JP2013211340A - Light-emitting device and luminaire - Google Patents

Light-emitting device and luminaire Download PDF

Info

Publication number
JP2013211340A
JP2013211340A JP2012079391A JP2012079391A JP2013211340A JP 2013211340 A JP2013211340 A JP 2013211340A JP 2012079391 A JP2012079391 A JP 2012079391A JP 2012079391 A JP2012079391 A JP 2012079391A JP 2013211340 A JP2013211340 A JP 2013211340A
Authority
JP
Japan
Prior art keywords
light
phosphor
light emitting
emitting device
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012079391A
Other languages
Japanese (ja)
Inventor
Masatsugu Masuda
昌嗣 増田
Masaki Tatsumi
正毅 辰巳
Hiroshi Fukunaga
浩史 福永
Masamichi Harada
昌道 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012079391A priority Critical patent/JP2013211340A/en
Publication of JP2013211340A publication Critical patent/JP2013211340A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Landscapes

  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device and a luminaire in which chromaticity shift occurrent during high temperature can be suppressed.SOLUTION: A light-emitting device 1 includes a light-emitting element 4 emitting primary light, and a plurality of phosphors 6, 7, 8 excited by the primary light to emit secondary light having a wavelength longer than that of the primary light. The plurality of phosphors include a first phosphor and a second phosphor having temperature quenching larger than that of the first phosphor. When the temperature rises, emission intensity of secondary light emitted from the first phosphor increases, and emission intensity of secondary light emitted from the second phosphor decreases in a wavelength region having complementary color relationship with the primary light.

Description

本発明は、一次光を発する発光素子と二次光を発する波長変換部とを備える発光装置及び該発光装置から構成される照明装置に関する。   The present invention relates to a light emitting device that includes a light emitting element that emits primary light and a wavelength conversion unit that emits secondary light, and an illumination device including the light emitting device.

従来から、白色を実現する発光装置として、光源に発光素子を用いて、該発光素子から放射される光によって、波長変換部のYAG系蛍光体を励起し、発する蛍光と前記放射される光との混色によって、擬似白色を得る発光装置が知られている。   Conventionally, as a light-emitting device that realizes white, a light-emitting element is used as a light source, and a YAG-based phosphor of a wavelength conversion unit is excited by light emitted from the light-emitting element, and the emitted fluorescence and the emitted light A light-emitting device that obtains a pseudo white color by mixing the colors is known.

また、波長変換部に、赤色系蛍光体及び緑色系蛍光体、または赤色系蛍光体、緑色系蛍光体及び青色系蛍光体など複数の蛍光体を組み合わせて構成する発光装置についても盛んに開発がなされており、該発光装置は、前記擬似白色を得る発光装置よりも演色性に優れている。   In addition, active development has also been made on light-emitting devices configured by combining a plurality of phosphors such as a red phosphor and a green phosphor, or a red phosphor, a green phosphor and a blue phosphor in the wavelength converter. The light emitting device is superior in color rendering to the light emitting device that obtains the pseudo white color.

ところで、発光素子を用いて蛍光体を励起させて発光させる発光装置においては、動作時に前記発光素子が高温になり発熱することで、蛍光体の温度が上昇し、蛍光体の発光強度が低下する温度消光と呼ばれる現象が生じる。高温時には、前記発光素子からの発光強度もわずかに低下するが、前記温度消光の影響による蛍光体の発光強度は著しく低下する。   By the way, in a light emitting device that emits light by exciting a phosphor using a light emitting element, the temperature of the phosphor rises and the emission intensity of the phosphor decreases because the light emitting element becomes hot during operation and generates heat. A phenomenon called temperature quenching occurs. At a high temperature, the light emission intensity from the light emitting element is slightly decreased, but the light emission intensity of the phosphor due to the influence of the temperature quenching is significantly decreased.

そのため、例えば、波長変換部に赤色蛍光体、青色蛍光体及び緑色蛍光体を備えている発光装置である場合には、上記各蛍光体が発する赤色発光、青色発光、又は緑色発光と発光素子が発する発光との間で発光色のバランスが崩れる色度ズレという現象が生じる。   Therefore, for example, in the case of a light emitting device including a red phosphor, a blue phosphor, and a green phosphor in the wavelength conversion unit, the red light emission, the blue light emission, or the green light emission and the light emitting element emitted from each of the above phosphors. There arises a phenomenon called chromaticity deviation in which the balance of the emission color is lost with the emitted light.

非特許文献1には、上述した色度ズレに関し、酸窒化物・窒化物蛍光体の発光強度及び発光スペクトルの温度依存性に関して開示がなされている。   Non-Patent Document 1 discloses the above-described chromaticity shift with respect to the emission intensity of the oxynitride / nitride phosphor and the temperature dependence of the emission spectrum.

図6は、白色LEDランプにおける蛍光体の温度消光に伴って生ずる色度ズレについて示しており、図6(a)は、緑色酸窒化物蛍光体としてβ−SiAlON:Eu、黄色酸窒化物蛍光体としてCa−α−SiAlON:Eu、赤色窒化物蛍光体としてCaAlSiN:Eu、黄色酸化物蛍光体として(Y,Gd)Al12:Ceの発光ピーク強度の温度依存性を示している。励起波長については、(Y,Gd)Al12:Ceについてのみ460nmとし、その他の蛍光体は450nmである。尚、上述したSiAlONと、以下で詳述するサイアロンとは同義である。 FIG. 6 shows a chromaticity shift caused by temperature quenching of a phosphor in a white LED lamp. FIG. 6A shows β-SiAlON: Eu as a green oxynitride phosphor, and yellow oxynitride fluorescence. The temperature dependence of the emission peak intensity of Ca-α-SiAlON: Eu as the body, CaAlSiN 3 : Eu as the red nitride phosphor, and (Y, Gd) 3 Al 5 O 12 : Ce as the yellow oxide phosphor is shown. Yes. The excitation wavelength is 460 nm only for (Y, Gd) 3 Al 5 O 12 : Ce, and 450 nm for the other phosphors. The SiAlON described above is synonymous with the sialon described in detail below.

図6(a)から分かるように、高温時には、酸窒化物、窒化物蛍光体とくらべて、(Y,Gd)Al12:Ceは、特に大きく発光強度が低下している。 As can be seen from FIG. 6A, at a high temperature, the emission intensity of (Y, Gd) 3 Al 5 O 12 : Ce is particularly large compared to oxynitrides and nitride phosphors.

また、図6(b)は、紙面に向かって左から、緑色酸窒化物蛍光体としてβ−SiAlON:Eu、黄色酸窒化物蛍光体としてCa−α−SiAlON:Eu、赤色窒化物蛍光体としてCaAlSiN:Euの各蛍光体についての発光スペクトルを示しており、温度上昇に伴って、発光強度が低下することが分かる。 Further, FIG. 6B shows from the left toward the paper surface, β-SiAlON: Eu as a green oxynitride phosphor, Ca-α-SiAlON: Eu as a yellow oxynitride phosphor, and a red nitride phosphor. The emission spectrum of each phosphor of CaAlSiN 3 : Eu is shown, and it can be seen that the emission intensity decreases with increasing temperature.

上述したように、非特許文献1の記載から、高温時にはいずれの蛍光体も発光強度の低下が起こること、及び発光強度の低下の度合いは蛍光体の化学組成に依存して異なることが分かる。   As described above, it can be understood from the description of Non-Patent Document 1 that the emission intensity of each phosphor decreases at high temperatures, and the degree of decrease in emission intensity varies depending on the chemical composition of the phosphor.

佐久間 健、“サイアロン系蛍光体と発光素子への応用”、[online]、[平成23年11月7日検索]、インターネット<URL: http://repository.dl.itc.u-tokyo.ac.jp/dspace/bitstream/2261/15750/1/KSakuma16965.pdf>Takeshi Sakuma, “Applications to sialon phosphors and light emitting devices”, [online], [searched on November 7, 2011], Internet <URL: http://repository.dl.itc.u-tokyo.ac .jp / dspace / bitstream / 2261/15750/1 / KSakuma16965.pdf>

非特許文献1には、上述したように、酸窒化物、窒化物蛍光体等の各蛍光体は、温度消光に伴って発光強度が低下することについて開示されている。また、前記蛍光体を波長変換部に備えた白色LEDランプは高温時には色度ズレが生じることについても言及されているものの、前記色度ズレを解消するための具体的な手法については依然として課題であった。   As described above, Non-Patent Document 1 discloses that the emission intensity of each phosphor such as oxynitride and nitride phosphor decreases with temperature quenching. Further, although it has been mentioned that white LED lamps equipped with the phosphor in the wavelength conversion section cause chromaticity deviation at high temperatures, a specific method for eliminating the chromaticity deviation is still a problem. there were.

そこで、本発明は係る課題を解決するためになされたものであり、高温時に生ずる色度ズレを抑制することができる発光装置及び照明装置を提供することを目的とする。   Therefore, the present invention has been made to solve the problem, and an object of the present invention is to provide a light emitting device and a lighting device that can suppress chromaticity deviation occurring at a high temperature.

本発明に係る発光装置は、一次光を発する発光素子と、前記一次光によって励起され一次光より波長の長い二次光を発する複数の蛍光体とを備える発光装置であって、前記複数の蛍光体は、第一の蛍光体と該第一の蛍光体よりも温度消光の大きい第二の蛍光体を含み、温度上昇に伴って、前記一次光と補色関係にある光の波長領域において、前記第一の蛍光体が発する二次光の発光強度は増加し、前記第二の蛍光体が発する二次光の発光強度は減少することを特徴とする。   A light-emitting device according to the present invention is a light-emitting device that includes a light-emitting element that emits primary light, and a plurality of phosphors that are excited by the primary light and emit secondary light having a wavelength longer than that of the primary light. The body includes a first phosphor and a second phosphor whose temperature quenching is larger than that of the first phosphor, and in the wavelength region of light complementary to the primary light as the temperature rises, The emission intensity of the secondary light emitted from the first phosphor increases, and the emission intensity of the secondary light emitted from the second phosphor decreases.

前記一次光を発する発光素子のピーク波長が440nm〜470nmであることを特徴とする。より好ましくは、前記一次光を発する発光素子のピーク波長が450nm〜465nmであることを特徴とする。   The peak wavelength of the light emitting element that emits the primary light is 440 nm to 470 nm. More preferably, the light emitting element that emits the primary light has a peak wavelength of 450 nm to 465 nm.

前記第一の蛍光体は、緑色系蛍光体又は赤色系蛍光体のうち少なくともいずれか一方が含まれることを特徴とする。もしくは、前記第二の蛍光体は、黄緑色系蛍光体又は黄色系蛍光体であることを特徴とする。   The first phosphor includes at least one of a green phosphor and a red phosphor. Alternatively, the second phosphor is a yellow-green phosphor or a yellow phosphor.

前記緑色系蛍光体が有する発光ピーク波長は温度上昇に伴って長波長側に移行し、前記赤色系蛍光体が有する発光ピーク波長は温度上昇に伴って短波長側に移行することを特徴とする。   The emission peak wavelength of the green phosphor shifts to the longer wavelength side with increasing temperature, and the emission peak wavelength of the red phosphor shifts to the shorter wavelength side with increasing temperature. .

前記緑色系蛍光体の発光スペクトルのピーク波長が520nm〜550nmであることを特徴とする。もしくは、前記赤色系蛍光体の発光スペクトルのピーク波長が600nm〜670nmであることを特徴とする。   The green phosphor has an emission spectrum peak wavelength of 520 nm to 550 nm. Alternatively, a peak wavelength of an emission spectrum of the red phosphor is 600 nm to 670 nm.

前記緑色系蛍光体は、β型サイアロンである2価のEu賦活酸窒化物蛍光体であることを特徴とする。また、前記赤色系蛍光体は、2価のEu賦活窒化物蛍光体又はα型サイアロンである2価のEu賦活酸窒化物蛍光体であることを特徴とする。また、前記黄緑色系蛍光体は、2価のEuで賦活されたアルカリ土類金属オルト珪酸塩蛍光体であり、前記黄色系蛍光体は、Ceで賦活されたガーネット構造を有する蛍光体であることを特徴とする。   The green phosphor is a divalent Eu-activated oxynitride phosphor which is β-sialon. The red phosphor is a divalent Eu-activated nitride phosphor or a divalent Eu-activated oxynitride phosphor that is α-sialon. The yellow-green phosphor is an alkaline earth metal orthosilicate phosphor activated with divalent Eu, and the yellow phosphor is a phosphor having a garnet structure activated with Ce. It is characterized by that.

一次光を放出する発光素子と、前記一次光によって励起され一次光より波長の長い二次光を発する蛍光体を波長変換部に備える複数の発光装置から構成される照明装置であって、前記複数の発光装置には、温度上昇に伴って、前記一次光の補色関係にある光の発光強度が増加するように、二次光を発する蛍光体が波長変換部に含まれることにより、前記一次光の補色関係にある光の発光強度が増加するように発光する第一の発光装置と、温度上昇に伴って、前記一次光の補色関係にある光の発光強度が減少するように、二次光を発する蛍光体が波長変換部に含まれることにより、前記一次光の補色関係にある光の発光強度が減少するように発光する第二の発光装置とを備えており、前記第一及び第二の発光装置が列状又は面状に並べられていることを特徴とする。   A lighting device comprising: a light emitting element that emits primary light; and a plurality of light emitting devices that include a phosphor that is excited by the primary light and emits secondary light having a wavelength longer than that of the primary light in a wavelength conversion unit. In the light emitting device, a phosphor that emits secondary light is included in the wavelength conversion unit so that the light emission intensity of light having a complementary color relationship with the primary light increases as the temperature rises. A first light emitting device that emits light so that the light emission intensity of the light having a complementary color relationship increases, and the secondary light so that the light emission intensity of the light complementary to the primary light decreases with increasing temperature. And a second light-emitting device that emits light so that the light emission intensity of the light complementary to the primary light is reduced by including a phosphor that emits light in the wavelength conversion unit. Light-emitting devices are arranged in a line or plane It is characterized in.

本発明に係る発光装置及び照明装置は、高温時に生ずる色度ズレを抑制することができる。   The light emitting device and the lighting device according to the present invention can suppress the chromaticity shift that occurs at a high temperature.

本発明の実施形態1に係る発光装置の構成を模式的に示す断面図。1 is a cross-sectional view schematically showing a configuration of a light emitting device according to Embodiment 1 of the present invention. 本発明の実施形態1に係る発光装置の発光スペクトルを示す説明図。Explanatory drawing which shows the emission spectrum of the light-emitting device which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る発光装置の色度変化を示す説明図。Explanatory drawing which shows the chromaticity change of the light-emitting device which concerns on Embodiment 1 of this invention. 照明装置の構成を模式的に示す断面図。Sectional drawing which shows the structure of an illuminating device typically. 実施例1及び比較例1に係る色度変化を示す説明図。Explanatory drawing which shows the chromaticity change which concerns on Example 1 and Comparative Example 1. FIG. 従来技術に関する説明図。Explanatory drawing regarding a prior art.

本発明者らは、複数の蛍光体を組み合わせることで、高温時であっても色度ズレの影響が少ない発光装置及び照明装置が得られることを見出した。   The present inventors have found that by combining a plurality of phosphors, a light-emitting device and a lighting device that are less affected by chromaticity deviation can be obtained even at high temperatures.

(実施形態1)
本発明の実施形態1について、以下、図1〜3を用いて説明する。図1は、発光装置1の構成を模式的に示す断面図であり、枠体2と、反射面3と、発光素子4と、封止材5と、赤色系蛍光体6と、緑色系蛍光体7と、黄緑色系蛍光体8と、ボンディングワイヤ9、10と、リードフレーム11、12とから構成される。
(Embodiment 1)
Embodiment 1 of the present invention will be described below with reference to FIGS. FIG. 1 is a cross-sectional view schematically showing the configuration of the light emitting device 1. The frame 2, the reflecting surface 3, the light emitting element 4, the sealing material 5, the red phosphor 6, and the green phosphor. It comprises a body 7, a yellow-green phosphor 8, bonding wires 9 and 10, and lead frames 11 and 12.

発光素子4は、LED素子であり、サファイア、GaN又はSiC等の半導体基板上に、MOCVD法等を用いて、GaN系半導体層をエピタキシャル成長させて形成する。発光素子の発光スペクトルのピーク波長としては、発光効率を高める観点から、440nm〜470nmの範囲内であることが好ましく、演色性を高くする観点から、450nm〜465nmの範囲内であることがより好ましい。   The light-emitting element 4 is an LED element, and is formed by epitaxially growing a GaN-based semiconductor layer on a semiconductor substrate such as sapphire, GaN, or SiC using an MOCVD method or the like. The peak wavelength of the emission spectrum of the light-emitting element is preferably in the range of 440 nm to 470 nm from the viewpoint of increasing the light emission efficiency, and more preferably in the range of 450 nm to 465 nm from the viewpoint of increasing the color rendering properties. .

尚、上記に限らず、発光素子の発光スペクトルのピーク波長としては405nmであってもよい。   The peak wavelength of the emission spectrum of the light emitting element is not limited to the above, and may be 405 nm.

枠体2には、反射面3が設けられており、該反射面3はすり鉢状に形成されている。前記反射面3が形成する空間には、底部に前記発光素子4が設けられており、固化後に透明となる封止材が充填され、該封止材5によって前記発光素子4を固定している。   The frame 2 is provided with a reflective surface 3, and the reflective surface 3 is formed in a mortar shape. The space formed by the reflective surface 3 is provided with the light emitting element 4 at the bottom, filled with a sealing material that becomes transparent after solidification, and the light emitting element 4 is fixed by the sealing material 5. .

また、前記発光素子4は、反射面3の底面のリードフレーム11に導電性の接着剤(図示せず)によって接続され、該発光素子4が有しているn−電極及びp−電極(図示せず)とリードフレーム11、12とを金線などから形成されるボンディングワイヤ9、10によって接続される。   The light emitting element 4 is connected to the lead frame 11 on the bottom surface of the reflecting surface 3 by a conductive adhesive (not shown), and the light emitting element 4 has an n-electrode and a p-electrode (see FIG. (Not shown) and the lead frames 11 and 12 are connected by bonding wires 9 and 10 formed of a gold wire or the like.

前記封止材5は、例えば、シリコン樹脂、エポキシ樹脂等を用いたものであり、後述する赤色系蛍光体6、緑色系蛍光体7及び黄緑色系蛍光体8が分散されて混入され、波長変換部13を構成する。   The sealing material 5 is made of, for example, silicon resin, epoxy resin, or the like, and a red phosphor 6, a green phosphor 7, and a yellow green phosphor 8, which will be described later, are dispersed and mixed. The conversion unit 13 is configured.

前記赤色系蛍光体6としては、2価のEu賦活窒化物蛍光体であり、本発明の効果を著しく損なわない限り任意のものを使用することができる。具体的には、CaAlSiN:Eu、(Sr,Ca)AlSiN:Eu等を用いることができる。前記赤色系蛍光体6の発光スペクトルのピーク波長は、600nm〜670nmの範囲内であることが好ましい。 The red phosphor 6 is a divalent Eu-activated nitride phosphor, and any one can be used as long as the effects of the present invention are not significantly impaired. Specifically, CaAlSiN 3 : Eu, (Sr, Ca) AlSiN 3 : Eu, or the like can be used. The peak wavelength of the emission spectrum of the red phosphor 6 is preferably in the range of 600 nm to 670 nm.

また、上述した赤色系蛍光体6の粒径についても特に制限されるものではないが、3〜10μmの範囲内であるのが好ましく、4〜7μmの範囲内であるのがより好ましい。赤色系発光蛍光体6の粒径が3μm未満であると、蛍光体結晶としての成長が不十分であり、明るさが大きく低下する傾向にある。一方、10μmを超える粒径のものを調製する場合には、異常成長した粗大粒子が生成しやすく、実用的ではない。   Further, the particle diameter of the red phosphor 6 described above is not particularly limited, but is preferably in the range of 3 to 10 μm, and more preferably in the range of 4 to 7 μm. When the particle size of the red light emitting phosphor 6 is less than 3 μm, the growth as a phosphor crystal is insufficient, and the brightness tends to be greatly reduced. On the other hand, when a particle having a particle size exceeding 10 μm is prepared, abnormally grown coarse particles are likely to be generated, which is not practical.

また、その他の前記赤色系蛍光体6としては、α型サイアロンである2価のEu賦活酸窒化物蛍光体を用いてもよい。具体的には、Cax(Si,Al)12(O,N)16:Euの組成で表される蛍光体を用いることができる。粒径についても特に制限されるものではなく、2〜8μmの範囲内であるのが好ましく、3〜6μmの範囲内であるのがより好ましい。粒径が2μm未満であると、結晶成長が不十分であり、明るさが大きく低下する傾向にある。一方、8μmを超えると、異常成長した粗大粒子が生成しやすく、実用的ではないという傾向にある。 Further, as the other red phosphor 6, a divalent Eu-activated oxynitride phosphor which is an α-sialon may be used. Specifically, a phosphor represented by a composition of Cax (Si, Al) 12 (O, N) 16 : Eu can be used. The particle size is not particularly limited and is preferably in the range of 2 to 8 μm, and more preferably in the range of 3 to 6 μm. If the particle size is less than 2 μm, crystal growth is insufficient and the brightness tends to decrease greatly. On the other hand, when the thickness exceeds 8 μm, abnormally grown coarse particles are likely to be generated, which tends to be impractical.

また、前記緑色系蛍光体7としては、本発明の効果を著しく損なわない限り任意のものを使用することができるが、例えばβ型サイアロンである2価のEu賦活酸窒化物蛍光体を用いることができる。前記緑色系蛍光体7は、具体的には、(Si,Al)(O,N):Euの組成で表される。前記緑色系蛍光体7の発光スペクトルのピーク波長は、520nm〜550nmの範囲内であることが好ましい。 Any green phosphor can be used as long as the effects of the present invention are not significantly impaired. For example, a divalent Eu-activated oxynitride phosphor which is a β-sialon is used. Can do. Specifically, the green phosphor 7 is represented by a composition of (Si, Al) 6 (O, N) 8 : Eu. The peak wavelength of the emission spectrum of the green phosphor 7 is preferably in the range of 520 nm to 550 nm.

また、上述した緑色系蛍光体7の粒径についても特に制限されるものではないが、2〜8μmの範囲内であるのが好ましく、3〜6μmの範囲内であるのがより好ましい。粒径が2μm未満であると、結晶成長が不十分であり、明るさが大きく低下する傾向にある。一方、8μmを超えると、異常成長した粗大粒子が生成し易く実用的ではない。   Further, the particle size of the green phosphor 7 is not particularly limited, but is preferably in the range of 2 to 8 μm, and more preferably in the range of 3 to 6 μm. If the particle size is less than 2 μm, crystal growth is insufficient and the brightness tends to decrease greatly. On the other hand, when it exceeds 8 μm, abnormally grown coarse particles are easily generated, which is not practical.

また、前記黄緑色系蛍光体8としては、例えば、アルカリ土類金属珪酸塩蛍光体を用いることができる。当該黄緑色系蛍光体8は、具体的には、(Ba,Sr)SiO:Euの組成で表される。その他の蛍光体としては、Ceで賦活されたガーネット構造を有する(Y,Gd)(Al,Ga)12:Ce、又は(Lu,Y)Al12:Ceなどを用いることができる。 Further, as the yellow-green phosphor 8, for example, an alkaline earth metal silicate phosphor can be used. Specifically, the yellow-green phosphor 8 is represented by a composition of (Ba, Sr) 2 SiO 4 : Eu. As other phosphors, (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce or (Lu, Y) 3 Al 5 O 12 : Ce having a garnet structure activated with Ce is used. Can do.

ここで、本発明者らが見出した高温時であっても色度ズレの影響を抑制することができる原理について説明する。図2は、波長変換部に上述した黄緑色系蛍光体8を備えた発光装置及び赤色系蛍光体6、緑色系蛍光体7を備えた発光装置が発する発光に係る発光スペクトルであって、動作時の温度上昇に伴って変化する発光強度に関して示している。   Here, the principle that the influence of the chromaticity deviation can be suppressed even at a high temperature found by the present inventors will be described. FIG. 2 is an emission spectrum relating to light emission emitted from the light emitting device including the yellow-green phosphor 8 and the light emitting device including the red phosphor 6 and the green phosphor 7 in the wavelength conversion unit. It shows the emission intensity that changes with the temperature rise.

図2(a)は、緑色系蛍光体7として540nm付近に発光ピーク波長を有する緑色系蛍光体7と、640nm付近に発光ピーク波長を有する赤色系蛍光体6を波長変換部に備え、発光素子としては、460nmに発光ピーク波長を有する青色LED素子を用いて作製した発光装置に係る発光スペクトルであり、縦軸は発光強度、横軸は波長であり、0〜100℃までの各温度に対応する5つの発光スペクトルを示している。図2(a)の発光スペクトルから分かることは、特に波長590nm付近の発光スペクトルの発光強度が、温度上昇に伴って増加していることである。   FIG. 2A shows a green phosphor 7 having a green phosphor 7 having an emission peak wavelength in the vicinity of 540 nm and a red phosphor 6 having an emission peak wavelength in the vicinity of 640 nm in a wavelength conversion unit. Is a light emission spectrum of a light emitting device manufactured using a blue LED element having a light emission peak wavelength at 460 nm, the vertical axis is emission intensity, the horizontal axis is wavelength, and corresponds to each temperature from 0 to 100 ° C. 5 emission spectra are shown. What can be seen from the emission spectrum of FIG. 2A is that the emission intensity of the emission spectrum particularly in the vicinity of a wavelength of 590 nm increases as the temperature rises.

一方、図2(b)は、560nm付近に発光ピーク波長を有する黄緑色系蛍光体8を波長変換部に備え、発光素子としては、460nmに発光ピーク波長を有する青色LED素子を用いて作製した発光装置に係る発光スペクトルである。図2(b)の発光スペクトルから分かるように、黄緑色系蛍光体8の発光ピーク波長の発光強度が、温度上昇に伴って減少していることが分かる。これは主に、上述した蛍光体の温度消光によるものである。   On the other hand, in FIG. 2B, a yellow-green phosphor 8 having an emission peak wavelength near 560 nm is provided in the wavelength conversion unit, and a blue LED element having an emission peak wavelength at 460 nm is used as the light emitting element. It is the emission spectrum which concerns on a light-emitting device. As can be seen from the emission spectrum of FIG. 2B, it can be seen that the emission intensity at the emission peak wavelength of the yellow-green phosphor 8 decreases with increasing temperature. This is mainly due to the temperature quenching of the phosphor described above.

通常、主に温度消光の影響により、図2(b)のように、温度の上昇に伴って蛍光体の発光強度は減少する。しかしながら、図2(a)で示した緑色系蛍光体7及び赤色系蛍光体6は、温度消光が小さいため発光強度の低下の影響が小さいこと、温度上昇に伴い赤色系蛍光体6の発光ピーク波長が短波長側に移行すること、及び温度上昇に伴って緑色系蛍光体7の発光ピーク波長が長波長側に移行することの3点を主な理由として、温度上昇に伴って特に波長590nm付近のおよそ黄色光に該当する発光強度が上昇していると考えられる。   Usually, mainly due to the effect of temperature quenching, as shown in FIG. 2B, the emission intensity of the phosphor decreases as the temperature rises. However, the green phosphor 7 and the red phosphor 6 shown in FIG. 2A are less affected by a decrease in emission intensity due to low temperature quenching, and the emission peak of the red phosphor 6 with increasing temperature. The main reason is that the wavelength shifts to the short wavelength side and the emission peak wavelength of the green phosphor 7 shifts to the long wavelength side as the temperature rises. It is considered that the emission intensity corresponding to approximately yellow light in the vicinity has increased.

また、図3は、色度変化について色度座標を用いて示しており、図3(a)、(b)は、発光スペクトルとして上述した図2(a)、(b)の発光装置に対応している。   FIG. 3 shows chromaticity changes using chromaticity coordinates. FIGS. 3A and 3B correspond to the light emitting devices of FIGS. 2A and 2B described above as emission spectra. doing.

図3(a)の色度座標からは、温度上昇に伴って、赤色側に移行していくことが分かる。また、図3(b)の色度変化からは、温度上昇に伴って、青色側に移行していくことが分かる。   From the chromaticity coordinates in FIG. 3A, it can be seen that the color shifts to the red side as the temperature rises. Moreover, it can be seen from the chromaticity change in FIG. 3B that the color shifts to the blue side as the temperature rises.

以上より、所定の緑色系蛍光体及び赤色系蛍光体を波長変換部に分散させ、青色LED素子によって構成した発光装置においては、高温時には主に青色LED素子が発する一次光の補色関係にある光の発光スペクトル強度が増加することが分かる。   As described above, in a light emitting device configured by dispersing a predetermined green phosphor and red phosphor in a wavelength conversion unit and configured by a blue LED element, light that is complementary to the primary light emitted mainly by the blue LED element at a high temperature. It can be seen that the emission spectrum intensity increases.

故に、上記緑色系蛍光体及び赤色系蛍光体に加えて、温度消光の影響が比較的大きい緑色系蛍光体を所定の配合比で混合して発光装置とすることで、温度上昇に伴って生じる発光装置の色度ズレを抑制することができる。
尚、本実施形態では、波長変換部に上述した赤色系蛍光体6、緑色系蛍光体7及び黄緑色系蛍光体8の3種類の蛍光体を備える発光装置としたが、これに限られない。すなわち、温度上昇に伴って、青色LED素子が発する光と補色関係にある光の発光強度を増加させる蛍光体と当該蛍光体よりも温度消光の影響が大きい蛍光体とを組み合わせて波長変換部を構成すればよい。例えば、赤色系蛍光体6又は緑色系蛍光体7のいずれかと、黄緑色系蛍光体8の2種類の蛍光体を波長変換部に備える発光装置が挙げられる。
Therefore, in addition to the green phosphor and the red phosphor, green phosphors having a relatively large influence of temperature quenching are mixed at a predetermined blending ratio to form a light emitting device, which occurs with an increase in temperature. The chromaticity shift of the light emitting device can be suppressed.
In the present embodiment, the light emitting device includes the above-described three types of phosphors of the red phosphor 6, the green phosphor 7, and the yellow-green phosphor 8 in the wavelength conversion unit, but is not limited thereto. . That is, as the temperature rises, a wavelength conversion unit is formed by combining a phosphor that increases the emission intensity of light that is complementary to the light emitted by the blue LED element and a phosphor that has a greater temperature quenching effect than the phosphor. What is necessary is just to comprise. For example, a light-emitting device that includes two types of phosphors, that is, a red phosphor 6 or a green phosphor 7 and a yellow-green phosphor 8 in a wavelength conversion unit can be given.

(実施形態2)
本発明の実施形態2について、図4を用いて説明する。同一の構成には同一の符号を付して説明を省略するものとする。図4は、発光装置を面状に並べて構成した照明装置の模式的な断面図であり、14は照明装置、15は基板、16、17はそれぞれ発光装置である。基板15は、導電体層(図示せず)が印刷されたプリント基板である。尚、セラミック基板の表面に導電体層が形成された基板を積層した積層基板や、単一の絶縁性基板に導電体層が印刷された基板などを用いてもよい。
(Embodiment 2)
A second embodiment of the present invention will be described with reference to FIG. The same components are denoted by the same reference numerals, and description thereof is omitted. FIG. 4 is a schematic cross-sectional view of an illuminating device in which light emitting devices are arranged in a plane. 14 is an illuminating device, 15 is a substrate, and 16 and 17 are light emitting devices. The substrate 15 is a printed circuit board on which a conductor layer (not shown) is printed. A laminated substrate obtained by laminating a substrate having a conductor layer formed on the surface of a ceramic substrate, a substrate in which a conductor layer is printed on a single insulating substrate, or the like may be used.

各発光素子4は、前記導電体層にリードフレーム11、12によって電気的に接続されている。発光装置16は、波長変換部18として、封止材5中に赤色系蛍光体6及び緑色系蛍光体7を分散させて混入させている。また、発光装置17については、波長変換部19として、黄緑色系蛍光体8のみを封止材5中に混入させて構成した。   Each light emitting element 4 is electrically connected to the conductor layer by lead frames 11 and 12. In the light emitting device 16, as the wavelength conversion unit 18, the red phosphor 6 and the green phosphor 7 are dispersed and mixed in the sealing material 5. In addition, the light emitting device 17 is configured by mixing only the yellow-green phosphor 8 into the sealing material 5 as the wavelength conversion unit 19.

上述したように、発光装置16、17を並べて照明装置14とすることで、該照明装置14が発する発光は高温時であっても色度ズレを抑制することができる。   As described above, by arranging the light emitting devices 16 and 17 to be the lighting device 14, the chromaticity shift can be suppressed even when the light emitted by the lighting device 14 is at a high temperature.

<実施例1>
発光素子として、453nmにピーク波長を有する青色LED素子を用いた。波長変換部には、赤色系蛍光体として(Sr,Ca)AlSiN:Euを22mg、緑色系蛍光体として(Si,Al)(O,N):Euを70mg及び緑色系蛍光体として(Ba,Sr)SiO:Euを30mg含むものを用いた。重量比としては、1:0.43:0.31で混合したものをエポキシ樹脂中に分散させ、実施例1の発光装置を作製した。
<Example 1>
A blue LED element having a peak wavelength at 453 nm was used as the light emitting element. The wavelength conversion unit includes 22 mg of (Sr, Ca) AlSiN 3 : Eu as a red phosphor, 70 mg of (Si, Al) 6 (O, N) 8 : Eu as a green phosphor and a green phosphor. A material containing 30 mg of (Ba, Sr) 2 SiO 4 : Eu was used. As a weight ratio, a mixture of 1: 0.43: 0.31 was dispersed in an epoxy resin to produce a light emitting device of Example 1.

<比較例1>
波長変換部に黄色系蛍光体として(Y,Gd)(Al,Ga)12:Ceを100mg含むものを用いた以外は、実施例1と同様に発光装置を作製した。
<Comparative Example 1>
A light-emitting device was produced in the same manner as in Example 1 except that a wavelength conversion unit containing 100 mg of (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce as a yellow phosphor was used.

実施例1、比較例1についての結果を図5に示す。図5は、温度を−40℃から100℃まで変化させたときの発光装置の発光について、xy座標を用いて示しており、図5(a)は実施例1で作製した発光装置に関するもので、図5(b)は比較例1で作製した発光装置に関するものである。   The results for Example 1 and Comparative Example 1 are shown in FIG. FIG. 5 shows light emission of the light-emitting device when the temperature is changed from −40 ° C. to 100 ° C. using the xy coordinates, and FIG. 5 (a) relates to the light-emitting device manufactured in Example 1. FIG. 5B relates to the light-emitting device manufactured in Comparative Example 1.

図5(a)において、−40℃では(x、y)=(0.2491、0.1966)、100℃では(x、y)=(0.2432、0.1922)である。−40℃から100℃にかけてのxの変化の割合はおよそ2.37%であり、y値の変化の割合はおよそ2.24%である。   5A, (x, y) = (0.2491, 0.1966) at −40 ° C. and (x, y) = (0.2432, 0.1922) at 100 ° C. In FIG. The rate of change of x from −40 ° C. to 100 ° C. is approximately 2.37%, and the rate of change of the y value is approximately 2.24%.

一方、図5(b)においては、−40℃では(x、y)=(0.2428、0.1921)、100℃では(x、y)=(0.2322、0.1788)であり、xの変化の割合はおよそ4.37%、yの変化の割合はおよそ6.92%である。   On the other hand, in FIG. 5B, (x, y) = (0.2428, 0.1921) at −40 ° C. and (x, y) = (0.2322, 0.1788) at 100 ° C. The rate of change of x is approximately 4.37%, and the rate of change of y is approximately 6.92%.

以上から、図5(a)に示す実施例1で作製した発光装置の発光は、図5(b)で示す発光装置の発光と比べて、温度が上昇しても色度の変化が小さく、高温時に生ずる色度ズレを抑制できていることが分かる。   As described above, the light emission of the light-emitting device manufactured in Example 1 illustrated in FIG. 5A is smaller in chromaticity change even when the temperature is higher than the light emission of the light-emitting device illustrated in FIG. It can be seen that the chromaticity deviation occurring at high temperatures can be suppressed.

以上、上述したように、本明細書によれば、青色LED素子が発する光と補色関係にある光の発光強度を増加させる蛍光体と、該蛍光体よりも温度消光の大きい蛍光体とを組み合わせて波長変換部を構成することで、高温時であっても色度ズレを抑制することができる発光装置を提供することができる。   As described above, according to the present specification, the phosphor that increases the emission intensity of light that is complementary to the light emitted from the blue LED element is combined with the phosphor that has a higher temperature quenching than the phosphor. By configuring the wavelength conversion unit, it is possible to provide a light emitting device that can suppress chromaticity deviation even at high temperatures.

また、青色LED素子が発する光と補色関係にある光の発光強度を増加させる蛍光体を波長変換部に備える発光装置と前記蛍光体よりも温度消光の大きい蛍光体を波長変換部に備える発光装置を並べて構成することにより、色度ズレを抑制することができる照明装置についても提供するこができる。   In addition, a light emitting device that includes a phosphor that increases the light emission intensity of light complementary to the light emitted from the blue LED element in the wavelength conversion unit, and a light emitting device that includes a phosphor that has a temperature quenching greater than that of the phosphor in the wavelength conversion unit. By arranging them in a row, it is also possible to provide an illumination device that can suppress chromaticity deviation.

1、16、17 発光装置
2 枠体
3 反射面
4 発光素子
5 封止材
6 赤色系蛍光体
7 緑色系蛍光体
8 黄緑色系蛍光体
9、10 ボンディングワイヤ
11、12 リードフレーム
13、18、19 波長変換部
1, 16, 17 Light-emitting device 2 Frame 3 Reflecting surface 4 Light-emitting element 5 Sealing material 6 Red phosphor 7 Green phosphor 8 Yellow-green phosphor 9, 10 Bonding wire 11, 12 Lead frame 13, 18, 19 Wavelength converter

Claims (12)

一次光を発する発光素子と、
前記一次光によって励起され一次光より波長の長い二次光を発する複数の蛍光体とを備える発光装置であって、
前記複数の蛍光体は、第一の蛍光体と該第一の蛍光体よりも温度消光の大きい第二の蛍光体を含み、
温度上昇に伴って、前記一次光と補色関係にある光の波長領域において、前記第一の蛍光体が発する二次光の発光強度は増加し、前記第二の蛍光体が発する二次光の発光強度は減少することを特徴とする発光装置。
A light emitting element that emits primary light;
A light emitting device comprising a plurality of phosphors that are excited by the primary light and emit secondary light having a longer wavelength than the primary light,
The plurality of phosphors include a first phosphor and a second phosphor having a temperature quenching larger than that of the first phosphor,
As the temperature rises, the emission intensity of the secondary light emitted from the first phosphor increases in the wavelength region of light complementary to the primary light, and the secondary light emitted from the second phosphor increases. A light emitting device characterized in that emission intensity decreases.
前記一次光を発する発光素子のピーク波長が440nm〜470nmであることを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein a peak wavelength of the light emitting element that emits the primary light is 440 nm to 470 nm. 前記一次光を発する発光素子のピーク波長が450nm〜465nmであることを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein a peak wavelength of the light emitting element that emits the primary light is 450 nm to 465 nm. 前記第一の蛍光体は、緑色系蛍光体又は赤色系蛍光体のうち少なくともいずれか一方が含まれることを特徴とする請求項1〜3に記載の発光装置。   The light emitting device according to claim 1, wherein the first phosphor includes at least one of a green phosphor and a red phosphor. 前記第二の蛍光体は、黄緑色系蛍光体又は黄色系蛍光体であることを特徴とする請求項1〜4に記載の発光装置。   The light emitting device according to claim 1, wherein the second phosphor is a yellow-green phosphor or a yellow phosphor. 前記緑色系蛍光体が有する発光ピーク波長は温度上昇に伴って長波長側に移行し、前記赤色系蛍光体が有する発光ピーク波長は温度上昇に伴って短波長側に移行することを特徴とする請求項4に記載の発光装置。   The emission peak wavelength of the green phosphor shifts to the longer wavelength side with increasing temperature, and the emission peak wavelength of the red phosphor shifts to the shorter wavelength side with increasing temperature. The light emitting device according to claim 4. 前記緑色系蛍光体の発光スペクトルのピーク波長が520nm〜550nmであることを特徴とする請求項4または6に記載の発光装置。   The light emitting device according to claim 4 or 6, wherein a peak wavelength of an emission spectrum of the green phosphor is 520 nm to 550 nm. 前記赤色系蛍光体の発光スペクトルのピーク波長が600nm〜670nmであることを特徴とする請求項4または6に記載の発光装置。   The light emitting device according to claim 4 or 6, wherein a peak wavelength of an emission spectrum of the red phosphor is 600 nm to 670 nm. 前記緑色系蛍光体は、β型サイアロンである2価のEu賦活酸窒化物蛍光体であることを特徴とする請求項4、6または7に記載の発光装置。   The light emitting device according to claim 4, wherein the green phosphor is a divalent Eu-activated oxynitride phosphor that is β-sialon. 前記赤色系蛍光体は、2価のEu賦活窒化物蛍光体又はα型サイアロンである2価のEu賦活酸窒化物蛍光体であることを特徴とする請求項4、6または8に記載の発光装置。   9. The light emitting device according to claim 4, wherein the red phosphor is a divalent Eu-activated nitride phosphor or a divalent Eu-activated oxynitride phosphor that is α-sialon. apparatus. 前記黄緑色系蛍光体は、2価のEuで賦活されたアルカリ土類金属オルト珪酸塩蛍光体であり、前記黄色系蛍光体は、Ceで賦活されたガーネット構造を有する蛍光体であることを特徴とする請求項5に記載の発光装置。   The yellow-green phosphor is an alkaline earth metal orthosilicate phosphor activated with divalent Eu, and the yellow phosphor is a phosphor having a garnet structure activated with Ce. The light-emitting device according to claim 5. 一次光を発する発光素子と、
前記一次光によって励起され一次光より波長の長い二次光を発する蛍光体を波長変換部に備える複数の発光装置から構成される照明装置であって、
前記複数の発光装置は、
温度上昇に伴って、前記一次光の補色関係にある光の発光強度が増加するように、二次光を発する蛍光体が波長変換部に含まれることにより、前記一次光の補色関係にある光の発光強度が増加するように発光する第一の発光装置と、
温度上昇に伴って、前記一次光の補色関係にある光の発光強度が減少するように、二次光を発する蛍光体が波長変換部に含まれることにより、前記一次光の補色関係にある光の発光強度が減少するように発光する第二の発光装置とを含み、
前記第一及び第二の発光装置が列状又は面状に並べられていることを特徴とする照明装置。


A light emitting element that emits primary light;
A lighting device comprising a plurality of light emitting devices provided in a wavelength converter with a phosphor that emits secondary light having a wavelength longer than that of the primary light that is excited by the primary light,
The plurality of light emitting devices are:
The phosphor that emits the secondary light is included in the wavelength conversion unit so that the emission intensity of the light that is complementary to the primary light increases as the temperature rises, so that the light that is complementary to the primary light is included. A first light-emitting device that emits light so that the light emission intensity increases;
The phosphor that emits the secondary light is included in the wavelength conversion unit so that the light emission intensity of the light complementary to the primary light decreases as the temperature rises, so that the light complementary to the primary light is included. A second light emitting device that emits light so that the emission intensity of
The lighting device, wherein the first and second light emitting devices are arranged in a line or a plane.


JP2012079391A 2012-03-30 2012-03-30 Light-emitting device and luminaire Pending JP2013211340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012079391A JP2013211340A (en) 2012-03-30 2012-03-30 Light-emitting device and luminaire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012079391A JP2013211340A (en) 2012-03-30 2012-03-30 Light-emitting device and luminaire

Publications (1)

Publication Number Publication Date
JP2013211340A true JP2013211340A (en) 2013-10-10

Family

ID=49528950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012079391A Pending JP2013211340A (en) 2012-03-30 2012-03-30 Light-emitting device and luminaire

Country Status (1)

Country Link
JP (1) JP2013211340A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175950A (en) * 2010-01-29 2011-09-08 Mitsubishi Chemicals Corp Circuit board to mount semiconductor light emitting device, light emitting module, and lighting device
JP2011204840A (en) * 2010-03-25 2011-10-13 Toshiba Corp Semiconductor light emitting device and method for manufacturing the same
JP2012056970A (en) * 2009-08-26 2012-03-22 Mitsubishi Chemicals Corp White semiconductor light-emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056970A (en) * 2009-08-26 2012-03-22 Mitsubishi Chemicals Corp White semiconductor light-emitting device
JP2011175950A (en) * 2010-01-29 2011-09-08 Mitsubishi Chemicals Corp Circuit board to mount semiconductor light emitting device, light emitting module, and lighting device
JP2011204840A (en) * 2010-03-25 2011-10-13 Toshiba Corp Semiconductor light emitting device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
TWI616515B (en) Phosphor converted white light emitting devices and photoluminescence compounds for general lighting and display backlighting
KR101408508B1 (en) Light emitting device
JP5956655B2 (en) Yellow light emitting phosphor and light emitting device package using the same
KR101265094B1 (en) White light emitting diode and method for producing the same
US9279081B2 (en) Phosphor composition and white light emitting device using the same
JP2009059896A (en) Light-emitting device
JP6782231B2 (en) Light source with adjustable emission spectrum
JP2007165787A (en) Light emitting device and method for manufacturing the same
KR101417874B1 (en) White Light Emitting Device with High Color Rendering Index
WO2016159141A1 (en) Light-emitting device
TWI549320B (en) Light-emitting device
EP3803192A1 (en) Led and phosphor combinations for high luminous efficacy lighting with superior color control
JP2011071333A (en) Color rendering property-improving method for white light-emitting device, and white light-emitting device
US10150912B2 (en) Red phosphor, white light emitting apparatus, display apparatus, and lighting apparatus
JP6405738B2 (en) Light emitting device
KR101493708B1 (en) White light emitting device
TWI595803B (en) White light illumination system
US8343785B2 (en) Nitridosilicate phosphor tunable light-emitting diodes by using UV and blue chips
JP2005235847A (en) Light emitting device
KR102100193B1 (en) Light emitting device
JP7226180B2 (en) light emitting device
JP2014022435A (en) Light-emitting device and method for manufacturing the same
JP2013211340A (en) Light-emitting device and luminaire
TWI251945B (en) White light-emitting diode unit
JP5956643B2 (en) Yellow light emitting phosphor and light emitting device package using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141001

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160209