JP2013211264A - Negative electrode material for lithium ion battery - Google Patents
Negative electrode material for lithium ion battery Download PDFInfo
- Publication number
- JP2013211264A JP2013211264A JP2013037295A JP2013037295A JP2013211264A JP 2013211264 A JP2013211264 A JP 2013211264A JP 2013037295 A JP2013037295 A JP 2013037295A JP 2013037295 A JP2013037295 A JP 2013037295A JP 2013211264 A JP2013211264 A JP 2013211264A
- Authority
- JP
- Japan
- Prior art keywords
- plating film
- nickel
- silicon
- lithium ion
- electrode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウムイオン電池用負極材料に関する。 The present invention relates to a negative electrode material for a lithium ion battery.
電気自動車用二次電池には、現在のリチウムイオン電池よりもエネルギー密度の大きな蓄電池が必要とされている。現在のリチウムイオン電池の電極材料には、一般的に正極材料としてコバルト酸リチウム等の金属酸化物、負極材料としてグラファイトが使用されている。リチウムイオン電池のエネルギー密度を向上させるには現在の電極材料よりも比容量の大きな電極材料への変更が必要である。比容量の大きな負極材料としてシリコンが注目されている。シリコンはグラファイトの約10倍の比容量をもつ。しかし、シリコンはリチウムイオンの充放電時に大きな体積変化が起こり、場合によっては電極から脱離し、充放電特性が劣化する。充放電時のシリコンの体積変化による劣化を抑制できれば、充放電による特性劣化が低減され、有望な次世代リチウムイオン電池の負極材料となる。 Secondary batteries for electric vehicles require a storage battery having a higher energy density than current lithium ion batteries. In the current lithium ion battery electrode materials, metal oxides such as lithium cobaltate are generally used as the positive electrode material, and graphite is used as the negative electrode material. In order to improve the energy density of the lithium ion battery, it is necessary to change to an electrode material having a larger specific capacity than the current electrode material. Silicon is attracting attention as a negative electrode material having a large specific capacity. Silicon has a specific capacity about 10 times that of graphite. However, silicon undergoes a large volume change during charging / discharging of lithium ions, and in some cases, it desorbs from the electrode, and the charge / discharge characteristics deteriorate. If deterioration due to volume change of silicon during charging / discharging can be suppressed, characteristic deterioration due to charging / discharging is reduced, and a negative electrode material for a next-generation lithium ion battery is promising.
このため、充放電時のシリコンの体積変化を抑制する工夫が種々検討されている。
特許文献1には、シリコン、あるいはスズを含む複数種類の金属合金粒子の表面にナノチューブ等を付着させ、集電体の表面に結合材(ペースト)で固着させて、リチウムイオン電池の負極材料に形成することが記載されている。
For this reason, various devices for suppressing the volume change of silicon during charging and discharging have been studied.
In Patent Document 1, nanotubes or the like are attached to the surface of a plurality of types of metal alloy particles containing silicon or tin, and are bonded to the surface of a current collector with a binder (paste) to form a negative electrode material for a lithium ion battery. It is described to form.
特許文献1の負極材料によれば、充放電時のシリコンの体積変化による劣化を抑制することが期待できる。しかしながら、特許文献1のものでは、複数の金属を合金化させるなど、その製造工程が複雑で、コスト高となる課題がある。 According to the negative electrode material of Patent Document 1, it can be expected that deterioration due to a volume change of silicon during charging and discharging is suppressed. However, the thing of patent document 1 has the subject that the manufacturing process is complicated, such as alloying a some metal, and becomes high-cost.
本発明は上記課題を解決すべくなされたものであり、その目的とするところは、簡易な製造工程で、コストの低減化が図れるリチウムイオン電池用負極材料を提供することにある。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a negative electrode material for a lithium ion battery that can reduce costs by a simple manufacturing process.
本発明に係るリチウムイオン電池用負極材料は、金属めっき皮膜中にシリコン粒子が混入している金属−シリコン複合材料からなることを特徴とする。
また、前記金属めっき皮膜が、ニッケルめっき皮膜であることを特徴とする。
また、前記ニッケルめっき皮膜が、ニッケル‐リンめっき皮膜もしくはニッケル‐ボロンめっき皮膜であることを特徴とする。
また、前記ニッケルめっき皮膜が、めっき皮膜に付着したシリコン粒子表面がめっき皮膜に覆われ、このめっき皮膜に覆われたシリコン粒子が次々に団子状に積み重なった表面状態をなすニッケルめっき皮膜であることを特徴とする。
また、前記ニッケルめっき皮膜が非晶質のニッケルめっき皮膜であることを特徴とする。
また、前記金属めっき皮膜が、亜鉛めっき皮膜であることを特徴とする。
The negative electrode material for a lithium ion battery according to the present invention is characterized by comprising a metal-silicon composite material in which silicon particles are mixed in a metal plating film.
Further, the metal plating film is a nickel plating film.
Further, the nickel plating film is a nickel-phosphorus plating film or a nickel-boron plating film.
Further, the nickel plating film is a nickel plating film in which the surface of silicon particles adhered to the plating film is covered with the plating film, and the silicon particles covered with the plating film are successively stacked in a dumpling shape. It is characterized by.
Further, the nickel plating film is an amorphous nickel plating film.
The metal plating film is a galvanization film.
本発明によれば、シリコン粒子を、めっきにより金属めっき皮膜中に取り込むようにしているので、直接、銅箔等の集電体上にリチウムイオン電池用の負極材料を固定でき、製造工程の簡略化、コストの低減化が図れる。また、導電率の低いシリコン粒子を金属めっき皮膜により包むので、負極材料全体の導電率を向上できると共に、充放電によるリチウムイオンの吸収、放出時の体積変化によっても、シリコン粒子の脱落を防止でき、充放電による特性の劣化を低減できる。
請求項2によれば、シリコン粒子がめっきによりニッケルめっき皮膜中に取り込まれる。
請求項3によれば、シリコン粒子がめっきによりニッケル‐リンめっき皮膜もしくはニッケル‐ボロンめっき皮膜に取り込まれる。
請求項4によれば、ニッケルめっき皮膜に覆われたシリコン粒子が団子状に積み重なった表面状態となっているので、ニッケルめっき皮膜の表面積が増大し、電極反応が向上する。また、表面に凹凸が生じることから、リチウムイオンの吸収、放出性にも優れ、充放電特性が向上する。さらには、リチウムイオンの吸収、放出の際の体積変化は、バルクの体積変化でなく、粒子の体積変化となり、粒子間の空隙で吸収されるから、シリコン粒子の脱離が防止でき、充放電特性が向上する。
請求項5によれば、非晶質のニッケルめっき皮膜をリチウムイオンが透過し、リチウムイオンがシリコン粒子に到達することから、リチウムイオンの吸収、放出性が良くなり、充放電特性が向上する。
請求項6によれば、シリコン粒子がめっきにより亜鉛めっき皮膜に取り込まれる。
According to the present invention, silicon particles are incorporated into a metal plating film by plating, so that a negative electrode material for a lithium ion battery can be directly fixed on a current collector such as a copper foil, thereby simplifying the manufacturing process. And cost reduction. In addition, since the silicon particles with low conductivity are wrapped with a metal plating film, the conductivity of the entire negative electrode material can be improved, and the removal of silicon particles can be prevented by the volume change during lithium ion absorption and discharge due to charge and discharge. Degradation of characteristics due to charging / discharging can be reduced.
According to the second aspect, the silicon particles are taken into the nickel plating film by plating.
According to the third aspect, the silicon particles are taken into the nickel-phosphorous plating film or the nickel-boron plating film by plating.
According to the fourth aspect, since the silicon particles covered with the nickel plating film are in a surface state in which they are piled up, the surface area of the nickel plating film is increased and the electrode reaction is improved. Further, since the surface is uneven, the lithium ion absorption and release properties are excellent, and the charge / discharge characteristics are improved. Furthermore, the volume change at the time of lithium ion absorption / release is not the volume change of the bulk, but the volume change of the particles and is absorbed by the voids between the particles, so that the desorption of silicon particles can be prevented, and charging / discharging. Improved characteristics.
According to the fifth aspect, since lithium ions permeate through the amorphous nickel plating film and the lithium ions reach the silicon particles, absorption and release of lithium ions are improved, and charge / discharge characteristics are improved.
According to the sixth aspect, the silicon particles are taken into the galvanized film by plating.
以下本発明の好適な実施の形態を添付図面に基づいて詳細に説明する。
本実施の形態に係るリチウムイオン電池用負極材料は、前記のように、金属めっき皮膜中にシリコン粒子が混入している金属シリコン複合材料からなることを特徴とする。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
As described above, the negative electrode material for a lithium ion battery according to the present embodiment is composed of a metal-silicon composite material in which silicon particles are mixed in a metal plating film.
本実施の形態では、上記のように、シリコン粒子を、めっきにより金属めっき皮膜中に取り込むようにしているので、直接、銅箔等の集電体上にリチウムイオン電池用の負極材料を固定でき、製造工程の簡略化、コストの低減化が図れる。また、導電率の低いシリコン粒子を金属めっき皮膜により包むので、負極材料全体の導電率を向上できると共に、充放電によるリチウムイオンの吸収、放出時の体積変化によっても、シリコン粒子の脱落を防止でき、充放電による特性の劣化を低減できる。シリコン粒子径は数nm〜数μmが好ましく、充放電時の体積変化に対応させるためには粒子径は小さいほどよい。 In the present embodiment, as described above, since silicon particles are taken into the metal plating film by plating, the negative electrode material for a lithium ion battery can be directly fixed on a current collector such as a copper foil. The manufacturing process can be simplified and the cost can be reduced. In addition, since the silicon particles with low conductivity are wrapped with a metal plating film, the conductivity of the entire negative electrode material can be improved, and the removal of silicon particles can be prevented by the volume change during lithium ion absorption and discharge due to charge and discharge. Degradation of characteristics due to charging / discharging can be reduced. The silicon particle diameter is preferably several nm to several μm, and the smaller the particle diameter, the better in order to cope with the volume change during charge / discharge.
本実施形態における金属めっきの金属の種類は特に限定されなく、単一の金属または合金でもよい。金属の種類としてはニッケル、亜鉛が挙げられ、めっきを施して金属めっき膜中にシリコン粒子が混入されて、金属−シリコン複合材料が得られる。 The metal type of the metal plating in this embodiment is not specifically limited, A single metal or an alloy may be sufficient. Examples of the type of metal include nickel and zinc. Plating is performed and silicon particles are mixed in the metal plating film to obtain a metal-silicon composite material.
ニッケルめっきは、ワット浴やスルファミン酸ニッケル浴等の電解めっきによって行うことができる。
また、ニッケルめっきとしては、ニッケル‐リンめっき、あるいはニッケル‐ボロンめっきの合金めっきとしてもよい。この場合の合金めっきは、電解めっきのほか、無電解ニッケルめっきとしてもよい。無電解ニッケルめっきの場合にも、ニッケルめっき皮膜中にシリコン粒子を良好に取り込むことができる。
Nickel plating can be performed by electrolytic plating such as Watts bath or nickel sulfamate bath.
The nickel plating may be nickel-phosphorous plating or nickel-boron plating. The alloy plating in this case may be electroless nickel plating in addition to electrolytic plating. Also in the case of electroless nickel plating, silicon particles can be satisfactorily taken into the nickel plating film.
特に、無電解ニッケル‐リンめっき皮膜、あるいは無電解ニッケル‐ボロンめっき皮膜の場合には、めっき皮膜が非晶質のものとなる。
リチウムイオンは、ニッケル金属を透過しにくい。そのため、単なるニッケルめっき皮膜の場合には、リチウムイオンがシリコン粒子に到達しにくく、充放電特性に多少とも悪影響を及ぼす。しかし、非晶質のニッケルめっき皮膜の場合には、リチウムイオンが透過し、リチウムイオンがシリコン粒子に到達することから、リチウムイオンの吸収、放出性が良くなり、充放電特性が向上する。
In particular, in the case of an electroless nickel-phosphorous plating film or an electroless nickel-boron plating film, the plating film is amorphous.
Lithium ions do not easily penetrate nickel metal. Therefore, in the case of a mere nickel plating film, lithium ions do not easily reach silicon particles, and the charge / discharge characteristics are somewhat adversely affected. However, in the case of an amorphous nickel plating film, since lithium ions permeate and lithium ions reach silicon particles, absorption and release of lithium ions are improved, and charge / discharge characteristics are improved.
亜鉛めっきは、塩化亜鉛を用いた塩化亜鉛めっき浴等の電解めっきによって行うことができ、亜鉛めっき浴にシリコン粒子を含有させて、電解めっきによって亜鉛とシリコンの複合めっき膜を作製することができる。塩化亜鉛めっき浴には、塩化亜鉛(ZnCl2)の他塩化アンモニウム(NH4Cl)が含まれる。
また、シリコン粒子の分散剤にポリアクリル酸を用いてもよく、分子量が5000以上のポリアクリル酸を好適に用いることができる。これにより、亜鉛めっき中にシリコン粒子を多く取り込むことができる。
Zinc plating can be performed by electrolytic plating such as a zinc chloride plating bath using zinc chloride, and a silicon-containing composite plating film of zinc and silicon can be produced by adding silicon particles to the zinc plating bath. . The zinc chloride plating bath contains ammonium chloride (NH 4 Cl) in addition to zinc chloride (ZnCl 2 ).
Further, polyacrylic acid may be used as the dispersant for the silicon particles, and polyacrylic acid having a molecular weight of 5000 or more can be suitably used. Thereby, many silicon particles can be taken in during galvanization.
1)ニッケルめっき液組成
NiSO4・6H2O 1M
NiCl2・6H2O 0.2M
H3BO3 0.5M
シリコン粒子(粒子径1〜2μm) 10g/L
30g/L
2)電析条件
電流規制法 アノード:Ni板、カソード:銅板
温度:室温、電流密度:0.5、1、5、10Adm−2
撹拌:空気
槽:マイクロセル
液量:250mL、通電量:600c
1) Nickel Plating solution composition NiSO 4 · 6H 2 O 1M
NiCl 2 · 6H 2 O 0.2M
H 3 BO 3 0.5M
Silicon particles (particle diameter 1-2 μm) 10 g / L
30g / L
2) Electrodeposition conditions Current regulation method Anode: Ni plate, cathode: Copper plate Temperature: Room temperature, Current density: 0.5, 1, 5, 10 Adm -2
Stirring: Air Tank: Microcell Liquid volume: 250 mL, energization volume: 600 c
3)ニッケルめっき皮膜特性
表1、表2から明らかなように、めっき液中のシリコン粒子濃度が増大するとめっき皮膜中のシリコン含有量も増大する。 As apparent from Tables 1 and 2, when the silicon particle concentration in the plating solution increases, the silicon content in the plating film also increases.
4)図1〜図4に、めっき液中のシリコン濃度が10g/Lで、電流密度がそれぞれ、0.5、1、5、10Adm−2の場合のニッケルめっき皮膜表面のSEM写真(低倍率)を示す。
図5〜図8に、それぞれ図1〜図4の拡大SEM写真(高倍率)を示す。
また、図9〜図12に、めっき液中のシリコン濃度が30g/Lで、電流密度がそれぞれ、0.5、1、5、10Adm−2の場合のニッケルめっき皮膜表面のSEM写真(高倍率)を示す。
4) FIGS. 1 to 4 show SEM photographs (low magnification) of the nickel plating film surface when the silicon concentration in the plating solution is 10 g / L and the current densities are 0.5, 1, 5, and 10 Adm −2 , respectively. ).
5 to 8 show enlarged SEM photographs (high magnification) of FIGS. 1 to 4, respectively.
9 to 12 show SEM photographs (high magnification) of the nickel plating film surface when the silicon concentration in the plating solution is 30 g / L and the current densities are 0.5, 1, 5, and 10 Adm- 2 , respectively. ).
5)それぞれのSEM写真からわかるように、ニッケルめっき皮膜中にシリコン粒子が取り込まれているのがわかる。そして、シリコン粒子はニッケルめっき皮膜に付着した後、そのシリコン粒子表面がニッケルめっき皮膜に覆われ、さらに次のシリコン粒子が付着してニッケルめっき皮膜に覆われるというように、次々に、ニッケルめっき皮膜に覆われたシリコン粒子が団子状に積み重なった状態となっている。
上記のように、ニッケルめっき皮膜に覆われたシリコン粒子が団子状に積み重なった表面状態となっているので、ニッケルめっき皮膜の表面積が増大し、電極反応が向上する。また、表面に凹凸が生じることから、リチウムイオンの吸収、放出性にも優れ、充放電特性が向上する。さらには、リチウムイオンの吸収、放出の際の体積変化は、バルクの体積変化でなく、粒子の体積変化となり、粒子間の空隙で吸収されるから、シリコン粒子の脱離が防止でき、充放電特性が向上する。
5) As can be seen from the respective SEM photographs, it can be seen that silicon particles are taken into the nickel plating film. Then, after the silicon particles adhere to the nickel plating film, the surface of the silicon particles is covered with the nickel plating film, and further, the next silicon particles adhere and are covered with the nickel plating film. The silicon particles covered with are stacked in a dumpling form.
As described above, since the silicon particles covered with the nickel plating film are in a surface state in which they are piled up, the surface area of the nickel plating film is increased and the electrode reaction is improved. Further, since the surface is uneven, the lithium ion absorption and release properties are excellent, and the charge / discharge characteristics are improved. Furthermore, the volume change at the time of lithium ion absorption / release is not the volume change of the bulk, but the volume change of the particles and is absorbed by the voids between the particles, so that the desorption of silicon particles can be prevented, and charging / discharging. Improved characteristics.
6)上記実施例では、ニッケルめっき浴がワット浴のもので示したが、スルファミン酸ニッケルめっき浴にシリコン粒子を添加したものにあっても、上記とほぼ同様に、ニッケルめっき皮膜中にシリコン粒子が取り込まれることがわかった。
また、無電解ニッケル‐リンめっき浴、無電解ニッケル‐ボロンめっき浴にそれぞれシリコン粒子を添加したものにあっても、上記とほぼ同様に、ニッケルめっき皮膜中にシリコン粒子が取り込まれることがわかった。
6) In the above examples, the nickel plating bath is a Watt bath. However, even if the nickel sulfamate plating bath is added with silicon particles, the silicon particles in the nickel plating film are substantially the same as described above. Was found to be incorporated.
It was also found that silicon particles were incorporated into the nickel plating film in the same manner as described above even when the silicon particles were added to the electroless nickel-phosphorous plating bath and electroless nickel-boron plating bath. .
以下に示す浴組成、電析試験条件によって作製されたニッケルめっき皮膜の充放電試験を行った。
・浴組成
ワット浴+ 10g/L Si粒子(1.4μmφ)
・電析試験条件
電析モード:電流規制法、アノード:Ni板、カソード:Cu板
温度:室温、電流密度:5Adm−2
攪拌:空気、めっき槽:マイクロセル
液量:250mL、通電量:600C
The charge / discharge test of the nickel plating film produced by the bath composition and the electrodeposition test conditions shown below was conducted.
・ Bath composition
Watt bath + 10 g / L Si particles (1.4 μmφ)
Electrodeposition test conditions Electrodeposition mode: current regulation method, anode: Ni plate, cathode: Cu plate Temperature: room temperature, current density: 5 Adm- 2
Stirring: Air, Plating tank: Microcell Liquid volume: 250 mL, energization volume: 600 C
・浴組成:
NiSO4・6H2O 0.1M
NiCl2・6H2O 0.02M
H3BO3 0.05M
Si粒子(1.4μm) 10 g/L
・電析試験条件
電析モード:電流規制法、アノード:Ni板、カソード:Cu板
温度:45℃、電流密度:0.25Adm−2
攪拌:空気、めっき槽:マイクロセル
液量:250mL、通電量:150 C
・ Bath composition:
NiSO 4 · 6H 2 O 0.1M
NiCl 2 · 6H 2 O 0.02M
H 3 BO 3 0.05M
Si particles (1.4 μm) 10 g / L
Electrodeposition test conditions Electrodeposition mode: current regulation method, anode: Ni plate, cathode: Cu plate Temperature: 45 ° C., current density: 0.25 Adm −2
Stirring: Air, Plating tank: Microcell Liquid volume: 250 mL, energization volume: 150 C
実施例3で作製したニッケルめっきの皮膜特性
実施例3で用いためっき浴は、実施例2で用いたワット浴の濃度が1/10になるように希釈したものであり、作製したニッケルめっき皮膜中には41.3wt%のシリコンが含まれていた。
図13および図14は、実施例2および実施例3で作製したニッケルめっき皮膜の充放電試験の結果を示すグラフであり、図13は実施例2で作製したニッケルめっき皮膜、図14は実施例3で作製したニッケルめっき皮膜の結果である。なお、横軸は放電容量、縦軸は電圧である。図13は1〜4回、図14は1回から5回のサイクル試験を行ったときの充放電曲線である。図15に、めっき液中のシリコン濃度が10g/Lで、電流密度が0.25Adm−2の場合におけるニッケルめっき皮膜表面のSEM写真を示す。めっき浴中に含まれるニッケルの濃度を低くすることで多くのシリコンが取り込まれ、容量が増えている。
The plating bath used in Example 3 was diluted so that the concentration of the watt bath used in Example 2 was 1/10, and the produced nickel plating film contained 41.3 wt% silicon. It was.
13 and 14 are graphs showing the results of the charge / discharge test of the nickel plating films produced in Example 2 and Example 3. FIG. 13 is the nickel plating film produced in Example 2, and FIG. 3 is a result of the nickel plating film produced in 3. The horizontal axis is the discharge capacity, and the vertical axis is the voltage. FIG. 13 is a charge / discharge curve when the cycle test is performed 1 to 4 times and FIG. 14 is performed 1 to 5 times. FIG. 15 shows an SEM photograph of the nickel plating film surface when the silicon concentration in the plating solution is 10 g / L and the current density is 0.25 Adm −2 . By reducing the concentration of nickel contained in the plating bath, a large amount of silicon is taken in and the capacity is increased.
1)亜鉛めっき液組成
ZnCl2 0.5M
NH4Cl 3.7M
シリコン粒子(粒子径1〜2μm) 10g/L
分散剤添加の場合、以下の分散剤を添加
ポリアクリル酸 0.1g/Lまたは0.5g/L
(分子量5000以上のポリアクリル酸を使用)
2)電析条件
電析モード:電流規制法、アノード:Zn板、カソード:鉄板
温度:45℃、電流密度:0.13、0.25、0.5、1、5[Adm−2]
攪拌:空気
槽:マイクロセル
液量:250mL、通電量:150c
1) Zinc plating solution composition ZnCl 2 0.5M
NH 4 Cl 3.7M
Silicon particles (particle diameter 1-2 μm) 10 g / L
In the case of adding a dispersant, the following dispersant is added. Polyacrylic acid 0.1 g / L or 0.5 g / L
(Use polyacrylic acid with a molecular weight of 5000 or more)
2) Electrodeposition conditions Electrodeposition mode: current regulation method, anode: Zn plate, cathode: iron plate Temperature: 45 ° C., current density: 0.13, 0.25, 0.5, 1, 5 [Adm −2 ]
Stirring: Air Tank: Microcell Liquid volume: 250 mL, energization volume: 150 c
3)亜鉛めっきの皮膜特性
4)SEM写真
図16に、めっき液中のシリコン濃度が10g/Lで、電流密度が0.25Adm−2における亜鉛めっき皮膜表面のSEM写真を示す。
また、図17に、めっき液中のシリコン濃度が10g/Lで、ポリアクリル酸(PA5000)を0.1g/Lを添加し、電流密度が0.25Adm−2における亜鉛めっき皮膜表面のSEM写真を示す。
4) SEM photograph FIG. 16 shows an SEM photograph of the surface of the galvanized film when the silicon concentration in the plating solution is 10 g / L and the current density is 0.25 Adm- 2 .
FIG. 17 shows an SEM photograph of the surface of the galvanized film when the silicon concentration in the plating solution is 10 g / L, 0.1 g / L of polyacrylic acid (PA5000) is added, and the current density is 0.25 Adm −2 . Indicates.
それぞれのSEM写真より、亜鉛めっき皮膜中にシリコン粒子が取り込まれている。XRFによる元素分析の結果、亜鉛めっき皮膜中のシリコン含有量は、電流密度が大きくなると少なくなった。また、分散剤を添加しためっき浴の方が、作製された亜鉛めっき皮膜中のシリコン含有量は多い。 From each SEM photograph, silicon particles are taken into the galvanized film. As a result of elemental analysis by XRF, the silicon content in the galvanized film decreased as the current density increased. Moreover, the plating bath to which the dispersant is added has a higher silicon content in the produced galvanized film.
以下に示す浴組成、電析試験条件によって亜鉛めっき皮膜を作製した。実施例5で用いためっき浴は、実施例4で用いためっき浴の濃度よりも低い。
・浴組成:
ZnCl2 0.025M
NH4Cl 0.253M
Si粒子(1.4μm) 10g/L
・電析試験条件
電析モード:電流規制法、アノード:Zn板、カソード:鉄板
温度:50℃、電流密度:0.25Adm−2
攪拌:空気、めっき槽:マイクロセル
液量:250mL、通電量:150 C
・ Bath composition:
ZnCl 2 0.025M
NH 4 Cl 0.253M
Si particle (1.4μm) 10g / L
Electrodeposition test conditions Electrodeposition mode: current regulation method, anode: Zn plate, cathode: iron plate Temperature: 50 ° C., current density: 0.25 Adm −2
Stirring: Air, Plating tank: Microcell Liquid volume: 250 mL, energization volume: 150 C
実施例5で作製した亜鉛めっき皮膜中には46.0wt%のシリコンが含まれていた。
図18は、実施例5で作製しためっき液中のシリコン濃度が10g/Lで、0.25Adm−2の電流密度で電解めっきした場合の亜鉛めっき皮膜表面のSEM写真である。めっき浴中に含まれる亜鉛の濃度を低くすることで亜鉛めっき皮膜中に多くのシリコン粒子が取り込まれる。
The galvanized film produced in Example 5 contained 46.0 wt% silicon.
FIG. 18 is an SEM photograph of the surface of the galvanized film when the silicon concentration in the plating solution prepared in Example 5 is 10 g / L and electrolytic plating is performed at a current density of 0.25 Adm −2 . By reducing the concentration of zinc contained in the plating bath, many silicon particles are taken into the galvanized film.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013037295A JP2013211264A (en) | 2012-03-02 | 2013-02-27 | Negative electrode material for lithium ion battery |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012046710 | 2012-03-02 | ||
JP2012046710 | 2012-03-02 | ||
JP2013037295A JP2013211264A (en) | 2012-03-02 | 2013-02-27 | Negative electrode material for lithium ion battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013211264A true JP2013211264A (en) | 2013-10-10 |
Family
ID=49528906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013037295A Pending JP2013211264A (en) | 2012-03-02 | 2013-02-27 | Negative electrode material for lithium ion battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013211264A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101612602B1 (en) | 2014-03-19 | 2016-04-14 | 오씨아이 주식회사 | Carbon-silicon complex, negative active material for secondary battery including the same and method for preparing the same |
KR101612603B1 (en) | 2014-03-19 | 2016-04-14 | 오씨아이 주식회사 | Carbon-silicon complex, negative active material for secondary battery including the same and method for preparing the same |
JP2016179455A (en) * | 2015-03-25 | 2016-10-13 | 株式会社日本触媒 | Inorganic particle dispersant |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11317227A (en) * | 1998-05-01 | 1999-11-16 | Samson Yokohama Kenkyusho:Kk | Carbon material for negative electrode of lithium secondary battery and lithium secondary battery using the same |
JP2004228059A (en) * | 2002-11-29 | 2004-08-12 | Mitsui Mining & Smelting Co Ltd | Negative electrode for lithium secondary battery, method of manufacturing the same, and lithium secondary battery |
JP2005340132A (en) * | 2004-05-31 | 2005-12-08 | Matsushita Electric Ind Co Ltd | Negative electrode for lithium ion secondary battery, manufacturing method thereof and lithium ion secondary battery using the same |
JP2007077463A (en) * | 2005-09-15 | 2007-03-29 | Gunma Univ | Nickel-boron composite plating liquid, composite plating method using the liquid, and composite plated parts using the method |
JP2009032492A (en) * | 2007-07-26 | 2009-02-12 | Sony Corp | Negative electrode and battery |
-
2013
- 2013-02-27 JP JP2013037295A patent/JP2013211264A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11317227A (en) * | 1998-05-01 | 1999-11-16 | Samson Yokohama Kenkyusho:Kk | Carbon material for negative electrode of lithium secondary battery and lithium secondary battery using the same |
JP2004228059A (en) * | 2002-11-29 | 2004-08-12 | Mitsui Mining & Smelting Co Ltd | Negative electrode for lithium secondary battery, method of manufacturing the same, and lithium secondary battery |
JP2005340132A (en) * | 2004-05-31 | 2005-12-08 | Matsushita Electric Ind Co Ltd | Negative electrode for lithium ion secondary battery, manufacturing method thereof and lithium ion secondary battery using the same |
JP2007077463A (en) * | 2005-09-15 | 2007-03-29 | Gunma Univ | Nickel-boron composite plating liquid, composite plating method using the liquid, and composite plated parts using the method |
JP2009032492A (en) * | 2007-07-26 | 2009-02-12 | Sony Corp | Negative electrode and battery |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101612602B1 (en) | 2014-03-19 | 2016-04-14 | 오씨아이 주식회사 | Carbon-silicon complex, negative active material for secondary battery including the same and method for preparing the same |
KR101612603B1 (en) | 2014-03-19 | 2016-04-14 | 오씨아이 주식회사 | Carbon-silicon complex, negative active material for secondary battery including the same and method for preparing the same |
JP2016179455A (en) * | 2015-03-25 | 2016-10-13 | 株式会社日本触媒 | Inorganic particle dispersant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shin et al. | Aqueous zinc ion batteries: focus on zinc metal anodes | |
Wang et al. | ZnO/carbon framework derived from metal-organic frameworks as a stable host for lithium metal anodes | |
CN108232114B (en) | Composite cathode, preparation and application thereof in preparation of lithium ion battery | |
US8685564B2 (en) | Active material for rechargeable battery | |
US9502715B2 (en) | Disordered anodes for Ni-metal rechargeable battery | |
CN104766994B (en) | Battery | |
Li et al. | Progress in research on metal-based materials in stabilized Zn anodes | |
JPWO2018051675A1 (en) | Lithium secondary battery | |
CN110828828A (en) | 3D porous zinc-loaded current collector, sodium-or potassium-philic battery cathode, and preparation and application thereof | |
US20110151322A1 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same | |
WO2024113992A1 (en) | Positive electrode sheet for sodium-ion battery, and sodium-ion battery | |
JP6211800B2 (en) | Electrolyte flow type secondary battery | |
CN106207242A (en) | Aqueous electrolyte and battery | |
CN105990582A (en) | Battery | |
JP2017179473A (en) | Metallic porous body and manufacturing method therefor, negative electrode material and lithium ion secondary battery | |
CN104733787B (en) | Battery | |
JP2013211264A (en) | Negative electrode material for lithium ion battery | |
JP2014063714A (en) | Negative electrode material for lithium ion battery and method of manufacturing the same | |
JP2015043309A (en) | Electrode for battery and manufacturing method therefor | |
JP5422360B2 (en) | Method for producing porous metal body for lithium secondary battery active material | |
US9490477B2 (en) | Nickel-metal hydride storage battery including negative electrode containing yttrium substituted hydrogen storage alloy and electrolyte solution containing sodium hydroxide | |
JP2015198089A (en) | electrolyte composition | |
JP2007194024A (en) | Current collector and electrode used for energy-storing element | |
US11152608B2 (en) | Modified silicon particle electrodes and methods | |
CN113555529B (en) | Heusler alloy Fe for lithium electrode 2 CoAl/C self-supporting composite material and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161019 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161025 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170801 |