JP2013204151A - Two-phase stainless steel excellent in bulging workability and manufacturing method therefor - Google Patents

Two-phase stainless steel excellent in bulging workability and manufacturing method therefor Download PDF

Info

Publication number
JP2013204151A
JP2013204151A JP2012078324A JP2012078324A JP2013204151A JP 2013204151 A JP2013204151 A JP 2013204151A JP 2012078324 A JP2012078324 A JP 2012078324A JP 2012078324 A JP2012078324 A JP 2012078324A JP 2013204151 A JP2013204151 A JP 2013204151A
Authority
JP
Japan
Prior art keywords
stainless steel
duplex stainless
less
cold rolling
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012078324A
Other languages
Japanese (ja)
Other versions
JP5887179B2 (en
Inventor
Eiichiro Ishimaru
詠一朗 石丸
Machi Kawa
真知 川
Akihiko Takahashi
明彦 高橋
Ken Kimura
謙 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2012078324A priority Critical patent/JP5887179B2/en
Publication of JP2013204151A publication Critical patent/JP2013204151A/en
Application granted granted Critical
Publication of JP5887179B2 publication Critical patent/JP5887179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a technique of inexpensively manufacturing two-phase stainless steel having high ductility, excellent in bulging formability, and further excellent in surface property after forming.SOLUTION: A two-phase stainless steel excellent in bulging workability contains, by mass%, 0.001-0.03% C, 0.01-2.0% Si, 0.1-3.0% Mn, ≤0.045% P, ≤0.005% S, 19.0-25.0% Cr, 1.0-5.0% Ni, 0.05-0.5% Mo, 0.05-2.0% Cu, 0.0001-0.01% B, 0.06-0.25% N, at least one selected from 0.02-0.3% Sn, 0.05-0.2% Nb, and 0.05-0.2% Ti, and the balance Fe with inevitable impurities. In the two-phase stainless steel, the particle diameters of a ferrite phase are ≥10 μm, and the particle diameters of an austenite phase are ≥6 μm.

Description

本発明は、張り出し加工性に優れた2相ステンレス鋼およびその製造方法に関し、特に高延性で張り出し成形性が良好な省合金2相ステンレス鋼(鋼帯、鋼板)およびその製造方法に関するものである。   The present invention relates to a duplex stainless steel excellent in stretch workability and a method for producing the same, and more particularly to an alloy-saving duplex stainless steel (steel strip, steel plate) having a high ductility and good stretch formability and a method for producing the same. .

2相ステンレス鋼板は、優れた耐食性と高い強度を有することから、各種の化学工業用の装置や、機器などとして用いられている。ところが、かかる2相ステンレス鋼は、伸びがSUS304に代表されるオーステナイト系ステンレス鋼に比べると低く、そのために、プレス加工特に張り出し加工が制限されるという問題点があった。   Since the duplex stainless steel sheet has excellent corrosion resistance and high strength, it is used as various chemical industry apparatuses and devices. However, such a duplex stainless steel has a lower elongation than an austenitic stainless steel typified by SUS304, and thus has a problem that press working, particularly overhanging, is restricted.

この点に関し、特許文献1では2相ステンレス鋼の加工性を向上させるために、焼鈍温度(T−100)℃以上(T:フェライト単相となる温度)で熱延板焼鈍を行い、冷延後、焼鈍温度1000〜(T−150)℃の領域で冷延板焼鈍を行うことにより、加工性に優れる2相ステンレス鋼を製造する方法を提案している。また、特許文献2では、熱間圧延での圧延開始温度、終了温度、パス間時間、パス数および圧下率を規定し、さらに熱延板焼鈍温度、冷延板焼鈍温度を規定することにより、加工性に優れる2相ステンレス鋼を製造する方法を提案している。さらに特許文献3では主相がフェライト相でありオーステナイト相と2相組織を有するステンレス鋼を用いて、オーステナイト相のTRIP現象によって引張破断伸びを高めた技術が記載されている。特許文献4ではオーステナイト相の安定性を規定し、引張伸びを高める方法が述べられている。特許文献5においてはオーステナイト相の分率ならびにオーステナイト相中のC、N量を規定し、引張試験における全伸びを高める技術が示されている。また、フェライト・オーステナイト系ステンレス鋼の中には、近年の省資源化を反映しNi量を低減し比較的安価なNやMnでそのオーステナイト相のバランスをとり、延性と省資源化の両立を図った鋼(省合金)が特許文献6に記載されている。   In this regard, in Patent Document 1, in order to improve the workability of the duplex stainless steel, hot-rolled sheet annealing is performed at an annealing temperature (T-100) ° C. or higher (T: temperature at which the ferrite single phase is formed), and cold rolling Then, the method of manufacturing the duplex stainless steel which is excellent in workability is proposed by performing cold-rolled sheet annealing in an annealing temperature range of 1000 to (T-150) ° C. Further, in Patent Document 2, by defining the rolling start temperature, end temperature, time between passes, the number of passes and the rolling reduction in hot rolling, and further by defining the hot rolled sheet annealing temperature and the cold rolled sheet annealing temperature, A method for producing duplex stainless steel with excellent workability has been proposed. Further, Patent Document 3 describes a technique in which the tensile fracture elongation is increased by the TRIP phenomenon of the austenite phase using a stainless steel having a main phase of a ferrite phase and having an austenite phase and a two-phase structure. Patent Document 4 describes a method for regulating the austenite phase stability and increasing the tensile elongation. Patent Document 5 discloses a technique for regulating the austenite phase fraction and the amounts of C and N in the austenite phase to increase the total elongation in a tensile test. In addition, some ferritic / austenitic stainless steels reduce Ni content and balance the austenitic phase with relatively cheap N and Mn, reflecting the recent resource savings, and achieve both balance of ductility and resource saving. The intended steel (alloy-saving) is described in Patent Document 6.

しかし、特許文献1の場合、熱延板焼鈍を(T−100)℃以上(T:フェライト単相となる温度)と高温で行うため熱延板が加熱炉内で軟化し、破断、そして操業がストップするといった危険性を持っているという問題点がある。一方、特許文献2では、加熱時、熱延開始時のフェライト、オーステナイト相比について言及なされておらず、またこの方法によって製造された2相ステンレス鋼板の伸び特性は、原因は定かではないが、ばらつきが大きいという問題点があった。   However, in the case of Patent Document 1, since hot-rolled sheet annealing is performed at a high temperature of (T-100) ° C. or higher (T: temperature at which ferrite becomes a single phase), the hot-rolled sheet softens in the heating furnace, breaks, and operates. There is a problem that there is a danger of stopping. On the other hand, in Patent Document 2, no mention is made of the ferrite and austenite phase ratio at the start of heating and hot rolling, and the cause of the elongation characteristics of the duplex stainless steel sheet produced by this method is not clear. There was a problem that the variation was large.

また、特許文献3では、実施例に示されるように引張破断伸びが34〜42%、特許文献4においては引張破断伸びが最大46%、特許文献5では実施例で最大71%までの破断伸び、特許文献6では引張破断伸び〜46%が記載されているが、これら何れの文献においてもオーステナイト相およびフェライト相それぞれの粒径に関する記載はない。また、一部エリクセン試験を用いた張り出し成形性に関する記載は見受けられるものの液圧バルジ成形のような広範囲に均一な変形をうける成形に関する記述は一切見あたらない。また、成形後の表面性状として凹凸が大きい場合は、その後の研磨工程における製造性を大きく低下させるため、凹凸の小さい表面性状が求められている。   In Patent Document 3, the tensile elongation at break is 34 to 42% as shown in Examples, the tensile elongation at break is 46% at maximum in Patent Document 4, and the elongation at break is up to 71% in Example at Patent Document 5. Patent Document 6 describes a tensile elongation at break of ˜46%, but none of these documents describes the particle sizes of the austenite phase and the ferrite phase. In addition, although there is a description about the stretch formability using a part of Erichsen test, there is no description about molding that undergoes uniform deformation over a wide range such as hydraulic bulge forming. Moreover, when the unevenness | corrugation is large as the surface property after shaping | molding, since the manufacturability in a subsequent grinding | polishing process is reduced significantly, the surface property with a small unevenness | corrugation is calculated | required.

特開昭60−59017号JP-A-60-59017 特開平8−41594号JP-A-8-41594 特開平10−219407号公報JP-A-10-219407 特開平11−71643号公報JP-A-11-71643 特開2006−169622号公報JP 2006-169622 A WO2002/27056WO2002 / 27056

2相ステンレス鋼の加工性を向上させるための従来技術は、熱間圧延条件やその後の焼鈍条件に着目した技術とオーステナイト相の加工誘起変態の活用である。これら従来技術では、引張試験における伸びが高くても実際のプレス加工では、2相を形成するγ/α各相の加工特性の違いから張り出し加工性が低く、特に広範囲の加工においては加工品表面の凹凸が大きいため研磨性の低下が顕著となる問題があった。したがって、一般的なプレス成形に対して、2相ステンレス鋼を広く活用していくためには、このような課題を克服する必要がある。   Conventional techniques for improving the workability of duplex stainless steels are techniques that focus on hot rolling conditions and subsequent annealing conditions, and use of work-induced transformation of the austenite phase. In these conventional technologies, even if the elongation in the tensile test is high, in the actual press working, the overhang workability is low due to the difference in the processing characteristics of each of the γ / α phases forming the two phases. There is a problem that the decrease in the polishing property becomes remarkable due to the large unevenness. Therefore, in order to widely use the duplex stainless steel for general press forming, it is necessary to overcome such problems.

そこで本発明者らは、特に2相ステンレス鋼のプレス成形時に求められる材料の変形挙動を詳細に解析し、各相の粒径を制御することにより応力集中を緩和する方法を明確化することが重要と考え、高延性で張り出し成形性に優れ、かつ、成形後の表面性状に優れる安価な2相ステンレス鋼およびそれを製造する技術を提供することを課題とする。   Therefore, the present inventors can analyze in detail the deformation behavior of the material particularly required during the press forming of duplex stainless steel, and clarify the method of relaxing the stress concentration by controlling the particle size of each phase. It is important to provide an inexpensive duplex stainless steel having high ductility, excellent stretch formability, and excellent surface properties after molding, and a technology for producing the same.

本発明者らは、従来技術における上記課題を解決するために、プレス成形時に求められる材料の変形挙動と各相の変形差に着目し、鋭意研究した結果、各相の粒径をコントロールすることにより、常温での延性が高く張り出し成形性に優れ、かつ、成形性後の表面性状に優れる2相ステンレス鋼が得られるとの知見を得た。   In order to solve the above-described problems in the prior art, the present inventors have focused on the deformation behavior of the material required during press molding and the deformation difference of each phase, and as a result of earnest research, control the particle size of each phase. As a result, it was found that a duplex stainless steel having high ductility at room temperature and excellent stretch-formability and excellent surface properties after formability can be obtained.

そして、2相ステンレス鋼板の張り出し成形性を向上させるため、2相ステンレス鋼の成分組成に基づき、ミクロ組織、引張特性、液圧バルジ試験および液圧バルジ試験後の表面性状の影響をラボ試験により鋭意検討を重ねた結果、優れた張り出し成形性と加工後の表面性状が良好な2相ステンレス鋼として、各相の粒径とそのサイズ比の組み合わせがあることを見出し、本発明を完成した。   In order to improve the stretchability of the duplex stainless steel sheet, the influence of the microstructure, tensile properties, hydraulic bulge test, and surface properties after the hydraulic bulge test based on the component composition of the duplex stainless steel was determined by laboratory tests. As a result of intensive studies, the present inventors have found that there is a combination of the particle size of each phase and its size ratio as a duplex stainless steel having excellent overhanging formability and good surface properties after processing.

本発明の要旨は、次の通りである。   The gist of the present invention is as follows.

(1) 質量%で、
C:0.001〜0.03%、
Si:0.01〜2.0%、
Mn:0.1〜3.0%、
P:0.045%以下、
S:0.005%以下、
Cr:19.0〜25.0%、
Ni:1.0〜5.0%、
Mo:0.05〜0.5%、
Cu:0.05〜2.0%、
B:0.0001〜0.01%、
N:0.06〜0.25%
を含み、かつ
Sn:0.02〜0.3%、
Nb:0.05〜0.2%、
Ti:0.05〜0.2%
のいずれか少なくとも1種を含有し、残部はFeおよび不可避的不純物からなり、フェライト相の粒径が10μm以上、かつ、オーステナイト相の粒径が6μm以上であることを特徴とする張り出し加工性に優れる2相ステンレス鋼。
(1) In mass%,
C: 0.001 to 0.03%,
Si: 0.01 to 2.0%,
Mn: 0.1 to 3.0%
P: 0.045% or less,
S: 0.005% or less,
Cr: 19.0 to 25.0%,
Ni: 1.0-5.0%,
Mo: 0.05-0.5%
Cu: 0.05-2.0%,
B: 0.0001 to 0.01%
N: 0.06 to 0.25%
And Sn: 0.02 to 0.3%,
Nb: 0.05-0.2%
Ti: 0.05 to 0.2%
Any one of the above, the balance being Fe and inevitable impurities, the ferrite phase particle size is 10 μm or more, and the austenite phase particle size is 6 μm or more. Excellent duplex stainless steel.

(2) 質量%で、
Ca:0.003%以下、
Mg:0.003%以下、
Zr:0.5%以下、
Co:0.2%以下、
REM:0.01%以下
のいずれか少なくとも1種を含有することを特徴とする上記(1)に記載の2相ステンレス鋼。
(2) By mass%
Ca: 0.003% or less,
Mg: 0.003% or less,
Zr: 0.5% or less,
Co: 0.2% or less,
REM: The duplex stainless steel as described in (1) above, containing at least one of 0.01% or less.

(3) JIS−Z2201の機械試験で、破断伸びが33%以上であることを特徴とする張り出し加工性に優れることを特徴とする上記(1)または(2)に記載の2相ステンレス鋼。   (3) The duplex stainless steel as described in (1) or (2) above, which is excellent in stretch workability, characterized by having a breaking elongation of 33% or more in a mechanical test of JIS-Z2201.

(4) φ100mmの液圧バルジ試験において、破断限界成形高さが35mm以上である上記(1)乃至(3)のいずれかに記載の張り出し加工性に優れる2相ステンレス鋼。   (4) The duplex stainless steel having excellent overworkability according to any one of the above (1) to (3), wherein a fracture limit molding height is 35 mm or more in a hydraulic bulge test of φ100 mm.

(5) 上記(1)または(2)に記載の成分組成からなる2相ステンレス鋼板の冷間圧延の工程において、冷間圧延を実施する際の板温度が100〜200℃の範囲内、総冷間圧延率が80%未満であることを特徴とする(1)乃至(4)のいずれかに記載の張り出し加工性に優れる2相ステンレス鋼の製造方法。   (5) In the cold rolling step of the duplex stainless steel sheet comprising the component composition described in (1) or (2) above, the sheet temperature when the cold rolling is performed is in the range of 100 to 200 ° C. The method for producing a duplex stainless steel having excellent overworkability according to any one of (1) to (4), wherein the cold rolling rate is less than 80%.

(6) 上記(1)または(2)に記載の成分組成からなるスラブに熱間圧延を行ない、得られた熱延板を焼鈍し、その後、上記(5)に記載の冷間圧延を行い、さらに冷延板焼鈍を行うことを特徴とする上記(1)乃至(4)のいずれかに記載の張り出し加工性に優れた2相ステンレス鋼の製造方法。   (6) Hot rolling is performed on the slab having the composition described in (1) or (2) above, the obtained hot-rolled sheet is annealed, and then cold rolling described in (5) is performed. Further, the method for producing a duplex stainless steel excellent in overhang processability according to any one of the above (1) to (4), further comprising cold-rolled sheet annealing.

本発明によれば、張り出し加工性に優れた2相ステンレス鋼を安価に製造することができる。しかも、本発明方法に従って製造した2相ステンレス鋼板については、これまで不可能であった形状の加工を行うことができるようになり、加工工程が簡易にできるため大幅なコストダウンを図ることができる。   According to the present invention, duplex stainless steel excellent in overhanging workability can be produced at low cost. In addition, the duplex stainless steel sheet manufactured according to the method of the present invention can be processed in a shape that has not been possible so far, and since the processing process can be simplified, significant cost reduction can be achieved. .

各相の結晶粒径と破断伸びの関係を示した図であるIt is a figure showing the relationship between the crystal grain size of each phase and the elongation at break 各冷延率における冷延温度と破断伸びの関係を示した図であるIt is the figure which showed the relationship between cold rolling temperature and breaking elongation in each cold rolling rate

以下本発明を詳細に説明する。   The present invention will be described in detail below.

本発明の目的とした効果を得るには、ミクロ組織を構成するフェライト相およびオーステナイト相のそれぞれの粒径を一定の大きさ以上に制御する必要がある。2相ステンレス鋼は、熱処理温度により安定な相分率が異なる。さらに、再結晶開始温度も異なることから熱処理温度の変更のみによる組織制御は困難である。したがって、冷間圧延により加工歪みを導入した加工熱処理による組織制御が重要な方法であるが、フェライト相とオーステナイト相それぞれの硬度に差が大きく、省合金の組成を有する本発明の組成では軟質なフェライト相へ加工歪みが過度に導入されることから、冷延圧延率が高くなるほどフェライト相は微細化傾向を示す。   In order to obtain the effect aimed at by the present invention, it is necessary to control the grain sizes of the ferrite phase and austenite phase constituting the microstructure to a certain size or more. Duplex stainless steel has different stable phase fractions depending on the heat treatment temperature. Furthermore, since the recrystallization start temperature is also different, it is difficult to control the structure only by changing the heat treatment temperature. Therefore, it is important to control the structure by thermomechanical processing with work strain introduced by cold rolling, but there is a large difference in hardness between the ferrite phase and the austenite phase, and the composition of the present invention having the composition of alloy-saving is soft. Since processing strain is excessively introduced into the ferrite phase, the ferrite phase tends to be finer as the cold rolling ratio increases.

フェライト相とオーステナイト相からなる2相ステンレス鋼では、加工にともなう変形過程において各相の変形を補間しつつボイドの生成を抑制するか、もしくは、生成したボイドを成長させないことが重要である。ここで、フェライト相とオーステナイト相それぞれの延性を比較すると一般的にフェライト相の方が低延性であることから、フェライト相の変形能を向上させることが重要となる。さらに、フェライト相のみを粗大化させるとフェライト相とオーステナイト相の硬度差を拡大することとなるため、オーステナイト相の粗大軟質化も必要となる。図1は、各相の結晶粒径と破断伸びの関係を示した図である。横軸はEBSD法によって測定した鋼中のフェライト相(○印)とオーステナイト相(△印)の結晶粒径を示しており、縦軸は各結晶粒径に対応した破断伸びの値を示している。したがって、1つの伸び値に対して、フェライト相の粒径とオーステナイト相の粒径がそれぞれ存在している。図1から明らかなようにフェライト相の粒径が10μm以上(●印)であり、かつ、オーステナイト相の粒径が6μm以上(▲印)となった場合に、安定して破断伸び33%を達成することが可能となる。一方、フェライト相とオーステナイト相は板厚方向に層状の組織形態を呈している。ここで、各相の粒径測定はEBSD法により測定した。粒径の測定条件は、測定倍率2000倍で0.2μmステップの条件とし、得られたデータをTSL社OIM解析ソフトにより方位差15°以上を結晶粒界として1つの粒径を設定し円相当径を算出した。得られた円相当径を算術平均によって求めた値を結晶粒径とした。したがって、結晶粒径を粗大化するためには、それぞれの相が分断し散在する形態が必要となる。しかし、加工熱処理を実施する際に層状に形成された組織を分断し成長するには、多大なエネルギーが必要であり、製造コスト等を考慮するとフェライト相は25μm、オーステナイト相は15μm程度が上限となる。なお、図1の試験方法は、実施例に記載した。図1で破断伸び33%以上となるのは、実施例表1のNo.1〜15の鋼である。   In a duplex stainless steel composed of a ferrite phase and an austenite phase, it is important to suppress the generation of voids while interpolating the deformation of each phase in the deformation process accompanying the processing, or to prevent the generated voids from growing. Here, when comparing the ductility of the ferrite phase and the austenite phase, the ferrite phase is generally lower in ductility, so it is important to improve the deformability of the ferrite phase. Further, when only the ferrite phase is coarsened, the difference in hardness between the ferrite phase and the austenite phase is expanded, and thus the coarse and softening of the austenite phase is also required. FIG. 1 is a graph showing the relationship between the crystal grain size of each phase and the elongation at break. The horizontal axis shows the crystal grain size of the ferrite phase (○ mark) and austenite phase (△ mark) in the steel measured by the EBSD method, and the vertical axis shows the elongation at break corresponding to each crystal grain size. Yes. Therefore, for one elongation value, there are a ferrite phase particle size and an austenite phase particle size, respectively. As is apparent from FIG. 1, when the ferrite phase particle size is 10 μm or more (● mark) and the austenite phase particle size is 6 μm or more (▲ mark), the elongation at break is stable at 33%. Can be achieved. On the other hand, the ferrite phase and the austenite phase have a lamellar structure in the thickness direction. Here, the particle size of each phase was measured by the EBSD method. The measurement condition of the grain size is a measurement magnification of 2000 times and a 0.2 μm step, and the obtained data is equivalent to a circle by setting one grain size with a crystal grain boundary of orientation difference of 15 ° or more by TSL OIM analysis software. The diameter was calculated. The value obtained by arithmetic average of the obtained equivalent circle diameter was defined as the crystal grain size. Therefore, in order to increase the crystal grain size, a form in which each phase is divided and scattered is required. However, enormous energy is required to divide and grow the layered structure when the thermomechanical treatment is performed, and the upper limit is about 25 μm for the ferrite phase and about 15 μm for the austenite phase in consideration of the manufacturing cost. Become. In addition, the test method of FIG. 1 was described in the Example. In FIG. 1, the elongation at break of 33% or more is No. in Example Table 1. 1-15 steel.

破断伸びの影響が顕著となる成型方法として、液圧バルジ試験がある。φ160mmの円形ブランクシートに高さ2mmのロックビード付き金型を用い、クッション圧37tonの条件で張り出し加工性の評価を実施した。その結果、破断伸びが33%を超えるとφ100mmの液圧バルジ試験においても、成形限界高さが35mmを超えることが分かったので、一般的な2相ステンレス鋼のみならず高純フェライト系ステンレス鋼よりも高位な値を示すと理解される。したがって、破断伸び33%以上および成形限界高さ35mm以上とした。ここで、結晶粒径の粗大化には組織形態および製造条件による上限が存在するため、その影響は破断伸びや液圧バルジの成型限界高さにも反映され、破断伸び50%以下、成型限界高さ40mmが上限となる。   There is a hydraulic bulge test as a molding method in which the influence of elongation at break is significant. Using a die with a lock bead with a height of 2 mm on a circular blank sheet with a diameter of 160 mm, the overhang processability was evaluated under the condition of a cushion pressure of 37 tons. As a result, it was found that when the elongation at break exceeds 33%, the forming limit height exceeds 35 mm even in a hydraulic bulge test of φ100 mm. Therefore, not only general duplex stainless steel but also high purity ferritic stainless steel It is understood to indicate a higher value. Accordingly, the breaking elongation is 33% or more and the molding limit height is 35 mm or more. Here, since there is an upper limit on the coarsening of the crystal grain size depending on the structure and manufacturing conditions, the effect is reflected in the breaking limit and the molding limit height of the hydraulic bulge, and the breaking limit is 50% or less. The upper limit is 40 mm in height.

フェライト相およびオーステナイト相それぞれの粒径を制御するためには、冷間加工を開始する前の板温度を上昇させ、フェライト相とオーステナイト相がともに軟質化し硬度の差を低下させることが有効であることが分かった。冷間圧延温度を上昇させると加工歪みの導入が軽減され、再結晶核の軽減につながるため、粗粒化を達成することが可能となることを見出した。図2は、各冷延率における冷延温度(冷間圧延開始温度/℃)と破断伸びの関係を示した図である。図1と同様に試験方法および試験材の組成は実施例に記載した。試験材は実施例の鋼No.1である。冷間圧延温度の上昇および冷間圧延率の減少にともない破断伸びが増加している。尚、冷延に用いた素材はラボ溶解により作製した鋳塊を1200℃に加熱し、熱間圧延により5mmtとした後1050℃で溶体化処理を実施した。また、冷延板の板厚は1.0mmtとし、最終熱処理温度は1050℃とした。冷間圧延温度が100℃未満の場合、加工歪みの導入が著しい。また、総冷間圧延率が80%を超えると冷間圧延温度を100℃以上としても、加工歪みの導入が抑制されず破断伸びが低下する。一方、冷間圧延温度が200℃を超えると冷間圧延に必要な潤滑剤の効果が低減し、ロール焼き付き等の表面性状に課題が生じる。なお、前記冷間圧延温度は140〜180℃の範囲が好ましい。   In order to control the particle size of each of the ferrite phase and austenite phase, it is effective to increase the plate temperature before starting cold working and soften both the ferrite phase and the austenite phase to reduce the difference in hardness. I understood that. It was found that when the cold rolling temperature is raised, the introduction of processing strain is reduced and recrystallization nuclei are reduced, so that coarsening can be achieved. FIG. 2 is a diagram showing the relationship between the cold rolling temperature (cold rolling start temperature / ° C.) and the breaking elongation at each cold rolling rate. As in FIG. 1, the test method and the composition of the test material are described in the examples. The test material was Steel No. 1. The elongation at break increases as the cold rolling temperature rises and the cold rolling rate decreases. In addition, the raw material used for cold rolling heated the ingot produced by the laboratory melt | dissolution to 1200 degreeC, made it 5 mmt by hot rolling, and then implemented the solution treatment at 1050 degreeC. The plate thickness of the cold-rolled plate was 1.0 mmt, and the final heat treatment temperature was 1050 ° C. When the cold rolling temperature is less than 100 ° C., the introduction of processing strain is significant. Moreover, when the total cold rolling rate exceeds 80%, even if the cold rolling temperature is set to 100 ° C. or higher, the introduction of processing strain is not suppressed and the elongation at break is reduced. On the other hand, when the cold rolling temperature exceeds 200 ° C., the effect of the lubricant necessary for cold rolling is reduced, and a problem arises in surface properties such as roll seizure. The cold rolling temperature is preferably in the range of 140 to 180 ° C.

以下に、本発明において好ましい2相ステンレス鋼の成分組成について詳しく説明する。なお、ここで、成分についての「%」は質量%を意味する。   Below, the component composition of the duplex stainless steel preferable in the present invention will be described in detail. Here, “%” for the component means mass%.

C:0.001〜0.03%
Cは、ステンレス鋼の耐食性を低下させる元素であるばかりでなく、冷間圧延に際し硬化を招いて、その後の加工等を困難にする。従って、Cは、0.03%以下、好ましくは0.02%以下とする。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.001%とした。
C: 0.001 to 0.03%
C is not only an element that lowers the corrosion resistance of stainless steel, but also causes hardening during cold rolling, making subsequent processing difficult. Therefore, C is 0.03% or less, preferably 0.02% or less. However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.001%.

Si:0.01〜2.0%
Siは、耐食性の向上を図る上で非常に有効な元素として知られているが、σ相の析出を促進し、脆化の原因ともなる。従って、Siは、2.0%以下、好ましくは0.5〜1.0%の範囲内とする。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.01%とした。
Si: 0.01 to 2.0%
Si is known as an extremely effective element for improving the corrosion resistance, but promotes the precipitation of the σ phase and causes embrittlement. Therefore, Si is 2.0% or less, preferably 0.5 to 1.0%. However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.01%.

Mn:0.1〜3.0%
Mnは、溶解、精錬時に脱酸元素として作用するが、あまり多量に含有させると耐食性の劣化を招くため、Mnは、3.0%以下、好ましくは、0.5〜2.0%とする。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.1%とした。
Mn: 0.1 to 3.0%
Mn acts as a deoxidizing element during melting and refining, but if it is contained in a large amount, deterioration of corrosion resistance is caused. Therefore, Mn is 3.0% or less, preferably 0.5 to 2.0%. . However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.1%.

P:0.045%以下
Pは、耐食性に有害な元素であるため少ないほど良い。しかし、過度に含有量を低減するには特殊な製錬技術を要し製造コストアップにつながるため、Pは、0.045%以下に制御する必要がある。
P: 0.045% or less Since P is an element harmful to corrosion resistance, the smaller the better. However, in order to reduce the content excessively, a special smelting technique is required, leading to an increase in production cost. Therefore, P needs to be controlled to 0.045% or less.

S:0.005%以下
Sは、フェライト−オーステナイトの粒界に析出して熱間加工性を劣化させ、また、耐食性にも悪影響を及ぼす元素であるので、低いほど良い。とくに、このS量が0.005%を超えるとその影響が顕著になるので、Sは、0.005%以下とする。好ましくは、0.002%以下とする。
S: 0.005% or less S is an element that precipitates at the ferrite-austenite grain boundaries to deteriorate the hot workability and also adversely affects the corrosion resistance. In particular, when the amount of S exceeds 0.005%, the influence becomes significant, so S is made 0.005% or less. Preferably, it is 0.002% or less.

Cr:19.0〜25.0%
Crは、耐食性向上に寄与するフェライト形成元素の1つであり、かつσ相構成元素でもある。Cr含有量が19.0%未満では、耐食性が不足し、一方、Cr含有量が25.0%を超えると、硬化により伸びを減少させるとともに靭性を劣化させる。従って、Crは、19.0〜25.0%、好ましくは、20.0〜22.0%とする。
Cr: 19.0 to 25.0%
Cr is one of the ferrite forming elements contributing to the improvement of corrosion resistance and is also a σ phase constituent element. When the Cr content is less than 19.0%, the corrosion resistance is insufficient. On the other hand, when the Cr content exceeds 25.0%, the elongation is reduced by hardening and the toughness is deteriorated. Therefore, Cr is 19.0 to 25.0%, preferably 20.0 to 22.0%.

Ni:1.0〜5.0%
Niは、オーステナイト形成元素であり、1.0%未満になると、他のフェライト形成元素やオーステナイト形成元素によってγ相比率を調整すると多量のN含有が必要となり、気泡や硬化を招く。一方、5.0%を超えると、逆に必要以上のγ相比率となるばかりでなく、大幅なコストの上昇を招く。従って、Niは、1.0〜5.0%、好ましくは1.5〜2.5%とする。
Ni: 1.0-5.0%
Ni is an austenite forming element, and when it is less than 1.0%, if a γ phase ratio is adjusted by other ferrite forming elements or austenite forming elements, a large amount of N is required, which causes bubbles and hardening. On the other hand, if it exceeds 5.0%, on the contrary, not only the γ phase ratio is more than necessary, but also a significant cost increase is caused. Therefore, Ni is 1.0 to 5.0%, preferably 1.5 to 2.5%.

Mo:0.05〜0.5%
Moは、耐孔食性や耐隙間腐食性などの耐食性の向上に、また固溶強化にも寄与する元素である。このMo含有量が0.05%未満では、添加の効果がなく、一方、0.5%を超えると硬化にともなう延性の低下および靭性を劣化させ、製造コストの上昇を招く。従って、Moは、0.05〜0.5%、好ましくは、0.08〜 0.2%とする。
Mo: 0.05-0.5%
Mo is an element that contributes to improvement of corrosion resistance such as pitting corrosion resistance and crevice corrosion resistance and also to solid solution strengthening. If the Mo content is less than 0.05%, there is no effect of addition. On the other hand, if it exceeds 0.5%, the ductility is lowered and the toughness is deteriorated with hardening, and the production cost is increased. Therefore, Mo is 0.05 to 0.5%, preferably 0.08 to 0.2%.

Cu:0.05〜2.0%
Cuは、耐食性の向上に寄与する元素であるが、Cu含有量が0.05%未満では、添加の効果がなく、2.0%を超えて添加すると熱間加工性を劣化が著しい。従って、Cu含有量は0.05〜2.0%、好ましくは0.05〜1.0%とする。
Cu: 0.05-2.0%
Cu is an element that contributes to the improvement of corrosion resistance. However, when the Cu content is less than 0.05%, there is no effect of addition, and when it exceeds 2.0%, hot workability is significantly deteriorated. Therefore, the Cu content is 0.05 to 2.0%, preferably 0.05 to 1.0%.

B:0.0001〜0.01%
Bは、微量の添加で合金の粒界に存在し、熱間加工性を向上させる元素である。しかし同時に、粒界腐食などの耐食性も劣化させる元素でもある。従って、Bの含有量は、0.0001〜0.01%、好ましくは0.001〜0.005%以下とする。
B: 0.0001 to 0.01%
B is an element that exists at the grain boundary of the alloy with a small amount of addition and improves hot workability. However, at the same time, it is an element that deteriorates corrosion resistance such as intergranular corrosion. Therefore, the B content is 0.0001 to 0.01%, preferably 0.001 to 0.005% or less.

N:0.06〜0.25%
Nは、Cと同様にオーステナイト形成元素であり、そのためN含有量は、他のフェライト形成元素との兼ね合いのもとでの組成から定める必要がある。またこのNは、耐孔食性を向上させる効果もあり、Nの含有量は少なくとも、0.06%は必要である。しかし、0.25%を超えると熱間加工性を悪化させるため、0.06〜0.25%、好ましくは0.08〜0.18%とする。
N: 0.06 to 0.25%
N is an austenite-forming element like C. Therefore, the N content needs to be determined from the composition in consideration of other ferrite-forming elements. N also has an effect of improving pitting corrosion resistance, and the N content needs to be at least 0.06%. However, if it exceeds 0.25%, the hot workability is deteriorated, so 0.06 to 0.25%, preferably 0.08 to 0.18%.

Nb:0.05〜0.2%、Ti:0.05〜0.2%
Nb、Tiはともにフェライト相における安定化元素であり、耐局部腐食性の向上に有効な元素である。しかし、0.05%以下の添加では効果はなく、一方0.2%超えると多量の析出物が析出するため靭性の劣化により、熱間加工性を劣化させるほか、製造コストの面で不利となる。従って、NbとTiの添加量は、いずれも0.05〜0.2%、好ましくは0.08〜015%とする。
Nb: 0.05 to 0.2%, Ti: 0.05 to 0.2%
Nb and Ti are both stabilizing elements in the ferrite phase, and are effective elements for improving local corrosion resistance. However, the addition of 0.05% or less is not effective, and on the other hand, if it exceeds 0.2%, a large amount of precipitates are precipitated. Become. Therefore, the addition amounts of Nb and Ti are both 0.05 to 0.2%, preferably 0.08 to 015%.

Sn:0.02〜0.3%
Snはフェライト相における固溶強化元素であり、微量の添加によりフェライト相を硬化させ、オーステナイト相との強度差を減少させることに有効な元素である。この効果を得るためには0.02%の含有が必要である。一方、オーステナイト相の熱間加工性を著しく低下させる元素でもあり、0.3%を超えて含有すると製造性が著しく低下する。好ましくは、0.05〜0.15%である。
Sn: 0.02-0.3%
Sn is a solid solution strengthening element in the ferrite phase, and is an element effective for hardening the ferrite phase by adding a small amount and reducing the strength difference from the austenite phase. In order to acquire this effect, 0.02% of content is required. On the other hand, it is also an element that remarkably lowers the hot workability of the austenite phase, and if it exceeds 0.3%, the productivity is significantly lowered. Preferably, it is 0.05 to 0.15%.

Ca:0.003%以下、Mg:0.003%以下
Caは脱硫、脱酸のために若干含有されることがある。但し、0.003%超の含有によって熱間加工割れが生じやすくなり、また耐食性が低下するため、これを上限とした。安定して効果を得るためには、0.0005%以上が望ましい。Mgは、脱酸だけでなく、凝固組織を微細化する効果を持つ。これらの効果を安定して発揮するためには、0.0005%以上の含有が望ましい。また、0.003%超の含有は製鋼工程でのコスト増加をもたらすため、これを上限とした。
Ca: 0.003% or less, Mg: 0.003% or less Ca may be slightly contained for desulfurization and deoxidation. However, the content of over 0.003% tends to cause hot working cracks and lowers the corrosion resistance, so this was made the upper limit. In order to obtain the effect stably, 0.0005% or more is desirable. Mg has not only deoxidation but also an effect of refining the solidified structure. In order to stably exhibit these effects, the content is preferably 0.0005% or more. Moreover, since content exceeding 0.003% brings about the cost increase in a steelmaking process, this was made into the upper limit.

Zr:0.5%以下
Zrは、耐食性を向上させる上で、必要に応じて0.5%以下含有させることができる。安定した効果が得られるには、Zrを0.05%以上含有させることが好ましい。
Zr: 0.5% or less Zr can be contained in an amount of 0.5% or less as required in order to improve the corrosion resistance. In order to obtain a stable effect, it is preferable to contain 0.05% or more of Zr.

Co:0.2%以下
Coは、二次加工性と靭性を向上させる上で、必要に応じて0.2%以下含有させることができる。安定した効果が得られるには、Coを0.02%以上含有させることが好ましい。
Co: 0.2% or less Co can be contained in an amount of 0.2% or less as required in order to improve secondary workability and toughness. In order to obtain a stable effect, it is preferable to contain 0.02% or more of Co.

REM:0.01%以下
REMは、脱酸効果等を有するので精練上有用な元素であり、必要に応じて0.01%以下含有させることができる。安定した効果が得られるには、REMを0.001%以上含有させることが好ましい。
REM: 0.01% or less REM is an element useful for scouring because it has a deoxidizing effect and the like, and can be contained by 0.01% or less as necessary. In order to obtain a stable effect, it is preferable to contain REM 0.001% or more.

なお、ここに記載の成分以外の残部はFeおよび不可避的不純物である。   The balance other than the components described here is Fe and inevitable impurities.

次に、本発明の製造方法について説明する。   Next, the manufacturing method of this invention is demonstrated.

本発明の張り出し加工性に優れる2相ステンレス鋼の製造方法では、冷間圧延を実施する際の板温度が100〜200℃の範囲内、総冷間圧延率が80%未満とすることが重要である。   In the method for producing a duplex stainless steel having excellent overworkability according to the present invention, it is important that the plate temperature during cold rolling is in the range of 100 to 200 ° C. and the total cold rolling rate is less than 80%. It is.

すなわち、冷間圧延温度が100℃未満の場合、加工歪みの導入が著しい。また、総冷間圧延率が80%を超えると冷間圧延温度を100℃以上としても、加工歪みの導入が抑制されず破断伸びが低下するので、総冷間圧延率が80%未満とした。一方、冷間圧延温度が200℃を超えると冷間圧延に必要な潤滑剤の効果が低減し、ロール焼き付き等の表面性状に課題が生じるので、冷間圧延を実施する際の板温度を100〜200℃の範囲内
とした。
That is, when the cold rolling temperature is less than 100 ° C., the introduction of processing strain is significant. In addition, when the total cold rolling rate exceeds 80%, even if the cold rolling temperature is set to 100 ° C. or higher, the introduction of processing strain is not suppressed, and the elongation at break is reduced. . On the other hand, if the cold rolling temperature exceeds 200 ° C., the effect of the lubricant necessary for cold rolling is reduced, and problems arise in the surface properties such as roll seizure. Therefore, the plate temperature when performing cold rolling is set to 100. Within the range of ~ 200 ° C.

また、本発明の張り出し加工性に優れる2相ステンレス鋼は、本発明の成分組成を有する2相ステンレス鋼のスラブを熱間圧延し、得られた熱延板を焼鈍し、その後、上記に記載の冷間圧延を行い、さらに冷延板焼鈍を行って製造する。   Moreover, the duplex stainless steel excellent in the stretch workability of the present invention is obtained by hot rolling a slab of the duplex stainless steel having the component composition of the present invention, annealing the obtained hot rolled sheet, and then described above. Is cold rolled, and further cold-rolled sheet annealed.

具体的には、本発明の成分組成を有する2相ステンレス鋼のスラブを1150〜1250℃(1200℃は実施例)に加熱後熱間圧延し、得られた熱延板を1050〜1100℃で焼鈍し、その後、上記に記載の冷間圧延を行い、さらに1000〜1100℃(1050℃は実施例)で冷延板焼鈍を実施する。   Specifically, the slab of the duplex stainless steel having the component composition of the present invention is heated to 1150 to 1250 ° C. (1200 ° C. is an example) and then hot-rolled, and the obtained hot-rolled sheet is obtained at 1050 to 1100 ° C. After annealing, the cold rolling described above is performed, and further cold-rolled sheet annealing is performed at 1000 to 1100 ° C. (1050 ° C. is an example).

スラブ加熱温度は熱間圧延時の変形抵抗に影響するため、高温で実施することが望ましいが、高温化に伴いフェライト相の比率が上昇し著しい軟化が生じると疵等の課題が生じる。同様に熱延板焼鈍の高温化は疵の発生原因となるため、再結晶が進み軟化が生じる限界温度での熱処理が必要となる。対して、冷延板焼鈍温度は、板厚が薄く剛性が低下するため温度上昇を抑制する必要がある。これらの条件を適正化することも、本発明の張り出し加工性に優れる2相ステンレス鋼を製造する上で必要である。   Since the slab heating temperature affects the deformation resistance during hot rolling, it is desirable that the slab heating temperature be high. However, when the slab heating temperature is increased, the ratio of the ferrite phase increases and significant softening occurs, which causes problems such as wrinkles. Similarly, since the high temperature of the hot-rolled sheet annealing causes the generation of soot, heat treatment is required at a limit temperature at which recrystallization proceeds and softening occurs. On the other hand, the cold-rolled plate annealing temperature needs to suppress the temperature rise because the plate thickness is thin and the rigidity is lowered. It is also necessary to optimize these conditions in producing the duplex stainless steel having excellent overhang workability according to the present invention.

以下実施例に基づいて本発明の効果を説明する。   The effects of the present invention will be described below based on examples.

表1に示す成分組成を有する2相ステンレス鋼のラボ鋳塊を、1200℃に加熱した後、熱間圧延を行い5mmtとし、その後1050℃で熱延板焼鈍、引き続き冷間圧延を行い1050℃で冷延板焼鈍により板厚1.0mmの冷延板を得た。冷間圧延時の温度条件は表2に示している。冷間圧延時の温度制御は冷延機入り側近傍に恒温炉を設置し、板温が所定の温度になることを接触式温度計により確認することとした。板温が狙い温度に対し±5℃の範囲であれば、冷間圧延を実施した。伸び(%)の測定値は、JIS−Z2201に規定された13号B試験片を用いて圧延方向と直角方向に機械試験を行った数値である。液圧バルジ試験は、φ100mmで2mm高さのロックビードを有する金型を用いクッション圧を37tonとして、破断する高さを測定している。また、各相の粒径測定はEBSD法により測定した。粒径の測定条件は、測定倍率2000倍で0.2μmステップの条件とし、得られたデータをTSL社OIM解析ソフトにより解析し、算出した。方位差15°以上を結晶粒界として1つの粒界を設定し円相当径を算出した。得られた円相当径を算術平均によって求めた値を結晶粒径とした。それぞれ得られた結果を表2にあわせて示す。この表2に示す結果から明らかなように、本発明によって製造された2相ステンレス鋼(鋼No.1〜18)は、試験No.1〜18に示すように、本発明の要件を満たしていない比較例(試験No.19〜43)に比べ、伸びおよび張り出し加工性が改善されていることがわかった。つまり、本発明方法の適用により、張り出し加工性に優れる2相ステンレス鋼の製造が可能である。   A lab ingot of duplex stainless steel having the composition shown in Table 1 is heated to 1200 ° C. and then hot rolled to 5 mmt, then hot-rolled sheet annealed at 1050 ° C., followed by cold rolling at 1050 ° C. Thus, a cold-rolled sheet having a thickness of 1.0 mm was obtained by cold-rolled sheet annealing. Table 2 shows the temperature conditions during cold rolling. For temperature control during cold rolling, a constant temperature furnace was installed in the vicinity of the entry side of the cold rolling machine, and it was confirmed with a contact-type thermometer that the plate temperature reached a predetermined temperature. If the plate temperature is in the range of ± 5 ° C. with respect to the target temperature, cold rolling was performed. The measured value of elongation (%) is a numerical value obtained by performing a mechanical test in a direction perpendicular to the rolling direction using a No. 13 B test piece defined in JIS-Z2201. In the hydraulic bulge test, a fracture height is measured by using a mold having a lock bead of φ100 mm and a height of 2 mm and a cushion pressure of 37 tons. The particle size of each phase was measured by the EBSD method. The particle size was measured under the condition of a measurement magnification of 2000 times and a 0.2 μm step, and the obtained data was analyzed and calculated by OSL analysis software of TSL. One grain boundary was set with an orientation difference of 15 ° or more as the crystal grain boundary, and the equivalent circle diameter was calculated. The value obtained by arithmetic average of the obtained equivalent circle diameter was defined as the crystal grain size. The obtained results are shown together in Table 2. As is apparent from the results shown in Table 2, the duplex stainless steels (steel Nos. 1 to 18) produced according to the present invention were tested Nos. As shown to 1-18, it turned out that elongation and overhang workability are improved compared with the comparative example (test No. 19-43) which does not satisfy | fill the requirements of this invention. That is, by applying the method of the present invention, it is possible to produce a duplex stainless steel having excellent overhanging workability.

すなわち、試験No.19〜22は、本発明の鋼成分の要件は満たしているが、フェライト相の粒径、オーステナイト相の粒径、および、冷間圧延を実施する際の板温度(冷間圧延温度)、総冷間圧延率のいずれかの要件が本発明範囲外であり、伸び(%)及びバルジ破断高さが劣っていた。また、試験No.19〜22は、本発明の鋼成分の要件は満たしておらず、冷間圧延温度)、総冷間圧延率及びフェライト相の粒径、オーステナイト相の粒径のいずれかが本発明外であり、伸び(%)及びバルジ破断高さが劣っていた。   That is, test no. Nos. 19 to 22 satisfy the requirements of the steel component of the present invention, but the grain size of the ferrite phase, the grain size of the austenite phase, and the plate temperature (cold rolling temperature) when performing cold rolling, Any requirement of the cold rolling rate was outside the scope of the present invention, and the elongation (%) and the bulge breaking height were inferior. In addition, Test No. Nos. 19 to 22 do not satisfy the requirements of the steel component of the present invention, and any of the cold rolling temperature), the total cold rolling rate, the ferrite phase particle size, and the austenite phase particle size is outside the present invention. The elongation (%) and the bulge break height were inferior.

Figure 2013204151
Figure 2013204151

Figure 2013204151
Figure 2013204151

Claims (6)

質量%で、
C:0.001〜0.03%、
Si:0.01〜2.0%、
Mn:0.1〜3.0%、
P:0.045%以下、
S:0.005%以下、
Cr:19.0〜25.0%、
Ni:1.0〜5.0%、
Mo:0.05〜0.5%、
Cu:0.05〜2.0%、
B:0.0001〜0.01%、
N:0.06〜0.25%
を含み、かつ
Sn:0.02〜0.3%、
Nb:0.05〜0.2%、
Ti:0.05〜0.2%
のいずれか少なくとも1種を含有し、残部はFeおよび不可避的不純物からなり、フェライト相の粒径が10μm以上、かつ、オーステナイト相の粒径が6μm以上であることを特徴とする張り出し加工性に優れる2相ステンレス鋼。
% By mass
C: 0.001 to 0.03%,
Si: 0.01 to 2.0%,
Mn: 0.1 to 3.0%
P: 0.045% or less,
S: 0.005% or less,
Cr: 19.0 to 25.0%,
Ni: 1.0-5.0%,
Mo: 0.05-0.5%
Cu: 0.05-2.0%,
B: 0.0001 to 0.01%
N: 0.06 to 0.25%
And Sn: 0.02 to 0.3%,
Nb: 0.05-0.2%
Ti: 0.05 to 0.2%
Any one of the above, the balance being Fe and inevitable impurities, the ferrite phase particle size is 10 μm or more, and the austenite phase particle size is 6 μm or more. Excellent duplex stainless steel.
質量%で、
Ca:0.003%以下、
Mg:0.003%以下、
Zr:0.5%以下、
Co:0.2%以下、
REM:0.01%以下
のいずれか少なくとも1種を含有することを特徴とする請求項1に記載の2相ステンレス鋼。
% By mass
Ca: 0.003% or less,
Mg: 0.003% or less,
Zr: 0.5% or less,
Co: 0.2% or less,
The duplex stainless steel according to claim 1, comprising at least one of REM: 0.01% or less.
JIS−Z2201の機械試験で、破断伸びが33%以上であることを特徴とする張り出し加工性に優れることを特徴とする請求項1または2に記載の2相ステンレス鋼。   3. The duplex stainless steel according to claim 1, wherein the duplex stainless steel according to claim 1 or 2 is excellent in stretch workability characterized by having a breaking elongation of 33% or more in a mechanical test of JIS-Z2201. φ100mmの液圧バルジ試験において、破断限界成形高さが35mm以上である請求項1乃至3のいずれかに記載の張り出し加工性に優れる2相ステンレス鋼。   The duplex stainless steel excellent in stretch workability according to any one of claims 1 to 3, wherein a fracture limit forming height is 35 mm or more in a hydraulic bulge test of φ100 mm. 請求項1または2に記載の成分組成からなる2相ステンレス鋼板の冷間圧延の工程において、冷間圧延を実施する際の板温度が100〜200℃の範囲内、総冷間圧延率が80%未満であることを特徴とする請求項1乃至4のいずれかに記載の張り出し加工性に優れる2相ステンレス鋼の製造方法。   In the process of cold rolling of the duplex stainless steel sheet comprising the component composition according to claim 1 or 2, the sheet temperature when cold rolling is performed is in a range of 100 to 200 ° C, and the total cold rolling rate is 80. 5. The method for producing a duplex stainless steel excellent in overhanging workability according to claim 1, wherein the duplex stainless steel is excellent in stretch workability. 請求項1または2に記載の成分組成からなるスラブに熱間圧延を行ない、得られた熱延板を焼鈍し、その後、請求項5に記載の冷間圧延を行い、さらに冷延板焼鈍を行うことを特徴とする請求項1乃至4のいずれかに記載の張り出し加工性に優れた2相ステンレス鋼の製造方法。   Hot rolling is performed on the slab having the component composition according to claim 1 or 2, the obtained hot rolled sheet is annealed, then cold rolling according to claim 5 is performed, and further cold rolled sheet annealing is performed. The method for producing a duplex stainless steel having excellent overworkability according to any one of claims 1 to 4, wherein the method is performed.
JP2012078324A 2012-03-29 2012-03-29 Duplex stainless steel with excellent overworkability and method for producing the same Active JP5887179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012078324A JP5887179B2 (en) 2012-03-29 2012-03-29 Duplex stainless steel with excellent overworkability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012078324A JP5887179B2 (en) 2012-03-29 2012-03-29 Duplex stainless steel with excellent overworkability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013204151A true JP2013204151A (en) 2013-10-07
JP5887179B2 JP5887179B2 (en) 2016-03-16

Family

ID=49523565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012078324A Active JP5887179B2 (en) 2012-03-29 2012-03-29 Duplex stainless steel with excellent overworkability and method for producing the same

Country Status (1)

Country Link
JP (1) JP5887179B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133433A1 (en) * 2014-03-03 2015-09-11 新日鐵住金ステンレス株式会社 Ferritic/austenitic two-phase stainless-steel sheet with excellent polishability and process for producing same
JP2018179161A (en) * 2017-04-14 2018-11-15 内山工業株式会社 Metal ring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059017A (en) * 1983-09-13 1985-04-05 Sumitomo Metal Ind Ltd Production of two-phase stainless steel
JP2005290450A (en) * 2004-03-31 2005-10-20 Sumitomo Metal Ind Ltd Belt for continuously variable transmission, and stainless steel therefor
JP2010222593A (en) * 2009-03-19 2010-10-07 Nippon Steel & Sumikin Stainless Steel Corp Duplex stainless steel plate having excellent press moldability
JP2011184792A (en) * 2010-02-12 2011-09-22 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel sheet having excellent press formability, and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059017A (en) * 1983-09-13 1985-04-05 Sumitomo Metal Ind Ltd Production of two-phase stainless steel
JP2005290450A (en) * 2004-03-31 2005-10-20 Sumitomo Metal Ind Ltd Belt for continuously variable transmission, and stainless steel therefor
JP2010222593A (en) * 2009-03-19 2010-10-07 Nippon Steel & Sumikin Stainless Steel Corp Duplex stainless steel plate having excellent press moldability
JP2011184792A (en) * 2010-02-12 2011-09-22 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel sheet having excellent press formability, and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133433A1 (en) * 2014-03-03 2015-09-11 新日鐵住金ステンレス株式会社 Ferritic/austenitic two-phase stainless-steel sheet with excellent polishability and process for producing same
JPWO2015133433A1 (en) * 2014-03-03 2017-04-06 新日鐵住金ステンレス株式会社 Ferritic / austenitic duplex stainless steel sheet with excellent abrasiveness and method for producing the same
JP2018179161A (en) * 2017-04-14 2018-11-15 内山工業株式会社 Metal ring

Also Published As

Publication number Publication date
JP5887179B2 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5500960B2 (en) Fine grain austenitic stainless steel sheet with excellent stress corrosion cracking resistance and workability
JP5869922B2 (en) Ferrite-austenitic duplex stainless steel sheet with small in-plane anisotropy and method for producing the same
JP3886933B2 (en) Ferritic stainless steel sheet excellent in press formability and secondary workability and manufacturing method thereof
JP5335503B2 (en) Duplex stainless steel sheet with excellent press formability
JP5687624B2 (en) Stainless steel, cold-rolled strip made from this steel, and method for producing steel plate products from this steel
JP5920555B1 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP2016191150A (en) Stainless steel sheet excellent in toughness and production method thereof
JP2013060657A (en) High-strength cold rolled steel sheet excellent in elongation and stretch-flange formability, and method for producing the same
CN110062814A (en) Low alloy steel plate with excellent intensity and ductility
JP2015190025A (en) Ferritic stainless hot rolled steel sheet excellent in toughness and steel strip
JP2012237044A (en) High-strength cold-rolled steel sheet excellent in elongation and stretch flanging property and method for production thereof
JP5656432B2 (en) Ferritic / austenitic stainless steel sheet with excellent press formability and manufacturing method thereof
JP2008202113A (en) Manufacturing method of steel sheet for can
JP2006328525A (en) Low carbon-low nitrogen ferritic stainless steel thin sheet having reduced plane anisotropy upon forming and having excellent ridging resistance and roughening resistance, and method for producing the same
JP5656435B2 (en) Ferrite-austenitic stainless steel sheet for press molding with small earrings and method for producing the same
JP2007211313A (en) Ferritic stainless steel having excellent ridging resistance and its production method
JP2008297570A (en) Low yield ratio steel sheet
JP4272394B2 (en) Ferritic stainless steel with excellent precision punchability
JP5950653B2 (en) Ferritic stainless steel plate with excellent surface roughness resistance
JP6105996B2 (en) Low Ni austenitic stainless steel sheet and processed product obtained by processing the steel sheet
JP5887179B2 (en) Duplex stainless steel with excellent overworkability and method for producing the same
JP2011202211A (en) Cold rolled steel sheet for nitriding treatment having excellent nitriding property and recrystallization softening resistance, and method for producing the same
JP2002275595A (en) Ferritic stainless steel sheet having excellent ridging resistance and deep drawability and method of manufacturing for the same
JP3723569B2 (en) Manufacturing method of austenitic stainless steel sheet with excellent precision punchability
JP2018538441A (en) High-strength cold-rolled steel sheet excellent in shear workability and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R150 Certificate of patent or registration of utility model

Ref document number: 5887179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250