JP2013207164A - Thermal treatment equipment - Google Patents

Thermal treatment equipment Download PDF

Info

Publication number
JP2013207164A
JP2013207164A JP2012076172A JP2012076172A JP2013207164A JP 2013207164 A JP2013207164 A JP 2013207164A JP 2012076172 A JP2012076172 A JP 2012076172A JP 2012076172 A JP2012076172 A JP 2012076172A JP 2013207164 A JP2013207164 A JP 2013207164A
Authority
JP
Japan
Prior art keywords
substrate
heat treatment
treatment apparatus
flow velocity
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012076172A
Other languages
Japanese (ja)
Other versions
JP5856890B2 (en
Inventor
Hiroshige Abe
裕滋 安陪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP2012076172A priority Critical patent/JP5856890B2/en
Priority to KR1020130018476A priority patent/KR101442394B1/en
Priority to CN201310065999.3A priority patent/CN103367201B/en
Priority to TW102109767A priority patent/TWI505369B/en
Publication of JP2013207164A publication Critical patent/JP2013207164A/en
Application granted granted Critical
Publication of JP5856890B2 publication Critical patent/JP5856890B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3247Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering for altering the shape, e.g. smoothing the surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide thermal treatment equipment capable of efficiently cooling a substrate in a heated state only by air cooling while having a relatively simple constitution.SOLUTION: A housing part of thermal treatment equipment in which a substrate is cooled by allowing atmospheric gas from the outside to flow in the housing part housing the substrate includes: a plurality of support pins for horizontally supporting the substrate; an opening through which the atmospheric gas flows in from the outside in the horizontal direction; an exhaust port provided at a position facing the opening and used for exhausting the atmospheric gas; and flow velocity distribution imparting means generating a flow velocity distribution, in which flow velocity is higher on a side where the exhaust port is provided than on a side of the opening, in the flow of the atmospheric gas on at least the lower side of the substrate, when the substrate is horizontally supported by the support pins and cooled by the atmospheric gas.

Description

本発明は、基板を熱処理する熱処理装置に関し、特に、加熱状態の基板を空冷する装置に関する。   The present invention relates to a heat treatment apparatus for heat-treating a substrate, and particularly to an apparatus for air-cooling a heated substrate.

液晶表示装置や種々の半導体デバイスなどを製造するプロセスは、ガラス基板や半導体ウェハなどの基板の上面にレジスト液を塗布した後、これを所定のパターンにて露光し、さらに現像するという、いわゆるフォトリソグラフィプロセスを含んでいる。   The process for manufacturing liquid crystal display devices and various semiconductor devices is a so-called photo process in which a resist solution is applied to the upper surface of a substrate such as a glass substrate or a semiconductor wafer, and then exposed to a predetermined pattern and further developed. Includes lithography process.

係るフォトリソグラフィプロセスでは、基板を個々の工程に適した温度とするために、プロセスが進行する間に基板の加熱と冷却とが繰り返される。すなわち、ある処理を行うにあたってホットプレートなどで加熱された基板は、当該処理が完了後、後段の処理に供するにあたって冷却される。このような場合に基板の冷却を担う装置として、内部に冷媒が通流されてなる冷却板上を筐体内に備え、加熱状態の被処理基板を外冷却板上に載置することによって、被処理基板を冷却する熱処理装置が既に公知である(例えば、特許文献1参照)。   In such a photolithography process, heating and cooling of the substrate are repeated while the process proceeds in order to bring the substrate to a temperature suitable for each step. That is, a substrate heated by a hot plate or the like when performing a certain process is cooled when the substrate is subjected to a subsequent process after the process is completed. In such a case, as a device responsible for cooling the substrate, a cooling plate in which a coolant is passed is provided in the housing, and a heated substrate to be processed is placed on the outer cooling plate, thereby The heat processing apparatus which cools a process board | substrate is already well-known (for example, refer patent document 1).

特開2007−324168号公報JP 2007-324168 A

特許文献1に開示された熱処理装置は、被処理基板の表面温度の均一性を高めるために、給気ダクトから筐体内に気体を供給するようになっている。より詳細には、給気口の上端の上部に設けた庇状の整流板によって、気体を案内するようになっている。あるいは、係る整流板に冷却用気体を供給するノズルが付設される態様も開示されている。   In the heat treatment apparatus disclosed in Patent Document 1, gas is supplied from an air supply duct into a housing in order to improve the uniformity of the surface temperature of the substrate to be processed. More specifically, the gas is guided by a bowl-shaped rectifying plate provided at the upper part of the upper end of the air supply port. Or the aspect by which the nozzle which supplies the gas for cooling to such a baffle plate is attached is also disclosed.

しかしながら、特許文献1に開示された熱処理装置においては、あくまで冷媒を通流させた冷却板による冷却が必須とされているため、構成が複雑である。冷却用気体用のノズルを設けた場合はなおさらである。また、特許文献1に開示された熱処理装置では基板は冷却板と面接触するため、冷却板に付着していたパーティクルが基板に付着してしまう不具合が起こりやすい。   However, the heat treatment apparatus disclosed in Patent Document 1 has a complicated structure because cooling by a cooling plate through which a coolant is passed is essential. This is especially true when a cooling gas nozzle is provided. Further, in the heat treatment apparatus disclosed in Patent Document 1, since the substrate is in surface contact with the cooling plate, there is a tendency that particles that have adhered to the cooling plate adhere to the substrate.

また、液晶表示装置などに用いられるガラス基板は、通常、特許文献1が処理対象としているのは半導体ウェハよりも大きく、数十cm〜数m角のサイズを有する。このような大きなサイズの基板を熱処理する装置には、熱処理の均一性に加えて基板のハンドリングのしやすさも考慮されるのが好ましい。   In addition, a glass substrate used for a liquid crystal display device or the like is usually larger than a semiconductor wafer, and has a size of several tens of centimeters to several meters square, as disclosed in Patent Document 1. In such an apparatus for heat-treating a large-sized substrate, it is preferable to consider the ease of handling of the substrate in addition to the uniformity of the heat treatment.

本発明は、上記課題に鑑みてなされたものであり、比較的簡易な構成を有しつつも、加熱状態の基板を空冷のみによって効率的に冷却することができる熱処理装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a heat treatment apparatus capable of efficiently cooling a heated substrate only by air cooling while having a relatively simple configuration. And

上記課題を解決するため、請求項1の発明は、基板を収容した収容部に外部から雰囲気ガスを流入させることによって基板を冷却する熱処理装置であって、基板を収容する収容部が、基板を水平に支持するための複数の支持ピンと、前記雰囲気ガスが外部から水平方向に流入する開口部と、前記開口部に対向する位置に設けられた、前記雰囲気ガスを排気するための排気口と、前記基板が前記支持ピンにて水平に支持されて前記雰囲気ガスによって冷却される際に、少なくとも前記基板の下側における前記雰囲気ガスの流れに、前記開口部側よりも前記排気口が備わる側の方が流速が大きくなる流速分布を生じさせる流速分布付与手段と、を備えることを特徴とする。   In order to solve the above-mentioned problem, the invention of claim 1 is a heat treatment apparatus for cooling a substrate by flowing an atmospheric gas from the outside into a housing portion that houses the substrate, wherein the housing portion that houses the substrate includes the substrate. A plurality of support pins for horizontally supporting, an opening through which the atmospheric gas flows in from the outside in the horizontal direction, and an exhaust port for exhausting the atmospheric gas provided at a position facing the opening; When the substrate is horizontally supported by the support pins and cooled by the atmospheric gas, at least the flow of the atmospheric gas on the lower side of the substrate is on the side where the exhaust port is provided rather than the opening side. And a flow velocity distribution providing means for generating a flow velocity distribution that increases the flow velocity.

請求項2の発明は、請求項1に記載の熱処理装置であって、前記流速分布付与手段が、前記排気口が備わる側における前記基板と前記収容部との距離を前記開口部側における前記基板と前記収容部との距離よりも狭めることによって、前記流速分布を生じさせてなる、ことを特徴とする。   Invention of Claim 2 is the heat processing apparatus of Claim 1, Comprising: The said flow-velocity distribution provision means sets the distance of the said board | substrate in the side in which the said exhaust port is provided, and the said accommodating part to the said board | substrate in the said opening part side The flow velocity distribution is generated by narrowing the distance from the housing portion.

請求項3の発明は、請求項2に記載の熱処理装置であって、前記流速分布付与手段が、前記収容部の底部において、前記排気口が備わる側と前記開口部側とに設けられた段差である、ことを特徴とする。   Invention of Claim 3 is the heat processing apparatus of Claim 2, Comprising: The flow-velocity distribution provision means is a level | step difference provided in the bottom part of the said accommodating part in the side in which the said exhaust port is provided, and the said opening part side It is characterized by being.

請求項4の発明は、請求項3に記載の熱処理装置であって、前記段差の形成位置と前記開口部との距離が、前記開口部と前記排気口が備わる位置との距離の1/4以上3/4以下である、ことを特徴とする。   Invention of Claim 4 is the heat processing apparatus of Claim 3, Comprising: The distance of the formation position of the said level | step difference and the said opening part is 1/4 of the distance of the position where the said opening part and the said exhaust port are provided. It is 3/4 or less.

請求項5の発明は、基板を周囲の雰囲気ガスとの温度差を利用して冷却する熱処理装置であって、基板を水平に支持する複数の支持ピンが突出してなる底部と、前記底部に垂直な側部と、前記底部と対向する天面部と、前記底部と、前記側部と、前記天面部とに垂直な奥端部と、とによって囲驍された熱処理空間を有し、前記奥端部が、前記熱処理空間から雰囲気ガスを排気するための排気口を備え、前記支持ピンに水平に支持された前記基板を冷却するために前記排気口から前記雰囲気ガスを排気することによって前記熱処理空間に新たな前記雰囲気ガスを流入させる際に、少なくとも前記基板の下側において、前記熱処理空間の開口部側よりも前記排気口が備わる側の方が前記雰囲気ガスの流速が大きくなる流速分布を生じさせる流速分布付与手段、をさらに備えることを特徴とする。   According to a fifth aspect of the present invention, there is provided a heat treatment apparatus for cooling a substrate by utilizing a temperature difference with an ambient gas, and a bottom portion in which a plurality of support pins for horizontally supporting the substrate protrudes, and is perpendicular to the bottom portion. And a heat treatment space surrounded by a bottom surface, a top surface facing the bottom, the bottom, the side, and a back end perpendicular to the top surface, and the back end The unit includes an exhaust port for exhausting atmospheric gas from the heat treatment space, and exhausts the atmospheric gas from the exhaust port to cool the substrate supported horizontally by the support pins. When a new atmosphere gas is introduced into the substrate, a flow velocity distribution is generated in which the flow velocity of the atmosphere gas is larger on the side provided with the exhaust port than on the opening side of the heat treatment space at least on the lower side of the substrate. Flow rate for Applying means, and further comprising a.

請求項6の発明は、請求項5に記載の熱処理装置であって、前記流速分布付与手段が、前記排気口が備わる側における前記基板と前記底部との距離を前記開口部側における前記基板と前記底部との距離よりも狭めることによって、前記流速分布を生じさせてなる、ことを特徴とする。   Invention of Claim 6 is the heat processing apparatus of Claim 5, Comprising: The said flow-velocity distribution provision means is the said board | substrate in the said opening part side in the distance of the said board | substrate in the side in which the said exhaust port is provided, and the said bottom part. The flow velocity distribution is generated by narrowing the distance from the bottom.

請求項7の発明は、請求項6に記載の熱処理装置であって、前記流速分布付与手段が、前記底部において、前記排気口が備わる側と前記開口部側とに設けられた段差である、ことを特徴とする。   Invention of Claim 7 is the heat processing apparatus of Claim 6, Comprising: The said flow-velocity distribution provision means is a level | step difference provided in the said bottom part in the side provided with the said exhaust port, and the said opening part side, It is characterized by that.

請求項8の発明は、請求項7に記載の熱処理装置であって、前記段差の形成位置と前記開口部との距離が、前記開口部と前記臆面部との距離の1/4以上3/4以下である、ことを特徴とする。   Invention of Claim 8 is the heat processing apparatus of Claim 7, Comprising: The distance of the formation position of the said level | step difference and the said opening part is 1/4 or more of the distance of the said opening part and the said collar part, 3 / 4 or less.

請求項1ないし請求項8の発明によれば、ピンによって水平に支持した状態の基板の冷却を、装置外部から雰囲気ガスを導入することのみによって、つまりは空冷のみによって、温度均一性を保ちつつ効率的に行うことができる。   According to the first to eighth aspects of the present invention, the substrate in a state where it is horizontally supported by the pins is cooled only by introducing the atmospheric gas from the outside of the apparatus, that is, only by air cooling, while maintaining temperature uniformity. Can be done efficiently.

熱処理装置1の外観斜視図である。1 is an external perspective view of a heat treatment apparatus 1. FIG. 熱処理装置1の内部の様子を示す斜視図である。2 is a perspective view showing the inside of the heat treatment apparatus 1. FIG. 熱処理装置1の内部の様子を示す斜視図である。2 is a perspective view showing the inside of the heat treatment apparatus 1. FIG. 基板Wが支持ピンPに支持された状態における、熱処理装置1の段差部3を通りX軸に垂直な断面の模式図である。FIG. 3 is a schematic view of a cross section passing through the step portion 3 of the heat treatment apparatus 1 and perpendicular to the X axis in a state where the substrate W is supported by the support pins P. 熱処理装置1001の斜視図である。1 is a perspective view of a heat treatment apparatus 1001. FIG. 基板Wが支持ピンPに支持された状態における、熱処理装置1001のX軸に垂直な断面の模式図である。6 is a schematic diagram of a cross section perpendicular to the X axis of the heat treatment apparatus 1001 in a state where the substrate W is supported by the support pins P. FIG. 基板Wの温度分布の時間変化を評価した際の、評価に用いたガラス基板のサイズと、温度測定箇所(チャンネル)を示す図である。It is a figure which shows the size of the glass substrate used for the evaluation at the time of evaluating the time change of the temperature distribution of the board | substrate W, and a temperature measurement location (channel). 熱処理装置1(1A)にて熱処理を行ったときの温度を、熱処理装置1001で熱処理を行ったときの温度に対する差分値として示す図である。It is a figure which shows the temperature when heat processing is performed with the heat processing apparatus 1 (1A) as a difference value with respect to the temperature when heat processing is performed with the heat processing apparatus 1001. 熱処理装置1(1B)にて熱処理を行ったときの温度を、熱処理装置1001で熱処理を行ったときの温度に対する差分値として示す図である。It is a figure which shows the temperature when heat processing is performed with the heat processing apparatus 1 (1B) as a difference value with respect to the temperature when heat processing is performed with the heat processing apparatus 1001. FIG. 熱処理装置1(1C)にて熱処理を行ったときの温度を、熱処理装置1001で熱処理を行ったときの温度に対する差分値として示す図である。It is a figure which shows the temperature when heat processing is performed with the heat processing apparatus 1 (1C) as a difference value with respect to the temperature when heat processing is performed with the heat processing apparatus 1001. FIG. 変形例に係る熱処理装置201を示す斜視図である。It is a perspective view which shows the heat processing apparatus 201 which concerns on a modification. 変形例に係る熱処理装置301を示す斜視図である。It is a perspective view which shows the heat processing apparatus 301 which concerns on a modification. 変形例に係る熱処理装置401を示す斜視図である。It is a perspective view which shows the heat processing apparatus 401 which concerns on a modification.

<熱処理装置の構成>
図1は、本発明の実施の形態に係る熱処理装置1の外観斜視図である。なお、図1および以降の図面には、X軸とY軸とが水平面内において直交する右手系のXYZ座標系を共通に付している。
<Configuration of heat treatment equipment>
FIG. 1 is an external perspective view of a heat treatment apparatus 1 according to an embodiment of the present invention. In FIG. 1 and the subsequent drawings, a right-handed XYZ coordinate system in which the X axis and the Y axis are orthogonal in a horizontal plane is commonly attached.

本実施の形態に係る熱処理装置1は、基板Wを装置周囲の雰囲気ガス(典型的には大気)との温度差を利用して冷却する(空冷する)装置である。それゆえ、熱処理装置1は、処理対象たる基板Wの処理前の温度よりも相対的に低温である雰囲気ガスの存在下で使用される。例えば、常温前後(10℃〜30℃程度)の雰囲気ガスの存在下で、100℃〜200℃程度に加熱された基板Wを常温近くまで冷却するのが、熱処理装置1の代表的な使用態様である。   The heat treatment apparatus 1 according to the present embodiment is an apparatus that cools (air-cools) the substrate W using a temperature difference from an ambient gas (typically, the atmosphere) around the apparatus. Therefore, the heat treatment apparatus 1 is used in the presence of an atmospheric gas that is relatively cooler than the temperature before the processing of the substrate W to be processed. For example, a typical usage mode of the heat treatment apparatus 1 is that the substrate W heated to about 100 ° C. to 200 ° C. is cooled to near normal temperature in the presence of an atmospheric gas around room temperature (about 10 ° C. to 30 ° C.). It is.

図1に示すように、熱処理装置1は、概略、基板Wを内部に収容可能な有底の矩形筒状体である。熱処理装置1は、底部1aと、底部1aに垂直で互いに対向する2つの側部1b、1cと、底部1aと対向する天面部1dと、これら底部1a、側部1b、1c、天面部1dの全てに垂直な奥端部1eとを備える。これらの部位によって囲驍されることで、熱処理装置1の内部には、奥端部1eに対向する位置に開口部2aを有し、基板Wの収容部たる熱処理空間2が形成されてなる。   As shown in FIG. 1, the heat treatment apparatus 1 is generally a bottomed rectangular cylindrical body that can accommodate a substrate W therein. The heat treatment apparatus 1 includes a bottom portion 1a, two side portions 1b and 1c that are perpendicular to the bottom portion 1a and face each other, a top surface portion 1d that faces the bottom portion 1a, a bottom portion 1a, side portions 1b and 1c, and a top surface portion 1d. The rear end 1e is perpendicular to all. By being surrounded by these portions, the heat treatment apparatus 1 has an opening 2a at a position facing the back end 1e, and a heat treatment space 2 serving as a housing portion for the substrate W is formed.

また、熱処理装置1は、底部1aの下部の四隅に、装置全体を支える脚部1fを備える。熱処理装置1は、脚部1fが地面に接地され、底部1aが水平の状態で使用される。ただし、脚部1fを備えるのは必須の態様ではなく、底部1aの水平が確保されるのであれば、熱処理装置1全体の載置や支持の仕方は特に限定されない。また、ここで言う地面には、同様の熱処理装置1が多段に積み上げられた際の下段の熱処理装置1の天面部等も含むものである。   Moreover, the heat processing apparatus 1 is equipped with the leg part 1f which supports the whole apparatus in the four corners of the lower part of the bottom part 1a. The heat treatment apparatus 1 is used in a state where the leg 1f is grounded to the ground and the bottom 1a is horizontal. However, it is not an indispensable aspect to provide the leg portion 1f, and the method of placing and supporting the entire heat treatment apparatus 1 is not particularly limited as long as the level of the bottom portion 1a is ensured. The ground mentioned here also includes the top surface portion of the lower heat treatment apparatus 1 when similar heat treatment apparatuses 1 are stacked in multiple stages.

図1においては、底部1aと天面部1dとがZ軸に垂直で、かつ、熱処理空間2がY軸方向に延在するとともに−Y側端部に開口部2aが位置するように、熱処理装置1を示している。以降においては、この配置関係を前提として説明を行う。   In FIG. 1, the heat treatment apparatus is such that the bottom portion 1 a and the top surface portion 1 d are perpendicular to the Z axis, the heat treatment space 2 extends in the Y axis direction, and the opening 2 a is located at the −Y side end. 1 is shown. In the following, description will be made on the assumption of this arrangement relationship.

図2と図3は、熱処理装置1の内部の様子を示す斜視図であり、図1に示す熱処理装置1から、側部1b、1cの一部と、天面部1dとを省略したものに相当する。ただし、図2は、基板Wが熱処理空間2に配置されていない状態を示しており、図3は、基板Wが熱処理空間2に配置された状態を示している。   2 and 3 are perspective views showing the inside of the heat treatment apparatus 1, and correspond to the heat treatment apparatus 1 shown in FIG. 1 in which a part of the side portions 1b and 1c and the top surface portion 1d are omitted. To do. However, FIG. 2 shows a state where the substrate W is not arranged in the heat treatment space 2, and FIG. 3 shows a state where the substrate W is arranged in the heat treatment space 2.

図2および図3に示すように、熱処理装置1の底部1aは、熱処理空間2の延在方向(Y軸方向)の途中に段差を有している。段差の上側および下側はいずれも水平面となっている。以降、段差をなしている垂直面を段差面3sと称し、底部1aのうち、段差面3sより奥端部1eに至る段差の上側の部分を特に段差部3と称する。   As shown in FIGS. 2 and 3, the bottom 1 a of the heat treatment apparatus 1 has a step in the middle of the extending direction (Y-axis direction) of the heat treatment space 2. Both the upper and lower sides of the step are horizontal surfaces. Hereinafter, a vertical surface having a step is referred to as a step surface 3s, and a portion of the bottom portion 1a above the step from the step surface 3s to the back end portion 1e is particularly referred to as a step portion 3.

段差部3は、概略、開口部2aからみて熱処理空間2の奥側に設けられてなる。ただし、詳細にいえば、段差部3は、X軸方向に沿って、それぞれが平面視矩形状の第1段差部3a、第2段差部3b、第3段差部3cに分かれている。第1段差部3aは側部1cおよび奥端部1eに接している。第2段差部3bは奥端部1eに接している。第3段差部3cは側部1bと奥端部1eに接している。なお、第1段差部3aと第2段差部3bの間、および、第2段差部3bと第3段差部3cの間隙4は、熱処理空間2と外部との間で基板Wの搬入・搬出が行われる際に図示しない搬送機構(搬送ロボット)に備わる搬送用アームが移動するためのスペースとなっている。   The step portion 3 is generally provided on the back side of the heat treatment space 2 when viewed from the opening 2a. However, in detail, the stepped portion 3 is divided into a first stepped portion 3a, a second stepped portion 3b, and a third stepped portion 3c each having a rectangular shape in plan view along the X-axis direction. The first step portion 3a is in contact with the side portion 1c and the back end portion 1e. The second step portion 3b is in contact with the back end portion 1e. The 3rd level | step-difference part 3c is in contact with the side part 1b and the back end part 1e. The gap 4 between the first step portion 3a and the second step portion 3b and between the second step portion 3b and the third step portion 3c allows the substrate W to be carried in and out between the heat treatment space 2 and the outside. This is a space for moving a transfer arm provided in a transfer mechanism (transfer robot) (not shown).

さらに、底部1aにおいては、熱処理の際に基板Wを水平に支持するための複数の支持ピンPが、底部1aから熱処理空間2に対して垂直に(図1においてはZ軸正方向に)突出してなる。以降、支持ピンPのうち、底部1aにおいて段差部3以外に配置されているものを第1ピンP1と称し、段差部3に配置されているものを第2ピンP2と称する。第1ピンP1と第2ピンP2は、長さは異なるものの、基板Wを水平に支持できるよう、上端の高さ位置は全て同じに揃えられている。なお、図2および図3においては、5個の第1ピンP1と3個の第2ピンP2が備わる場合を例示しているが、支持ピンPの個数や配置位置は、図2および図3に示した例に限定されるものではない。   Further, at the bottom 1a, a plurality of support pins P for horizontally supporting the substrate W during heat treatment protrude perpendicularly from the bottom 1a with respect to the heat treatment space 2 (in the positive direction of the Z axis in FIG. 1). It becomes. Hereinafter, among the support pins P, those disposed on the bottom portion 1a other than the stepped portion 3 are referred to as first pins P1, and those disposed on the stepped portion 3 are referred to as second pins P2. Although the lengths of the first pin P1 and the second pin P2 are different, the height positions of the upper ends are all the same so that the substrate W can be supported horizontally. 2 and 3 exemplify the case where five first pins P1 and three second pins P2 are provided, the number and arrangement positions of the support pins P are shown in FIGS. It is not limited to the example shown in.

また、熱処理装置1は、奥端部1eに排気口5を備える。排気口5は、図示しない排気装置が外部から接続される貫通孔である。排気装置としては、例えば、公知の吸引ポンプなどが適用可能である。   Moreover, the heat processing apparatus 1 is equipped with the exhaust port 5 in the back end part 1e. The exhaust port 5 is a through hole to which an exhaust device (not shown) is connected from the outside. For example, a known suction pump can be used as the exhaust device.

図4は、基板Wが支持ピンPに支持された状態における、熱処理装置1の段差部3を通りX軸に垂直な断面の模式図である。ただし、図4は、支持ピンPを通らない断面を示すものとする。また、図4においては、底部1aが断面視で2箇所において屈曲する態様にて段差部3が設けられてなるが、これは必須の態様ではない。例えば、開口部2aの側から延在する水平面の上に別の水平面を成す部材が載置されることによって段差部3が形成されてなる態様であってもよい。   FIG. 4 is a schematic diagram of a cross section passing through the step portion 3 of the heat treatment apparatus 1 and perpendicular to the X axis in a state where the substrate W is supported by the support pins P. However, FIG. 4 shall show the cross section which does not pass through the support pin P. FIG. Moreover, in FIG. 4, although the step part 3 is provided in the aspect which the bottom part 1a bends in two places by sectional view, this is not an essential aspect. For example, the aspect by which the level | step-difference part 3 is formed by mounting the member which comprises another horizontal surface on the horizontal surface extended from the opening part 2a side may be sufficient.

図4に示すように、熱処理装置1において、天面部1dから基板Wまでの距離をH0とする。距離H0は、基板Wの搬入・搬出の間、搬送用アームが基板Wを支持ピンPによる支持高さよりも高い位置にて保持する際に、基板Wが天面部1dに接触しないように定められる。一方で、距離H0の値を必要以上に大きく設定した場合、冷却効率は向上せず、むしろ排気効率が悪くなることがある。具体的な値は、基板Wの厚みや搬送用アームの形状・構造などによっても異なるが、例えば、距離H0は30mm〜100mm程度であるのが好適である。   As shown in FIG. 4, in the heat treatment apparatus 1, the distance from the top surface 1d to the substrate W is H0. The distance H0 is determined so that the substrate W does not contact the top surface portion 1d when the transfer arm holds the substrate W at a position higher than the support height by the support pins P during loading / unloading of the substrate W. . On the other hand, when the value of the distance H0 is set larger than necessary, the cooling efficiency may not be improved, but the exhaust efficiency may be deteriorated. Although the specific value varies depending on the thickness of the substrate W and the shape / structure of the transfer arm, for example, the distance H0 is preferably about 30 mm to 100 mm.

また、図4に示すように、熱処理装置1において、開口部2aの側における底部1aから基板Wまでの距離をH1とし、底部1aにおける段差の高さをH2とし、段差部3における底部1aから基板Wまでの距離をH3とする。距離H1、H3はそれぞれ、熱処理空間2に突出してなる第1ピンP1、第2ピンP2の長さ、つまりは、第1ピンP1、第2ピンP2による基板Wの支持高さでもある。距離H3は、支持ピンPによって支持された基板Wに撓みが生じても基板Wが段差部3と接触することのないように定められる必要がある。具体的な値は、基板Wの厚みや搬送用アームの形状・構造などによっても異なるが、距離H3としては、最小でも20mm程度を確保しておくのが好ましい。また、距離H3を大きくし過ぎると、後述する、段差部3を具備することの効果が十分に得られない。係る観点からは、距離H3は距離H1の1/2以下とされるのが好ましい。   4, in the heat treatment apparatus 1, the distance from the bottom 1a to the substrate W on the opening 2a side is H1, the step height at the bottom 1a is H2, and from the bottom 1a at the step 3 The distance to the substrate W is H3. The distances H1 and H3 are respectively the lengths of the first pins P1 and the second pins P2 protruding into the heat treatment space 2, that is, the support height of the substrate W by the first pins P1 and the second pins P2. The distance H3 needs to be determined so that the substrate W does not come into contact with the stepped portion 3 even if the substrate W supported by the support pins P is bent. Although the specific value varies depending on the thickness of the substrate W and the shape / structure of the transfer arm, it is preferable to secure a minimum of about 20 mm as the distance H3. On the other hand, if the distance H3 is too large, the effect of providing the stepped portion 3 described later cannot be sufficiently obtained. From such a viewpoint, it is preferable that the distance H3 is equal to or less than ½ of the distance H1.

<熱処理の概略>
次に、以上の構成を有する熱処理装置1における熱処理の概略について説明する。熱処理が行われる際は、まず、図示しない搬送機構の搬送用アームによって下方から支持された、処理対象たる高温の基板Wが、支持ピンPの上端より上の高さ位置を保って熱処理空間2内の所定の支持位置の上方まで搬入される。上述のように、距離H0が確保されているので、係る搬入に際して基板Wと天面部1dとは接触しない。また、このとき、搬送用アームの進退位置は間隙4の位置と合致しているので、搬送用アームが熱処理装置1と接触することもない。
<Outline of heat treatment>
Next, an outline of heat treatment in the heat treatment apparatus 1 having the above configuration will be described. When the heat treatment is performed, first, the high-temperature substrate W to be processed, supported from below by a transfer arm of a transfer mechanism (not shown), maintains the height position above the upper end of the support pin P, and the heat treatment space 2 It is carried in to above the predetermined support position. As described above, since the distance H0 is secured, the substrate W and the top surface portion 1d do not come into contact with each other during such loading. At this time, the advance / retreat position of the transfer arm coincides with the position of the gap 4, so that the transfer arm does not come into contact with the heat treatment apparatus 1.

当該支持位置に到達した後、搬送用アームが下降させられると、基板Wは降下し、支持ピンPの上端と接した時点で支持ピンPによって支持される。基板Wが支持ピンPによって支持されると、搬送用アームは熱処理空間2から退避する。以上により、図3および図4に示す、熱処理空間2内において基板Wが支持ピンPによって支持された状態が実現される。   When the transfer arm is lowered after reaching the support position, the substrate W is lowered and supported by the support pin P when it contacts the upper end of the support pin P. When the substrate W is supported by the support pins P, the transfer arm is retracted from the heat treatment space 2. As described above, the state in which the substrate W is supported by the support pins P in the heat treatment space 2 shown in FIGS. 3 and 4 is realized.

係る支持状態が実現されると、排気装置が作動されて排気口5から熱処理空間2内の雰囲気ガスが排気される。係る排気に伴い、開口部2aからは絶えず新たな雰囲気ガスが水平方向(Y軸正方向)に流入する。すなわち、熱処理空間2においては、概略、Y軸正方向に向かう雰囲気ガスの流れが形成される。換言すれば、連続的な雰囲気置換が実現される。そして、流入する雰囲気ガスは基板Wよりも低温であるので、基板Wと雰囲気ガスとの間の熱交換が連続的に起こり、時間が経過するにつれて基板Wは徐々に冷却される。所定温度以下に冷却されると、基板Wの熱処理が完了したことになる。   When such a support state is realized, the exhaust device is operated, and the atmospheric gas in the heat treatment space 2 is exhausted from the exhaust port 5. Along with such exhaust, new atmospheric gas constantly flows in the horizontal direction (Y-axis positive direction) from the opening 2a. That is, in the heat treatment space 2, an atmosphere gas flow is generally formed in the positive Y-axis direction. In other words, continuous atmosphere replacement is realized. Since the flowing atmosphere gas is at a lower temperature than the substrate W, heat exchange between the substrate W and the atmosphere gas occurs continuously, and the substrate W is gradually cooled as time passes. When cooled below the predetermined temperature, the heat treatment of the substrate W is completed.

熱処理終了後は、搬送用アームが基板Wよりも低い位置にて熱処理空間2内に挿入され、所定の保持位置にて上昇させられると、支持ピンPにて支持されていた基板Wが搬送用アームにて下方から保持されるようになる。基板Wを保持すると、搬送用アームはその状態を保って熱処理空間2から退避する。なお、このときも、基板Wの上昇は天面部1dと接触しない範囲とされ、搬送用アームの進退位置は間隙4の位置と合致している。以上により、基板Wが熱処理空間2から搬出される。   After completion of the heat treatment, when the transfer arm is inserted into the heat treatment space 2 at a position lower than the substrate W and raised at a predetermined holding position, the substrate W supported by the support pins P is transferred. The arm is held from below. When the substrate W is held, the transfer arm is retracted from the heat treatment space 2 while maintaining the state. At this time as well, the substrate W rises in a range that does not come into contact with the top surface portion 1d, and the advance / retreat position of the transfer arm coincides with the position of the gap 4. Thus, the substrate W is unloaded from the heat treatment space 2.

<熱処理と段差の効果>
次に、熱処理装置1が段差を備えていることによって、熱処理の際に得られる効果について説明する。
<Effect of heat treatment and step>
Next, the effect obtained in the heat treatment by the heat treatment apparatus 1 having the steps will be described.

図5は、熱処理装置1との対比のために示す、段差を有さず複数の支持ピンPが全て同じものであるほかは熱処理装置1と同様の構成を有する、熱処理装置1001の斜視図である。ただし、図5においては、側部1b、1cと天面部1dとを省略している。熱処理装置1001における基板Wの熱処理、つまりは基板Wの冷却の仕方は、熱処理装置1と同様である。また、図6は、基板Wが支持ピンPに支持された状態における、熱処理装置1001のX軸に垂直な断面の模式図である。ただし、図4と同様、図6も、支持ピンPを通らない断面を示すものとする。   FIG. 5 is a perspective view of the heat treatment apparatus 1001 having the same configuration as that of the heat treatment apparatus 1 except that there are no steps and all of the support pins P are the same, for comparison with the heat treatment apparatus 1. is there. However, in FIG. 5, the side portions 1b and 1c and the top surface portion 1d are omitted. The heat treatment of the substrate W in the heat treatment apparatus 1001, that is, the method of cooling the substrate W is the same as that of the heat treatment apparatus 1. FIG. 6 is a schematic diagram of a cross section perpendicular to the X axis of the heat treatment apparatus 1001 in a state where the substrate W is supported by the support pins P. However, like FIG. 4, FIG. 6 also shows a cross section that does not pass through the support pin P.

まず、図5および図6に示す熱処理装置1001において、上述した態様と同様の基板Wの熱処理、つまりは熱処理空間2への雰囲気ガスの流入による冷却が行われる場合を考える。この場合、基板Wの上側において、熱処理装置1001との距離は場所によらず同じであるので、排気口5からの排気条件が一定であれば、基板Wの上側での雰囲気ガスの流速VaはY軸方向において場所によらず略一定である。同様に、基板Wの下側においても、熱処理装置1001との距離は場所によらず同じであるので、下側での雰囲気ガスの流速Vbも、Y軸方向において場所によらず略一定である。   First, in the heat treatment apparatus 1001 shown in FIGS. 5 and 6, the case where the heat treatment of the substrate W similar to the above-described embodiment, that is, the cooling by the inflow of the atmospheric gas into the heat treatment space 2 is considered. In this case, since the distance from the heat treatment apparatus 1001 is the same on the upper side of the substrate W regardless of the location, the flow rate Va of the atmospheric gas on the upper side of the substrate W is as long as the exhaust conditions from the exhaust port 5 are constant. It is substantially constant regardless of location in the Y-axis direction. Similarly, since the distance to the heat treatment apparatus 1001 is the same regardless of the location on the lower side of the substrate W, the flow velocity Vb of the atmospheric gas on the lower side is substantially constant regardless of the location in the Y-axis direction. .

ただし、係る場合、開口部2aから熱処理空間2に流入した雰囲気ガスは、Y軸正方向へと進むにつれて、基板Wとの熱交換によって加熱される。それゆえ、開口部2a側から奥端部1eの側へと向かうほど、雰囲気ガスの温度は高くなる。それゆえ、基板Wは、開口部2aに近い側ほど早く冷却され、奥端部1eに近い側は冷却されにくいという状況が生じる。すなわち、熱処理装置1001による冷却は、その過程において、基板Wの面内位置ごとの温度ばらつきが生じやすいものであるといえる。   However, in such a case, the atmospheric gas flowing into the heat treatment space 2 from the opening 2a is heated by heat exchange with the substrate W as it proceeds in the Y-axis positive direction. Therefore, the temperature of the atmospheric gas increases as it goes from the opening 2a side to the back end 1e side. Therefore, a situation occurs in which the substrate W is cooled earlier as the side is closer to the opening 2a, and the side closer to the back end 1e is less likely to be cooled. That is, it can be said that the cooling by the heat treatment apparatus 1001 tends to cause a temperature variation for each in-plane position of the substrate W in the process.

これに対し、本実施の形態に係る熱処理装置1の場合、図4に示すように、基板Wの上側については、熱処理装置1001と同様、熱処理装置1との距離は場所によらず同じであるので、排気口5からの排気条件が一定であれば雰囲気ガスの流速VはY軸方向において場所によらず略一定となる。しかしながら、基板Wより下側においては、奥端部1eに近い側に段差部3が備わることによって、間隙4の形成箇所以外では、開口部2a側と奥端部1e側とで、熱処理装置1までの距離が異なっている。端的にいえば、一部を除き、奥端部1e側では開口部2a側よりも基板Wよりも下側の空間が狭くなっている。それゆえ、熱処理に際し、排気口5からの排気条件が一定であったとしても、開口部2a側における雰囲気ガスの流速(厳密に言えばX軸方向について平均した値)V1よりも奥端部1e側における雰囲気ガスの流速(同上)V2の方が大きくなっている。すなわち、熱処理装置1においては、段差部3が備わることで、基板Wの下側において、開口部側よりも排気口5が備わる奥端部1eの側の方が雰囲気ガスの流速が大きくなる流速分布が形成されてなる。   On the other hand, in the case of the heat treatment apparatus 1 according to the present embodiment, as shown in FIG. 4, as with the heat treatment apparatus 1001, the distance from the heat treatment apparatus 1 is the same regardless of the location. Therefore, if the exhaust conditions from the exhaust port 5 are constant, the flow velocity V of the atmospheric gas is substantially constant regardless of the location in the Y-axis direction. However, the step portion 3 is provided on the lower side of the substrate W on the side closer to the back end portion 1e, so that the heat treatment apparatus 1 is provided on the opening 2a side and the back end portion 1e side except for the portion where the gap 4 is formed. The distance to is different. In short, the space below the substrate W is narrower on the back end 1e side than on the opening 2a side except for a part. Therefore, during the heat treatment, even if the exhaust conditions from the exhaust port 5 are constant, the back end portion 1e is higher than the flow velocity V1 of the atmospheric gas on the opening 2a side (strictly speaking, a value averaged in the X-axis direction). The velocity V2 of the atmospheric gas on the side (same as above) V2 is larger. That is, in the heat treatment apparatus 1, since the stepped portion 3 is provided, the flow rate of the atmospheric gas is larger on the lower end portion 1 e side where the exhaust port 5 is provided on the lower side of the substrate W than on the opening side. A distribution is formed.

これにより、熱処理装置1の場合、開口部2a側から奥端部1eの側へと向かうほど雰囲気ガスの温度が高くなる点については熱処理装置1001と同様であるものの、奥端部1eに近いところでは流速が大きいことから、基板Wによって加熱された雰囲気ガスは、熱処理装置1001よりも速やかに排気口5から排気される。すなわち、熱処理装置1001と比べると、奥端部1eに近い場所に対しても低温の雰囲気ガスが供給されることで、効率的な冷却がなされるようになる。加えて、基板Wの下側がこのように効率的に冷却されることで、基板Wの上側の冷却もより進行しやすくなる。結果として、熱処理装置1においては、空冷のみによって、基板Wの面内位置ごとの温度ばらつきが小さく均一性の高い冷却が、効率的に行える。   Thereby, in the case of the heat treatment apparatus 1, the temperature of the atmospheric gas becomes higher as it goes from the opening 2 a side to the back end part 1 e side, but it is the same as the heat treatment apparatus 1001, but is close to the back end part 1 e. Since the flow velocity is large, the atmospheric gas heated by the substrate W is exhausted from the exhaust port 5 more quickly than the heat treatment apparatus 1001. That is, as compared with the heat treatment apparatus 1001, efficient cooling is achieved by supplying a low-temperature atmosphere gas to a place close to the back end 1e. In addition, since the lower side of the substrate W is efficiently cooled in this manner, the cooling of the upper side of the substrate W is more likely to proceed. As a result, in the heat treatment apparatus 1, cooling with high uniformity and small temperature variation for each in-plane position of the substrate W can be efficiently performed only by air cooling.

なお、Y軸方向における段差面3sの形成位置は、底部1aの開口部2aから奥端部1eまでの距離(底部1aのY軸方向距離)をLとし、開口部2aから段差面3sまでのY軸方向距離をaとしたときに、L/4≦a≦3L/4をみたすように定められるのが好ましい。係る場合に、上述の流速分布が形成されることによる冷却の均一性が好適に実現される。   Note that the formation position of the step surface 3s in the Y-axis direction is set such that the distance from the opening 2a of the bottom 1a to the back end 1e (the Y-axis direction distance of the bottom 1a) is L, and the distance from the opening 2a to the step 3s. The distance is preferably set so as to satisfy L / 4 ≦ a ≦ 3L / 4, where a is the Y-axis direction distance. In such a case, the uniformity of cooling due to the formation of the above-described flow velocity distribution is suitably realized.

また、段差の高さH2は、上述した距離H3によって規定されることになるが、上述の流速分布が形成されることによる冷却の均一性を好適に得るには、距離H1の1/2以上とされることが好ましい。   Further, the height H2 of the step is defined by the above-described distance H3, but in order to suitably obtain the cooling uniformity due to the formation of the above-described flow velocity distribution, it is 1/2 or more of the distance H1. It is preferable that

<冷却過程の実測評価>
以下、熱処理装置1および熱処理装置1001を用いた冷却を実際に行い、基板Wの温度分布の時間変化を評価した結果について説明する。図7は、評価に用いたガラス基板のサイズと、温度測定箇所(チャンネル)を示す図である。
<Measurement evaluation of cooling process>
Hereinafter, a description will be given of a result of actually performing cooling using the heat treatment apparatus 1 and the heat treatment apparatus 1001 and evaluating a temporal change in the temperature distribution of the substrate W. FIG. 7 is a diagram showing the size of the glass substrate used for evaluation and the temperature measurement location (channel).

評価においては、基板Wとして、図7に示すように、長辺長さが920mmで、短辺長さが730mmで、厚さが0.7mmのガラス基板を用いた。そして、ガラス基板には、5箇所×5箇所のマトリックス状に計25箇所の温度測定箇所(1CH〜25CH)を設定し、それぞれの箇所に熱電対を取り付けた。そして、ガラス基板を約170℃に加熱し、その後、熱処理装置1または1001内に搬入し、冷却を行った。なお雰囲気ガスの温度は約20℃であった。搬入にあたっては、ガラス基板の長辺がX軸方向に平行になり、短辺がY軸方向に平行になるようにするとともに、25箇所の温度測定箇所について、1CH〜5CHが開口部2aに近く、以降、6CH〜10CH、11CH〜15CH、16CH〜20CH、21CH〜25CHの順に奥端部1eに近くなるようにした。なお、これら5CHごとのチャンネルの組をチャンネル群と称する。   In the evaluation, as shown in FIG. 7, a glass substrate having a long side length of 920 mm, a short side length of 730 mm, and a thickness of 0.7 mm was used as the substrate W. And the temperature measurement location (1CH-25CH) of a total of 25 places was set to the glass substrate in the matrix form of 5 places x 5 places, and the thermocouple was attached to each location. Then, the glass substrate was heated to about 170 ° C., and then carried into the heat treatment apparatus 1 or 1001 and cooled. The temperature of the atmospheric gas was about 20 ° C. In carrying-in, the long side of the glass substrate is parallel to the X-axis direction and the short side is parallel to the Y-axis direction, and 1CH to 5CH are close to the opening 2a at 25 temperature measurement points. In the following, 6CH to 10CH, 11CH to 15CH, 16CH to 20CH, and 21CH to 25CH are arranged closer to the back end 1e in this order. Note that a set of channels for each 5CH is referred to as a channel group.

なお、熱処理装置1としては、段差位置(Y軸方向における段差面3sの形成位置)が異なる3種類のものを用意した。具体的には、上述の距離aを以下のように違えた3つの熱処理装置1A、1B、1Cを用意した。   In addition, as the heat treatment apparatus 1, three types having different step positions (formation positions of the step surface 3s in the Y-axis direction) were prepared. Specifically, three heat treatment apparatuses 1A, 1B, and 1C were prepared in which the distance a was changed as follows.

熱処理装置1A:a=L/4;
熱処理装置1B:a=L/2;
熱処理装置1C:a=3L/4。
Heat treatment apparatus 1A: a = L / 4;
Heat treatment apparatus 1B: a = L / 2;
Heat treatment apparatus 1C: a = 3L / 4.

図8ないし図10は、それぞれの熱処理装置1(1A、1B、1C)にて熱処理を行ったときの温度を、熱処理装置1001で熱処理を行ったときの温度に対する差分値として示す図である。図8が熱処理装置1Aについての結果を示し、図9が熱処理装置1Bについての結果を示し、図10が熱処理装置1Cについての結果を示している。   8 to 10 are diagrams showing the temperature when the heat treatment is performed in each heat treatment apparatus 1 (1A, 1B, 1C) as a difference value with respect to the temperature when the heat treatment is performed in the heat treatment apparatus 1001. 8 shows the results for the heat treatment apparatus 1A, FIG. 9 shows the results for the heat treatment apparatus 1B, and FIG. 10 shows the results for the heat treatment apparatus 1C.

より詳細には、それぞれの熱処理装置1(1A、1B、1C)と熱処理装置1001とにおける各測定時刻での各CHの測定値について、熱処理装置1001での測定値から、それぞれの熱処理装置1(1A、1B、1C)での測定値を差し引いて得られた値を、Y軸方向における位置が同じチャンネルの組であるチャンネル群ごとに平均したうえで、熱処理時間に対しプロットしたものである。なお、図8ないし図10においては、便宜上、熱処理装置1についての測定値を「実施例温度」と称し、熱処理装置1001についての測定値を「比較例温度」としている。   More specifically, the measured value of each CH at each measurement time in each of the heat treatment apparatuses 1 (1A, 1B, 1C) and the heat treatment apparatus 1001 is determined from the measurement value in the heat treatment apparatus 1001, and each heat treatment apparatus 1 ( The values obtained by subtracting the measured values in 1A, 1B, and 1C) are averaged for each channel group that is a set of channels having the same position in the Y-axis direction, and plotted against the heat treatment time. 8 to 10, for convenience, the measured value for the heat treatment apparatus 1 is referred to as “example temperature”, and the measured value for the heat treatment apparatus 1001 is referred to as “comparative example temperature”.

図8ないし図10において、あるチャンネル群のある測定時刻での差分値が大きいということは、当該チャンネル群の位置において、当該時刻での熱処理装置1での冷却が熱処理装置1001での冷却よりも進んでいることを意味している。   8 to 10, the fact that the difference value at a certain measurement time of a certain channel group is large means that the cooling in the heat treatment apparatus 1 at that time is less than the cooling in the heat treatment apparatus 1001 at the position of the channel group. It means that you are progressing.

図8ないし図10をみると、3種類の熱処理装置1のいずれにおいても、冷却初期を除いては、ほとんどのチャンネル群において差分値が正となっている。差分値が正であるということは、同一時刻に基板Wの同一チャネル群の位置において、熱処理装置1001による冷却よりも熱処理装置1による冷却の方が進んでいることを意味しているので、係る結果は、少なくともL/4≦a≦3L/4をみたすように底部1aに段差を設けることが、冷却の効率性を高めるうえで有効であることを指し示している。なお、図8および図9の1CH−5CHの場合のみ、冷却後期において0℃〜−1℃の範囲で負となっているが、これは、開口部2aに近いところでは、熱処理装置1001でも高い冷却効果が得られることに起因した結果であり、段差の効果には関係しないものと考えられる。   8 to 10, in any of the three types of heat treatment apparatuses 1, the difference value is positive in most channel groups except for the initial stage of cooling. The positive difference value means that the cooling by the heat treatment apparatus 1 is more advanced than the cooling by the heat treatment apparatus 1001 at the same channel group position of the substrate W at the same time. The results indicate that it is effective to increase the cooling efficiency to provide a step in the bottom 1a so as to satisfy at least L / 4 ≦ a ≦ 3L / 4. Only in the case of 1CH-5CH in FIGS. 8 and 9, it is negative in the range of 0 ° C. to −1 ° C. in the latter stage of cooling, but this is also high in the heat treatment apparatus 1001 near the opening 2a. This result is due to the fact that the cooling effect is obtained, and is considered not to be related to the effect of the step.

特に、図9に示す、a=L/2である、つまりは段差が底部1aのちょうど中間にある熱処理装置1Bで冷却を行った場合においては、21CH〜25CHでの差分値が最も大きく、ついで16CH〜20CHでの差分値が大きくなっている。このことは、熱処理装置1Bでは、奥端部1eに近い位置における基板Wの冷却がより効率的に行われていることを示している。   In particular, when cooling is performed in the heat treatment apparatus 1B shown in FIG. 9 where a = L / 2, that is, the step is just in the middle of the bottom 1a, the difference value between 21CH and 25CH is the largest, The difference value between 16CH and 20CH is large. This indicates that in the heat treatment apparatus 1B, the substrate W is cooled more efficiently at a position close to the back end 1e.

以上、説明したように、本実施の形態によれば、一方が開口した内部空間においてピンにて支持された基板を、内部空間からの強制的な排気によって開口部から雰囲気ガスを流入させることで冷却する熱処理装置において、底部に段差を設け、基板の下側において、開口部近傍における雰囲気ガスの流速よりも排気口近傍における雰囲気ガスの流速が大きくなるようにすることで、基板の冷却が、空冷のみによって温度均一性を保ちつつ効率的に行える。しかも、係る効率的な冷却が、基板をピン上に載置し、排気による雰囲気ガスの流入のみによって冷却を行うという、構成が比較的簡単であり、かつ基板のハンドリングも比較的容易な装置で行える。   As described above, according to the present embodiment, the substrate gas supported by the pin in the internal space opened on one side is caused to flow atmospheric gas from the opening by forced exhaust from the internal space. In the heat treatment apparatus for cooling, a step is provided at the bottom, and on the lower side of the substrate, the flow rate of the atmospheric gas in the vicinity of the exhaust port is larger than the flow rate of the atmospheric gas in the vicinity of the opening, thereby cooling the substrate. Efficiently while maintaining temperature uniformity only by air cooling. In addition, such an efficient cooling is a device that is relatively simple in configuration and has a relatively easy substrate handling, in which the substrate is placed on the pins and cooled only by the inflow of atmospheric gas by exhaust. Yes.

<変形例>
熱処理装置において流速分布を実現する態様は、上述の実施の形態に示したものには限られない。図11ないし図13は、熱処理装置の種々の変形例を示す斜視図である。いずれの場合も、基板Wが支持ピンPに支持された状態において、基板Wの下側に、開口部2a近傍よりも奥端部1e近傍の方が雰囲気ガスの流速が大きくなる流速分布が形成される。これにより、基板Wの冷却効率の向上が実現される。
<Modification>
The mode of realizing the flow velocity distribution in the heat treatment apparatus is not limited to that shown in the above-described embodiment. 11 to 13 are perspective views showing various modifications of the heat treatment apparatus. In any case, in the state where the substrate W is supported by the support pins P, a flow velocity distribution is formed on the lower side of the substrate W such that the flow velocity of the atmospheric gas is larger in the vicinity of the back end portion 1e than in the vicinity of the opening 2a. Is done. Thereby, the improvement of the cooling efficiency of the board | substrate W is implement | achieved.

図11に示す熱処理装置201は、底部1aに段差部3を備える代わりに、奥端部1eに向かうほど基板Wとの間隔が狭くなる態様にて傾斜部203を備える。傾斜部203は、X軸に垂直な位置に三角形の段差面203sを備える。   A heat treatment apparatus 201 shown in FIG. 11 includes an inclined portion 203 in such a manner that the distance from the substrate W becomes narrower toward the back end portion 1e instead of providing the step portion 3 at the bottom portion 1a. The inclined portion 203 includes a triangular step surface 203s at a position perpendicular to the X axis.

図12に示す熱処理装置301は、側部1b、1cと段差部3とが離間し、当該離間部分に間隙304が形成された構成を有する。これは、X軸方向における流速分布に着目した場合、側部1b、1cの近傍では相対的に流速が大きくなる傾向があることを考慮した構成である。   The heat treatment apparatus 301 shown in FIG. 12 has a configuration in which the side portions 1b and 1c and the stepped portion 3 are separated from each other, and a gap 304 is formed in the separated portion. This is a configuration that takes into account that when the flow velocity distribution in the X-axis direction is focused, the flow velocity tends to be relatively large in the vicinity of the side portions 1b and 1c.

図13に示す熱処理装置401は、第1段差部403aと第3段差部403cの段差面が曲面となっており、両者の間には、奥端部1eに向かうほど基板Wとの間隔が狭くなる態様の曲面傾斜部403bを備える。図13は、段差面が矩形である必要はないこと、および段差部が曲面形状を有していてもよいことを示している。   In the heat treatment apparatus 401 shown in FIG. 13, the step surfaces of the first step portion 403a and the third step portion 403c are curved, and the distance between the two is narrower toward the back end portion 1e. The curved-surface inclination part 403b of the aspect which becomes is provided. FIG. 13 shows that the step surface need not be rectangular and that the step portion may have a curved shape.

あるいはさらに、上述の実施の形態や図11ないし図13に示した熱処理装置が備える段差部や傾斜部などが適宜に組み合わされる態様であってもよい。   Alternatively, a mode in which the stepped portion and the inclined portion provided in the above-described embodiment and the heat treatment apparatus shown in FIGS. 11 to 13 are appropriately combined may be used.

また、上述の実施の形態では、基板Wの上側においては天面部1dとの距離が場所によらず一定とされているが、基板Wの上側においても、基板Wの搬入・搬出に支障のない限りにおいて、段差を設けるなどの態様にて流速分布が形成されるように熱処理装置1が構成されてもよい。   In the above-described embodiment, the distance from the top surface portion 1d is constant regardless of the location on the upper side of the substrate W, but there is no problem in loading and unloading the substrate W on the upper side of the substrate W. As far as it is concerned, the heat treatment apparatus 1 may be configured so that the flow velocity distribution is formed in a manner such as providing a step.

また、上述の実施の形態では、設けた段差部が1段となっているが、開口部側から排気口側に向かって、段階的に段差が増える(階段状)構造としてもよい。このような構造とすることで、大サイズの基板においても冷却効率の向上が実現される。   Moreover, in the above-mentioned embodiment, although the provided level difference part is 1 step | paragraph, it is good also as a structure where a level | step difference increases stepwise from the opening part side toward the exhaust port side. With such a structure, the cooling efficiency can be improved even for a large-sized substrate.

1、201、301、401、1001 熱処理装置
1a (熱処理装置の)底部
1b、1c (熱処理装置の)側部
1d (熱処理装置の)天面部
1e (熱処理装置の)奥端部
1f (熱処理装置の)脚部
2 熱処理空間
3 段差部
3s 段差面
4 間隙
5 排気口
P 支持ピン
W 基板
1, 201, 301, 401, 1001 Heat treatment apparatus 1a (of heat treatment apparatus) bottom 1b, 1c (of heat treatment apparatus) side part 1d (of heat treatment apparatus) top surface 1e (of heat treatment apparatus) back end 1f (of heat treatment apparatus) ) Leg part 2 Heat treatment space 3 Step part 3 s Step surface 4 Gap 5 Exhaust port P Support pin W Substrate

Claims (8)

基板を収容した収容部に外部から雰囲気ガスを流入させることによって基板を冷却する熱処理装置であって、
基板を収容する収容部が、
基板を水平に支持するための複数の支持ピンと、
前記雰囲気ガスが外部から水平方向に流入する開口部と、
前記開口部に対向する位置に設けられた、前記雰囲気ガスを排気するための排気口と、
前記基板が前記支持ピンにて水平に支持されて前記雰囲気ガスによって冷却される際に、少なくとも前記基板の下側における前記雰囲気ガスの流れに、前記開口部側よりも前記排気口が備わる側の方が流速が大きくなる流速分布を生じさせる流速分布付与手段と、
を備えることを特徴とする熱処理装置。
A heat treatment apparatus that cools a substrate by flowing an atmospheric gas from the outside into a housing portion that houses the substrate,
An accommodating portion for accommodating the substrate is
A plurality of support pins for horizontally supporting the substrate;
An opening through which the atmospheric gas flows horizontally from the outside;
An exhaust port for exhausting the atmospheric gas, provided at a position facing the opening;
When the substrate is horizontally supported by the support pins and cooled by the atmospheric gas, at least the flow of the atmospheric gas on the lower side of the substrate is on the side where the exhaust port is provided rather than the opening side. A flow velocity distribution providing means for generating a flow velocity distribution in which the flow velocity is larger,
A heat treatment apparatus comprising:
請求項1に記載の熱処理装置であって、
前記流速分布付与手段が、前記排気口が備わる側における前記基板と前記収容部との距離を前記開口部側における前記基板と前記収容部との距離よりも狭めることによって、前記流速分布を生じさせてなる、
ことを特徴とする熱処理装置。
The heat treatment apparatus according to claim 1,
The flow velocity distribution imparting means generates the flow velocity distribution by narrowing a distance between the substrate and the accommodating portion on the side where the exhaust port is provided to be smaller than a distance between the substrate and the accommodating portion on the opening side. Become
The heat processing apparatus characterized by the above-mentioned.
請求項2に記載の熱処理装置であって、
前記流速分布付与手段が、前記収容部の底部において、前記排気口が備わる側と前記開口部側とに設けられた段差である、
ことを特徴とする熱処理装置。
The heat treatment apparatus according to claim 2,
The flow velocity distribution imparting means is a step provided on a side where the exhaust port is provided and a side of the opening at the bottom of the accommodating portion.
The heat processing apparatus characterized by the above-mentioned.
請求項3に記載の熱処理装置であって、
前記段差の形成位置と前記開口部との距離が、前記開口部と前記排気口が備わる位置との距離の1/4以上3/4以下である、
ことを特徴とする熱処理装置。
The heat treatment apparatus according to claim 3,
The distance between the step formation position and the opening is not less than 1/4 and not more than 3/4 of the distance between the opening and the position where the exhaust port is provided.
The heat processing apparatus characterized by the above-mentioned.
基板を周囲の雰囲気ガスとの温度差を利用して冷却する熱処理装置であって、
基板を水平に支持する複数の支持ピンが突出してなる底部と、
前記底部に垂直な側部と、
前記底部と対向する天面部と、
前記底部と、前記側部と、前記天面部とに垂直な奥端部と、
とによって囲驍された熱処理空間を有し、
前記奥端部が、前記熱処理空間から雰囲気ガスを排気するための排気口を備え、
前記支持ピンに水平に支持された前記基板を冷却するために前記排気口から前記雰囲気ガスを排気することによって前記熱処理空間に新たな前記雰囲気ガスを流入させる際に、少なくとも前記基板の下側において、前記熱処理空間の開口部側よりも前記排気口が備わる側の方が前記雰囲気ガスの流速が大きくなる流速分布を生じさせる流速分布付与手段、
をさらに備えることを特徴とする熱処理装置。
A heat treatment apparatus that cools a substrate by utilizing a temperature difference from the surrounding atmospheric gas,
A bottom portion in which a plurality of support pins that horizontally support the substrate protrude;
A side perpendicular to the bottom;
A top surface facing the bottom;
A back end perpendicular to the bottom, the side and the top surface;
And has a heat treatment space surrounded by
The back end includes an exhaust port for exhausting atmospheric gas from the heat treatment space,
When the ambient gas is introduced into the heat treatment space by exhausting the ambient gas from the exhaust port to cool the substrate supported horizontally by the support pins, at least on the lower side of the substrate. A flow velocity distribution providing means for generating a flow velocity distribution in which the flow velocity of the atmospheric gas is larger on the side provided with the exhaust port than on the opening side of the heat treatment space;
A heat treatment apparatus further comprising:
請求項5に記載の熱処理装置であって、
前記流速分布付与手段が、前記排気口が備わる側における前記基板と前記底部との距離を前記開口部側における前記基板と前記底部との距離よりも狭めることによって、前記流速分布を生じさせてなる、
ことを特徴とする熱処理装置。
The heat treatment apparatus according to claim 5,
The flow velocity distribution providing means generates the flow velocity distribution by narrowing a distance between the substrate and the bottom portion on the side where the exhaust port is provided to be smaller than a distance between the substrate and the bottom portion on the opening side. ,
The heat processing apparatus characterized by the above-mentioned.
請求項6に記載の熱処理装置であって、
前記流速分布付与手段が、前記底部において、前記排気口が備わる側と前記開口部側とに設けられた段差である、
ことを特徴とする熱処理装置。
The heat treatment apparatus according to claim 6,
The flow velocity distribution providing means is a step provided in the bottom portion on the side provided with the exhaust port and on the opening side.
The heat processing apparatus characterized by the above-mentioned.
請求項7に記載の熱処理装置であって、
前記段差の形成位置と前記開口部との距離が、前記開口部と前記臆面部との距離の1/4以上3/4以下である、
ことを特徴とする熱処理装置。
The heat treatment apparatus according to claim 7,
The distance between the formation position of the step and the opening is not less than 1/4 and not more than 3/4 of the distance between the opening and the flange portion.
The heat processing apparatus characterized by the above-mentioned.
JP2012076172A 2012-03-29 2012-03-29 Heat treatment equipment Expired - Fee Related JP5856890B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012076172A JP5856890B2 (en) 2012-03-29 2012-03-29 Heat treatment equipment
KR1020130018476A KR101442394B1 (en) 2012-03-29 2013-02-21 Heat treatment apparatus
CN201310065999.3A CN103367201B (en) 2012-03-29 2013-03-01 Annealing device
TW102109767A TWI505369B (en) 2012-03-29 2013-03-20 Heat treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012076172A JP5856890B2 (en) 2012-03-29 2012-03-29 Heat treatment equipment

Publications (2)

Publication Number Publication Date
JP2013207164A true JP2013207164A (en) 2013-10-07
JP5856890B2 JP5856890B2 (en) 2016-02-10

Family

ID=49368280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012076172A Expired - Fee Related JP5856890B2 (en) 2012-03-29 2012-03-29 Heat treatment equipment

Country Status (4)

Country Link
JP (1) JP5856890B2 (en)
KR (1) KR101442394B1 (en)
CN (1) CN103367201B (en)
TW (1) TWI505369B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897124A (en) * 1994-09-29 1996-04-12 Hitachi Ltd Surface processor
JP2002083859A (en) * 2000-06-20 2002-03-22 Tokyo Electron Ltd Substrate treating apparatus and method therefor
JP2010272765A (en) * 2009-05-22 2010-12-02 Tokyo Electron Ltd Heat treatment apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087133B2 (en) * 1990-08-31 1996-01-29 日機装株式会社 Reference value calibration method for surface area measuring device
TW544775B (en) * 2001-02-28 2003-08-01 Japan Pionics Chemical vapor deposition apparatus and chemical vapor deposition method
JP4087133B2 (en) 2002-03-22 2008-05-21 株式会社リコー Electronic circuit board cooling structure
KR100706236B1 (en) 2004-11-11 2007-04-11 삼성전자주식회사 Dry cleaning apparatus used in manufacturing semiconductor devices
JP4410147B2 (en) * 2005-05-09 2010-02-03 東京エレクトロン株式会社 Heating device, coating, developing device and heating method
JP5105396B2 (en) * 2006-04-12 2012-12-26 東京応化工業株式会社 Heat treatment device
KR100825967B1 (en) 2006-11-03 2008-04-29 (주)리드 Interface unit, substrates treating apparatus and substrates temperature control method using the same
JP4559454B2 (en) * 2007-07-06 2010-10-06 エスペック株式会社 Plate cooling device, heat treatment system
JP5107318B2 (en) * 2009-08-24 2012-12-26 東京エレクトロン株式会社 Heat treatment device
JP5525972B2 (en) * 2010-09-06 2014-06-18 大日本スクリーン製造株式会社 Substrate cooling device
CN102116667A (en) * 2011-01-14 2011-07-06 重庆工业自动化仪表研究所 Large-aperture gas flow calibration device capable of providing two flow fields

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897124A (en) * 1994-09-29 1996-04-12 Hitachi Ltd Surface processor
JP2002083859A (en) * 2000-06-20 2002-03-22 Tokyo Electron Ltd Substrate treating apparatus and method therefor
JP2010272765A (en) * 2009-05-22 2010-12-02 Tokyo Electron Ltd Heat treatment apparatus

Also Published As

Publication number Publication date
KR101442394B1 (en) 2014-09-17
KR20130111275A (en) 2013-10-10
CN103367201A (en) 2013-10-23
CN103367201B (en) 2016-02-24
TW201340213A (en) 2013-10-01
JP5856890B2 (en) 2016-02-10
TWI505369B (en) 2015-10-21

Similar Documents

Publication Publication Date Title
JP5625981B2 (en) Heat treatment apparatus and heat treatment method
US7780438B2 (en) Substrate heating apparatus and method and coating and developing system
KR101312676B1 (en) Active cooling substrate support
JP2016018994A (en) Device and method for pre-baking board upstream of processing chamber
US20060234178A1 (en) Apparatus and method for heating substrate and coating and developing system
CN107017182B (en) Substrate processing apparatus
KR20020057811A (en) Heat processing apparatus
CN102246290A (en) Substrate cooling apparatus and substrate processing system
JP2008192756A (en) Heating equipment and heating method
TW201320221A (en) Substrate cooling device, substrate cooling method and heat treatment apparatus
KR100848772B1 (en) Substrate processing apparatus
JP2008066339A (en) Manufacturing apparatus of semiconductor device
KR102545752B1 (en) Bake unit and Apparatus for treating substrate
TWI545671B (en) A substrate cooling unit and the substrate treating facility
JP5856890B2 (en) Heat treatment equipment
JP6896565B2 (en) Inner wall and substrate processing equipment
TW201310528A (en) Film forming apparatus
JP5027430B2 (en) Substrate processing equipment
JP2010080537A (en) Substrate treatment apparatus
CN105742205A (en) Substrate processing chamber and semiconductor processing equipment
CN210776182U (en) Mask plate cooling system of photoetching machine
US20230137182A1 (en) Method, system and apparatus for cooling a substrate
JP4800226B2 (en) Heat treatment equipment
JP2965163B2 (en) Heating equipment
JP2006344986A (en) Coating and development device and pattern forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R150 Certificate of patent or registration of utility model

Ref document number: 5856890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees