JP2013205272A - Radioactive contaminant treatment method - Google Patents

Radioactive contaminant treatment method Download PDF

Info

Publication number
JP2013205272A
JP2013205272A JP2012075489A JP2012075489A JP2013205272A JP 2013205272 A JP2013205272 A JP 2013205272A JP 2012075489 A JP2012075489 A JP 2012075489A JP 2012075489 A JP2012075489 A JP 2012075489A JP 2013205272 A JP2013205272 A JP 2013205272A
Authority
JP
Japan
Prior art keywords
radioactive
cao
calcium aluminate
radioactive contaminants
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012075489A
Other languages
Japanese (ja)
Other versions
JP5923362B2 (en
Inventor
Hiroshi Hayashi
浩志 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2012075489A priority Critical patent/JP5923362B2/en
Publication of JP2013205272A publication Critical patent/JP2013205272A/en
Application granted granted Critical
Publication of JP5923362B2 publication Critical patent/JP5923362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an efficient and economical treatment method to effectively reduce the radiation concentration of radioactive contaminants, prevent the scattering of dust of radioactive contaminants, and facilitate the storage of radioactive contaminants.SOLUTION: A treatment agent containing calcium aluminate, alkali earth metal sulfate and cement is added to and mixed with radioactive contaminants, together with water.

Description

本発明は、放射性セシウムに汚染された土壌や焼却灰などの放射能汚染物の放射線濃度を低減するとともに粉塵の発生を防止し、放射能汚染物の保管を効率的に行うことができる放射能汚染物の処理方法に関する。   The present invention reduces the radiation concentration of radioactive pollutants such as soil and incinerated ash contaminated with radioactive cesium, prevents dust generation, and can efficiently store radioactive pollutants. The present invention relates to a method for treating contaminants.

原子力発電所の事故により放射性物質(主に放射性セシウム)が拡散すると、放射性物質により汚染された土壌等の放射能汚染物が生じる。また、放射性物質により汚染された土壌等の放射能汚染物の一部が雨水等により下水道に流入すると、放射性物質により汚染された下水汚泥、あるいはその下水汚泥を焼却減容化することで放射性物質が濃縮された焼却灰が生じる。さらに、放射性物質で汚染された草木類や塵芥などの可燃性廃棄物がゴミ焼却場などで焼却減容化されると、放射性物質が濃縮されたゴミ焼却灰が生じる。
放射能汚染物は人体に有害な放射線(ガンマ線など)を放出するため、適切に除去・保管等の処置を行い、放射線被爆による健康被害を防ぐ必要がある。しかしながら、特に汚染規模が大きく、広い地域に大量の放射能汚染物が発生した場合には、放射能汚染物による被爆防止処置(放射能汚染物の除去処理、放射線の遮蔽・低減処理など)に膨大な手間と時間と費用が必要になるほか、放射能汚染物の保管場所の確保が大きな課題となる。そのため、効率的かつ迅速に放射能汚染物の処理を進めるためには、放射線の濃度レベルや土地利用等に応じて適切な処理方法を選択する必要がある。特に、広範囲に大量に発生した放射線濃度が比較的低い土壌や焼却灰などの放射能汚染物については、埋立処分あるいは原位置処理による迅速な被爆防止処置を可能とする技術が必要であり、具体的には、放射能汚染物の放射線濃度を効果的に低減するとともに放射能汚染物の粉塵飛散を防止し、放射能汚染物の保管をより容易に行うことができる効率的かつ経済的な処理技術が求められていた。
When radioactive materials (mainly radioactive cesium) diffuse due to an accident at a nuclear power plant, radioactive contaminants such as soil contaminated with radioactive materials are generated. In addition, when a part of radioactive contaminants such as soil contaminated with radioactive material flows into the sewer by rainwater, etc., the radioactive material is obtained by incinerating and reducing the volume of sewage sludge contaminated with radioactive material. As a result, incinerated ash is produced. Further, when combustible waste such as vegetation and dust contaminated with radioactive material is incinerated and reduced in a garbage incineration site, waste incinerated ash enriched with radioactive material is generated.
Radioactive contaminants emit radiation (gamma rays, etc.) that is harmful to the human body. Therefore, it is necessary to take appropriate measures such as removal and storage to prevent health damage from radiation exposure. However, especially when the scale of contamination is large and a large amount of radioactive contaminants are generated in a wide area, it can be used to prevent exposure to radioactive rays (such as removal of radioactive contaminants and radiation shielding / reduction treatment). In addition to the tremendous amount of labor, time, and cost, securing a storage place for radioactive contaminants is a major issue. Therefore, in order to proceed with radioactive contaminants efficiently and quickly, it is necessary to select an appropriate treatment method according to the radiation concentration level, land use, and the like. In particular, for radioactive contaminants such as soil and incineration ash that are generated in large amounts in a large amount, it is necessary to have a technology that enables rapid exposure prevention measures by landfill disposal or in-situ treatment. An effective and economical process that can effectively reduce the radiation concentration of radioactive contaminants, prevent dust scattering of radioactive contaminants, and make it easier to store radioactive contaminants Technology was sought.

従来、放射能汚染物の処理技術としては、アンモニア性液体を用いて汚染土壌から放射性物質(ウラン・プルトニウム等)を含む土壌細粒を分離する方法(特許文献1)、放射線遮蔽機能のある容器・コンクリート構造体・複合板・マット(特許文献2〜6)などが提案されている。   Conventionally, as a treatment technique for radioactive contaminants, a method for separating soil fine particles containing radioactive substances (uranium, plutonium, etc.) from contaminated soil using an ammoniacal liquid (Patent Document 1), a container having a radiation shielding function -Concrete structures, composite plates, mats (Patent Documents 2 to 6) and the like have been proposed.

特表平10−505903号公報Japanese National Patent Publication No. 10-505903 特開平7−134198号公報Japanese Unexamined Patent Publication No. 7-134198 特開2009−276194号公報JP 2009-276194 A 特開2006−038465号公報JP 2006-038465 A 特開2003−156591号公報JP 2003-156591 A 特開2011−247666号公報JP 2011-247666 A

しかしながら、これら従来の技術では、放射性物質を分離するために大掛かりな処理システムが必要となる、分離した高濃度の放射性物質含有廃棄物の処理・保管を別途講じる必要がある、遮蔽体の製造ならびに放射能汚染物の格納作業等に多額の費用と手間が必要となる、放射線濃度の効果的な低減が期待できない等の問題があり、大量の放射能汚染物質を効率的かつ経済的に処理できるものではなかった。
従って、本発明の課題は、放射能汚染物の放射線濃度を効果的に低減するとともに放射能汚染物の粉塵飛散を防止し、埋立処分や原位置処理などの簡便な方法による放射能汚染物の被爆防止処置を可能とする効率的かつ経済的な処理方法を提供することにある。
However, in these conventional technologies, a large-scale treatment system is required to separate the radioactive material, and it is necessary to separately handle the disposal and storage of the separated high-concentration radioactive material-containing waste. There are problems such as high costs and labor required to store radioactive contaminants, and the effective reduction of radiation concentration cannot be expected, and a large amount of radioactive contaminants can be processed efficiently and economically. It was not a thing.
Therefore, an object of the present invention is to effectively reduce the radiation concentration of radioactive contaminants, prevent dust scattering of radioactive contaminants, and prevent radioactive contaminants by simple methods such as landfill disposal and in-situ treatment. An object of the present invention is to provide an efficient and economical treatment method that enables an exposure prevention treatment.

本発明者は、課題解決のため検討を重ねた結果、カルシウムアルミネート、アルカリ土類金属硫酸塩及びセメントを含有する処理剤を水と混合することで放射線濃度の低減効果がある組成物が形成されることを見出し、放射能汚染物に対し該処理剤を水とともに添加・混合することにより、放射能汚染物の放射線濃度が効果的に低減できることを見出した。また、放射能汚染物に対し該処理剤を水とともに添加、混合した場合には、放射線低減効果と併せて放射能汚染物を団粒化して粉塵の発生を防止する効果が得られることも見出した。さらに、CaOとAl23が特定のモル比で構成された非晶質カルシウムアルミネートと結晶質カルシウムアルミネートを特定割合で含むカルシウムアルミネートとを用い、アルカリ土類金属硫酸塩として硫酸カルシウム及び/又は硫酸バリウムを用い、セメントとして白色ポルトランドセメントを用いることで放射線濃度の低減効果と団粒化効果が向上し、環境安全性が高まるという知見を得、本発明を完成させた。 As a result of repeated studies to solve the problem, the present inventor formed a composition having a radiation concentration reducing effect by mixing a treatment agent containing calcium aluminate, alkaline earth metal sulfate and cement with water. It was found that the radiation concentration of the radioactive contaminant can be effectively reduced by adding and mixing the treatment agent with water to the radioactive contaminant. It has also been found that when the treatment agent is added to and mixed with water with respect to radioactive contaminants, an effect of preventing the generation of dust by aggregating the radioactive contaminants together with the radiation reducing effect is obtained. It was. Furthermore, an amorphous calcium aluminate composed of CaO and Al 2 O 3 in a specific molar ratio and a calcium aluminate containing crystalline calcium aluminate in a specific ratio, and calcium sulfate as an alkaline earth metal sulfate. In addition, the inventors have obtained the knowledge that the use of white Portland cement as barium sulfate and / or white portland cement improves the radiation concentration reduction effect and the agglomeration effect, and the environmental safety is improved, thereby completing the present invention.

すなわち、本発明は、次の[1]〜[7]に係るものである。
[1](A)放射能汚染物に対して、(B)カルシウムアルミネート、アルカリ土類金属硫酸塩及びセメントを含有する処理剤、並びに(C)水を添加、混合する放射能汚染物の処理方法。
[2](B)の処理剤のカルシウムアルミネートが、CaOとAl23が等モル比の結晶質カルシウムアルミネートと、CaOとAl23の含有モル比がCaO/Al23=1.6〜2.6の非晶質カルシウムアルミネートとを含むものである[1]に記載の放射能汚染物の処理方法。
[3](B)の処理剤のカルシウムアルミネートが、CaOとAl23が等モル比の結晶質カルシウムアルミネートと、CaOとAl23の含有モル比がCaO/Al23=1.6〜2.6の非晶質カルシウムアルミネートとを100:15〜100:120の質量比で含むものである[1]又は[2]の放射能汚染物の処理方法。
[4](B)の処理剤のアルカリ土類金属硫酸塩が、硫酸カルシウム、硫酸マグネシウム及び硫酸バリウムから選ばれるものである[1]〜[3]のいずれかの放射能汚染物の処理方法。
[5](B)の処理剤のアルカリ土類金属硫酸塩が、硫酸カルシウム及び硫酸バリウムである[1]〜[4]のいずれかの放射能汚染物の処理方法。
[6](B)の処理剤のセメントが、白色ポルトランドセメントである[1]〜[5]のいずれかの放射能汚染物の処理方法。
[7](A)の放射能汚染物が、焼却灰である[1]〜[6]のいずれかの放射能汚染物の処理方法。
That is, the present invention relates to the following [1] to [7].
[1] For (A) radioactive contaminants, (B) a treatment agent containing calcium aluminate, alkaline earth metal sulfate and cement, and (C) a radioactive contaminant to which water is added and mixed. Processing method.
[2] The calcium aluminate as the treating agent in (B) is a crystalline calcium aluminate in which CaO and Al 2 O 3 are in an equimolar ratio, and the molar ratio of CaO and Al 2 O 3 is CaO / Al 2 O 3. = The processing method of the radioactive contaminant as described in [1] which contains 1.6-2.6 amorphous calcium aluminate.
[3] The calcium aluminate as the treating agent in (B) is a crystalline calcium aluminate in which CaO and Al 2 O 3 are equimolar ratio, and the molar ratio of CaO and Al 2 O 3 is CaO / Al 2 O 3. = A method for treating radioactive contaminants according to [1] or [2], which comprises amorphous calcium aluminate of 1.6 to 2.6 in a mass ratio of 100: 15 to 100: 120.
[4] The method for treating a radioactive contaminant according to any one of [1] to [3], wherein the alkaline earth metal sulfate of the treating agent (B) is selected from calcium sulfate, magnesium sulfate and barium sulfate. .
[5] The method for treating a radioactive contaminant according to any one of [1] to [4], wherein the alkaline earth metal sulfate of the treating agent of (B) is calcium sulfate and barium sulfate.
[6] The method for treating a radioactive contaminant according to any one of [1] to [5], wherein the cement of the treating agent of (B) is white Portland cement.
[7] The method for treating a radioactive contaminant according to any one of [1] to [6], wherein the radioactive contaminant of (A) is incinerated ash.

本発明の放射能汚染物の処理方法は、焼却灰や土壌等の放射能汚染物に対して処理剤を水とともに混合するという簡便な処理で、放射能汚染物の放射能濃度を効果的に低減できるため、大量に発生した放射能汚染物に対する被爆防止処置を効率的かつ経済的に行うことができる。しかも、該処理剤を水とともに放射能汚染物に混合すると放射能汚染物が団粒化して、粉塵の発生を防止することもできるため、処理後の放射能汚染物を埋立処分あるいは原位置処理する場合などに加え、放射能汚染物を運搬する場合などにおいても環境安全性を向上させることができる。   The method for treating radioactive contaminants of the present invention is a simple treatment in which a treatment agent is mixed with water for radioactive contaminants such as incineration ash and soil, and the radioactive concentration of radioactive contaminants is effectively reduced. Since it can be reduced, it is possible to efficiently and economically prevent exposure to a large amount of radioactive contaminants. Moreover, when the treatment agent is mixed with radioactive contaminants together with water, the radioactive contaminants aggregate to prevent the generation of dust, so that the radioactive contaminants after treatment can be disposed of in landfill or in situ. In addition to the case of carrying out, the environmental safety can be improved also in the case of carrying radioactive contamination.

本発明の放射能汚染物の処理方法において、処理剤に用いるカルシウムアルミネートは、基本的にはCaO原料とAl23原料を熱処理することにより得られる物質である。カルシウムアルミネートは化学成分としてCaOとAl23からなる結晶質やガラス化が進んだ構造の水和活性物質であれば良く、CaOとAl23に加えて他の化学成分が加わった化合物、固溶体、ガラス質物質又はこれらの混合物等でもよい。前者(結晶質)としては例えば12CaO・7Al23、CaO・Al23、3CaO・Al23、CaO・2Al23、CaO・6Al23等が挙げられ、後者(ガラス質)としては例えば、4CaO・3Al23・SO3、11CaO・7Al23・CaF2、Na2O・8CaO・3Al23等が挙げられる。 In the method for treating radioactive contaminants of the present invention, calcium aluminate used as a treating agent is basically a substance obtained by heat treating a CaO raw material and an Al 2 O 3 raw material. Calcium aluminate may be a hydrated active substance with a crystallized structure composed of CaO and Al 2 O 3 and a vitrified structure as a chemical component, and other chemical components are added in addition to CaO and Al 2 O 3 . It may be a compound, a solid solution, a glassy substance, or a mixture thereof. The former (crystalline) The example 12CaO · 7Al 2 O 3, CaO · Al 2 O 3, 3CaO · Al 2 O 3, CaO · 2Al 2 O 3, CaO · 6Al 2 O 3 and the like, the latter (Glass the quality) for example, 4CaO · 3Al 2 O 3 · SO 3, 11CaO · 7Al 2 O 3 · CaF 2, Na 2 O · 8CaO · 3Al 2 O 3 and the like.

さらに、本発明で用いるカルシウムアルミネートとしては、CaOとAl23が等モル比の結晶質カルシウムアルミネートと、CaOとAl23の含有モル比がCaO/Al23=1.6〜2.6の非晶質カルシウムアルミネートとを含むものが好ましい。 Further, the calcium aluminate used in the present invention has a crystalline calcium aluminate in which CaO and Al 2 O 3 are in an equimolar ratio, and the molar ratio of CaO and Al 2 O 3 is CaO / Al 2 O 3 = 1. Those containing 6-2.6 amorphous calcium aluminate are preferred.

CaOとAl23が等モル比の結晶質カルシウムアルミネートは、前記のようなCaO源とAl23源をそれぞれCaO換算及びAl23換算して等モル比となるよう混合したものを、例えば1600℃で加熱し、これを徐冷すれば得られる。また、徐冷は加熱装置内での自然放冷が一般的に採用できるが、加熱装置の構造上急激な温度低下が起こる場合は、概ね10℃/分以下の降温速度になるよう加熱調整するのが好ましい。CaO源は特に限定されないが、例えば石灰石粉、消石灰や生石灰粉を好適に挙げることができ、Al23源は例えばボーキサイト粉、水酸化アルミニウム、炭酸アルミニウム、アルミ残灰、アルミナ粉末等を好適に挙げることができる。該結晶質カルシウムアルミネートのブレーン比表面積は、3000〜10000cm2/gが好ましく、これと共に使用する非結晶質カルシウムアルミネートのブレーン比表面積と概ね同じものとするのが好ましい。 The crystalline calcium aluminate having an equimolar ratio of CaO and Al 2 O 3 was mixed so that the CaO source and the Al 2 O 3 source were equimolar ratios in terms of CaO and Al 2 O 3 , respectively. A thing is obtained by heating at 1600 degreeC, for example, and cooling this slowly. In addition, natural cooling in the heating device can be generally used for the slow cooling, but if a sudden temperature drop occurs due to the structure of the heating device, the heating is adjusted so that the temperature lowering rate is approximately 10 ° C./min or less. Is preferred. Although the CaO source is not particularly limited, for example, limestone powder, slaked lime and quick lime powder can be preferably mentioned, and as the Al 2 O 3 source, bauxite powder, aluminum hydroxide, aluminum carbonate, aluminum residual ash, alumina powder, etc. are suitable, for example. Can be listed. The crystalline calcium aluminate preferably has a Blaine specific surface area of 3000 to 10000 cm 2 / g, and is preferably substantially the same as the Blaine specific surface area of the amorphous calcium aluminate used therewith.

CaOとAl23の含有モル比がCaO/Al23=1.6〜2.6の非晶質カルシウムアルミネートは、CaO源とAl23源をそれぞれCaO換算及びAl23換算して当該モル比の範囲に混合したものを、例えば1400〜1900℃で加熱溶融し、これを急冷することによって得られる。急冷は、例えば溶融物の該加熱温度からの炉外取り出し、水中急冷、冷却ガスの吹き付け等の公知の急冷手法で行うことができる。CaOとAl23の含有モル比(CaO/Al23)が1.6未満では反応性が低下し、放射能汚染物に対する団粒化効果が十分得られないので好ましくない。またモル比(CaO/Al23)が2.6を超えると、ガラス化には極めて高い融点と当該温度からの急冷操作が必要になり、製造が困難となるため実用的でない。また前記非晶質カルシウムアルミネートは、粉砕・分級・篩い分け等を適宜行うことによって粒度を調整し、ブレーン比表面積で3000〜10000cm2/gにしたものを用いるのが好ましい。なお、Ca源及びAl23源は、前記結晶質カルシウムアルミネートの場合と同様のものが使用できる。 Amorphous calcium aluminate molar ratio CaO / Al 2 O 3 = from 1.6 to 2.6 of CaO and Al 2 O 3 is, CaO source and Al 2 O 3 source, respectively as CaO and Al 2 O What is converted into 3 and mixed in the range of the molar ratio is obtained by, for example, heating and melting at 1400 to 1900 ° C. and rapidly cooling it. The rapid cooling can be performed by a known rapid cooling method such as taking out the melt from the heating temperature from the furnace, quenching in water, or blowing a cooling gas. When the content molar ratio of CaO and Al 2 O 3 (CaO / Al 2 O 3 ) is less than 1.6, the reactivity is lowered, and the aggregation effect on radioactive contaminants cannot be obtained sufficiently, which is not preferable. On the other hand, if the molar ratio (CaO / Al 2 O 3 ) exceeds 2.6, vitrification requires an extremely high melting point and a rapid cooling operation from the temperature, which makes the production difficult, which is not practical. The amorphous calcium aluminate is preferably adjusted to a particle size by appropriately performing pulverization, classification, sieving, etc., and a Blaine specific surface area of 3000 to 10000 cm 2 / g. As the Ca source and the Al 2 O 3 source, those similar to the crystalline calcium aluminate can be used.

本発明で用いるカルシウムアルミネートは、前記のCaOとAl23が等モル比の結晶質カルシウムアルミネートと、前記のCaOとAl23の含有モル比がCaO/Al23=1.6〜2.6の非晶質カルシウムアルミネートとを100:10〜100:200の質量比で含むものが好ましく、100:15〜100:120の質量比で含むものがより好ましい。この質量比のカルシウムアルミネート混合物を用いることで、放射能汚染物に対する放射線濃度の低減効果及び団粒化効果を特に良好に発揮することができる。非晶質カルシウムアルミネートが少なすぎるか又は多すぎる場合は、カルシウムアルミネートの水和反応性が十分ではなく、水和生成物であるエトリンガイトの生成遅延あるいは生成量の減少が生じて放射線濃度の低減効果及び団粒化効果が低下する。 Calcium aluminate to be used in the present invention comprises a crystalline calcium aluminate of the of CaO and Al 2 O 3 equal molar ratio, the molar ratio of said CaO and Al 2 O 3 is CaO / Al 2 O 3 = 1 It is preferable that the amorphous calcium aluminate of .6 to 2.6 is contained at a mass ratio of 100: 10 to 100: 200, and more preferably 100: 15 to 100: 120. By using the calcium aluminate mixture having this mass ratio, the radiation concentration reducing effect and the aggregating effect on the radioactive contaminants can be exhibited particularly well. If the amount of amorphous calcium aluminate is too small or too large, the hydration reactivity of calcium aluminate is not sufficient, resulting in delayed or reduced production of ettringite, a hydrated product, resulting in radiation concentration Reduction effect and agglomeration effect are reduced.

本発明で用いるアルカリ土類金属硫酸塩としては硫酸カルシウム、硫酸マグネシウム及び硫酸バリウムから選ばれる1種又は2種以上が挙げられる。本発明ではこれらのうち、硫酸カルシウムを用いるのが好ましく、硫酸カルシウムとしては無水石膏のみならず反応活性がより高いことから半水石膏を使用しても良い。アルカリ土類金属硫酸塩は、カルシウムアルミネートの水和反応を促進する作用をもたらし、放射線濃度の低減効果及び団粒化効果の向上が期待できる。   Examples of the alkaline earth metal sulfate used in the present invention include one or more selected from calcium sulfate, magnesium sulfate, and barium sulfate. Of these, calcium sulfate is preferably used in the present invention. As calcium sulfate, not only anhydrous gypsum but also higher reaction activity, hemihydrate gypsum may be used. Alkaline earth metal sulfate has the effect of promoting the hydration reaction of calcium aluminate, and can be expected to improve the radiation concentration reduction effect and the aggregation effect.

本発明で用いるアルカリ土類金属硫酸塩としては、硫酸カルシウムと硫酸バリウムを併用するのがより好ましく、これらを併用することにより放射線濃度の低減効果をより向上させることができる。硫酸バリウムのように密度の高い物質には、放射線(ガンマ線)の遮蔽効果があることが知られているが、カルシウムアルミネートの水和生成物であるエトリンガイトと硫酸バリウムが共存する組成物を形成させることで、より良好な放射線遮蔽効果が得られる。硫酸バリウムとしては、化学反応で製造した工業薬品である沈降性硫酸バリウムのほか、硫酸バリウムを主成分とする天然鉱物(バライト)の粉砕品(バライト粉)が使用できる。また、硫酸カルシウム及び硫酸バリウムとしては、粉末度がブレーン比表面積で1000〜10000cm2/g程度のものを用いるのが好ましい。 As the alkaline earth metal sulfate used in the present invention, it is more preferable to use calcium sulfate and barium sulfate in combination, and the combined use of these can further improve the effect of reducing the radiation concentration. Dense substances such as barium sulfate are known to have radiation (gamma ray) shielding effects, but they form a composition in which ettringite, a hydrated product of calcium aluminate, and barium sulfate coexist. By doing so, a better radiation shielding effect can be obtained. As barium sulfate, in addition to precipitated barium sulfate, which is an industrial chemical produced by a chemical reaction, a pulverized product (barite powder) of a natural mineral (barite) mainly composed of barium sulfate can be used. Further, as calcium sulfate and barium sulfate, those having a fineness of about 1000 to 10000 cm 2 / g in terms of Blaine specific surface area are preferably used.

アルカリ土類金属硫酸塩として硫酸カルシウムを用いる場合の配合割合は、放射線濃度低減効果及び団粒化効果の点から、カルシウムアルミネート100質量部に対して10〜200質量部が好ましく、10〜100質量部がより好ましい。また、硫酸バリウムを用いる場合の配合割合は、放射線濃度低減効果の点から、カルシウムアルミネート100質量部に対して30〜800質量部が好ましく、50〜500質量部がより好ましい。   The blending ratio in the case of using calcium sulfate as the alkaline earth metal sulfate is preferably 10 to 200 parts by mass with respect to 100 parts by mass of calcium aluminate from the viewpoint of the radiation concentration reducing effect and the agglomerating effect, and 10 to 100. Part by mass is more preferable. Moreover, 30-800 mass parts is preferable with respect to 100 mass parts of calcium aluminate, and, as for the mixture ratio in the case of using barium sulfate, 50-500 mass parts is more preferable from the point of the radiation density reduction effect.

本発明で用いるセメントとしては、ポルトランドセメント、混合セメント、特殊セメント、エコセメントが挙げられる。ポルトランドセメントとは、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、白色ポルトランドセメント、低熱ポルトランドセメント及びそれらの低アルカリ型のポルトランドセメント等を言う。混合セメントとは、高炉セメント、フライアッシュセメント、シリカセメント等を言う。特殊セメントとは、セメント系固化材、アルミナセメント、超速硬セメント、アウイン系セメント、超微粒子セメント、油井セメント等を言う。エコセメントとは、都市ごみ焼却残渣などの廃棄物を主原料として製造されたセメントを言う。本発明においては、これらのセメントのうち、白色ポルトランドセメントが特に好ましい。白色ポルトランドセメントはセレンや6価クロムなど有害な重金属類をほとんど含まないため、本発明の処理方法を用いて処理した放射能汚染物を埋立処分する場合、あるいは本発明の処理方法を用いて放射能汚染土壌を原位置処理する場合などに土壌等の環境安全性を損なう恐れがない。   Examples of the cement used in the present invention include Portland cement, mixed cement, special cement, and ecocement. Portland cement means normal Portland cement, early-strength Portland cement, ultra-early strong Portland cement, moderately hot Portland cement, sulfate-resistant Portland cement, white Portland cement, low heat Portland cement, and their low alkali type Portland cement. . Mixed cement refers to blast furnace cement, fly ash cement, silica cement and the like. Special cements include cement-based solidified materials, alumina cements, ultrafast cements, Auin-based cements, ultrafine particle cements, oil well cements, and the like. Eco-cement refers to cement manufactured using waste such as municipal waste incineration residue as the main raw material. In the present invention, among these cements, white Portland cement is particularly preferable. White Portland cement contains almost no harmful heavy metals such as selenium and hexavalent chromium. Therefore, when radioactive contaminants treated using the treatment method of the present invention are disposed of in landfills or emitted using the treatment method of the present invention. There is no risk of damaging the environmental safety of soil, etc. when processing contaminated soil in situ.

本発明では、使用する処理剤にセメントを配合することにより放射能汚染物に対する団粒化効果と放射線濃度の低減効果を向上させることができる。セメントの配合割合は、カルシウムアルミネート100質量部に対して30〜400質量部が好ましく、50〜300質量部がより好ましい。セメントの配合量が少なすぎると、含有効果が実質得られないことがあるので適当ではなく、多すぎると相対的に処理剤中のカルシウムアルミネートの配合量が減少し、放射線濃度の低減効果が低下する恐れがあるため好ましくない。また、本発明で用いる処理剤は、放射線低減効果を損なうものでない限り、ベントナイト、フライアッシュ、高炉スラグ粉末、製綱スラグ粉末、磁鉄鉱粉末、石灰石粉末、増粘剤、減水剤などを含むものであっても良い。   In the present invention, the effect of agglomeration on radioactive contaminants and the effect of reducing the radiation concentration can be improved by adding cement to the treatment agent used. 30-400 mass parts is preferable with respect to 100 mass parts of calcium aluminate, and, as for the mixture ratio of cement, 50-300 mass parts is more preferable. If the blending amount of the cement is too small, the content effect may not be obtained. It is not preferable because it may decrease. Further, the treatment agent used in the present invention includes bentonite, fly ash, blast furnace slag powder, steelmaking slag powder, magnetite powder, limestone powder, thickener, water reducing agent, etc., unless they impair the radiation reduction effect. There may be.

本発明で用いる処理剤は、焼却灰や土壌などの放射能汚染物100質量部に対して1〜50質量部使用するのが好ましく、2〜30質量部使用するのがより好ましい。該処理剤が少なすぎると放射線濃度の低減効果ならびに団粒化効果が十分ではないため好ましくない。該処理剤が多すぎると放射線濃度の低減効果ならびに団粒化効果は向上するが、経済性が損なわれる恐れがあるため好ましくない。また、該処理剤とともに用いる水の量は特に限定されず、処理対象物の種類や処理方法などに応じて設定するが、好ましくは該処理剤100質量部に対して30質量部以上、さらに40質量部以上とするのが良い。水量が少なすぎると、該処理剤の水和反応が不十分となり、放射線濃度の低減効果ならびに団粒化効果が損なわれる恐れがあるため好ましくない。   The treating agent used in the present invention is preferably used in an amount of 1 to 50 parts by weight, more preferably 2 to 30 parts by weight, based on 100 parts by weight of radioactive contaminants such as incineration ash and soil. If the amount of the treatment agent is too small, the effect of reducing the radiation concentration and the effect of agglomeration are not sufficient, which is not preferable. If the amount of the treatment agent is too large, the effect of reducing the radiation concentration and the effect of agglomeration are improved. Further, the amount of water used together with the treatment agent is not particularly limited, and is set according to the type of treatment object, the treatment method, and the like, but preferably 30 parts by mass or more, further 40 It is good to be more than the mass part. If the amount of water is too small, the hydration reaction of the treatment agent becomes insufficient, and the radiation concentration reducing effect and the agglomeration effect may be impaired, which is not preferable.

本発明の放射能汚染物の処理方法では、前記処理剤と水を放射能汚染物に添加、混合して使用する。該処理剤と水を放射能汚染物に添加、混合することにより、放射線濃度の低減効果と併せて放射能汚染物を団粒化して粉塵の発生を防止する効果も期待できるため、焼却灰など粉末状の放射能汚染物の処理に特に適している。   In the method for treating radioactive contaminants of the present invention, the treating agent and water are added to and mixed with the radioactive contaminant. By adding and mixing the treatment agent and water to the radioactive pollutant, it is possible to expect the effect of preventing the generation of dust by agglomerating the radioactive pollutant together with the effect of reducing the radiation concentration. It is particularly suitable for the treatment of powdered radioactive contaminants.

本発明の処理剤と水を放射能汚染物に添加、混合する方法は特に限定されず、一般的な方法を用いることができる。例えば、処理後の放射能汚染物を埋立処分する場合には、パン型ミキサーや強制二軸ミキサーなどの一般的なミキサーを用いて本発明の処理剤を水とともに放射能汚染物に混合してから埋め立てることができる。また、表土等の放射能汚染物を原位置処理する場合には、ロータリー耕耘機などを用いて、本発明の処理剤と水を表土等と攪拌・混合することができる。   The method for adding and mixing the treatment agent and water of the present invention to the radioactive contaminant is not particularly limited, and a general method can be used. For example, when a radioactive contaminant after treatment is disposed of in a landfill, the treatment agent of the present invention is mixed with the radioactive contaminant together with water using a general mixer such as a pan-type mixer or a forced twin screw mixer. Can be landfilled from. In addition, when radioactive contamination such as topsoil is treated in situ, the processing agent of the present invention and water can be stirred and mixed with topsoil etc. using a rotary tiller or the like.

次に実施例を挙げて本発明をさらに詳細に説明するが、本発明はここに示す実施例に限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to the Example shown here.

CaO源に石灰石(CaO含有量;56質量%)、Al23源にバン土頁岩(Al23含有量;88質量%)のそれぞれ粗砕粒(粒径約1mm以下)を用い、以下のA1〜A6で表すカルシウムアルミネートの粉末を作製した。その作製方法は、CaO源とAl23源を所定のモル比に配合したものを、電気炉で1800℃(±50℃)に加熱し、60分間保持した後、加熱を停止して炉内で自然放冷して得た(A1〜A3)。同様に1800℃(±50℃)に加熱し、60分間保持した後、温度1800℃の電気炉から加熱物を常温下に取り出し、取り出し後は直ちに加熱物表面に流量約100cc/秒で窒素ガスを吹き付けて急冷して得た(A4〜A6)。得られた冷却物はボールミルで粉砕し、ブレーン比表面積が5000±500cm2/gとなるよう粉砕時間を変えて粉末度を調整した。A1;CaO/Al23=モル比1.0の結晶質カルシウムアルミネート
A2;CaO/Al23=モル比1.7の結晶質カルシウムアルミネート
A3;CaO/Al23=モル比0.5の結晶質カルシウムアルミネート
A4;CaO/Al23=モル比1.7の非晶質カルシウムアルミネート
A5;CaO/Al23=モル比2.3の非晶質カルシウムアルミネート
A6;CaO/Al23=モル比2.9のガラス化率10%のカルシウムアルミネート
Using coarse crushed particles (particle size of about 1 mm or less) of limestone (CaO content; 56% by mass) as the CaO source and van earth shale (Al 2 O 3 content; 88% by mass) as the Al 2 O 3 source, Calcium aluminate powders represented by A1 to A6 were prepared. The production method is as follows: a mixture of a CaO source and an Al 2 O 3 source in a predetermined molar ratio is heated to 1800 ° C. (± 50 ° C.) in an electric furnace, held for 60 minutes, and then the heating is stopped and the furnace It was obtained by allowing to cool naturally (A1 to A3). Similarly, after heating to 1800 ° C. (± 50 ° C.) and holding for 60 minutes, the heated product is taken out from the electric furnace at a temperature of 1800 ° C. at room temperature, and immediately after removal, nitrogen gas is applied to the surface of the heated product at a flow rate of about 100 cc / sec. Were obtained by spraying (A4 to A6). The obtained cooled product was pulverized by a ball mill, and the fineness was adjusted by changing the pulverization time so that the specific surface area of the brane was 5000 ± 500 cm 2 / g. A1; CaO / Al 2 O 3 = crystalline calcium aluminate A2 in molar ratio A2; CaO / Al 2 O 3 = crystalline calcium aluminate A3 in molar ratio 1.7; CaO / Al 2 O 3 = mol A crystalline calcium aluminate A4 with a ratio of 0.5; CaO / Al 2 O 3 = amorphous calcium aluminate A5 with a molar ratio of 1.7; CaO / Al 2 O 3 = amorphous calcium with a molar ratio of 2.3 Aluminate A6; CaO / Al 2 O 3 = calcium aluminate with a molar ratio of 2.9 and a vitrification rate of 10%

A1〜A6のカルシウムアルミネートと次に示すB〜Dから選定される材料を用い、表1に示す配合割合でヘンシェル型ミキサーを用いて3分間乾式混合し、放射能汚染物の処理に用いる処理剤を作製した。
B;無水石膏(ブレーン比表面積4200cm2/g、市販試薬)
C;硫酸バリウム(ブレーン比表面積6000cm2/g、市販試薬)
D;白色ポルトランドセメント(太平洋セメント社製)
A treatment used for the treatment of radioactive contaminants using a calcium aluminate of A1 to A6 and a material selected from BD shown below and dry-mixing for 3 minutes using a Henschel mixer at a blending ratio shown in Table 1. An agent was prepared.
B: Anhydrous gypsum (Brain specific surface area 4200 cm 2 / g, commercially available reagent)
C: Barium sulfate (Brain specific surface area 6000 cm 2 / g, commercially available reagent)
D: White Portland cement (manufactured by Taiheiyo Cement)

Figure 2013205272
Figure 2013205272

(処理剤を用いた放射能汚染物の混合処理)
放射能汚染物として放射線濃度(セシウム134と137のガンマ線濃度の合計値)が12204Bq/kgである下水汚泥焼却灰を用い、この放射能汚染物に対し表1の処理剤及び水を表2に示す配合割合で添加し、ホバート式モルタルミキサーを用いて3分間混合して放射能汚染物の処理物を調整した。該処理物は、3日間常温で密封養生した後に粒径15mm以下に解砕し、さらに7日間30℃で乾燥してから放射線濃度の測定及び団粒化による粉塵防止効果の確認試験を実施した。
(Mixing treatment of radioactive contaminants using treatment agents)
As radioactive contaminants, sewage sludge incineration ash having a radiation concentration (total of gamma ray concentrations of cesium 134 and 137) of 12204 Bq / kg was used. It added by the compounding ratio shown, and it mixed for 3 minutes using the Hobart type | mold mortar mixer, and prepared the processed material of the radioactive contamination. The treated product was sealed and cured at room temperature for 3 days, then crushed to a particle size of 15 mm or less, dried for 7 days at 30 ° C., and then subjected to radiation concentration measurement and confirmation test of dust prevention effect by agglomeration. .

(放射線濃度の測定方法)
該処理物の放射線濃度(セシウム134と137のガンマ線濃度の合計値)は、シンチレーター式ガンマ線スペクトロメーターLB2045(ベルトールドジャパン社製)で測定した。放射線濃度の測定結果を表2に示す。
(Measurement method of radiation concentration)
The radiation concentration of the treated product (total value of gamma ray concentrations of cesium 134 and 137) was measured with a scintillator gamma ray spectrometer LB2045 (manufactured by Bertolud Japan). Table 2 shows the measurement results of the radiation concentration.

(団粒化による粉塵防止効果の確認試験方法)
該処理物3kgを円錐状に盛り立て、その後、円錐状の処理物の側面より送風機で風速8mの風を当て、円錐の外周部より50cm以上飛散した処理物を集めて質量を測定し、全処理物に対する割合を求めて粉塵飛散率(質量%)とした。粉塵飛散率を表2に示す。
(Confirmation test method for dust prevention effect by agglomeration)
3 kg of the processed product was raised in a conical shape, and then a wind of 8 m was applied from the side surface of the processed product by a blower, and the processed products scattered by 50 cm or more from the outer periphery of the cone were collected, and the mass was measured. The ratio with respect to a processed material was calculated | required and it was set as dust scattering rate (mass%). Table 2 shows the dust scattering rate.

Figure 2013205272
Figure 2013205272

表2の結果より、本発明の処理方法を施した放射能汚染物(焼却灰)は、無処理あるいは水だけを混合処理した場合に比べて放射線濃度が大幅に低減されていることが分かる。さらに、本発明の処理方法を施したものは、粉塵飛散率が極めて小さくなっており、団粒化による粉塵防止効果が良好に発揮されていることが分かる。これに対し、本発明以外の処理方法では、放射線濃度の低減効果と粉塵防止効果のいずれも小さいものとなった。   From the results shown in Table 2, it can be seen that the radioactive contamination (incineration ash) subjected to the treatment method of the present invention has a greatly reduced radiation concentration compared to the case where no treatment or only water is mixed. Furthermore, it can be seen that those subjected to the treatment method of the present invention have a very low dust scattering rate, and the dust prevention effect due to the agglomeration is well exhibited. On the other hand, in the processing methods other than the present invention, both the radiation concentration reducing effect and the dust preventing effect are small.

Claims (7)

(A)放射能汚染物に対して、(B)カルシウムアルミネート、アルカリ土類金属硫酸塩及びセメントを含有する処理剤、並びに(C)水を添加、混合する放射能汚染物の処理方法。   (A) A treatment method for radioactive contaminants, in which (B) a treatment agent containing calcium aluminate, alkaline earth metal sulfate and cement, and (C) water is added to and mixed with radioactive contaminants. (B)の処理剤のカルシウムアルミネートが、CaOとAl23が等モル比の結晶質カルシウムアルミネートと、CaOとAl23の含有モル比がCaO/Al23=1.6〜2.6の非晶質カルシウムアルミネートとを含むものである請求項1に記載の放射能汚染物の処理方法。 Calcium aluminate treatment agent (B) is, CaO and Al 2 O 3 and the crystalline calcium aluminate equimolar ratio, CaO and Al 2 molar ratio of O 3 is CaO / Al 2 O 3 = 1. The method for treating radioactive contaminants according to claim 1, comprising 6 to 2.6 of amorphous calcium aluminate. (B)の処理剤のカルシウムアルミネートが、CaOとAl23が等モル比の結晶質カルシウムアルミネートと、CaOとAl23の含有モル比がCaO/Al23=1.6〜2.6の非晶質カルシウムアルミネートとを100:15〜100:120の質量比で含むものである請求項1又は2に記載の放射能汚染物の処理方法。 Calcium aluminate treatment agent (B) is, CaO and Al 2 O 3 and the crystalline calcium aluminate equimolar ratio, CaO and Al 2 molar ratio of O 3 is CaO / Al 2 O 3 = 1. The method for treating radioactive contaminants according to claim 1 or 2, comprising 6 to 2.6 of amorphous calcium aluminate at a mass ratio of 100: 15 to 100: 120. (B)の処理剤のアルカリ土類金属硫酸塩が、硫酸カルシウム、硫酸マグネシウム及び硫酸バリウムから選ばれる1種又は2種以上である請求項1〜3のいずれかに記載の放射能汚染物の処理方法。   The radioactive contaminant according to any one of claims 1 to 3, wherein the alkaline earth metal sulfate of the treatment agent (B) is one or more selected from calcium sulfate, magnesium sulfate and barium sulfate. Processing method. (B)の処理剤のアルカリ土類金属硫酸塩が、硫酸カルシウム及び硫酸バリウムである請求項1〜4のいずれかに記載の放射能汚染物の処理方法。   The method for treating radioactive contaminants according to any one of claims 1 to 4, wherein the alkaline earth metal sulfate of the treating agent (B) is calcium sulfate or barium sulfate. (B)の処理剤のセメントが、白色ポルトランドセメントである請求項1〜5のいずれかに記載の放射能汚染物の処理方法。 The method for treating radioactive contaminants according to any one of claims 1 to 5, wherein the treating agent cement of (B) is white Portland cement. (A)の放射能汚染物が、焼却灰である請求項1〜6のいずれかに記載の放射能汚染物の処理方法。 The radioactive contaminant of (A) is incineration ash, The processing method of the radioactive contaminant in any one of Claims 1-6.
JP2012075489A 2012-03-29 2012-03-29 Treatment method for radioactive contaminants Active JP5923362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012075489A JP5923362B2 (en) 2012-03-29 2012-03-29 Treatment method for radioactive contaminants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012075489A JP5923362B2 (en) 2012-03-29 2012-03-29 Treatment method for radioactive contaminants

Publications (2)

Publication Number Publication Date
JP2013205272A true JP2013205272A (en) 2013-10-07
JP5923362B2 JP5923362B2 (en) 2016-05-24

Family

ID=49524489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012075489A Active JP5923362B2 (en) 2012-03-29 2012-03-29 Treatment method for radioactive contaminants

Country Status (1)

Country Link
JP (1) JP5923362B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205273A (en) * 2012-03-29 2013-10-07 Taiheiyo Material Kk Radioactive contaminant treatment method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215999A (en) * 1985-03-22 1986-09-25 電気化学工業株式会社 Solidifying agent for radioactive waste
JPS62238499A (en) * 1986-04-09 1987-10-19 電気化学工業株式会社 Method of solidifying radioactive waste
JPS63289498A (en) * 1987-05-22 1988-11-25 Denki Kagaku Kogyo Kk Solidifying agent for radioactive waste
JPH01223398A (en) * 1988-03-03 1989-09-06 Denki Kagaku Kogyo Kk Radioactive waste hardener
JPH0450152A (en) * 1990-06-19 1992-02-19 Denki Kagaku Kogyo Kk Quick setting material and quick setting cement composition
JPH0492844A (en) * 1990-08-03 1992-03-25 Railway Technical Res Inst Hydraulic composition for repairing concrete and repairing technique using thereof
JP2001264488A (en) * 2000-03-22 2001-09-26 Denki Kagaku Kogyo Kk Solidifying material for concentrated boric acid aqueous solution and neutron absorber
JP2009294017A (en) * 2008-06-04 2009-12-17 Takeji Hirota Processing method of radioactive processed product and land-shielding technique
JP2010048609A (en) * 2008-08-20 2010-03-04 Toshiba Corp Method and device for solidifying radioactive waste

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215999A (en) * 1985-03-22 1986-09-25 電気化学工業株式会社 Solidifying agent for radioactive waste
JPS62238499A (en) * 1986-04-09 1987-10-19 電気化学工業株式会社 Method of solidifying radioactive waste
JPS63289498A (en) * 1987-05-22 1988-11-25 Denki Kagaku Kogyo Kk Solidifying agent for radioactive waste
JPH01223398A (en) * 1988-03-03 1989-09-06 Denki Kagaku Kogyo Kk Radioactive waste hardener
JPH0450152A (en) * 1990-06-19 1992-02-19 Denki Kagaku Kogyo Kk Quick setting material and quick setting cement composition
JPH0492844A (en) * 1990-08-03 1992-03-25 Railway Technical Res Inst Hydraulic composition for repairing concrete and repairing technique using thereof
JP2001264488A (en) * 2000-03-22 2001-09-26 Denki Kagaku Kogyo Kk Solidifying material for concentrated boric acid aqueous solution and neutron absorber
JP2009294017A (en) * 2008-06-04 2009-12-17 Takeji Hirota Processing method of radioactive processed product and land-shielding technique
JP2010048609A (en) * 2008-08-20 2010-03-04 Toshiba Corp Method and device for solidifying radioactive waste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205273A (en) * 2012-03-29 2013-10-07 Taiheiyo Material Kk Radioactive contaminant treatment method

Also Published As

Publication number Publication date
JP5923362B2 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
JP5896836B2 (en) Method for producing fired product
JP2013122440A (en) Method for removing radioactive cesium and method for manufacturing fired material
Tsakalou et al. Characterization and leachability evaluation of medical wastes incineration fly and bottom ashes and their vitrification outgrowths
JP6628282B2 (en) Method for removing radioactive cesium and method for producing fired product
JP2013076690A (en) Method for removing radioactive cesium and method for manufacturing burned product
JP6157947B2 (en) Anti-elution agent for harmful substances and elution prevention method using the same
JP2017145294A (en) Agent and method for inhibiting the elution of harmful material
JP2009294017A (en) Processing method of radioactive processed product and land-shielding technique
JP6077778B2 (en) Earthwork materials
JP5923362B2 (en) Treatment method for radioactive contaminants
JP2002177924A (en) Detoxification treatment process of incineration ash by diffusing and decomposing incineration ash atoms and equipment for the same process
JP5909133B2 (en) Treatment method for radioactive contaminants
JP6077765B2 (en) Anti-elution agent for harmful substances and elution prevention method using the same
JP5930797B2 (en) Radioactive contaminant treatment agent
JP5909132B2 (en) Treatment method for radioactive contaminants
JP2013190257A (en) Immobilizing material for radioactive substance and processing method of radioactive contaminant
JP5836096B2 (en) Earthwork materials
JP5877049B2 (en) Anti-elution agent for harmful substances
JP6046476B2 (en) Anti-elution agent for harmful substances and elution prevention method using the same
JP6002496B2 (en) Earthwork materials
JP2019157053A (en) Elution preventive agent for heavy metals from incineration ash and elution preventive method using same
JP2007176793A (en) Method for manufacturing fired product of incineration ash
JP2005225742A (en) Manufacturing method for calcium sulfide, manufacturing method for foundation improving material, and treating method for object to be treated
JP2007144411A (en) Reclamation treatment method in final disposal site
JP6656962B2 (en) Manufacturing method of fired product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R150 Certificate of patent or registration of utility model

Ref document number: 5923362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250