体供給ポンプを送液量が低いものとし冷熱媒体の供給流速が低いこと、冷熱媒体の種類を変更すること、冷熱媒体の供給温度を変更すること、水溶液の濃度を変更すること、のうち少なくとも一つにより、熱交換能力を低くするようにされていることを特徴とする請求項1に記載の気体分離装置。   The hydrate generating device is a hydrate generating conduit device constituted by a double tube heat exchanger, and a mixed fluid of an aqueous solution of a guest compound and a gas to be treated is circulated through an inner tube, and an outer tube A cooling medium is circulated to cool the mixed fluid to generate a hydrate, and the hydrate generation pipeline device of the second gas collection and release device is the first gas collection and release Compared to the hydrate production line device of the device, the production line length is short and the heat transfer area is small, the inner pipe cross-sectional area of the production line is large and the flow rate of the mixed fluid is low, and the aqueous solution pump is fed The supply flow rate of the mixed fluid is low, the cross-sectional area of the cooling medium flow passage in the production pipe is large, the flow rate of the cooling medium is low, and the cooling medium supply pump is set to have a low liquid feed rate to supply the cooling medium. Low flow rate, changing the type of cooling medium, changing the supply temperature of the cooling medium , Changing the concentration of the aqueous solution by at least one of a gas separation apparatus according to claim 1, characterized in that it is adapted to lower the heat exchange capacity. 水和物を用いて被処理気体から目的気体を分離する気体分離装置であって、
直列に配設する複数段の気体捕集放出装置を備え、
最初の段の気体捕集放出装置は被処理気体を受け入れ、二段目以降の気体捕集放出装置は、前段の気体捕集放出装置により放出された気体を受け入れ、
前記複数段の気体捕集放出装置は、それぞれ、
水和物を生成するゲスト化合物の水溶液を気体とを接触させ、冷却し、これにより気体を捕集した水和物を生成する水和物生成装置と、
該水和物生成装置において生成した水和物を加熱して融解し、これにより気体を放出する水和物融解装置とを備え、
前記二段目以降の気体捕集放出装置の水和物生成装置は、前段の気体捕集放出装置の水和物生成装置に比べて水和物生成能力が小さいことを特徴とする気体分離装置。
A gas separation device for separating a target gas from a gas to be treated using a hydrate,
Provided with multiple stages of gas collection and release devices arranged in series,
The first-stage gas collection / release device accepts the gas to be treated, and the second-stage and subsequent gas collection / release devices accept the gas released by the preceding-stage gas collection / release device,
Each of the multi-stage gas collection and release devices is
A hydrate generator for generating a hydrate by bringing an aqueous solution of a guest compound that generates a hydrate into contact with a gas and cooling it, thereby collecting the gas;
A hydrate melting device that heats and melts the hydrate produced in the hydrate production device, thereby releasing gas.
The hydrate generation device of the second and subsequent stages of the gas collection / release device has a smaller hydrate generation capability than the hydrate generation device of the gas collection / release device of the previous stage. .
JP2012084816A 2012-04-03 2012-04-03 Gas separation apparatus Pending JP2013212474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012084816A JP2013212474A (en) 2012-04-03 2012-04-03 Gas separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012084816A JP2013212474A (en) 2012-04-03 2012-04-03 Gas separation apparatus

Publications (1)

Publication Number Publication Date
JP2013212474A true JP2013212474A (en) 2013-10-17

Family

ID=49586258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012084816A Pending JP2013212474A (en) 2012-04-03 2012-04-03 Gas separation apparatus

Country Status (1)

Country Link
JP (1) JP2013212474A (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086006A (en) * 1983-10-18 1985-05-15 Sekisui Chem Co Ltd Hydrogen gas purification
JP2003041270A (en) * 2001-07-25 2003-02-13 Mitsubishi Heavy Ind Ltd Gas hydrate formation apparatus and gas hydrate formation method
JP2003064385A (en) * 2001-08-24 2003-03-05 Mitsubishi Heavy Ind Ltd System and method for producing gas hydrate
JP2003231892A (en) * 2002-11-07 2003-08-19 Jfe Engineering Kk Method for producing gas hydrate and installation for producing the same
JP2003321685A (en) * 2002-04-30 2003-11-14 Ishikawajima Harima Heavy Ind Co Ltd Method for producing clathrate hydrate of natural gas and apparatus for production
JP2004156000A (en) * 2002-09-11 2004-06-03 Jfe Engineering Kk Method and apparatus for producing gas clathrate
JP2004309119A (en) * 2003-03-26 2004-11-04 Air Water Inc Air separator
JP2006117485A (en) * 2004-10-22 2006-05-11 Jfe Engineering Kk Method and apparatus for manufacturing oxygen-enriched air
JP2009222352A (en) * 2008-03-18 2009-10-01 Jfe Steel Corp Separation method for blast furnace gas
JP2010207727A (en) * 2009-03-10 2010-09-24 Mitsubishi Heavy Industries Mechatronics Systems Ltd Apparatus and method for purifying gas
JP2010235373A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp Membrane separation, method of separating gas using separation by hydrate and gas separation equipment
JP2011173744A (en) * 2010-02-23 2011-09-08 Jfe Engineering Corp Device and method for separation of carbon dioxide
JP2011231002A (en) * 2010-04-09 2011-11-17 Jfe Steel Corp Method of collecting and liquefying carbon dioxide from mixed gas
JP2012046696A (en) * 2010-08-30 2012-03-08 Mitsui Eng & Shipbuild Co Ltd Device and method for generating mixed gas hydrate, and device for producing mixed gas hydrate pellet
JP2012251012A (en) * 2011-05-31 2012-12-20 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for separating carbon dioxide

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086006A (en) * 1983-10-18 1985-05-15 Sekisui Chem Co Ltd Hydrogen gas purification
JP2003041270A (en) * 2001-07-25 2003-02-13 Mitsubishi Heavy Ind Ltd Gas hydrate formation apparatus and gas hydrate formation method
JP2003064385A (en) * 2001-08-24 2003-03-05 Mitsubishi Heavy Ind Ltd System and method for producing gas hydrate
JP2003321685A (en) * 2002-04-30 2003-11-14 Ishikawajima Harima Heavy Ind Co Ltd Method for producing clathrate hydrate of natural gas and apparatus for production
JP2004156000A (en) * 2002-09-11 2004-06-03 Jfe Engineering Kk Method and apparatus for producing gas clathrate
JP2003231892A (en) * 2002-11-07 2003-08-19 Jfe Engineering Kk Method for producing gas hydrate and installation for producing the same
JP2004309119A (en) * 2003-03-26 2004-11-04 Air Water Inc Air separator
JP2006117485A (en) * 2004-10-22 2006-05-11 Jfe Engineering Kk Method and apparatus for manufacturing oxygen-enriched air
JP2009222352A (en) * 2008-03-18 2009-10-01 Jfe Steel Corp Separation method for blast furnace gas
JP2010207727A (en) * 2009-03-10 2010-09-24 Mitsubishi Heavy Industries Mechatronics Systems Ltd Apparatus and method for purifying gas
JP2010235373A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp Membrane separation, method of separating gas using separation by hydrate and gas separation equipment
JP2011173744A (en) * 2010-02-23 2011-09-08 Jfe Engineering Corp Device and method for separation of carbon dioxide
JP2011231002A (en) * 2010-04-09 2011-11-17 Jfe Steel Corp Method of collecting and liquefying carbon dioxide from mixed gas
JP2012046696A (en) * 2010-08-30 2012-03-08 Mitsui Eng & Shipbuild Co Ltd Device and method for generating mixed gas hydrate, and device for producing mixed gas hydrate pellet
JP2012251012A (en) * 2011-05-31 2012-12-20 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for separating carbon dioxide

Similar Documents

Publication Publication Date Title
AU2008351793B2 (en) Clathrate hydrate with latent heat storing capability, process for producing the same, and apparatus therefor, latent heat storing medium, and method of increasing amount of latent heat of clathrate hydrate and processing apparatus for increasing amount of latent heat stored of clathrate hydrate
JP2011025201A (en) Method for absorbing carbon dioxide, and method for manufacturing clathrate hydrate using the same absorption method
JP2013212474A (en) Gas separation apparatus
JP2015535330A (en) Energy recovery system and method, and polymerization plant having such a recovery system
JP6320883B2 (en) Gas separation device and gas separation method
JP2007269950A (en) Apparatus for producing gas hydrate
JP5769112B2 (en) Gas separation method and apparatus and gas treatment method and apparatus
JP4556704B2 (en) Gas clathrate manufacturing method and apparatus
JP4915399B2 (en) Method and apparatus for collecting and releasing gas using a hydrate containing a quaternary ammonium salt as a guest molecule
JP3876348B2 (en) Gas hydrate manufacturing method and manufacturing apparatus
JP5127537B2 (en) Liquid cooling apparatus and method for gas hydrate manufacturing apparatus
JP2006233142A (en) Method and apparatus for manufacturing gas clathrate
JP5477364B2 (en) Method and apparatus for collecting and releasing gas using a hydrate containing a quaternary ammonium salt as a guest molecule
KR20180010868A (en) Hydrate reator and water treatment system having the same
JP6322100B2 (en) Gas separation device and gas separation method
JP4514506B2 (en) Gas clathrate manufacturing method and apparatus
JP2012162606A (en) Apparatus for producing gas hydrate and method for producing gas hydrate
JP5482769B2 (en) Apparatus and method for changing latent heat storage performance of clathrate hydrate
JP2004182885A (en) Method for producing gas-hydrate and apparatus therefor
KR101595640B1 (en) Continuous operation type CO2-hydrate mixture cooling system
JP2011173744A (en) Device and method for separation of carbon dioxide
CN103717281B (en) The concentration and recovery method of aqueous surfactant solution
JP6280474B2 (en) Gas separation device and gas separation method
JP5482768B2 (en) Cladding hydrate having latent heat storage performance, apparatus for manufacturing the same, latent heat storage medium, and processing apparatus for increasing latent heat storage amount of clathrate hydrate
JP2012233022A (en) Apparatus for manufacturing reaction water for forming gas hydrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160419