JP2013212328A - Reduction gear mechanism - Google Patents

Reduction gear mechanism Download PDF

Info

Publication number
JP2013212328A
JP2013212328A JP2012085430A JP2012085430A JP2013212328A JP 2013212328 A JP2013212328 A JP 2013212328A JP 2012085430 A JP2012085430 A JP 2012085430A JP 2012085430 A JP2012085430 A JP 2012085430A JP 2013212328 A JP2013212328 A JP 2013212328A
Authority
JP
Japan
Prior art keywords
wedge
wedge member
reduction gear
gear mechanism
wedge members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012085430A
Other languages
Japanese (ja)
Inventor
Noriyuki Sakurai
紀幸 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiroki Corp
Original Assignee
Shiroki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiroki Corp filed Critical Shiroki Corp
Priority to JP2012085430A priority Critical patent/JP2013212328A/en
Publication of JP2013212328A publication Critical patent/JP2013212328A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chairs For Special Purposes, Such As Reclining Chairs (AREA)
  • Retarders (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reduction gear mechanism having a simple structure and excellent in response to operation and stability in operation.SOLUTION: A wedge member formed of two overlapped wedge members, is inserted between a circular hole of large diameter and a cylindrical portion of small diameter which are formed in an externally toothed gear and an internally toothed gear, respectively, the gears provided between a supporting member and a rotation member. The two overlapped wedge members each include an inside abutment portion making slide contact with the outer peripheral surface of the cylindrical portion, and an outer abutment portion making slide contact with the inner peripheral surface of the circular hole, in a manner to have different circumferential positions, wherein the inside and outside abutment portions are adjacent to each other in a radial direction, connection portions between the inside and outside abutment portions are intersected, and the two overlapped wedge members are assembled. The two overlapped wedge members are moved to be urged in the forward and reverse rotational directions by an urging member, and the inside and outside abutment portions are brought into press-contact with the outer peripheral surface of the cylindrical portion and the inner peripheral surface of the circular hole, respectively, to constantly hold a relative eccentric position of the externally-toothed gear and the internally-toothed gear. The two overlapped wedge members are operated by a driving device to eccentrically rotate the externally-toothed gear and the internally-toothed gear with the change in meshing position.

Description

本発明は、車両等に搭載される可動装置に用いられる減速歯車機構に関する。   The present invention relates to a reduction gear mechanism used in a movable device mounted on a vehicle or the like.

外周部に外歯が形成された外歯歯車と、内周部に外歯よりも歯数の多い内歯が形成された内歯歯車を備え、外歯歯車または内歯歯車に同軸に回転自在に嵌合させた楔解除部材によって、該外歯歯車と内歯歯車のいずれか一方を他方の軸を中心に偏心運動させながら外歯と内歯の噛合位置を変化させるタイプの減速歯車機構が知られている。この種の減速歯車機構は、例えば、特許文献1から特許文献3のようにシートバックの角度調整を行わせるリクライニング装置に用いられており、シートクッションに固定されるロアアームとシートバックに固定されるアッパアームの枢軸部分の一方に外歯歯車が固定され、他方に内歯歯車が固定される。   Equipped with an external gear with external teeth on the outer periphery and an internal gear with internal teeth with more teeth than the external teeth on the inner periphery, and can rotate coaxially with the external gear or internal gear A reduction gear mechanism of a type that changes the meshing position of the external teeth and the internal teeth while eccentrically moving either the external gear or the internal gear about the other shaft by the wedge release member fitted to Are known. This type of reduction gear mechanism is used in, for example, a reclining device that adjusts the angle of a seat back as in Patent Documents 1 to 3, and is fixed to a lower arm and a seat back that are fixed to a seat cushion. An external gear is fixed to one of the pivot portions of the upper arm, and an internal gear is fixed to the other.

より詳細には、外歯歯車と内歯歯車のいずれか一方の軸部には円形穴が形成され、他方の軸部には、該円形穴の内周面より小径の外周面を有する円筒部が設けられており、外歯歯車と内歯歯車が噛合する状態では、円形穴の中心に対して円筒部の中心が偏心して位置される。この偏心状態を保持させる構成として、円形穴と円筒部の間に対称形状をなす一対の楔状部材を周方向に離間させて挿入したものが知られている(特許文献1)。一対の楔状部材は、円形穴と円筒部の間に楔を打ち込む方向に付勢されており、常時はその楔効果によって外歯歯車と内歯歯車の相対運動が禁止される。一方、円筒部の中心を回転軸とする楔解除部材の回転操作によって一対の楔状部材を円筒部周りで移動させると、一対の楔状部材の押圧力によって、外歯歯車と内歯歯車が互いの中心位置を変化させながら外歯と内歯の噛合位置を変化させる偏心運動を行う。上記のようなリクライニング装置に適用した場合には、この外歯歯車と内歯歯車の偏心運動によってロアアームに対するアッパアームの角度が変化する。   More specifically, a circular hole is formed in one of the shaft portions of the external gear and the internal gear, and the other shaft portion has a cylindrical portion having an outer peripheral surface smaller in diameter than the inner peripheral surface of the circular hole. In the state where the external gear and the internal gear mesh with each other, the center of the cylindrical portion is positioned eccentric to the center of the circular hole. As a configuration for maintaining this eccentric state, a configuration in which a pair of wedge-shaped members having a symmetrical shape between a circular hole and a cylindrical portion is inserted while being spaced apart in the circumferential direction is known (Patent Document 1). The pair of wedge-shaped members are urged in a direction in which the wedge is driven between the circular hole and the cylindrical portion, and the relative movement between the external gear and the internal gear is normally prohibited by the wedge effect. On the other hand, when the pair of wedge-shaped members are moved around the cylindrical portion by the rotation operation of the wedge release member having the center of the cylindrical portion as the rotation axis, the external gear and the internal gear are mutually moved by the pressing force of the pair of wedge-shaped members. Eccentric motion is performed to change the meshing position of the outer teeth and inner teeth while changing the center position. When applied to the reclining device as described above, the angle of the upper arm with respect to the lower arm changes due to the eccentric movement of the external gear and the internal gear.

特許文献2に記載の発明では、周方向に離間して配した一対の楔状部材のそれぞれを、円筒部(カラー)の外周面に当接する内径側のくさび片と、円形穴の内周面に当接する外径側のくさび片とに分けて構成している。   In the invention described in Patent Document 2, each of the pair of wedge-shaped members spaced apart in the circumferential direction is provided on the inner peripheral surface of the circular hole and the wedge piece on the inner diameter side contacting the outer peripheral surface of the cylindrical portion (collar). It is divided into a wedge piece on the outer diameter side that abuts.

特許文献3に記載の発明では、特許文献1や特許文献2のように周方向に離間させて楔状部材を配置するのではなく、2つのくさびセグメントを径方向に重ねて偏心輪セグメントを構成している。   In the invention described in Patent Document 3, the wedge-shaped members are not arranged apart from each other in the circumferential direction as in Patent Document 1 and Patent Document 2, but an eccentric ring segment is configured by overlapping two wedge segments in the radial direction. ing.

特開2006-204891号公報JP 2006-204891 A 特開2007-275279号公報JP 2007-275279 A 特許第3647398号公報Japanese Patent No. 3647398

特許文献1の構成では、ロック状態の解除に際して、周方向に離間する一対の楔状部材の一方を楔解除部材によって押圧するとその力が他方の楔状部材に伝わるが、その力の伝達は、互いの楔状部材を離間方向に付勢する付勢部材を介して、あるいは押圧された一方の楔状部材が他方の楔状部材に直接的に当接することで行われる。いずれの態様となるかは、付勢部材の付勢力と楔解除部材による押圧力との大小関係や、各楔状部材に作用する摩擦抵抗の大きさなどの諸要素によって決まるが、前者は付勢部材による弾性結合を介した力の伝達であり、後者は周方向に離間する楔状部材の当接による力の伝達であるため、いずれも一方の楔状部材が押圧されてから他方の楔状部材が移動されるまでに若干のタイムラグが生じるおそれがある。特許文献2の構成は、それぞれの楔状部材が内径側と外径側のくさび片に分割されている点で特許文献1と相違するが、同様の問題がある。   In the configuration of Patent Document 1, when one of the pair of wedge-shaped members that are separated in the circumferential direction is pressed by the wedge-release member when the lock state is released, the force is transmitted to the other wedge-shaped member. This is performed through a biasing member that biases the wedge-shaped member in the separation direction, or when one pressed wedge-shaped member directly contacts the other wedge-shaped member. Which mode is selected depends on various factors such as the magnitude relationship between the urging force of the urging member and the pressing force by the wedge releasing member and the magnitude of the frictional resistance acting on each wedge-shaped member. This is the transmission of force through elastic coupling by the members, and the latter is the transmission of force by the contact of the wedge-shaped members that are separated in the circumferential direction. Therefore, in either case, the other wedge-shaped member moves after one wedge-shaped member is pressed. There is a risk that a slight time lag may occur before the process is performed. The configuration of Patent Document 2 is different from Patent Document 1 in that each wedge-shaped member is divided into wedge pieces on the inner diameter side and the outer diameter side, but there is a similar problem.

これに対して特許文献3の構成では、2つのくさびセグメントが径方向に重なって当接しており、互いのくさびセグメントの間に動作のタイムラグが生じにくい。しかし、2つのくさびセグメントに対する楔解除部材の当接(押圧)箇所が非対称であるため、回転方向によって駆動負荷や動作の応答性に差が生じてしまうおそれがあった。   On the other hand, in the configuration of Patent Document 3, two wedge segments overlap each other in the radial direction, and a time lag in operation hardly occurs between the wedge segments. However, since the abutment (pressing) portion of the wedge release member with respect to the two wedge segments is asymmetric, there is a possibility that a difference occurs in the drive load and the response of the operation depending on the rotation direction.

本発明は、以上の問題点に鑑みてなされたものであり、簡単な構成で、動作時の応答性と動作の安定性に優れた減速歯車機構を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a reduction gear mechanism that has a simple configuration and is excellent in responsiveness during operation and stability in operation.

本発明は、支持部材と該支持部材に対して相対回転可能な回転部材のいずれか一方に外周に外歯を有する外歯歯車を設け、他方に外歯歯車の外歯よりも歯数が多い内歯を有する内歯歯車を設け、外歯歯車と内歯歯車の一方と他方にそれぞれの軸を中心として大径の円形穴と該円形穴より小径の円筒部とを設け、この円形穴の内周面と円筒部の外周面との間に挿入されて外歯歯車と内歯歯車を互いの中心位置が異なる偏心状態で噛合維持させる偏心保持手段と、円筒部に対する回転によって偏心保持手段を動作させて、外歯歯車と内歯歯車に噛合位置の変化を伴う偏心回転を行わせる駆動手段とを備えた減速歯車機構において、以下の構成を備えることを特徴としている。偏心保持手段として、2つの重合楔部材と、この2つの重合楔部材を付勢する付勢部材を備える。2つの重合楔部材はそれぞれ、円筒部の外周面に摺接可能に接触する内側当接部と、円形穴の内周面に摺接可能に接触する外側当接部を周方向位置を異ならせて備えており、互いの内側当接部と外側当接部を径方向に隣接させ、かつ内側当接部と外側当接部の間の接続部を互いに交差させて、円形穴の内周面と円筒部の外周面の間に挿入される。付勢部材は、2つの重合楔部材を互いに正逆の回転方向に移動付勢して、該2つの重合楔部材の内側当接部と外側当接部をそれぞれ円筒部の外周面と円形穴の内周面に圧接させ、外歯歯車と内歯歯車の相対的な偏心位置を一定に保持させる。   In the present invention, an external gear having external teeth on the outer periphery is provided on one of the support member and a rotating member that can rotate relative to the support member, and the other has more teeth than the external teeth of the external gear. An internal gear having internal teeth is provided, and one of the external gear and the internal gear is provided with a large-diameter circular hole and a cylindrical portion having a smaller diameter than the circular hole on the other axis. An eccentric holding means that is inserted between the inner peripheral surface and the outer peripheral surface of the cylindrical portion and keeps the external gear and the internal gear engaged in an eccentric state with different center positions, and an eccentric holding means by rotation with respect to the cylindrical portion. A reduction gear mechanism that includes an external gear and a driving unit that causes the external gear and the internal gear to perform eccentric rotation accompanying a change in meshing position is characterized by having the following configuration. The eccentric holding means includes two overlapping wedge members and a biasing member that biases the two overlapping wedge members. Each of the two overlapping wedge members has a circumferential position that is different between an inner contact portion that is slidably contacted with the outer peripheral surface of the cylindrical portion and an outer contact portion that is slidably contacted with the inner peripheral surface of the circular hole. The inner peripheral surface of the circular hole is configured such that the inner contact portion and the outer contact portion are adjacent to each other in the radial direction, and the connection portion between the inner contact portion and the outer contact portion crosses each other. And between the outer peripheral surface of the cylindrical portion. The urging member urges the two overlapping wedge members to move in the forward and reverse rotational directions, and the inner contact portion and the outer contact portion of the two overlap wedge members are respectively connected to the outer peripheral surface of the cylindrical portion and the circular hole. And the relative eccentric positions of the external gear and the internal gear are kept constant.

2つの重合楔部材のそれぞれの内側当接部は、円筒部の外周面に対して摺接可能に接触する湾曲面である内側摺接面を内周側に有し、該内側摺接面よりも曲率の小さい湾曲面である外周連動面を外周側に有し、接続部から離れて先端側に進むにつれて内側摺接面から外周連動面までの径方向幅を小さくする形状であるとよい。2つの重合楔部材のそれぞれの外側当接部は、円形穴の内周面に対して摺接可能に接触する湾曲面である外側摺接面を外周側に有し、該外側摺接面よりも曲率の大きい湾曲面である内周連動面を内周側に有し、接続部から離れて先端側に進むにつれて外側摺接面から内周連動面までの径方向幅を大きくする形状であるとよい。外周連動面と内周連動面が当接することによって、一方の重合楔部材に作用する回転方向の力を他方の重合楔部材へ伝達することができる。   The inner contact portions of the two overlapping wedge members each have an inner sliding contact surface that is a curved surface that is slidably contacted with the outer peripheral surface of the cylindrical portion on the inner peripheral side. The outer peripheral interlocking surface, which is a curved surface with a small curvature, may be provided on the outer peripheral side, and the radial width from the inner sliding contact surface to the outer peripheral interlocking surface may be reduced as it moves away from the connecting portion toward the distal end side. Each outer contact portion of the two overlapping wedge members has an outer sliding contact surface on the outer peripheral side, which is a curved surface that comes into contact with the inner peripheral surface of the circular hole so as to be slidable. Also, the inner peripheral interlocking surface, which is a curved surface with a large curvature, is provided on the inner peripheral side, and the radial width from the outer sliding contact surface to the inner peripheral interlocking surface increases as the distance from the connecting portion advances toward the distal end side. Good. When the outer peripheral interlocking surface and the inner peripheral interlocking surface are in contact with each other, a rotational force acting on one overlapping wedge member can be transmitted to the other overlapping wedge member.

2つの重合楔部材の接続部はそれぞれ外歯歯車と内歯歯車の回転軸に沿う方向に対向する凹部を有し、該凹部を互いに嵌合させて2つの重合楔部材を組み合わせるとよい。   The connecting portions of the two overlapping wedge members may each have a concave portion facing in the direction along the rotation axis of the external gear and the internal gear, and the two overlapping wedge members may be combined by fitting the concave portions to each other.

2つの重合楔部材は、互いの接続部の交差位置を変化させる周方向の相対移動によって、外歯歯車と内歯歯車の偏心量を変化させることが好ましい。これによって、円筒部の外周面と円形穴の内周面の大きさのばらつきに対応させることができる。   The two overlapped wedge members preferably change the eccentric amount of the external gear and the internal gear by relative movement in the circumferential direction that changes the crossing position of the connecting portions. Thereby, it is possible to cope with variations in the sizes of the outer peripheral surface of the cylindrical portion and the inner peripheral surface of the circular hole.

付勢部材は、環状のコイル部と、該コイル部から突出して2つの重合楔部材の一方と他方に形成した2つのバネ掛け部に対して係合する一対のバネ端部とを有するトーションバネによって構成することができる。   The urging member includes a torsion spring having an annular coil portion and a pair of spring end portions that project from the coil portion and engage with two spring hook portions formed on one and the other of the two overlapping wedge members. Can be configured.

駆動手段は、外歯歯車または内歯歯車の円筒部内に回転可能に挿入される軸部と、2つの重合楔部材のそれぞれの内側当接部の周方向端面に対して当接可能な押圧部とを有する回転伝達部材によって構成することができる。あるいは、この回転伝達部材の押圧部が当接する対象を、2つの重合楔部材のそれぞれの内側当接部の周方向端面ではなく、外側当接部の周方向端面とすることも可能である。このような回転伝達部材の当接部位の選択は、各重合楔部材における内側当接部と外側当接部の周方向長さを適宜異ならせることで実現できる。   The driving means includes a shaft portion that is rotatably inserted into the cylindrical portion of the external gear or the internal gear, and a pressing portion that can abut against the circumferential end surfaces of the inner abutment portions of the two overlapping wedge members. And a rotation transmission member having Or it is also possible to make the object which the press part of this rotation transmission member contact | abuts into the circumferential direction end surface of an outer side contact part instead of the circumferential direction end surface of each inner side contact part of two overlapping wedge members. Such selection of the contact portion of the rotation transmission member can be realized by appropriately changing the circumferential lengths of the inner contact portion and the outer contact portion in each overlapping wedge member.

以上の本発明の減速歯車機構によれば、2つの重合楔部材の一方を押圧したときに他方へ遅滞なく押圧力が作用するため、動作時の応答性に優れている。また、2つの重合楔部材を組み合わせた状態で、各重合楔部材の接続部を挟んだ両側の楔形状を対称にすることができるため、回転方向の違いによる駆動負荷のばらつきなどが生じず、優れた動作安定性を得ることができる。外歯歯車と内歯歯車との間に設けられる偏心保持手段は、2つの重合楔部材と付勢部材で構成されるため、従来品に比して部品点数が多くなることもなく、簡単な構成で低コストに得ることができる。   According to the above-described reduction gear mechanism of the present invention, when one of the two overlapping wedge members is pressed, a pressing force is applied to the other without delay, so that the responsiveness during operation is excellent. In addition, in a state where the two overlapping wedge members are combined, the wedge shapes on both sides sandwiching the connecting portion of each overlapping wedge member can be made symmetric, so there is no variation in driving load due to the difference in the rotation direction, etc. Excellent operational stability can be obtained. Since the eccentric holding means provided between the external gear and the internal gear is composed of two overlapping wedge members and a biasing member, the number of parts does not increase as compared with the conventional product, and it is simple. The configuration can be obtained at a low cost.

本発明を適用した第1の実施形態の減速歯車機構の分解斜視図である。1 is an exploded perspective view of a reduction gear mechanism of a first embodiment to which the present invention is applied. 第1の実施形態の減速歯車機構を歯車の回転軸に沿う方向で見た正面図である。FIG. 3 is a front view of the reduction gear mechanism according to the first embodiment viewed in a direction along the rotation axis of the gear. 保持部材と楔解除部材と付勢バネを取り外して除いて示した第1の実施形態の減速歯車機構の正面図である。FIG. 3 is a front view of the reduction gear mechanism of the first embodiment shown with the holding member, wedge releasing member, and biasing spring removed. 図2のA1−A1線に沿う断面図である。It is sectional drawing which follows the A1-A1 line | wire of FIG. 図2のB1−B1線に沿う断面図である。It is sectional drawing which follows the B1-B1 line | wire of FIG. 第1の実施形態の減速歯車機構を構成する第1楔部材と第2楔部材の正面図である。It is a front view of the 1st wedge member and the 2nd wedge member which constitute the reduction gear mechanism of a 1st embodiment. 第1の実施形態の減速歯車機構で、第1楔部材と第2楔部材の交差位置の変化による外歯歯車側の内側ガイド面と内歯歯車側の外側ガイド面の偏心量の変化を(A)、(B)、(C)の各態様で示した正面図である。In the reduction gear mechanism of the first embodiment, the change in the eccentric amount of the inner guide surface on the external gear side and the outer guide surface on the internal gear side due to the change in the intersecting position of the first wedge member and the second wedge member ( It is the front view shown in each aspect of A), (B), (C). 第2の実施形態の減速歯車機構の分解斜視図である。It is a disassembled perspective view of the reduction gear mechanism of 2nd Embodiment. 第2の実施形態の減速歯車機構を歯車の回転軸に沿う方向で見た正面図である。It is the front view which looked at the reduction gear mechanism of 2nd Embodiment in the direction in alignment with the rotating shaft of a gearwheel. 保持部材と楔解除部材と付勢バネを取り外して除いて示した第2の実施形態の減速歯車機構の正面図である。It is a front view of the reduction gear mechanism of 2nd Embodiment shown by removing a holding member, a wedge release member, and an urging spring. 図9のA2−A2線に沿う断面図である。It is sectional drawing which follows the A2-A2 line | wire of FIG. 図9のB2−B2線に沿う断面図である。It is sectional drawing which follows the B2-B2 line | wire of FIG. 第2の実施形態の減速歯車機構を構成する第1楔部材と第2楔部材の正面図である。It is a front view of the 1st wedge member and the 2nd wedge member which constitute the reduction gear mechanism of a 2nd embodiment.

図1から図7を参照して、本発明を適用した第1の実施形態の減速歯車機構10を説明する。減速歯車機構10は任意の可動装置に搭載可能であり、以下では車両用シートのリクライニング装置に適用した例を説明する。減速歯車機構10を構成する外歯歯車11は、図示しないシートクッションのフレームと固定関係にあるロアアーム(支持部材)に固定され、内歯歯車12は、図示しないシートバックのフレームと固定関係にあるアッパアーム(回転部材)に固定される。   A reduction gear mechanism 10 according to a first embodiment to which the present invention is applied will be described with reference to FIGS. The reduction gear mechanism 10 can be mounted on any movable device, and an example applied to a vehicle seat reclining device will be described below. The external gear 11 constituting the reduction gear mechanism 10 is fixed to a lower arm (support member) that is fixed to a seat cushion frame (not shown), and the internal gear 12 is fixed to a seat back frame (not shown). It is fixed to the upper arm (rotating member).

円板状をなす外歯歯車11の側面には、周方向に所定の間隔で複数の固定突起11aが設けられている。外歯歯車11は、この固定突起11aをロアアームに形成した嵌合穴に嵌合させることで位置決めされ、位置決め後にロアアームに溶接される。外歯歯車11の外周面には外歯11bが形成され、中央には円筒部11cがバーリング加工により形成されている。円筒部11cの外周面は円形断面の内側ガイド面S1となっており、円筒部11cの内周面は内側ガイド面S1と同心の円形断面の軸穴Dになっている。円筒部11cと外歯11bとの間の領域には環状の凹部11dが形成されている。   A plurality of fixed protrusions 11a are provided on the side surface of the external gear 11 having a disk shape at predetermined intervals in the circumferential direction. The external gear 11 is positioned by fitting the fixed projection 11a into a fitting hole formed in the lower arm, and is welded to the lower arm after positioning. External teeth 11b are formed on the outer peripheral surface of the external gear 11, and a cylindrical portion 11c is formed at the center by burring. The outer peripheral surface of the cylindrical portion 11c is an inner guide surface S1 having a circular cross section, and the inner peripheral surface of the cylindrical portion 11c is a shaft hole D having a circular cross section concentric with the inner guide surface S1. An annular recess 11d is formed in a region between the cylindrical portion 11c and the external teeth 11b.

外歯歯車11よりも大径の円板状をなす内歯歯車12の側面には、周方向に所定の間隔で複数の固定突起12aが設けられている。内歯歯車12は、この固定突起12aをアッパアームに形成した嵌合穴に嵌合させることで位置決めがなされ、位置決め後にアッパアームに溶接される。内歯歯車12には、外歯歯車11の外歯11bよりも歯数が少なくとも一つ多く形成された、外歯11bと内接する内歯12bが刻設されている。内歯歯車12の中央には内側に円形穴を有する円筒リブ状部12cが形成され、円筒リブ状部12c(円形穴)の内周面は円形断面の外側ガイド面S2となっている。円筒リブ状部12cと内歯12bの間の領域には環状の凹部12dが形成されている。円筒リブ状部12cの裏面側には、環状の裏側凹部12eが形成されている。   A plurality of fixed protrusions 12 a are provided at predetermined intervals in the circumferential direction on the side surface of the internal gear 12 having a disk shape larger in diameter than the external gear 11. The internal gear 12 is positioned by fitting the fixed protrusion 12a into a fitting hole formed in the upper arm, and is welded to the upper arm after positioning. The internal gear 12 is engraved with internal teeth 12b that are inscribed with the external teeth 11b and that have at least one more tooth than the external teeth 11b of the external gear 11. A cylindrical rib-shaped portion 12c having a circular hole inside is formed at the center of the internal gear 12, and the inner peripheral surface of the cylindrical rib-shaped portion 12c (circular hole) is an outer guide surface S2 having a circular cross section. An annular recess 12d is formed in a region between the cylindrical rib-like portion 12c and the internal teeth 12b. An annular back side recess 12e is formed on the back side of the cylindrical rib portion 12c.

図4及び図5に示すように、外歯歯車11と内歯歯車12は、互いの凹部11d、12dを向かい合わせて、内歯歯車12の凹部12d内に外歯歯車11を収容するように組み合わされる。この組み合わせ状態で、外歯歯車11の一方の側面が凹部12の底面に対向し、円筒リブ状部12cの端面が凹部11dの底面に対向し、さらに円筒部11cが円筒リブ状部12c内に挿入される。円筒リブ状部12c内周側の外側ガイド面S2は円筒部11c外周側の内側ガイド面S1よりも大径で、内側ガイド面S1と外側ガイド面S2の間には径方向に所定の隙間が確保されており、外歯歯車11に対する内歯歯車12の半径方向の相対移動が許容される。加えて、前述のように外歯11bよりも内歯12bの方が多い歯数に設定されている。そのため、外歯11bに対して内歯12bを噛合させて外歯歯車11と内歯歯車12を組み合わせると、外歯歯車11と内歯歯車12は互いの中心を偏心させた状態になる。この状態で、外歯11bと内歯12bは互いに噛合する部分と噛合しない部分を含んでおり、外歯11bに対する内歯12bの噛合位置を徐々に変化させるように、外歯歯車11に対して内歯歯車12を偏心回転運動させることができる。   As shown in FIGS. 4 and 5, the external gear 11 and the internal gear 12 are arranged so that the concave portions 11 d and 12 d face each other and the external gear 11 is accommodated in the concave portion 12 d of the internal gear 12. Combined. In this combined state, one side surface of the external gear 11 faces the bottom surface of the concave portion 12, the end surface of the cylindrical rib-like portion 12c faces the bottom surface of the concave portion 11d, and the cylindrical portion 11c enters the cylindrical rib-like portion 12c. Inserted. The outer guide surface S2 on the inner peripheral side of the cylindrical rib-shaped portion 12c is larger in diameter than the inner guide surface S1 on the outer peripheral side of the cylindrical portion 11c, and a predetermined gap is provided in the radial direction between the inner guide surface S1 and the outer guide surface S2. It is ensured and the relative movement in the radial direction of the internal gear 12 with respect to the external gear 11 is allowed. In addition, as described above, the number of teeth of the inner teeth 12b is set larger than that of the outer teeth 11b. Therefore, when the external gear 11 and the internal gear 12 are combined by meshing the internal teeth 12b with the external teeth 11b, the external gear 11 and the internal gear 12 are in a state where their centers are eccentric. In this state, the external teeth 11b and the internal teeth 12b include a portion that meshes with each other and a portion that does not mesh with each other, and the external gear 11 is configured to gradually change the meshing position of the internal teeth 12b with respect to the external teeth 11b. The internal gear 12 can be eccentrically rotated.

保持部材18は、内歯歯車12の外周面に嵌合する円筒状の外囲部18aと、外囲部18aの両側から内径方向に突出する一対のフランジ部18b、18cを有する。フランジ部18b、18cは、外歯歯車11と内歯歯車12を両側から挟むことによって軸方向への離間を規制する。   The holding member 18 includes a cylindrical outer portion 18a that fits on the outer peripheral surface of the internal gear 12, and a pair of flange portions 18b and 18c that protrude in the inner diameter direction from both sides of the outer portion 18a. The flange portions 18b and 18c regulate the separation in the axial direction by sandwiching the external gear 11 and the internal gear 12 from both sides.

外歯歯車11の円筒部11cの軸穴Dには、楔解除部材13の円筒軸部13aが回転自在に嵌入されており、楔解除部材13は円筒部11cの軸穴Dを中心として正逆に回転される。楔解除部材13には円筒部11cを挟んで円筒軸部13aの外径側に位置する大径の押圧部13bが設けられ、押圧部13bの周方向の両端部が一対の押圧面13c、13dとなっている。円筒軸部13aの内筒面にはセレーション13eが形成されている。図示を省略しているが、円筒部11cの軸穴Dに円筒軸部13aを挿入した状態で、外歯歯車11に対する楔解除部材13の回転軸方向の移動を規制する手段を備える。   The cylindrical shaft portion 13a of the wedge release member 13 is rotatably fitted in the shaft hole D of the cylindrical portion 11c of the external gear 11, and the wedge release member 13 is forward and backward with the shaft hole D of the cylindrical portion 11c as the center. To be rotated. The wedge release member 13 is provided with a large-diameter pressing portion 13b located on the outer diameter side of the cylindrical shaft portion 13a with the cylindrical portion 11c interposed therebetween, and both end portions in the circumferential direction of the pressing portion 13b are a pair of pressing surfaces 13c and 13d. It has become. A serration 13e is formed on the inner cylindrical surface of the cylindrical shaft portion 13a. Although not shown in the figure, there is provided means for restricting the movement of the wedge release member 13 in the rotational axis direction relative to the external gear 11 in a state where the cylindrical shaft portion 13a is inserted into the shaft hole D of the cylindrical portion 11c.

外歯歯車11の円筒部11cの外周面により構成される内側ガイド面S1と、内歯歯車12の円筒リブ状部12cの内周面により構成される外側ガイド面S2との間(偏心空間)には、楔部材14が挿入されている。楔部材14は、第1楔部材(重合楔部材)20と第2楔部材(重合楔部材)40によって構成されている。以下では第1楔部材20と第2楔部材40で説明が共通する部分については、第1楔部材20と第2楔部材40のいずれか一方を代表して記述し、他方については対応する箇所を括弧内に符号で示して詳細な説明を省略する。   Between the inner side guide surface S1 comprised by the outer peripheral surface of the cylindrical part 11c of the external gear 11, and the outer side guide surface S2 comprised by the inner peripheral surface of the cylindrical rib-shaped part 12c of the internal gear 12 (eccentric space) A wedge member 14 is inserted into the wedge member 14. The wedge member 14 includes a first wedge member (overlapping wedge member) 20 and a second wedge member (overlapping wedge member) 40. In the following description, portions common to the first wedge member 20 and the second wedge member 40 will be described as representatives of either the first wedge member 20 or the second wedge member 40, and the other portions will correspond to each other. Is indicated by a symbol in parentheses, and detailed description is omitted.

第1楔部材20(第2楔部材40)は、内側カム部(内側当接部)21(41)と外側カム部(外側当接部)22(42)を有し、これらを接続部23(43)で接続して形成されている。内側カム部21(41)と外側カム部22(42)は径方向に位置をずらせて形成されており、内側カム部21(41)の内周側に、内側ガイド面S1と同じ曲率で内側ガイド面S1に対して摺接可能な湾曲面(円筒内面)である内側摺接面R21(R41)が形成され、外側カム部22(42)の外周側に、外側ガイド面S2と同じ曲率で外側ガイド面S2に対して摺接可能な湾曲面(円筒外面)である外側摺接面R22(R42)が形成されている。また、内側カム部21(41)の外周側に、内側摺接面R21(R41)と異なる曲率の湾曲面(円筒外面)である外周連動面T21(T41)が形成され、外側カム部22(42)の内周側に、外側摺接面R22(R42)と異なる曲率の湾曲面(円筒内面)である内周連動面T22(T42)が形成されている。内側カム部21(41)は、接続部23(43)に近い側で内側摺接面R21(R41)から外周連動面T21(T41)までの径方向幅が大きく、接続部23(43)から離れて先端側に進むにつれて徐々に内側摺接面R21(R41)から外周連動面T21(T41)までの径方向幅を小さくする先細の楔形状を有している。内側カム部21(41)の先端部は、内側摺接面R21(R41)と外周連動面T21(T41)を接続する径方向面である細幅端面H21(H41)となっている。外側カム部22(42)は、接続部23から離れて先端側に進むにつれて徐々に外側摺接面R22(R42)から内周連動面T22(T42)までの径方向幅を大きくする先太形状を有している。外側カム部22(42)の先端部は、外側摺接面R22(R42)と内周連動面T22(T42)を接続する径方向面である広幅端面H22(H42)となっている。   The first wedge member 20 (second wedge member 40) has an inner cam portion (inner contact portion) 21 (41) and an outer cam portion (outer contact portion) 22 (42). (43) connected to form. The inner cam portion 21 (41) and the outer cam portion 22 (42) are formed so as to be displaced in the radial direction, and the inner cam portion 21 (41) has an inner radius with the same curvature as the inner guide surface S1. An inner sliding contact surface R21 (R41), which is a curved surface (cylindrical inner surface) capable of sliding contact with the guide surface S1, is formed, and has the same curvature as the outer guide surface S2 on the outer peripheral side of the outer cam portion 22 (42). An outer sliding contact surface R22 (R42), which is a curved surface (cylindrical outer surface) capable of sliding contact with the outer guide surface S2, is formed. Further, an outer peripheral interlocking surface T21 (T41) that is a curved surface (cylindrical outer surface) having a different curvature from the inner sliding contact surface R21 (R41) is formed on the outer peripheral side of the inner cam portion 21 (41), and the outer cam portion 22 ( 42), an inner peripheral interlocking surface T22 (T42) that is a curved surface (cylindrical inner surface) having a different curvature from the outer sliding contact surface R22 (R42) is formed. The inner cam portion 21 (41) has a large radial width from the inner sliding contact surface R21 (R41) to the outer peripheral interlocking surface T21 (T41) on the side closer to the connection portion 23 (43), and from the connection portion 23 (43). The taper has a tapered wedge shape that gradually decreases the radial width from the inner sliding contact surface R21 (R41) to the outer peripheral interlocking surface T21 (T41) as it moves away from the front end. The front end portion of the inner cam portion 21 (41) is a narrow end surface H21 (H41) that is a radial surface connecting the inner sliding contact surface R21 (R41) and the outer peripheral interlocking surface T21 (T41). The outer cam portion 22 (42) has a tapered shape that gradually increases the radial width from the outer sliding contact surface R22 (R42) to the inner peripheral interlocking surface T22 (T42) as it moves away from the connection portion 23 and advances toward the distal end side. have. The front end portion of the outer cam portion 22 (42) is a wide end surface H22 (H42) which is a radial surface connecting the outer sliding contact surface R22 (R42) and the inner peripheral interlocking surface T22 (T42).

第1楔部材20(第2楔部材40)において、各歯車11、12の軸線方向に向く前後面のうち一方(図2、図3及び図6の手前側に見えている面)を表面24(44)、他方を裏面25(45)とする。第1楔部材20と第2楔部材40は、互いの表面24と表面44、裏面25と裏面45がそれぞれ概ね面一になるように、接続部23と接続部43を交差させて組み合わされる。詳細には、第1楔部材20の接続部23には裏面25側に向く凹部26が形成され、第2楔部材40の接続部43には表面44側に向く凹部46が形成されており、凹部26と凹部46の互いの底面を当接させる状態で接続部23と接続部43が交差される。すると、内側カム部21と外側カム部42が外周連動面T21と内周連動面T42を当接させる位置関係で径方向に重なって位置し、内側カム部41と外側カム部22が外周連動面T41と内周連動面T22を当接させる位置関係で径方向に重なって位置する。こうして重合された状態の第1楔部材20と第2楔部材40は、外周連動面T21と内周連動面T42、外周連動面T41と内周連動面T22をそれぞれ摺接させながら、周方向に若干量の相対移動が可能になっている。第2楔部材40に対する第1楔部材20の周方向の相対移動は、凹部46に臨む内側カム部41と外側カム部42のそれぞれの周方向端面に対して接続部23の側壁面が当て付くことにより制限される。同様に、第1楔部材20に対する第2楔部材40の周方向の相対移動は、凹部26に臨む内側カム部21と外側カム部22のそれぞれの周方向端面に対して接続部43の側壁面が当て付くことにより制限される。換言すれば、内側カム部21(41)と外側カム部22(42)の間の凹部26(46)が、該凹部26(46)上で交差する接続部43(23)の幅よりも周方向に長い凹部として形成されているため、周方向への第1楔部材20と第2楔部材40の若干の相対移動が許容されている。   In the first wedge member 20 (second wedge member 40), one of the front and rear surfaces of the gears 11 and 12 facing in the axial direction (the surface visible on the near side in FIGS. 2, 3 and 6) is the surface 24. (44) The other side is the back surface 25 (45). The first wedge member 20 and the second wedge member 40 are combined with the connection portion 23 and the connection portion 43 crossing so that the front surface 24 and the front surface 44 and the back surface 25 and the back surface 45 are substantially flush with each other. Specifically, the connecting portion 23 of the first wedge member 20 is formed with a concave portion 26 facing the back surface 25 side, and the connecting portion 43 of the second wedge member 40 is formed with a concave portion 46 facing the front surface 44 side. The connection portion 23 and the connection portion 43 intersect with each other in a state where the bottom surfaces of the recess 26 and the recess 46 are in contact with each other. Then, the inner cam portion 21 and the outer cam portion 42 are positioned so as to overlap in the radial direction in a positional relationship in which the outer peripheral interlocking surface T21 and the inner peripheral interlocking surface T42 come into contact with each other, and the inner cam portion 41 and the outer cam portion 22 are outer peripheral interlocking surfaces. It is positioned so as to overlap in the radial direction in a positional relationship in which T41 and the inner peripheral interlocking surface T22 abut. The first wedge member 20 and the second wedge member 40 in a superposed state are slidably contacted with the outer peripheral interlocking surface T21 and the inner peripheral interlocking surface T42, and the outer peripheral interlocking surface T41 and the inner peripheral interlocking surface T22 in the circumferential direction. Some amount of relative movement is possible. In the relative movement of the first wedge member 20 in the circumferential direction with respect to the second wedge member 40, the side wall surface of the connection portion 23 abuts against the respective circumferential end surfaces of the inner cam portion 41 and the outer cam portion 42 facing the recess 46. It is limited by. Similarly, the relative movement of the second wedge member 40 in the circumferential direction with respect to the first wedge member 20 is caused by the side wall surface of the connection portion 43 with respect to the respective circumferential end surfaces of the inner cam portion 21 and the outer cam portion 22 facing the recess 26. It is limited by being applied. In other words, the concave portion 26 (46) between the inner cam portion 21 (41) and the outer cam portion 22 (42) is more circumferential than the width of the connecting portion 43 (23) intersecting on the concave portion 26 (46). Since it is formed as a concave portion that is long in the direction, a slight relative movement of the first wedge member 20 and the second wedge member 40 in the circumferential direction is allowed.

第1楔部材20と第2楔部材40を組み合わせた状態で、楔部材14は楔中心線Pに関して両側が対称な形状を有する。より詳しくは、接続部23と接続部43の交差部分が楔中心線P上に位置しており、内側カム部21と外側カム部42からなる一方の楔状部と、内側カム部41と外側カム部22からなる他方の楔状部が楔中心線Pに関して対称な形状となる。楔中心線Pは、後述する減速歯車機構10の完成状態で、外歯歯車11の円筒部11c(内側ガイド面S1と同心の軸穴D)の中心を通り該円筒部11cの径方向に延びる仮想の線である。   In a state where the first wedge member 20 and the second wedge member 40 are combined, the wedge member 14 has a symmetrical shape on both sides with respect to the wedge center line P. More specifically, the intersection of the connecting portion 23 and the connecting portion 43 is located on the wedge center line P, and one wedge-shaped portion including the inner cam portion 21 and the outer cam portion 42, the inner cam portion 41, and the outer cam. The other wedge-shaped portion formed of the portion 22 has a symmetrical shape with respect to the wedge center line P. The wedge center line P passes through the center of the cylindrical portion 11c (shaft hole D concentric with the inner guide surface S1) of the external gear 11 and extends in the radial direction of the cylindrical gear 11c in a completed state of the reduction gear mechanism 10 described later. It is a virtual line.

以上のように構成された楔部材14は、曲率の大きい内側摺接面R21と内側摺接面R41を内側ガイド面S1に対向させ、曲率の小さい外側摺接面R22と外側摺接面R42を外側ガイド面S2に対向させて、外歯歯車11の円筒部11c内歯歯車12の円筒リブ状部12cとの間に挿入される。内側摺接面R21と内側摺接面R41は内側ガイド面S1に対して摺動可能に接触し、外側摺接面R22と外側摺接面R42は外側ガイド面S2に対して摺動可能に接触する。   In the wedge member 14 configured as described above, the inner sliding contact surface R21 and the inner sliding contact surface R41 having a large curvature are opposed to the inner guide surface S1, and the outer sliding contact surface R22 and the outer sliding contact surface R42 having a small curvature are formed. It is inserted between the cylindrical rib portion 12c of the internal gear 12 and the cylindrical portion 11c of the external gear 11 so as to face the outer guide surface S2. The inner sliding contact surface R21 and the inner sliding contact surface R41 are slidably contacted with the inner guide surface S1, and the outer sliding contact surface R22 and the outer sliding contact surface R42 are slidably contacted with the outer guide surface S2. To do.

第1楔部材20と第2楔部材40に対して付勢バネ15が係合している。第1楔部材20(第2楔部材40)には、内側カム部21(41)と接続部23(43)の境界部にバネ掛け部27(47)が形成されている。バネ掛け部27(47)は、内側カム部21(41)の周方向端面に形成した円弧状断面の凹部と、該凹部に連続して接続部23(43)に貫通形成した円形断面孔とによって構成されている。付勢バネ15は、1ターンの環状部分15aと、この環状部分15aから内径方向に曲折された一対の径方向曲折部15b、15cと、各径方向曲折部15b、15cから環状部分15aの軸線方向に立ち上げられた軸方向端部(バネ端部)15d、15eを有するトーションバネであり、環状部分15aは、内歯歯車12の円筒リブ状部12cの裏面側に形成された環状の裏側凹部12e内に支持されている。付勢バネ15の軸方向端部15dは第1楔部材20のバネ掛け部27に係合し、軸方向端部15eは第2楔部材40のバネ掛け部47に係合し、この係合状態で付勢バネ15は撓んでおり、その復元力によって軸方向端部15d、15eがそれぞれ内側カム部21と内側カム部41を離間方向に押圧する。この押圧力は内側ガイド面S1と外側ガイド面S2に対する第1楔部材20と第2楔部材40の楔打ち込み方向に作用し、楔解除部材13を回転させない状態では、楔部材14を介して外歯歯車11と内歯歯車12の相対位置を一定に維持させる。   The biasing spring 15 is engaged with the first wedge member 20 and the second wedge member 40. In the first wedge member 20 (second wedge member 40), a spring hook portion 27 (47) is formed at the boundary between the inner cam portion 21 (41) and the connection portion 23 (43). The spring hook portion 27 (47) includes a concave portion having an arc-shaped cross section formed on the circumferential end surface of the inner cam portion 21 (41), and a circular cross-sectional hole formed continuously through the concave portion and penetrating into the connecting portion 23 (43). It is constituted by. The biasing spring 15 includes a one-turn annular portion 15a, a pair of radially bent portions 15b and 15c bent from the annular portion 15a in the inner diameter direction, and an axis of the annular portion 15a from each radially bent portion 15b and 15c. A torsion spring having axial end portions (spring end portions) 15d and 15e raised in the direction, and the annular portion 15a is an annular back side formed on the back side of the cylindrical rib-like portion 12c of the internal gear 12 It is supported in the recess 12e. The axial end 15d of the biasing spring 15 engages with the spring hook 27 of the first wedge member 20, and the axial end 15e engages with the spring hook 47 of the second wedge member 40. The biasing spring 15 is bent in this state, and the axial end portions 15d and 15e press the inner cam portion 21 and the inner cam portion 41 in the separating direction by the restoring force, respectively. This pressing force acts in the wedge driving direction of the first wedge member 20 and the second wedge member 40 with respect to the inner guide surface S1 and the outer guide surface S2, and when the wedge release member 13 is not rotated, the outer force is applied via the wedge member 14. The relative position of the tooth gear 11 and the internal gear 12 is maintained constant.

楔部材14を内側ガイド面S1と外側ガイド面S2の間に挿入した状態では、外歯歯車11に対して内歯歯車12が偏心して位置され、該偏心状態で外歯11bの一部に対して内歯12bの一部が噛合される。このとき、図2に示すように、内側ガイド面S1の中心C1と外側ガイド面S2の中心C2が楔部材14の楔中心線Pに沿う方向に偏心している。楔解除部材13は、外歯歯車11の円筒部11cの軸穴D内に楔解除部材13の円筒軸部13aを回転自在に支持させた状態で、押圧部13bの押圧面13cが第1楔部材20の細幅端面H21に対向し、押圧面13dが第2楔部材40の細幅端面H41に対向する。   In a state where the wedge member 14 is inserted between the inner guide surface S1 and the outer guide surface S2, the internal gear 12 is positioned eccentrically with respect to the external gear 11, and in this eccentric state, a part of the external teeth 11b is positioned. Thus, a part of the inner teeth 12b is engaged. At this time, as shown in FIG. 2, the center C <b> 1 of the inner guide surface S <b> 1 and the center C <b> 2 of the outer guide surface S <b> 2 are eccentric in the direction along the wedge center line P of the wedge member 14. The wedge release member 13 is configured such that the cylindrical shaft portion 13a of the wedge release member 13 is rotatably supported in the shaft hole D of the cylindrical portion 11c of the external gear 11, and the pressing surface 13c of the pressing portion 13b is the first wedge. The narrow end surface H21 of the member 20 is opposed, and the pressing surface 13d is opposed to the narrow end surface H41 of the second wedge member 40.

減速歯車機構10は各シートの両側に対称に一対が配置されており、左右の減速歯車機構10における楔解除部材13は、円筒軸部13aのセレーション13eに挿入固定した連結軸(不図示)を介して連結されている。連結軸及び楔解除部材13は、シートバックの傾斜角の調整時に図示しないモータの駆動力によって回転駆動される。   The pair of reduction gear mechanisms 10 are symmetrically arranged on both sides of each seat, and the wedge release member 13 in the left and right reduction gear mechanisms 10 has a connecting shaft (not shown) inserted and fixed to the serration 13e of the cylindrical shaft portion 13a. Are connected through. The connecting shaft and the wedge releasing member 13 are rotationally driven by a driving force of a motor (not shown) when adjusting the inclination angle of the seat back.

以上の構造の減速歯車機構10は、連結軸(楔解除部材13)に外部から回転操作力を加えない状態では、付勢バネ15が第1楔部材20と第2楔部材40に対して、内側摺接面R21と内側摺接面R41を内側ガイド面S1に圧接させ、外側摺接面R22と外側摺接面R42を外側ガイド面S2に圧接させる方向の力、すなわち楔を打ち込む方向の力を与えている。このため、外歯歯車11と内歯歯車12に対して回転方向の力が与えられても、内側カム部21と外側カム部42、内側カム部41と外側カム部22のペアがそれぞれ楔として機能して外歯歯車11と内歯歯車12の相対運動を規制する。よって減速歯車機構10のロック状態が維持され、シートバックの傾動が規制される。   In the reduction gear mechanism 10 having the above structure, the urging spring 15 is applied to the first wedge member 20 and the second wedge member 40 in a state in which no rotational operation force is applied to the connecting shaft (wedge release member 13) from the outside. The force in the direction in which the inner slidable contact surface R21 and the inner slidable contact surface R41 are pressed against the inner guide surface S1, and the outer slidable contact surface R22 and outer slidable contact surface R42 are pressed into contact with the outer guide surface S2, that is, the force in the direction of driving the wedge. Is given. Therefore, even if a rotational force is applied to the external gear 11 and the internal gear 12, the inner cam portion 21 and the outer cam portion 42, and the inner cam portion 41 and the outer cam portion 22 are each paired as a wedge. It functions to regulate the relative movement of the external gear 11 and the internal gear 12. Therefore, the locked state of the reduction gear mechanism 10 is maintained, and the tilting of the seat back is restricted.

このロック状態において、楔解除部材13を図2及び図3における反時計方向に回すと、楔解除部材13の押圧面13cが楔部材14を構成する第1楔部材20の細幅端面H21を押圧し、付勢バネ15の付勢力に抗して第1楔部材20を楔打ち込み方向(時計方向)と反対方向に引き抜く力が付与される。第1楔部材20は外周連動面T21によって内周連動面T42を、内周連動面T22によって外周連動面T41をそれぞれ押圧し、第2楔部材40に対しても第1楔部材20と同じ回転方向の力が付与される。よって楔部材14は、第1楔部材20と第2楔部材40を一体化させた状態で、外歯歯車11の円筒部11cの内側ガイド面S1に沿って反時計方向に回転する。これとは逆に楔解除部材13を時計方向に回転させた場合は、押圧面13dが細幅端面H41を押圧して、付勢バネ15の付勢力に抗して第2楔部材40を楔打ち込み方向(反時計方向)と反対方向に引き抜く力が付与される。すると、第2楔部材40は外周連動面T41によって内周連動面T22を、内周連動面T42によって外周連動面T21をそれぞれ押圧し、第1楔部材20を同じ回転方向に押圧する。よって楔部材14は、第2楔部材40と第1楔部材20を一体化させた状態で、内側ガイド面S1に沿って時計方向に回転する。   When the wedge release member 13 is rotated counterclockwise in FIGS. 2 and 3 in this locked state, the pressing surface 13c of the wedge release member 13 presses the narrow end surface H21 of the first wedge member 20 constituting the wedge member 14. Then, a force is applied to pull out the first wedge member 20 in a direction opposite to the wedge driving direction (clockwise direction) against the biasing force of the biasing spring 15. The first wedge member 20 presses the inner peripheral interlocking surface T42 by the outer peripheral interlocking surface T21 and the outer peripheral interlocking surface T41 by the inner peripheral interlocking surface T22, and the same rotation as the first wedge member 20 also with respect to the second wedge member 40. Directional force is applied. Therefore, the wedge member 14 rotates counterclockwise along the inner guide surface S1 of the cylindrical portion 11c of the external gear 11 in a state where the first wedge member 20 and the second wedge member 40 are integrated. On the contrary, when the wedge release member 13 is rotated clockwise, the pressing surface 13d presses the narrow end surface H41, and the second wedge member 40 is wedged against the biasing force of the biasing spring 15. A pulling force is applied in the direction opposite to the driving direction (counterclockwise direction). Then, the second wedge member 40 presses the inner peripheral interlocking surface T22 by the outer peripheral interlocking surface T41, the outer peripheral interlocking surface T21 by the inner peripheral interlocking surface T42, and presses the first wedge member 20 in the same rotational direction. Therefore, the wedge member 14 rotates in the clockwise direction along the inner guide surface S1 in a state where the second wedge member 40 and the first wedge member 20 are integrated.

楔部材14が外歯歯車11の円筒部11cの内側ガイド面S1に沿って回転すると、第1楔部材20の外側摺接面R22と第2楔部材40の外側摺接面R42が外側ガイド面S2に対して摺接して、その押圧ポイントを変化させながら内歯歯車12を外径方向に押圧する。内歯歯車12は内歯12bが外歯11bに噛み合う偏心位置で楔部材14により支持されるため、楔部材14が回転すると、外歯歯車11に対して内歯歯車12が偏心回転運動しながら外歯11bと内歯12bの噛合位置を変化させる。具体的には、楔解除部材13を図2及び図3の時計方向に回転させたときに、内歯歯車12が外歯歯車11に対して中心位置を変化させながら同図の時計回りに回転し、楔解除部材13を図2及び図3の反時計方向に回転させたときに、内歯歯車12が外歯歯車11に対して中心位置を変化させながら同図の反時計回りに回転する。その結果、アッパアームをロアアームに対して傾動させ、シートバックの傾斜角を調整することができる。この外歯歯車11と内歯歯車12の間の偏心相対回転は、楔解除部材13の回転から減速されており、アッパアームをロアアームに対して少量ずつ傾動させるため、シートバックの傾斜角を無段階に調整することができる。楔解除部材13の回転を停止させると、外歯歯車11に対する内歯歯車12の偏心回転運動が停止され、付勢バネ15の付勢力によって楔部材14の楔効果が再び得られるため、シートバックの傾動が規制されるロック状態に戻る。   When the wedge member 14 rotates along the inner guide surface S1 of the cylindrical portion 11c of the external gear 11, the outer slide contact surface R22 of the first wedge member 20 and the outer slide contact surface R42 of the second wedge member 40 are the outer guide surfaces. The internal gear 12 is pressed in the outer diameter direction while changing the pressing point in sliding contact with S2. Since the internal gear 12 is supported by the wedge member 14 at an eccentric position where the internal teeth 12b mesh with the external teeth 11b, the internal gear 12 rotates eccentrically relative to the external gear 11 when the wedge member 14 rotates. The meshing position of the outer teeth 11b and the inner teeth 12b is changed. Specifically, when the wedge release member 13 is rotated in the clockwise direction in FIGS. 2 and 3, the internal gear 12 rotates in the clockwise direction in FIG. 2 while changing the center position with respect to the external gear 11. When the wedge releasing member 13 is rotated counterclockwise in FIGS. 2 and 3, the internal gear 12 rotates counterclockwise in the same figure while changing the center position with respect to the external gear 11. . As a result, the tilt angle of the seat back can be adjusted by tilting the upper arm with respect to the lower arm. The eccentric relative rotation between the external gear 11 and the internal gear 12 is decelerated from the rotation of the wedge release member 13, and the upper arm is tilted little by little with respect to the lower arm. Can be adjusted. When the rotation of the wedge release member 13 is stopped, the eccentric rotational movement of the internal gear 12 with respect to the external gear 11 is stopped, and the wedge effect of the wedge member 14 is obtained again by the biasing force of the biasing spring 15. It returns to the locked state where the tilt of the is restricted.

減速歯車機構10には、ロアアームに対するアッパアームの最大傾動角を規制するために、外歯歯車11の凹部11d内と内歯歯車12の凹部12d内にそれぞれストッパ突起を設けてもよい。外歯歯車11と内歯歯車12の間に所定量の相対回転が発生すると、互いのストッパ突起が当接して回転動作が規制され、シートバックのそれ以上の角度変化が制限される。   The reduction gear mechanism 10 may be provided with stopper protrusions in the recess 11d of the external gear 11 and the recess 12d of the internal gear 12 in order to regulate the maximum tilt angle of the upper arm with respect to the lower arm. When a predetermined amount of relative rotation occurs between the external gear 11 and the internal gear 12, the stopper projections come into contact with each other to restrict the rotation operation, and further change in the angle of the seat back is limited.

楔部材14を構成する第1楔部材20と第2楔部材40は、接続部23と接続部43の交差位置を変化させるように回転方向に相対移動させることで、楔中心線Pを挟んだ両側の楔形状(内側摺接面R21と外側摺接面R42の相対位置、内側摺接面R41と外側摺接面R22の相対位置)が変化する。図7(A)は、第1楔部材20の接続部23を第2楔部材40の内側カム部41側に最も接近させ、第2楔部材40の接続部43を第1楔部材20の内側カム部21側に最も接近させた、第1の相対回転移動端に第1楔部材20と第2楔部材40が位置する状態を示している。図7(A)の位置において、第1楔部材20のそれ以上の反時計方向の回転は、第2楔部材40の内側カム部41の周方向端部(細幅端面H41と反対側の端部)に対する接続部23の当接によって規制される。また第2楔部材40のそれ以上の時計方向の回転は、第1楔部材20の内側カム部21の端部(細幅端面H21と反対側の端部)に対する接続部43の当接によって規制される。このとき、外周連動面T21と内周連動面T42、外周連動面T41と内周連動面T22は、それぞれ全体的に隙間なく当接している。そのため、内側摺接面R21(R41)に対する外側摺接面R22(R42)の径方向距離が最小になり、内側ガイド面S1の中心C1と外側ガイド面S2の中心C2の偏心量が最小となる。   The first wedge member 20 and the second wedge member 40 constituting the wedge member 14 are moved relative to each other in the rotational direction so as to change the crossing position of the connection portion 23 and the connection portion 43, thereby sandwiching the wedge center line P. The wedge shape on both sides (the relative position between the inner sliding contact surface R21 and the outer sliding contact surface R42, the relative position between the inner sliding contact surface R41 and the outer sliding contact surface R22) changes. FIG. 7A shows that the connection portion 23 of the first wedge member 20 is closest to the inner cam portion 41 side of the second wedge member 40, and the connection portion 43 of the second wedge member 40 is the inner side of the first wedge member 20. The state where the 1st wedge member 20 and the 2nd wedge member 40 are located in the 1st relative rotational movement end made to approach the cam part 21 side most is shown. In the position of FIG. 7A, the further rotation of the first wedge member 20 in the counterclockwise direction is the circumferential end of the inner cam portion 41 of the second wedge member 40 (the end opposite to the narrow end face H41). Part) is regulated by the contact of the connection part 23 with the part. Further, the clockwise rotation of the second wedge member 40 is restricted by the contact of the connecting portion 43 with the end of the inner cam portion 21 of the first wedge member 20 (the end opposite to the narrow end face H21). Is done. At this time, the outer peripheral interlocking surface T21 and the inner peripheral interlocking surface T42, and the outer peripheral interlocking surface T41 and the inner peripheral interlocking surface T22 are in contact with each other without any gap. Therefore, the radial distance of the outer sliding contact surface R22 (R42) relative to the inner sliding contact surface R21 (R41) is minimized, and the amount of eccentricity between the center C1 of the inner guide surface S1 and the center C2 of the outer guide surface S2 is minimized. .

図7(C)は、第1楔部材20の接続部23を第2楔部材40の外側カム部42側に最も接近させ、第2楔部材40の接続部43を第1楔部材20の外側カム部22側に最も接近させた、第2の相対回転移動端に第1楔部材20と第2楔部材40が位置する状態を示している。図7(C)の位置において、第1楔部材20のそれ以上の時計方向の回転は、第2楔部材40の外側カム部42の周方向端部(広幅端面H42と反対側の端部)に対する接続部23の当接によって規制される。また第2楔部材40のそれ以上の反時計方向の回転は、第1楔部材20の外側カム部22の周方向端部(広幅端面H22と反対側の端部)との接続部43の当接によって規制される。このとき、接続部23(43)の近傍で、外周連動面T21と内周連動面T42の間、外周連動面T41と内周連動面T22の間に若干の隙間が形成される。これにより、内側摺接面R21(R41)に対する外側摺接面R22(R42)の径方向距離が大きくなり、内側ガイド面S1の中心C1と外側ガイド面S2の中心C2の偏心量が最大となる。   FIG. 7C shows that the connection portion 23 of the first wedge member 20 is closest to the outer cam portion 42 side of the second wedge member 40, and the connection portion 43 of the second wedge member 40 is outside the first wedge member 20. The state where the 1st wedge member 20 and the 2nd wedge member 40 are located in the 2nd relative rotational movement end made to approach the cam part 22 side most is shown. 7C, further clockwise rotation of the first wedge member 20 causes the circumferential end of the outer cam portion 42 of the second wedge member 40 (the end opposite to the wide end face H42). Is restricted by the contact of the connecting portion 23 with respect to. Further, the counterclockwise rotation of the second wedge member 40 is caused by the contact of the connecting portion 43 with the circumferential end (the end opposite to the wide end face H22) of the outer cam portion 22 of the first wedge member 20. Regulated by contact. At this time, in the vicinity of the connecting portion 23 (43), a slight gap is formed between the outer peripheral interlocking surface T21 and the inner peripheral interlocking surface T42 and between the outer peripheral interlocking surface T41 and the inner peripheral interlocking surface T22. This increases the radial distance of the outer sliding contact surface R22 (R42) relative to the inner sliding contact surface R21 (R41), and the amount of eccentricity between the center C1 of the inner guide surface S1 and the center C2 of the outer guide surface S2 is maximized. .

図7(B)は、第1楔部材20と第2楔部材40が以上の2つの相対回転移動端の中間位置にある状態を示している。図7(B)の状態では、接続部23(43)の近傍で、外周連動面T21と内周連動面T42の間、外周連動面T41と内周連動面T22の間に図7(C)の状態よりも小さい隙間が形成される。これにより、内側摺接面R21(R41)に対する外側摺接面R22(R42)の径方向距離が図7(A)と図7(C)の間の大きさになり、内側ガイド面S1の中心C1と外側ガイド面S2の中心C2の偏心量が中間値となる。   FIG. 7B shows a state where the first wedge member 20 and the second wedge member 40 are at an intermediate position between the two relative rotational movement ends. In the state of FIG. 7B, in the vicinity of the connecting portion 23 (43), between the outer peripheral interlocking surface T21 and the inner peripheral interlocking surface T42 and between the outer peripheral interlocking surface T41 and the inner peripheral interlocking surface T22. A gap that is smaller than the above state is formed. As a result, the radial distance of the outer sliding contact surface R22 (R42) to the inner sliding contact surface R21 (R41) becomes a size between FIG. 7 (A) and FIG. 7 (C), and the center of the inner guide surface S1. The amount of eccentricity between C1 and the center C2 of the outer guide surface S2 is an intermediate value.

第1楔部材20(第2楔部材40)の細幅端面H21(H41)と内側ガイド面S1の中心C1とを結ぶ径方向の仮想線をQ、仮想線Qと楔中心線Pのなす角度をθとした場合、図7(A)の偏心量最小値、図7(B)の偏心量中央値、図7(C)の偏心量最大値でのそれぞれの角度θ1、θ2、θ3が、θ1>θ2>θ3の関係となる。本実施形態の構成によると、偏心量最小時の角度θ1と偏心量最大時の角度θ3の差を小さく抑えることができる。楔解除部材13の押圧部13bは、細幅端面H21と細幅端面H41の周方向間隔が最も小さくなる角度θ3の状態で第1楔部材20と第2楔部材40に干渉しない大きさに設定される。そして、以上のように第1楔部材20と第2楔部材40の相対位置を変化させることにより、内側ガイド面S1と外側ガイド面S2の寸法のばらつきを吸収することができる。   The radial imaginary line connecting the narrow end face H21 (H41) of the first wedge member 20 (second wedge member 40) and the center C1 of the inner guide surface S1 is defined as Q, and the angle formed between the imaginary line Q and the wedge centerline P. Is the minimum amount of eccentricity in FIG. 7A, the median amount of eccentricity in FIG. 7B, and the respective angles θ1, θ2, and θ3 at the maximum amount of eccentricity in FIG. The relationship is θ1> θ2> θ3. According to the configuration of the present embodiment, the difference between the angle θ1 when the amount of eccentricity is minimum and the angle θ3 when the amount of eccentricity is maximum can be suppressed small. The pressing portion 13b of the wedge release member 13 is set to a size that does not interfere with the first wedge member 20 and the second wedge member 40 in an angle θ3 where the circumferential interval between the narrow end surface H21 and the narrow end surface H41 is the smallest. Is done. Then, by changing the relative positions of the first wedge member 20 and the second wedge member 40 as described above, it is possible to absorb variations in the dimensions of the inner guide surface S1 and the outer guide surface S2.

以上の減速歯車機構10では、外歯歯車11と内歯歯車12の間に挿入されて互いを偏心状態に保持させる楔部材14を、第1楔部材20と第2楔部材40の組み合わせで構成している。第1楔部材20と第2楔部材40は楔中心線P上で接続部23、43を互いに交差させており、楔中心線Pを挟んだ一方の領域では、第1楔部材20の内側カム部21が内側ガイド面S1に当接し、第2楔部材40の外側カム部42が外側ガイド面S2に当接しており、楔中心線Pを挟んだ他方の領域では、第2楔部材40の内側カム部41が内側ガイド面S1に当接し、第1楔部材20の外側カム部22が外側ガイド面S2に当接する。そして、楔解除部材13の押圧面13c(13d)で第1楔部材20(第2楔部材40)の細幅端面H21(H41)を押圧したとき、楔解除部材13によって第1楔部材20(第2楔部材40)が押圧移動されると共に、外周連動面T21と内周連動面T42、内周連動面T22と外周連動面T41の当接関係によって第2楔部材40(第1楔部材20)に対して直ちに押圧力が作用する。そのため、第1楔部材20と第2楔部材40をタイムラグなく連れ回りさせることができ、楔解除部材13の回転駆動から外歯歯車11と内歯歯車12の偏心相対回転が行われるまでの動作の応答性に優れている。また、第1楔部材20と第2楔部材40を組み合わせた状態で、接続部23、43の交差部分(楔中心線P)を挟んだ両側の楔形状が対称であり、楔解除部材13の押圧を受ける細幅端面H21、H41も対称に配置されているので、楔解除部材13の回転方向の違いによる駆動負荷のばらつきなどが生じず、動作の安定性にも優れている。   In the reduction gear mechanism 10 described above, the wedge member 14 that is inserted between the external gear 11 and the internal gear 12 and holds each other in an eccentric state is configured by a combination of the first wedge member 20 and the second wedge member 40. doing. The first wedge member 20 and the second wedge member 40 intersect the connecting portions 23 and 43 with each other on the wedge center line P, and in one region sandwiching the wedge center line P, the inner cam of the first wedge member 20 The portion 21 is in contact with the inner guide surface S1, the outer cam portion 42 of the second wedge member 40 is in contact with the outer guide surface S2, and in the other region across the wedge center line P, the second wedge member 40 The inner cam portion 41 contacts the inner guide surface S1, and the outer cam portion 22 of the first wedge member 20 contacts the outer guide surface S2. When the narrow end surface H21 (H41) of the first wedge member 20 (second wedge member 40) is pressed by the pressing surface 13c (13d) of the wedge releasing member 13, the first wedge member 20 ( The second wedge member 40) is pressed and moved, and the second wedge member 40 (first wedge member 20) is brought into contact with the outer peripheral interlocking surface T21 and the inner peripheral interlocking surface T42, and the inner peripheral interlocking surface T22 and the outer peripheral interlocking surface T41. ) Immediately exerts a pressing force. Therefore, the first wedge member 20 and the second wedge member 40 can be rotated without time lag, and the operation from the rotational drive of the wedge release member 13 to the eccentric relative rotation of the external gear 11 and the internal gear 12 is performed. It has excellent responsiveness. Further, in a state where the first wedge member 20 and the second wedge member 40 are combined, the wedge shapes on both sides sandwiching the intersecting portion (wedge center line P) of the connecting portions 23 and 43 are symmetric, and the wedge releasing member 13 Since the narrow end faces H21 and H41 that receive the pressure are also arranged symmetrically, the drive load does not vary due to the difference in the rotation direction of the wedge release member 13, and the operation stability is excellent.

図8から図13は第2の実施形態の減速歯車機構110を示している。この減速歯車機構110は、楔部材114を構成する第1楔部材(重合楔部材)120と第2楔部材(重合楔部材)140の形状が先の実施形態の減速歯車機構10と異なっており、それ以外の構成については減速歯車機構10と共通する。先の実施形態との共通部分については同一符号で示して説明を省略する。また、以下では第1楔部材120と第2楔部材140で説明が共通する部分については、第1楔部材120と第2楔部材140のいずれか一方を代表して記述し、他方については対応する箇所を括弧内に符号で示して詳細な説明を省略する。   8 to 13 show the reduction gear mechanism 110 of the second embodiment. The speed reduction gear mechanism 110 is different from the speed reduction gear mechanism 10 of the previous embodiment in the shapes of the first wedge member (overlapping wedge member) 120 and the second wedge member (overlapping wedge member) 140 constituting the wedge member 114. The other configuration is the same as that of the reduction gear mechanism 10. Portions common to the previous embodiment are denoted by the same reference numerals and description thereof is omitted. Further, in the following description, the parts common to the first wedge member 120 and the second wedge member 140 will be described by representing one of the first wedge member 120 and the second wedge member 140, and the other will correspond. The portions to be performed are indicated by reference numerals in parentheses, and detailed description thereof is omitted.

図13に示すように、第1楔部材120(第2楔部材140)は、内側カム部(内側当接部)121(141)と外側カム部(外側当接部)122(142)を接続部123(143)で接続した形状である。内側カム部121(141)と外側カム部122(142)は径方向に位置をずらせており、内側カム部121(141)の内周側に、外歯歯車11の内側ガイド面S1と同じ曲率で内側ガイド面S1に対して摺接可能な内側摺接面R121(R141)が形成され、外側カム部122(142)の外周側に、内歯歯車12の外側ガイド面S2と同じ曲率で外側ガイド面S2に対して摺接可能な外側摺接面R122(R142)が形成されている。また、内側カム部121(141)の外周側に、内側摺接面R121(R141)と異なる曲率の外周連動面T121(T141)が形成され、外側カム部122(142)の内周側に、外側摺接面R122(R142)と異なる曲率の内周連動面T122(T142)が形成されている。内側カム部121(141)は、接続部123(143)に近い側から細幅端面H121(H141)側に進むにつれて、内側摺接面R121(R141)と外周連動面T121(T141)の間隔(径方向幅)を徐々に小さくする先細の楔形状を有している。外側カム部122(142)は、接続部123(143)に近い側から広幅端面H122(H142)側に進むにつれて、外側摺接面R122(R142)と内周連動面T122(T142)の間隔(径方向幅)を大きくする先太形状を有している。   As shown in FIG. 13, the first wedge member 120 (second wedge member 140) connects the inner cam portion (inner contact portion) 121 (141) and the outer cam portion (outer contact portion) 122 (142). It is the shape connected by the part 123 (143). The inner cam portion 121 (141) and the outer cam portion 122 (142) are displaced in the radial direction, and have the same curvature as the inner guide surface S1 of the external gear 11 on the inner peripheral side of the inner cam portion 121 (141). The inner slidable contact surface R121 (R141) that can be slidably contacted with the inner guide surface S1 is formed on the outer peripheral side of the outer cam portion 122 (142) with the same curvature as the outer guide surface S2 of the internal gear 12. An outer sliding contact surface R122 (R142) capable of sliding contact with the guide surface S2 is formed. Further, an outer peripheral interlocking surface T121 (T141) having a different curvature from the inner sliding contact surface R121 (R141) is formed on the outer peripheral side of the inner cam portion 121 (141), and on the inner peripheral side of the outer cam portion 122 (142), An inner peripheral interlocking surface T122 (T142) having a different curvature from the outer sliding contact surface R122 (R142) is formed. As the inner cam portion 121 (141) advances from the side closer to the connecting portion 123 (143) toward the narrow end surface H121 (H141), the distance between the inner sliding contact surface R121 (R141) and the outer peripheral interlocking surface T121 (T141) ( It has a tapered wedge shape that gradually decreases the radial width. As the outer cam portion 122 (142) advances from the side closer to the connection portion 123 (143) toward the wide end surface H122 (H142), the distance between the outer sliding contact surface R122 (R142) and the inner peripheral interlocking surface T122 (T142) ( It has a tip shape that increases the radial width.

凹部126と凹部146の底面を当接させて接続部123と接続部143を交差させ、第1楔部材120と第2楔部材140を組み合わせると、内側カム部121と外側カム部142が径方向に重なって位置し、内側カム部141と外側カム部122が径方向に重なって位置する。この第1楔部材120と第2楔部材140の組み合わせ状態で、楔部材114は楔中心線Pに関して両側が対称な形状になり、さらに第1楔部材120と第2楔部材140における表面124と表面144、裏面125と裏面145がそれぞれ概ね面一になる。第1楔部材120のバネ掛け部127と第2楔部材140のバネ掛け部147に対して、付勢バネ15の軸方向端部15dと軸方向端部15eがそれぞれ係合して、付勢バネ15によって内側カム部121と内側カム部141を離間方向に押圧する。   When the bottom surface of the concave portion 126 and the concave portion 146 are brought into contact with each other so that the connection portion 123 and the connection portion 143 intersect each other, and the first wedge member 120 and the second wedge member 140 are combined, the inner cam portion 121 and the outer cam portion 142 are in the radial direction. The inner cam portion 141 and the outer cam portion 122 are positioned so as to overlap each other in the radial direction. In the combined state of the first wedge member 120 and the second wedge member 140, the wedge member 114 has a symmetrical shape on both sides with respect to the wedge center line P, and the surface 124 of the first wedge member 120 and the second wedge member 140 The front surface 144, the back surface 125, and the back surface 145 are substantially flush with each other. The axial end portion 15d and the axial end portion 15e of the biasing spring 15 are engaged with the spring hook portion 127 of the first wedge member 120 and the spring hook portion 147 of the second wedge member 140, respectively. The inner cam portion 121 and the inner cam portion 141 are pressed in the separating direction by the spring 15.

第1楔部材120(第2楔部材140)における以上の基本構造については、先の実施形態の第1楔部材20(第2楔部材40)と同様である。第1楔部材120(第2楔部材140)は、内側カム部121(141)と外側カム部122(142)の周方向長さの関係が先の実施形態と相違しており、接続部123(143)を基準として、内側カム部121(141)よりも外側カム部122(142)の方が周方向に長く延設されている。そのため、第1楔部材120と第2楔部材140を組み合わせて内側ガイド面S1と外側ガイド面S2の間に配置すると、図9や図10に示すように、内側カム部121(141)の細幅端面H121(H141)よりも外側カム部122(142)の広幅端面H122(H142)の方が、楔解除部材13の押圧面13c、13dに近く位置する。つまり、楔解除部材13の押圧面13cが第2楔部材140の広幅端面H142に対向し、押圧面13dが第1楔部材120の広幅端面H122に対向する。   The basic structure of the first wedge member 120 (second wedge member 140) is the same as that of the first wedge member 20 (second wedge member 40) of the previous embodiment. The first wedge member 120 (second wedge member 140) is different from the previous embodiment in the relationship between the circumferential lengths of the inner cam portion 121 (141) and the outer cam portion 122 (142). With reference to (143), the outer cam portion 122 (142) extends longer in the circumferential direction than the inner cam portion 121 (141). Therefore, when the first wedge member 120 and the second wedge member 140 are combined and placed between the inner guide surface S1 and the outer guide surface S2, the inner cam portion 121 (141) is thinned as shown in FIGS. The wide end surface H122 (H142) of the outer cam portion 122 (142) is located closer to the pressing surfaces 13c and 13d of the wedge releasing member 13 than the wide end surface H121 (H141). That is, the pressing surface 13 c of the wedge releasing member 13 faces the wide end surface H 142 of the second wedge member 140, and the pressing surface 13 d faces the wide end surface H 122 of the first wedge member 120.

楔解除部材13を図9及び図10における反時計方向に回すと、楔解除部材13の押圧面13cが第2楔部材140の広幅端面H142を押圧する。すると、押圧された第2楔部材140が内周連動面T142によって外周連動面T121を、外周連動面T141によって内周連動面T122をそれぞれ押圧し、第1楔部材120に対しても第2楔部材140と同じ回転方向の力が付与される。よって楔部材114が第2楔部材140と第1楔部材120を一体化させた状態で外歯歯車11の円筒部11cの内側ガイド面S1に沿って反時計方向に回転し、その結果、内歯歯車12が外歯歯車11に対して中心位置を変化させながら図9及び図10の反時計回りに回転する。これとは逆に楔解除部材13を図9及び図10の時計方向に回転させた場合は、押圧面13dが第1楔部材120の広幅端面H122を押圧する。すると、押圧された第1楔部材120が内周連動面T122によって外周連動面T141を、外周連動面T121によって内周連動面T142をそれぞれ押圧し、第2楔部材140を同じ回転方向に押圧する。よって楔部材114が第1楔部材120と第2楔部材140を一体化させた状態で内側ガイド面S1に沿って時計方向に回転し、その結果、内歯歯車12が外歯歯車11に対して中心位置を変化させながら図9及び図10の時計回りに回転する。   When the wedge releasing member 13 is turned counterclockwise in FIGS. 9 and 10, the pressing surface 13 c of the wedge releasing member 13 presses the wide end surface H 142 of the second wedge member 140. Then, the pressed second wedge member 140 presses the outer peripheral interlocking surface T121 by the inner peripheral interlocking surface T142 and the inner peripheral interlocking surface T122 by the outer peripheral interlocking surface T141, and the second wedge member 120 is also pressed against the first wedge member 120. The same rotational force as that of the member 140 is applied. Therefore, the wedge member 114 rotates counterclockwise along the inner guide surface S1 of the cylindrical portion 11c of the external gear 11 in a state where the second wedge member 140 and the first wedge member 120 are integrated. The tooth gear 12 rotates counterclockwise in FIGS. 9 and 10 while changing the center position with respect to the external gear 11. On the contrary, when the wedge release member 13 is rotated in the clockwise direction of FIGS. 9 and 10, the pressing surface 13 d presses the wide end surface H 122 of the first wedge member 120. Then, the pressed first wedge member 120 presses the outer peripheral interlocking surface T141 by the inner peripheral interlocking surface T122, the inner peripheral interlocking surface T142 by the outer peripheral interlocking surface T121, and presses the second wedge member 140 in the same rotational direction. . Therefore, the wedge member 114 rotates clockwise along the inner guide surface S <b> 1 in a state where the first wedge member 120 and the second wedge member 140 are integrated, and as a result, the internal gear 12 moves relative to the external gear 11. 9 and FIG. 10, while rotating the center position.

以上、図示実施形態に基づき説明したが、本発明はこの実施形態に限定されるものではない。上記実施形態はシートのリクライニング装置に適用した例であるが、他に、リンク機構を用いてシートクッションを昇降させるシートリフタ機構やチルト機構のリンクを回転させる部分に適用可能である。また、シート以外に、パワーウインド、パワーシート、パワースライドドア、パワーバックドア、パワーラッゲージ等に用いられるモータと減速機とが一体となったギヤードモータの減速機部分にも適用可能である。また、シートのリクライニング装置に適用する場合、上記実施形態とは逆に、外歯歯車がアッパアームに固定され、内歯歯車がロアアームに固定されるタイプの減速歯車機構であっても適用が可能である。   As mentioned above, although demonstrated based on illustration embodiment, this invention is not limited to this embodiment. Although the above embodiment is an example applied to a seat reclining device, it can be applied to a part where a link of a seat lifter mechanism that lifts and lowers a seat cushion or a link of a tilt mechanism is rotated. In addition to the seat, the present invention can also be applied to a reduction gear portion of a geared motor in which a motor and a reduction gear used in a power window, a power seat, a power slide door, a power back door, a power luggage and the like are integrated. Further, when applied to a seat reclining device, contrary to the above-described embodiment, it can also be applied to a reduction gear mechanism of a type in which the external gear is fixed to the upper arm and the internal gear is fixed to the lower arm. is there.

10 減速歯車機構
11 外歯歯車
11a 固定突起
11b 外歯
11c 円筒部
11d 凹部
12 内歯歯車
12a 固定突起
12b 内歯
12c 円筒リブ状部(円形穴)
12d 凹部
12e 裏側凹部
13 楔解除部材(駆動手段、回転伝達部材)
13a 円筒軸部
13b 押圧部
13c 13d 押圧面
13e セレーション
14 114 楔部材(偏心保持手段)
15 付勢バネ(偏心保持手段、付勢部材)
15b 15c 径方向曲折部
15d 15e 軸方向端部(バネ端部)
18 保持部材
18a 外囲部
18b 18c フランジ部
20 120 第1楔部材(重合楔部材)
21 41 121 141 内側カム部(内側当接部)
22 42 122 142 外側カム部(外側当接部)
23 43 123 143 接続部
24 44 124 144 表面
25 45 125 145 裏面
26 46 126 146 凹部
27 47 127 147 バネ掛け部
40 140 第2楔部材(重合楔部材)
C1 内側ガイド面の中心
C2 外側ガイド面の中心
D 軸穴
H21 H41 H121 H141 細幅端面
H22 H42 H122 H142 広幅端面
R21 R41 R121 R141 内側摺接面
R22 R42 R122 R142 外側摺接面
S1 内側ガイド面(円筒部の外周面)
S2 外側ガイド面(円形穴の内周面)
T21 T41 外周連動面
T22 T42 内周連動面
DESCRIPTION OF SYMBOLS 10 Reduction gear mechanism 11 External gear 11a Fixed protrusion 11b External tooth 11c Cylindrical part 11d Recessed part 12 Internal gear 12a Fixed protrusion 12b Internal tooth 12c Cylindrical rib-like part (circular hole)
12d Concave portion 12e Back side concave portion 13 Wedge release member (drive means, rotation transmission member)
13a cylindrical shaft portion 13b pressing portion 13c 13d pressing surface 13e serration 14 114 wedge member (eccentric holding means)
15 Biasing spring (eccentric holding means, biasing member)
15b 15c Radial direction bending part 15d 15e Axial direction edge part (spring end part)
18 Holding member 18a Outer portion 18b 18c Flange portion 20 120 First wedge member (overlapping wedge member)
21 41 121 141 Inner cam part (inner contact part)
22 42 122 142 Outer cam part (outer contact part)
23 43 123 143 Connecting portion 24 44 124 144 Front surface 25 45 125 145 Back surface 26 46 126 146 Recessed portion 27 47 127 147 Spring hook portion 40 140 Second wedge member (overlapping wedge member)
C1 Center of inner guide surface C2 Center of outer guide surface D Shaft hole H21 H41 H121 H141 Narrow end surface H22 H42 H122 H142 Wide end surface R21 R41 R121 R141 Inner slidable contact surface R22 R42 R122 R142 Outer slidable contact surface S1 Inner guide surface (cylindrical) Outer peripheral surface)
S2 Outer guide surface (inner peripheral surface of circular hole)
T21 T41 Outer peripheral interlocking surface T22 T42 Inner peripheral interlocking surface

Claims (7)

支持部材と、該支持部材に対して相対回転可能な回転部材のいずれか一方に、その回転中心部に位置させて固定される、外周に外歯を有する外歯歯車;
上記外歯歯車の外歯に噛み合う該外歯よりも歯数が多い内歯が形成され、上記支持部材と上記回転部材の他方に固定される内歯歯車;
上記外歯歯車と上記内歯歯車の一方と他方にそれぞれの軸を中心として設けられた、大径の円形穴と該円形穴より小径の円筒部;
上記円形穴の内周面と上記円筒部の外周面との間に挿入され、上記外歯歯車と上記内歯歯車を互いの中心位置が異なる偏心状態で噛合維持させる偏心保持手段;及び
上記円筒部の内周部に回転可能に支持され、該回転によって上記偏心保持手段を動作させて、上記外歯歯車と上記内歯歯車に噛合位置の変化を伴う偏心回転を行わせる駆動手段;
を有する減速歯車機構において、
上記偏心保持手段は、
上記円筒部の外周面に摺接可能に接触する内側当接部と、上記円形穴の内周面に摺接可能に接触する外側当接部とを周方向位置を異ならせてそれぞれ備え、互いの上記内側当接部と上記外側当接部を径方向に隣接させ、かつ上記内側当接部と上記外側当接部の間の接続部を互いに交差させて、上記円形穴の内周面と上記円筒部の外周面の間に挿入した2つの重合楔部材;及び
上記2つの重合楔部材を互いに正逆の回転方向に移動付勢して、該2つの重合楔部材の上記内側当接部と上記外側当接部をそれぞれ上記円筒部の外周面と上記円形穴の内周面に圧接させ、上記外歯歯車と上記内歯歯車の相対的な偏心位置を一定に保持させる付勢部材;
を備えていることを特徴とする減速歯車機構。
An external gear having external teeth on the outer periphery, which is fixed to any one of the support member and the rotation member rotatable relative to the support member, positioned at the center of rotation thereof;
An internal gear formed with an internal tooth having a larger number of teeth than the external tooth meshing with the external tooth of the external gear, and fixed to the other of the support member and the rotating member;
A large-diameter circular hole provided on one and the other of the external gear and the internal gear with the respective axes as centers, and a cylindrical portion having a smaller diameter than the circular hole;
An eccentric holding means which is inserted between the inner peripheral surface of the circular hole and the outer peripheral surface of the cylindrical portion, and keeps the external gear and the internal gear meshed in an eccentric state where their center positions are different from each other; and the cylinder A drive means that is rotatably supported by the inner peripheral part of the part and operates the eccentric holding means by the rotation to cause the external gear and the internal gear to perform eccentric rotation accompanied by a change in meshing position;
In a reduction gear mechanism having
The eccentric holding means is
The inner abutting portion that comes into slidable contact with the outer peripheral surface of the cylindrical portion and the outer abutting portion that comes into slidable contact with the inner peripheral surface of the circular hole are provided at different circumferential positions, respectively. The inner abutment portion and the outer abutment portion are adjacent to each other in the radial direction, and the connection portion between the inner abutment portion and the outer abutment portion intersects each other, and the inner circumferential surface of the circular hole Two overlapping wedge members inserted between the outer peripheral surfaces of the cylindrical portion; and the two overlapping wedge members are moved and urged in the forward and reverse rotational directions, and the inner abutting portions of the two overlapping wedge members And a biasing member that presses the outer abutting portion against the outer peripheral surface of the cylindrical portion and the inner peripheral surface of the circular hole, respectively, and maintains the relative eccentric position of the external gear and the internal gear constant.
A reduction gear mechanism comprising:
請求項1記載の減速歯車機構において、上記2つの重合楔部材のそれぞれの上記内側当接部は、上記円筒部の外周面に対して摺接可能に接触する湾曲面である内側摺接面を内周側に有し、該内側摺接面よりも曲率の小さい湾曲面である外周連動面を外周側に有し、上記接続部から離れて先端側に進むにつれて上記内側摺接面から上記外周連動面までの径方向幅を小さくし、
上記2つの重合楔部材のそれぞれの上記外側当接部は、上記円形穴の内周面に対して摺接可能に接触する湾曲面である外側摺接面を外周側に有し、該外側摺接面よりも曲率の大きい湾曲面である内周連動面を内周側に有し、上記接続部から離れて先端側に進むにつれて上記外側摺接面から上記内周連動面までの径方向幅を大きくし、
一方の重合楔部材に作用する回転方向の力が上記外周連動面と上記内周連動面を介して他方の重合楔部材へ伝達される減速歯車機構。
2. The reduction gear mechanism according to claim 1, wherein the inner contact portion of each of the two overlapping wedge members has an inner sliding contact surface that is a curved surface that is slidably contacted with an outer peripheral surface of the cylindrical portion. The outer peripheral interlocking surface, which is a curved surface having a curvature smaller than that of the inner sliding contact surface, is provided on the outer peripheral side, and the outer periphery from the inner sliding contact surface as it advances away from the connection portion toward the distal end side. Reduce the radial width to the interlocking surface,
Each of the outer contact portions of the two overlapping wedge members has an outer sliding contact surface, which is a curved surface that comes into slidable contact with the inner peripheral surface of the circular hole, on the outer peripheral side. A radial width from the outer sliding contact surface to the inner peripheral interlocking surface as it advances toward the tip side away from the connecting portion, having an inner peripheral interlocking surface that is a curved surface having a larger curvature than the contact surface Increase the
A reduction gear mechanism in which a rotational force acting on one overlapping wedge member is transmitted to the other overlapping wedge member via the outer peripheral interlocking surface and the inner peripheral interlocking surface.
請求項1または2記載の減速歯車機構において、上記2つの重合楔部材の上記接続部は、上記外歯歯車と上記内歯歯車の回転軸に沿う方向に対向する凹部を有し。該凹部を互いに嵌合させて上記2つの重合楔部材が組み合わされる減速歯車機構。 3. The reduction gear mechanism according to claim 1 or 2, wherein the connecting portion of the two overlapping wedge members has a concave portion facing in a direction along a rotation axis of the external gear and the internal gear. A reduction gear mechanism in which the concave portions are fitted to each other and the two overlapping wedge members are combined. 請求項1ないし3のいずれか1項記載の減速歯車機構において、上記2つの重合楔部材は、互いの上記接続部の交差位置を変化させる周方向の相対移動によって、上記外歯歯車と上記内歯歯車の偏心量を変化させる減速歯車機構。 The reduction gear mechanism according to any one of claims 1 to 3, wherein the two overlapped wedge members are moved in the circumferential direction to change the crossing position of the connection portions of the external gear and the internal gear. A reduction gear mechanism that changes the amount of eccentricity of the toothed gear. 請求項1ないし4のいずれか1項記載の減速歯車機構において、上記付勢部材は、環状のコイル部と、該コイル部から突出して上記2つの重合楔部材の一方と他方に形成した2つのバネ掛け部に対して係合する一対のバネ端部とを有するトーションバネからなる減速歯車機構。 5. The reduction gear mechanism according to claim 1, wherein the urging member includes an annular coil portion and two formed on one and the other of the two overlapping wedge members protruding from the coil portion. A reduction gear mechanism comprising a torsion spring having a pair of spring end portions engaged with a spring hook portion. 請求項1ないし5のいずれか1項記載の減速歯車機構において、上記駆動手段は、上記円筒部内に回転可能に挿入される軸部と、上記2つの重合楔部材のそれぞれの上記内側当接部の周方向端面に対して当接可能な押圧部とを有する回転伝達部材を備えている減速歯車機構。 6. The reduction gear mechanism according to claim 1, wherein the driving means includes a shaft portion rotatably inserted into the cylindrical portion, and the inner contact portions of the two overlapping wedge members. A reduction gear mechanism comprising a rotation transmission member having a pressing portion capable of abutting against a circumferential end surface of the rotation transmission member. 請求項1ないし5のいずれか1項記載の減速歯車機構において、上記駆動手段は、上記円筒部内に回転可能に挿入される軸部と、上記2つの重合楔部材のそれぞれの上記外側当接部の周方向端面に対して当接可能な押圧部とを有する回転伝達部材を備えている減速歯車機構。 6. The reduction gear mechanism according to claim 1, wherein the driving means includes a shaft portion rotatably inserted into the cylindrical portion, and the outer abutting portions of the two overlapping wedge members, respectively. A reduction gear mechanism comprising a rotation transmission member having a pressing portion capable of abutting against a circumferential end surface of the rotation transmission member.
JP2012085430A 2012-04-04 2012-04-04 Reduction gear mechanism Pending JP2013212328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012085430A JP2013212328A (en) 2012-04-04 2012-04-04 Reduction gear mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012085430A JP2013212328A (en) 2012-04-04 2012-04-04 Reduction gear mechanism

Publications (1)

Publication Number Publication Date
JP2013212328A true JP2013212328A (en) 2013-10-17

Family

ID=49586164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012085430A Pending JP2013212328A (en) 2012-04-04 2012-04-04 Reduction gear mechanism

Country Status (1)

Country Link
JP (1) JP2013212328A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101576351B1 (en) * 2014-02-17 2015-12-09 현대다이모스(주) Reclining device for vehicle seat
CN110920478A (en) * 2019-12-23 2020-03-27 延锋安道拓(常熟)座椅机械部件有限公司 Angle modulation ware clearance elimination mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101576351B1 (en) * 2014-02-17 2015-12-09 현대다이모스(주) Reclining device for vehicle seat
CN110920478A (en) * 2019-12-23 2020-03-27 延锋安道拓(常熟)座椅机械部件有限公司 Angle modulation ware clearance elimination mechanism

Similar Documents

Publication Publication Date Title
JP5770601B2 (en) Seat reclining device
US7731289B2 (en) Automotive seat reclining device
JP4895084B2 (en) Seat reclining device
JP2000232920A (en) Lock mechanism for seat for vehicle
JP2007136211A (en) Inclination adjustment fitting for backrest of vehicle seat
JP2009082241A (en) Vehicle seat reclining device
JP2007171922A (en) Display lock mechanism, and display opening/closing control device
JP2012224310A (en) Seat reclining device
JP2011116352A (en) Vehicle seat reclining device
JP3917045B2 (en) Seat height adjustment clutch
JP2010255837A (en) Clutch device and seat device
JP2014520723A (en) Seat fitting for automobile seat
JP2008018108A (en) Seat reclining device for vehicle
EP1591302B1 (en) Vehicle seat reclining device and production method therefor
JP5262957B2 (en) Reclining device
WO2016152694A1 (en) Electric power steering apparatus
JP2013212328A (en) Reduction gear mechanism
JP5221923B2 (en) Reclining device
WO2012001769A1 (en) Seat reclining device for tiltably holding seat back
JP4332997B2 (en) Seat reclining device
JP2013170649A (en) Reduction gear mechanism
JP7460893B2 (en) reclining device
JP2010148629A (en) Seat reclining device
JP7417050B2 (en) reclining device
JP2002291563A (en) Seat reclining device for vehicle

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150130