JP2013206998A - 流体制御システム - Google Patents

流体制御システム Download PDF

Info

Publication number
JP2013206998A
JP2013206998A JP2012072530A JP2012072530A JP2013206998A JP 2013206998 A JP2013206998 A JP 2013206998A JP 2012072530 A JP2012072530 A JP 2012072530A JP 2012072530 A JP2012072530 A JP 2012072530A JP 2013206998 A JP2013206998 A JP 2013206998A
Authority
JP
Japan
Prior art keywords
power generation
fluid
generation module
temperature
cost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012072530A
Other languages
English (en)
Inventor
Ikuaki Washimi
育亮 鷲見
Takaaki Hasegawa
孝明 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012072530A priority Critical patent/JP2013206998A/ja
Publication of JP2013206998A publication Critical patent/JP2013206998A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】太陽光発電モジュールの発電力を向上させる目的で流体を流したけれど、流体費が高くかえって損をしてしまったというトラブルを回避する流体制御システムを提供する。
【解決手段】太陽光発電モジュール10の受光面に流体を流す流出部3と、流出部3による流出を制御する制御部2とを有する流体制御システム1において、制御部2は流出部3が流体を流す場合の発電の増加額を予測計算し、流体を流すための動力費と流体代の合計の流体費を予測計算し、発電の増加額が流体費よりも低いときは流出部3の流出を止めさせる。
【選択図】図1

Description

本発明は、太陽光発電モジュールに流水させる流体制御システムに関するものである。
太陽光発電モジュールを用いた太陽光発電システムでは、太陽光のエネルギーのすべてが電気エネルギーに変換されるわけではなく、その多くが熱となり太陽光発電モジュール自体の温度を上昇させてしまう。更に、夏季では直射日光によって太陽光発電モジュールの表面温度がかなりの高温(例70℃から80℃)まで上昇してしまうことが多い。
そのため、太陽光発電モジュールを構成する太陽電池の温度が上昇し、光―電気変換効率が低下することになる。
また、潮風による塩の結晶、鳥の糞、冬場の凍結および積雪、黄砂、埃等の異物が太陽光発電モジュールの受光面に付着した場合には、部分陰となり発電効率が低下する。
そこで、太陽光発電モジュールの表面温度が上昇した場合には太陽光発電モジュールを冷却し温度低下を行うことが提案された。その冷却方法としては、一般的に水冷にて行う方法が知られている。
その先行技術として、例えば、特許文献1に記載されている冷却装置では、水槽内に太陽電池素子を配置して冷却を行っている。また、太陽光の受光面への異物の除去に対してはワイパーを設けてその除去を行っている。ところが、特許文献1に記載されている先行技術では、同文献の図1に示されているように太陽電池素子を水槽内に配置する必要があり、その水槽を屋根の上に設置するには装置全体が大型化になり、設置コストや屋根の強度、設置スペースの確保ができないという問題を生じた。また、太陽光の受光面に配置されたワイパー自身が部分陰の原因となり、更に太陽光発電モジュール全面へのワイパー設置は装置として大型化による設置上の制限が生じる事となる。
また、特許文献2に記載されている冷却装置では、傾斜した太陽光発電モジュールの上端に給水タンクを設け、太陽光発電モジュールの温度が上昇すると、給水口が開いて太陽光発電モジュールの受光面に散水して冷却を行うようにしている。ところが、特許文献2に記載されている先行技術では、前記特許文献1と同様に太陽光発電モジュールの上方に給水タンクを別途設ける必要があり、太陽光発電モジュールの配置場所以外に給水タンクを設置する場所も必要となるため、設置上の制限を生じていた。
また、特許文献3に記載されている冷却装置では、貯水槽から毛管現象により伝わってきた水を太陽光発電モジュールの裏面に供給することにより冷却を行っている。ところが、特許文献3に記載されている先行技術では、太陽光発電モジュールの裏面を冷却しているため、屋根材との間に空間が必要となり、太陽光発電モジュールを屋根材と一体的に設置するのが困難である。また、長時間流水しなければならないので、多くの流水や電力が必要であるのが問題である。
そこで、特許文献4に記載されている冷却装置では、散水管に開けられた複数の孔から太陽光発電モジュールの受光面に水を滴下し、滴下した水の気化熱により冷却を行うようにしている。
実開平1−123163号公報 特開平8−195503号公報 特開平5−299685号公報 特開2004−259797号公報
特許文献1〜特許文献4に記載されている先行技術では、長時間冷却しなければならないので、多くの流水が必要である。また、特許文献4のように揚水ポンプを使用する場合は多くの電力も必要である。このように冷却のための費用が膨大という問題があった。
本発明は上記問題点に鑑みてなされたものであって、本発明は、冷却による発電の増加額よりも冷却代が高くなるときがあることに着眼したものであり、本発明の目的は、太陽光発電モジュールの発電力を向上させる目的で流水させたけれど、流水費が高くかえって損をしてしまったというトラブルを回避する流体制御システムを提供することにある。
上記目的を達成するため、本発明の流体制御システムは、太陽光発電モジュールの受光面に流体を流す流出部と、該流出部による流出を制御する制御部とを有し、前記制御部は前記流出部が流体を流す場合の発電の増加額を予測計算し、流体を流すための動力費と流体代の合計の流体費を予測計算し、前記発電の増加額が前記流体費よりも低いときは前記流出部の流出を止めさせることを特徴とする。
また、本発明の流体制御システムは、前記太陽光発電モジュールの温度を検出する温度検出部と、前記太陽光発電モジュールへの照度を検出する照度検出部を備え、前記制御部は前記太陽光発電モジュールの温度と照度に対する発電力のデータと、流体による前記太陽光発電モジュールの温度低下の時間データを記憶し、前記制御部は前記温度検出部が検出した温度と、前記照度検出部が検出した照度を用いて前記太陽光発電モジュールが前記検出温度から所定の温度まで低下するのに要する時間と発電の増加額を予測計算し、また、その時間の前記流体費を予測計算することが好ましい。
また、本発明の流体制御システムは、前記制御部は照度が閾値未満であれば前記流出部を止めさせることが好ましい。
また、本発明の流体制御システムは、降雨を検知する雨検知部を設け、前記制御部は降雨であれば前記流出部を止めさせることが好ましい。
また、本発明の流体制御システムは、雪を検知する雪検知部を設け、前記制御部は雪を検知すれば前記流出部を出させることが好ましい。
本発明の請求項1による構成では、制御部は流出部が流体を流す場合の発電の増加額を予測計算し、流体を流すための流体代と動力費の流体費を予測計算し、発電の増加額が合計額よりも低いときは流出部の流出を止めさせるので、太陽光発電モジュールの発電力を向上させる目的で流体を流させたけれど、流体費が高くてかえって損をしてしまったというトラブルを回避することができる。
また、本発明の請求項2による構成では、制御部は太陽光発電モジュールの温度と照度に対する発電力のデータと、流体による太陽光発電モジュールの温度低下の時間データを記憶し、制御部は温度検出部が検出した温度と、照度検出部が検出した照度を用いて太陽光発電モジュールが検出温度から所定の温度まで低下するのに要する時間と発電の増加額を予測計算する。このように、発電力を検出する手段を有していなくても、発電の増加額を予測計算できるので安価な構成となる。
また、本発明の請求項3による構成では、制御部は照度が閾値未満であれば前記流出部を止めさせるので、もし、流す状態で照度が閾値未満になったときは太陽光発電モジュール10の出力が停止されるので、このときに流体が継続することを回避することができる。
また、本発明の請求項4による構成では、降雨であれば雨によって太陽光発電モジュールが冷却されるので、制御部は降雨であれば流出部を止めさせ、流体費を削減することができる。
また、本発明の請求項5による構成では、制御部は雪を検知すれば発電の増加額が流体費よりも低くても前記流出部を出めさせるので、冷却機能のみでなく、除雪・融雪としても機能することができる。これにより、発電の増加額が流体費よりも低くても太陽光発電モジュールへの入光を遮る雪を流体で解かして、発電の増加額を増加させることができる。
本発明の流体制御システムの要部の構成を示すブロック図である。 屋根に施工された本発明の側面図である。 屋根に施工された本発明の斜視図である。 本発明の流出部と制御部の要部を示す図である。 本発明の種々の照度における温度−発電量のグラフである。 本発明の流水による太陽光発電モジュールの冷却温度を示すグラフである。 本発明の制御部の主要な動作を示すフローチャートである。
以下に本発明の実施例を図面に基づいて説明する。但し、以下に示す実施例は、本発明の技術的思想を具体化するための流体制御システムを例示するものであって本発明の技術的範囲を特定するものでない。本発明の技術的範囲は、特許請求の範囲の記載によって定められるものである。
本発明の流体制御システムは太陽光発電モジュールへの流水を制御するシステムである。図1を用いて太陽光発電モジュール10の概要と本発明の流体制御システム1の要部を説明する。
太陽光発電モジュール10は発電素子を収納した複数個の発電ユニット(後述)を平面上に連結した所定の大きさの構造体である。この太陽光発電モジュール10の受光面は透明な耐熱ガラスにより覆われている。発電ユニットのそれぞれは定められた仕様に基づいて所定数を直列接続、あるいは並列接続し定格電圧、定格電流を得るようにしている。この太陽光発電モジュール10は図2及び図3で後述するが家屋の屋根やビル等の屋上、あるいは平地等に設置され、太陽光を最も受光しやすい角度となるべく設置されている。
本発明の流体制御システム1は制御部2、流出部3、温度検出部4、照度検出部5、雨検知部6、第1雪検知部7と第2雪検知部8からなる。制御部2は記憶部2aを備え、記憶部2aに記憶されているプログラムにしたがって流出部3を制御する。記憶部2aには制御部2が演算を行うための一時的な記憶を行い、また、制御部2が制御を行うために必要なデータが記憶されている。この必要なデータとして、記憶部2aには、単位電力量の電力料金、単位水道使用量の水道料金、流出部の単位時間の流量(流速)、太陽光発電モジュール10への照度の閾値(照度の閾値は太陽光発電モジュールの仕様により異なる。)や、太陽光発電モジュール10の第一の閾値温度(例:40度)と第二の閾値温度(例:30度)や、図5、図6のグラフデータなどが記憶されている。
流出部3は制御部2の制御により太陽光発電モジュール10の受光面に強制的に所定の一定の流量で水道水を流す。この流出部3は太陽光発電モジュール10の最上部に設置され、太陽光発電モジュール10の横幅方向の全域に亘って流水するように構成されている。
温度検出部4は太陽光発電モジュール10を構成している構造体の最上部から最下部まで直線的に配置した発電ユニットのそれぞれに設けられている。これらの温度検出部4はそれぞれの発電ユニットの検出温度を電気的レベルの変化として制御部2に出力する。この出力信号は太陽光発電モジュール10の温度が十分な能力を発揮できる範囲か否かを判定するための入力信号となる。
照度検出部5は太陽光発電モジュール10への照度がどの程度のものかを検出して制御部2に出力する。この照度検出部4は、太陽光発電モジュール10の一部の領域を構成している最上部から最下部まで直線的に配置した複数個の発電ユニットのうちの一つの発電ユニット、あるいは全ての発電ユニットに取り付けた照度センサー(後述)から構成しており、検出照度を電気的レベル変化として出力する。この出力信号は太陽光発電モジュール10が発電可能となる照度に達しているか否かを判定するための入力信号となる。なお、図示しないが、照度検出部5への受光が雪で妨げられないような対策が照度検出部5に施されている。たとえば、流水や温風やヒータなどで雪を除去できるようになっている。
雨検知部6は図3に示すように太陽光発電モジュール10の近傍に配設され、約50cmのシートレーザービームを通過する雨の遮断率から粒径と落下速度などの情報から降雨の有無や降雨量などを検知する。ここでは、雨検知部6は降雨を検出して制御部2に出力する。第1雪検知部7、8は図3に示すように太陽光発電モジュール10の近傍に配設され、赤外線の反射により、降雪や白くなっているかまたはどこまで積もっているかの積雪を検知する。ここでは、第1雪検知部7は太陽光発電モジュール10の積雪が10cmに達したか否かを検知して制御部2に出力し、第2雪検知部8は太陽光発電モジュール10に積雪があるか否かを検知して制御部2に出力する。
図2〜図4を用いて太陽光発電モジュール10の概要と本発明の流体制御システム1の要部を説明する。太陽光発電モジュール10は、図2及び図3に示すように、屋根Yの棟側から下部の庇側に向かって縦(直線)方向に3個、横方向に9個の合計27個の発電ユニットA1、A2、A3,B1、B2、B3・・・I1、I2、I3により構成されている。
温度検出部4は、図2及び図3に示すように、それぞれの発電ユニットA1、A2、A3,B1、B2、B3・・・I1、I2、I3の裏面に温度センサー4A1、4A2、4A3,4B1、4B2、4B3・・・4I1、4I2、4I3を取り付けたものである。その取り付け位置が裏面であるので、温度センサー4A1、4A2、4A3,4B1、4B2、4B3・・・4I1、4I2、4I3やその配線が受光面への入光を遮ることがない。この温度センサー4A1、4A2、4A3,4B1、4B2、4B3・・・4I1、4I2、4I3のそれぞれは、個別に制御部2に入力され、これにより制御部2は太陽光発電モジュール10の各所の温度情報を得ることができ、太陽光発電モジュール10の各所の温度に応じた流水の制御を行うことができる。
照度検出部5は、図3に示すように、太陽光発電モジュール10の最も右側に位置して上下方向に配置された3つの発電ユニットのうちの例えば上部の発電ユニットA1の外面に照度センサーSを取り付けて太陽光の照度を検出する。
このように一つの発電ユニットに一つの照度センサーSを取り付ける場合は、単に、太陽光の照度の程度を検出するには十分である。しかし、太陽光の照度検出の精度を上げ太陽光の照度を詳細、且つ信頼性を高めるためには上下方向に配置された3つの発電ユニットのそれぞれに取り付けるようにすればよい。
このような具体例は、例えば、太陽光発電モジュール10を設置する屋根Yが隣接する家屋や樹木などにより部分的に発電ユニットが陰になる場合が想定される。
図4に示すように、流出部3は水道水を通水する配水管3aと、該排水管に連結し太陽光発電モジュール10の横方向の幅の範囲に延びる流水管3bと、配水管3aに設けられた電磁バルブ3cを有している。電磁バルブ3cは制御部2の制御により流出部3からの流水の開放、遮断を行う。流水管3bには、図4に示すように、太陽光発電モジュールに向けて放水する複数の出水孔3dが横一列に並べて穿設され、この出水孔3dからこの太陽光発電モジュール10に向けて水が放水される。
図5は太陽光発電モジュール10への種々の照度における、太陽光発電モジュール10の温度に対する太陽光発電モジュール10の発電量を示すグラフである。照度が低くなると発電量が小さくなり、温度が高くなると発電量が小さくなる。このグラフは制御部2の記憶部2aに、例えば、記憶容量が少なくてすむ最小二乗法の係数で記憶される。図6は太陽光発電モジュール10が流出部3の流水によって冷却されるときの温度降下を示すグラフである。詳細は後述するが、制御部2は太陽光発電モジュール10の温度が40℃を超えると、30℃になるまで流水させる。このグラフも制御部2の記憶部2aに、例えば、記憶容量が少なくてすむ最小二乗法の係数で記憶される。
次に図7のフローチャートを用いて制御部2の主要な動作を説明する。制御部2はあらかじめ変数Wを記憶部2aに記憶させる。変数W=0は制御部2が流出部3の電磁バルブ3cを閉鎖させて止水することを示し、変数W=0は制御部2が電磁バルブ3cを開放させて出水することを示す。制御部2は変数Wの初期値を0にする(ステップS1)。
制御部2は第1雪検知部7からの出力により積雪が10cm以上であるか否かを判定し(ステップS2)、積雪が10cm以上であれば(ステップS2のYes)ステップS7に処理をジャンプして出水させ、変数Wを1にし、ステップS2に戻る。制御部2は積雪が10cm以上でなければ(ステップS2のNo)、照度検出部5からの信号により照度が所定の閾値以上であるか否かを判定する(ステップS3)。照度が所定の閾値以上であれば(ステップS3のYes)、制御部2は温度検出部4からの信号により太陽光発電モジュール10の温度が40℃―10℃×変数W以上か否かを判定する(ステップS4)。ステップS3で照度が所定の閾値以上でなければ(ステップS3のNo)、制御部2はステップS9に処理をジャンプして止水させ、変数Wを0にして、ステップS2に戻る。
ステップS4において、「40℃―10℃×変数W以上」は止水状態であれば変数W=0であるから温度が40℃以上となり、出水状態であれば変数W=1であるから温度が30℃以上となる。太陽光発電モジュール10の温度が40℃―10℃×変数W以上であれば(ステップS4のYes)、制御部2は冷却した場合の流水費が冷却した場合の発電の増加額以下か否かを判定する(ステップS5)。太陽光発電モジュール10の温度が40℃―10℃×変数W以上でなければ(ステップS4のNo)、制御部2はステップS8に処理をジャンプして第2雪検知部8の出力から太陽光発電モジュール10に雪があるか否かを判定する。
ステップSにおいて、制御部2は流水費と発電の増加額を計算するために、まず、温度検出部4からの信号により太陽光発電モジュール10の温度を得て、この温度が図6に示される太陽光発電モジュール10の冷却データから所定の温度(ここでは30℃)まで冷却されるのに要する時間を計算する。流出は一定の流速で流されるので、制御部2は冷却した場合の水道代を記憶部2aの水道料金を用いて冷却時間から予測計算する。ここでは揚水ポンプなどの動力を使用していないので、流水費は水道代のみとなる。制御部2は照度検出部5から太陽光発電モジュール10への照度を得て、この照度における温度−発電量の関係(図5参照)を抽出し、抽出した温度−発電量の関係と所定の温度までの冷却時間とから冷却した場合の発電の増加額を予測計算する。
このようにして求められた流水費が発電の増加額以下であれば(ステップS5のYes)、制御部2は雨検知部6の出力から雨が降っているか否かを調べる(ステップS6)。流水費が発電の増加額以下でなければ(ステップS5のNo)、制御部2はステップS8に処理をジャンプして第2雪検知部8の出力から太陽光発電モジュール10に雪があるか否かを判定する。ステップS6で雨が降っていなければ(ステップS6のNo)、制御部2は出水させ、変数Wを1にして(ステップS7)、ステップS2に戻る。雨が降っていれば(ステップS6のYes)、制御部2は止水させ、変数Wを0にして(ステップS9)、ステップS2に戻る。ステップS8で太陽光発電モジュール10に雪があれば(ステップS8のYes)、制御部2は出水させ、変数Wを1にして(ステップS7)、ステップS2に戻る。太陽光発電モジュール10に雪がなければ(ステップS8のNo)、制御部2は止水させ、変数Wを0にして(ステップS9)、ステップS2に戻る。
制御部2は上述のように制御を行うので、積雪が無く、降雨がなく、照度が閾値以上あり、且つ、予測の流水費が予測の発電の増加額以下のときは、太陽光発電モジュール10が40℃と超えると出水を開始し、出水により太陽光発電モジュール10が30℃まで下がると止水する。そして、止水により再び太陽光発電モジュール10が40℃と超えると出水を開始する、というように出水と止水を繰り返す。しかしながら、予測の流水費が予測の発電の増加額を越えたり、照度が閾値未満になったり、雨が降れば止水する。また、雪が積もれば出水する。
ステップS5に示すように、本発明は、太陽光発電モジュール10を冷却するための流水費を予測計算し、冷却した場合の発電の増加額を予測計算して、予測の流水費が予測の発電の増加額を上回れば流水を行わない。このために、本発明は太陽光発電モジュール10の発電力を向上させる目的で流水させたけれど、流水費が高くかえって損をしてしまったというトラブルを回避する効果がある。
また、上述の実施形態では、温検出部4と照度検出部5と記憶手段に記憶されているデータによって流水費と発電の増加額を予測計算している。このように、発電力を検出する手段を備えることなく予測計算しているので、構成が安価である。
なお、発電力を検出する手段を備えれば、発電効果のアップ率から発電の増加額を予測計算することができる。例えば、太陽光発電モジュール10を1℃冷却すれば発電力が0.4%増加する。そこで、10℃温度を下げるときは4%の発電力増加となるので、この発電力増加と、温度の検出と冷却特性から得られた冷却時間と、検出された発電力とから発電の増加額を予測計算することができる。なお、照度により発電効果のアップ率が変化するので、照度も検出する。
また、本発明はステップS3で照度が閾値未満であれば、予測の流水費が予測の発電の増加額以下であっても止水させる。これにより、もし、流水状態で照度が閾値未満になったときは太陽光発電モジュール10の出力が停止されるので、このときに出水が継続することを回避することができる。
また、本発明はステップS6で雨が降れば、予測の流水費が予測の発電の増加額以下あっても止水させる。雨が降れば雨によって太陽光発電モジュールが冷却されるので、本発明は雨が降れば流出部を止水させ、流水費を削減することができる。
また、本発明はステップS2やステップS8で雪があれば、予測の流水費が予測の発電の増加額未満であっても出水させる。よって、本発明は冷却機能のみでなく、除雪・融雪としても機能することができる。これにより、発電の増加額が流水費よりも低くても太陽光発電モジュールへの入光を遮る雪を流水で解かして、発電の増加額を増加させることができる。大雪のときはステップS2で照度とは無関係に融雪し、小雪のときはステップS8で照度が閾値以上のとき融雪する。このように雪の量に応じて融雪するので効率的である。
上述の実施形態の流体制御システムは水道水を流すものであったので、流水費として水道代のみであった。本発明の流水費は水道代に限定するものではなく、他の流水費にも適用することができる。たとえば、地下水を揚力ポンプで流水させるときは揚力ポンプの動力費(電力代や燃料代)が流水費に入る。また、本発明は流体として水に限定するものはなく、空気のような流体に適応することができる。また、水と空気のように複数種類の流体を同時に流すことも可能である。
1:流体制御システム
2:制御部
2a:記憶部
3:流出部
3a:配水管
3b:分岐管
3c:電磁バルブ
3d:出水孔
4:温度検出部
5:照度検出部
6:雨検知部
7:第1雪検知部
8:第2雪検知部
10:太陽光発電モジュール
A1、A2、A3・・・I1、I2、I3:発電ユニット
4A1、4A2、4A3・・・4I1、4I2、4I3:温度センサー

Claims (5)

  1. 太陽光発電モジュールの受光面に流体を流す流出部と、該流出部による流出を制御する制御部とを有する流体制御システムにおいて、
    前記制御部は前記流出部が流体を流す場合の発電の増加額を予測計算し、流体を流すための動力費と流体代の合計の流体費を予測計算し、前記発電の増加額が前記流体費よりも低いときは前記流出部の流出を止めさせることを特徴とする流体制御システム。
  2. 前記太陽光発電モジュールの温度を検出する温度検出部と、前記太陽光発電モジュールへの照度を検出する照度検出部を備え、前記制御部は前記太陽光発電モジュールの温度と照度に対する発電力のデータと、流体による前記太陽光発電モジュールの温度低下の時間データを記憶し、
    前記制御部は前記温度検出部が検出した温度と、前記照度検出部が検出した照度を用いて前記太陽光発電モジュールが前記検出温度から所定の温度まで低下するのに要する時間と発電の増加額を予測計算し、また、その時間の前記流体費を予測計算することを特徴とする請求項1に記載の流体制御システム。
  3. 前記制御部は照度が閾値未満であれば前記流出部の流体を止めさせることを特徴とする請求項1に記載の流体制御システム。
  4. 降雨を検知する雨検知部を設け、前記制御部は降雨であれば前記流出部を止めさせることを特徴とする請求項1に記載の流体制御システム。
  5. 雪を検知する雪検知部を設け、前記制御部は雪を検知すれば前記発電の増加額が前記流体費よりも低くても前記流出部の流体を出させることを特徴とする請求項1に記載の流体制御システム。
JP2012072530A 2012-03-27 2012-03-27 流体制御システム Pending JP2013206998A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012072530A JP2013206998A (ja) 2012-03-27 2012-03-27 流体制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012072530A JP2013206998A (ja) 2012-03-27 2012-03-27 流体制御システム

Publications (1)

Publication Number Publication Date
JP2013206998A true JP2013206998A (ja) 2013-10-07

Family

ID=49525812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012072530A Pending JP2013206998A (ja) 2012-03-27 2012-03-27 流体制御システム

Country Status (1)

Country Link
JP (1) JP2013206998A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024304A1 (ja) * 2014-08-13 2016-02-18 株式会社 スカイロボット 太陽光発電パネルの洗浄装置
JP2018117471A (ja) * 2017-01-19 2018-07-26 三機工業株式会社 太陽電池パネルの散水システム
JP2022058403A (ja) * 2020-09-29 2022-04-12 株式会社ユピテル 検出装置およびシステム
CN115459711A (zh) * 2022-09-21 2022-12-09 合肥中南光电有限公司 太阳能光伏板换热效率自检系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024304A1 (ja) * 2014-08-13 2016-02-18 株式会社 スカイロボット 太陽光発電パネルの洗浄装置
JP2018117471A (ja) * 2017-01-19 2018-07-26 三機工業株式会社 太陽電池パネルの散水システム
JP2022058403A (ja) * 2020-09-29 2022-04-12 株式会社ユピテル 検出装置およびシステム
CN115459711A (zh) * 2022-09-21 2022-12-09 合肥中南光电有限公司 太阳能光伏板换热效率自检系统
CN115459711B (zh) * 2022-09-21 2024-03-26 合肥中南光电有限公司 太阳能光伏板换热效率自检系统

Similar Documents

Publication Publication Date Title
Mazarrón et al. Feasibility of active solar water heating systems with evacuated tube collector at different operational water temperatures
KR100982263B1 (ko) 태양광 발전기 세척 및 냉각 시스템
JP5931526B2 (ja) 太陽光パネルの散水装置
KR100982953B1 (ko) 태양광 발전 유지설비 제어 시스템
KR100662230B1 (ko) 태양광 발전기 냉각 시스템
WO2009139586A2 (ko) 물제트를 이용한 태양광 모듈 관리 시스템
US8386197B1 (en) Method and system for processing information from a combination of a solar thermal system and a photovoltaic apparatus
JP2013206998A (ja) 流体制御システム
KR101449561B1 (ko) 건물일체형 태양광 열 시스템
JP2003197945A (ja) 太陽光発電装置
WO2015046231A1 (ja) 太陽光発電装置
KR101965812B1 (ko) 태양광 패널 냉각 시스템
KR101337476B1 (ko) 제설유닛이 구비된 태양전지 모듈 구조물 및 그 제설유닛의 제어방법
KR102114375B1 (ko) 우수를 활용한 태양광 발전 시스템
KR101294700B1 (ko) 태양광 어레이 관리 시스템
JP4737232B2 (ja) ハイブリッド発電システム
US20110005514A1 (en) Solar thermal heating utilizing dynamic particle flow balancing
KR101250917B1 (ko) 태양광발전 효율향상설비의 펌프스테이션
KR101090774B1 (ko) 태양광 발전설비의 효율향상설비
CA2760038A1 (en) Photovoltaic installation
JP2008191056A (ja) 降雪センサ
JP3182692U (ja) 流体流出装置
CN201514059U (zh) 立式太阳能热水器
WO2013133760A1 (en) A solar collector and solar panel with solar cells for the roof of a building
CN111512187B (zh) 直接冻结降水检测装置及方法