JP2013203769A - Coating composition containing low temperature-curable charge transfer type catalyst and surface-treated base material - Google Patents

Coating composition containing low temperature-curable charge transfer type catalyst and surface-treated base material Download PDF

Info

Publication number
JP2013203769A
JP2013203769A JP2012071201A JP2012071201A JP2013203769A JP 2013203769 A JP2013203769 A JP 2013203769A JP 2012071201 A JP2012071201 A JP 2012071201A JP 2012071201 A JP2012071201 A JP 2012071201A JP 2013203769 A JP2013203769 A JP 2013203769A
Authority
JP
Japan
Prior art keywords
charge transfer
electron
transfer catalyst
och
coating composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012071201A
Other languages
Japanese (ja)
Other versions
JP6069865B2 (en
Inventor
Kazuyuki Matsumura
和之 松村
Masaki Tanaka
正喜 田中
Yukio Morimoto
行生 森本
Shoji Ichimura
昭二 市村
Satoru Shiiki
哲 椎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOIS TECHNOLOGY Ltd
FUAIRATSUKU INTERNATL KK
KMT KK
THREE S KK
Shin Etsu Chemical Co Ltd
Pelnox Ltd
Original Assignee
BOIS TECHNOLOGY Ltd
FUAIRATSUKU INTERNATL KK
KMT KK
THREE S KK
Shin Etsu Chemical Co Ltd
Pelnox Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOIS TECHNOLOGY Ltd, FUAIRATSUKU INTERNATL KK, KMT KK, THREE S KK, Shin Etsu Chemical Co Ltd, Pelnox Ltd filed Critical BOIS TECHNOLOGY Ltd
Priority to JP2012071201A priority Critical patent/JP6069865B2/en
Publication of JP2013203769A publication Critical patent/JP2013203769A/en
Application granted granted Critical
Publication of JP6069865B2 publication Critical patent/JP6069865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Paints Or Removers (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coating composition which enables a charge transfer type catalyst-containing coating film to be easily formed only by being applied to the base material and dried at low temperature and which enables durability of the coating film to be improved, and can give antifouling properties, antibacterial properties and deodorant properties and to provide a surface-treated base material obtained by applying the coating composition to the surface of the base material.SOLUTION: A coating composition containing low temperature-curable charge transfer type catalyst contains: (I) the charge transfer type catalyst; (II) an organosilicon compound; and (III) water and/or water-containing solvent. The organosilicon compound is obtained by hydrolyzing hydrolyzable silane (A) containing nitrogen atom containing organic group shown by formula: YRSiR(1) (wherein Ris a monovalent hydrocarbon group; Ris an alkoxy or acyloxy group; Y is a nitrogen atom-containing organic group; m is 0 or 1) and/or a partially hydrolyzed material thereof and hydrolyzable silane (B) shown by formula: RSiR(2) (wherein Ris a monovalent hydrocarbon group; Ris an alkoxy or acyloxy group; n is 0, 1 or 2) and/or a partially hydrolyzed material thereof.

Description

本発明は、触媒内での電荷移動により酸化反応及び/又は還元反応を行う複合酸化物結晶からなる電荷移動型触媒を含有する低温硬化型電荷移動型触媒含有コーティング組成物、及び該組成物の被膜を基材表面に形成した表面処理基材に関する。   The present invention relates to a low-temperature curable charge transfer catalyst-containing coating composition containing a charge transfer catalyst comprising a composite oxide crystal that undergoes an oxidation reaction and / or a reduction reaction by charge transfer in the catalyst, and The present invention relates to a surface-treated substrate having a coating film formed on the substrate surface.

従来、基材表面に光触媒機能を有する層(例えばアナターゼ型酸化チタンを含有する層)を形成し、光触媒を光励起させて層の表面を親水化させ、防汚性を付与するようにしたものが数多く知られている。この光触媒方式では、紫外線と水の存在が必須条件となるが、天候、季節、昼夜、建物の向きなどの環境条件により変化し効果が一定でない。例えば、天気の良い日は紫外線は強いが水分がなく、雨の日は水分はあるが紫外線が弱いというように、相反する条件が必要となる。   Conventionally, a layer having a photocatalytic function (for example, a layer containing anatase-type titanium oxide) is formed on the surface of a substrate, and the photocatalyst is photoexcited to hydrophilize the surface of the layer to impart antifouling properties. Many are known. In this photocatalytic method, the presence of ultraviolet rays and water is an essential condition, but the effect varies depending on environmental conditions such as weather, season, day and night, and the direction of the building, and the effect is not constant. For example, contradictory conditions are required, such as when the weather is fine, the ultraviolet rays are strong but there is no moisture, and on rainy days there is moisture but the ultraviolet rays are weak.

このような技術上の問題点を克服するために、光や水の存在といった環境条件の変化に関わりなく、防汚性を付与可能にし、また抗菌性や防臭性の付与も可能にした電荷移動型触媒が提唱されている(特許文献1:特許第3514702号公報、特許文献2:特開2007−185553号公報、特許文献3:特開2007−38119号公報)。   In order to overcome such technical problems, charge transfer can be imparted with antifouling property and antibacterial and deodorant properties regardless of changes in environmental conditions such as the presence of light and water. Type catalysts have been proposed (Patent Document 1: Japanese Patent No. 3514702, Patent Document 2: Japanese Patent Laid-Open No. 2007-185553, Patent Document 3: Japanese Patent Laid-Open No. 2007-38119).

しかしながら、このような電荷移動型触媒は粉末であって、従来は溶媒にバインダーを加えてコーティング溶液としていたが、よいバインダーがなく、塗布しても電荷移動型触媒粉末が脱落したり、防汚性等の性能が持続しなかったりと不具合が生じていた。また、例えばタイル表面に塗工しようとする場合、1,000℃以上で焼付けをしなければならないという問題もあった。更に光は必要ないが、熱が必要なため、熱源の近くでしか応用できないものもあり、熱源がない所への応用が難しいという問題もあった。
本発明に用いるバインダーに関する先行技術としては、上記特許文献1〜3に加えて下記特許文献4〜7が挙げられる。
However, such a charge transfer catalyst is a powder, and conventionally a binder is added to a solvent to form a coating solution. However, there is no good binder, and even when applied, the charge transfer catalyst powder falls off or is antifouling. There was a problem that performance such as sex did not last. In addition, for example, when applying to a tile surface, there is a problem that baking must be performed at 1,000 ° C. or higher. Furthermore, although light is not required, there is a problem that application is only possible near the heat source because heat is required, and it is difficult to apply to a place where there is no heat source.
Prior art relating to the binder used in the present invention includes the following patent documents 4 to 7 in addition to the above patent documents 1 to 3.

特許第3514702号公報Japanese Patent No. 3514702 特開2007−185553号公報JP 2007-185553 A 特開2007−38119号公報JP 2007-38119 A 特開平9−77780号公報Japanese Patent Laid-Open No. 9-77780 特開平10−81752号公報Japanese Patent Laid-Open No. 10-81752 特開2000−34442号公報JP 2000-34442 A 特開2002−241744号公報JP 2002-241744 A

本発明は、上記事情に鑑みなされたもので、基材に塗布し、低温で乾燥させるだけで容易に電荷移動型触媒含有被膜を形成でき、その被膜耐久性の向上が可能で、防汚性・抗菌性・防臭性を付与可能な低温硬化型電荷移動型触媒含有コーティング組成物、及び該組成物を基材表面に塗布形成した表面処理基材を提供することを課題とする。   The present invention has been made in view of the above circumstances, and can easily form a charge transfer catalyst-containing coating simply by applying to a substrate and drying at a low temperature, and the durability of the coating can be improved. It is an object of the present invention to provide a low-temperature curable charge transfer catalyst-containing coating composition capable of imparting antibacterial and deodorizing properties, and a surface-treated substrate on which the composition is applied and formed on the substrate surface.

本発明者らは、上記課題を達成するために鋭意検討を行った結果、下記に示す特定の有機ケイ素化合物が、電荷移動型触媒と組み合わせた時に優れた低温硬化性能、バインダー性能を発揮することを見出し、更に通常防汚性を示す光触媒の場合には表面を親水性にしてしまうが、特定の有機ケイ素化合物を組み合わせることにより、撥水性でありながら防汚性も持たせられるということも新たに知見し、本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have demonstrated that the following specific organosilicon compounds exhibit excellent low-temperature curing performance and binder performance when combined with a charge transfer catalyst. In the case of photocatalysts that usually exhibit antifouling properties, the surface becomes hydrophilic, but it is also possible to add antifouling properties while being water repellent by combining specific organosilicon compounds. As a result, the present invention has been completed.

従って、本発明は、下記に示す低温硬化型電荷移動型触媒含有コーティング組成物及び表面処理基材を提供する。
〔1〕
(I)電荷移動型触媒 0.01〜10質量部、
(II)バインダーとして、下記一般式(1)
YR1 mSiR2 3-m …(1)
(式中、R1は炭素数1〜8の非置換又は置換の一価炭化水素基であり、R2は炭素数1〜4のアルコキシ基又はアシロキシ基であり、Yは窒素原子含有有機基であり、mは0又は1である。)
で表される窒素原子含有有機基を含有する加水分解性シラン(A)及び/又はその部分加水分解物100質量部と、下記一般式(2)
3 nSiR4 4-n …(2)
(式中、R3は炭素数1〜8の非置換又は置換の一価炭化水素基であり、R4は炭素数1〜4のアルコキシ基又はアシロキシ基であり、nは0,1又は2である。)
で表される加水分解性シラン(B)及び/又はその部分加水分解物5〜200質量部とを加水分解することによって得られる有機ケイ素化合物 0.01〜30質量部、及び
(III)水及び/又は水含有溶剤 99.98〜60質量部
を含有する(但し、(I)、(II)、(III)成分の合計は100質量部である)低温硬化型電荷移動型触媒含有コーティング組成物。
〔2〕
(I)成分の電荷移動型触媒が、電子供与元素と、電子受容元素と、前記電子供与元素から前記電子受容元素への電子の移動を促進する電子キャリアー物質と、前記電子受容元素に移動した電子により還元反応を行う還元中心元素と、電子の移動により生じた前記電子供与元素の正孔により酸化反応を行う酸化中心元素との複合酸化物結晶からなり、前記電子供与元素としてモリブデン及び/又はタングステンを、前記電子受容元素としてアルミニウムを、前記電子キャリアー物質としてアルミナ及びシリカの複合酸化物又は混合物を、前記還元中心元素としてバリウムを、前記酸化中心元素としてロジウムを用いた電荷移動型触媒(a)であることを特徴とする〔1〕記載の低温硬化型電荷移動型触媒含有コーティング組成物。
〔3〕
(I)成分の電荷移動型触媒が、電子供与元素と、電子受容元素と、前記電子供与元素から前記電子受容元素への電子の移動を促進する電子キャリアー物質と、電子の移動により生じた前記電子供与元素の正孔により酸化反応を行う酸化中心元素との複合酸化物結晶からなり、必要により更に該複合酸化物の結晶構造内外に酸化反応を活性化する酸化活性化剤を含んでなり、前記電子供与元素としてモリブデン及び/又はタングステンを、前記電子受容元素としてアルミニウムを、前記電子キャリアー物質としてアルミナ及びシリカの複合酸化物又は混合物を、前記酸化中心元素としてロジウムを用いた酸化反応型の電荷移動型触媒(b)であることを特徴とする〔1〕記載の低温硬化型電荷移動型触媒含有コーティング組成物。
〔4〕
(I)成分の電荷移動型触媒が、電子供与元素と、電子受容元素と、前記電子供与元素から前記電子受容元素への電子の移動を促進する電子キャリアー物質と、前記電子受容元素に移動した電子により還元反応を行う還元中心元素との複合酸化物結晶からなり、必要により更に該複合酸化物の結晶構造内外に還元反応を活性化する還元活性化剤を含んでなり、前記電子供与元素としてモリブデン及び/又はタングステンを、前記電子受容元素としてアルミニウムを、前記電子キャリアー物質としてアルミナ及びシリカの複合酸化物又は混合物を、前記還元中心元素としてバリウムを用いた還元反応型の電荷移動型触媒(c)であることを特徴とする〔1〕記載の低温硬化型電荷移動型触媒含有コーティング組成物。
〔5〕
(I)成分の電荷移動型触媒が、〔3〕に記載の酸化反応型の電荷移動型触媒(b)と〔4〕に記載の還元反応型の電荷移動型触媒(c)との混合物からなる電荷移動型触媒(d)であることを特徴とする〔1〕記載の低温硬化型電荷移動型触媒含有コーティング組成物。
〔6〕
加水分解性シラン(A)が、H2NCH2CH2NHCH2CH2CH2Si(OCH33,H2NCH2CH2NHCH2CH2CH2Si(OCH2CH33,H2NCH2CH2NHCH2CH2NHCH2CH2CH2Si(OCH33又は[3−(1−イミダゾリル)プロピル]トリメトキシシランであることを特徴とする〔1〕〜〔5〕のいずれかに記載の低温硬化型電荷移動型触媒含有コーティング組成物。
〔7〕
加水分解性シラン(B)が、Si(OCH34,Si(OCH2CH34,CH3Si(OCH33及びCH3Si(OCH2CH33から選ばれる1種又は2種以上であることを特徴とする〔1〕〜〔6〕のいずれかに記載の低温硬化型電荷移動型触媒含有コーティング組成物。
〔8〕
〔1〕〜〔7〕のいずれかに記載の低温硬化型電荷移動型触媒含有コーティング組成物の被膜を基材表面に形成したことを特徴とする表面処理基材。
Accordingly, the present invention provides the following low temperature curable charge transfer catalyst-containing coating composition and surface treatment substrate.
[1]
(I) 0.01 to 10 parts by mass of a charge transfer catalyst
(II) As a binder, the following general formula (1)
YR 1 m SiR 2 3-m (1)
(In the formula, R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, R 2 is an alkoxy group or acyloxy group having 1 to 4 carbon atoms, and Y is a nitrogen atom-containing organic group. And m is 0 or 1.)
100 parts by mass of a hydrolyzable silane (A) and / or a partial hydrolyzate thereof containing a nitrogen atom-containing organic group represented by the following general formula (2)
R 3 n SiR 4 4-n (2)
Wherein R 3 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, R 4 is an alkoxy group or acyloxy group having 1 to 4 carbon atoms, and n is 0, 1 or 2 .)
0.01 to 30 parts by mass of an organosilicon compound obtained by hydrolyzing 5 to 200 parts by mass of a hydrolyzable silane (B) and / or a partial hydrolyzate thereof represented by: (III) water and Low-temperature curing type charge transfer catalyst-containing coating composition containing 99.98-60 parts by mass of water-containing solvent (however, the total of components (I), (II), (III) is 100 parts by mass) .
[2]
The charge transfer catalyst of the component (I) has moved to the electron accepting element, the electron accepting element, the electron carrier substance that promotes the movement of electrons from the electron donating element to the electron accepting element, and the electron accepting element. It consists of a complex oxide crystal of a reduction center element that performs a reduction reaction with electrons and an oxidation center element that performs an oxidation reaction with holes of the electron donating element generated by the movement of electrons, and molybdenum and / or as the electron donating element Charge transfer catalyst (a) using tungsten, aluminum as the electron accepting element, a composite oxide or mixture of alumina and silica as the electron carrier substance, barium as the reducing center element, and rhodium as the oxidizing center element (a The low-temperature curing type charge transfer catalyst-containing coating composition according to [1], wherein
[3]
The charge transfer catalyst of component (I) is an electron donating element, an electron accepting element, an electron carrier substance that promotes the movement of electrons from the electron donating element to the electron accepting element, It consists of a complex oxide crystal with an oxidation center element that performs an oxidation reaction with holes of an electron donating element, and further comprises an oxidation activator that activates the oxidation reaction inside and outside the crystal structure of the complex oxide, if necessary. Charge of oxidation reaction type using molybdenum and / or tungsten as the electron donating element, aluminum as the electron accepting element, a composite oxide or mixture of alumina and silica as the electron carrier substance, and rhodium as the oxidation center element The low-temperature curing type charge transfer catalyst-containing coating composition according to [1], which is a transfer catalyst (b).
[4]
The charge transfer catalyst of the component (I) has moved to the electron accepting element, the electron accepting element, the electron carrier substance that promotes the movement of electrons from the electron donating element to the electron accepting element, and the electron accepting element. It consists of a complex oxide crystal with a reduction center element that performs a reduction reaction with electrons, and further includes a reduction activator that activates the reduction reaction inside and outside the crystal structure of the complex oxide, if necessary, as the electron donating element Reduction reaction type charge transfer catalyst (c) using molybdenum and / or tungsten, aluminum as the electron accepting element, a composite oxide or mixture of alumina and silica as the electron carrier material, and barium as the reducing center element (c The low-temperature curing type charge transfer catalyst-containing coating composition according to [1], wherein
[5]
The charge transfer catalyst of component (I) is a mixture of the oxidation reaction type charge transfer catalyst (b) described in [3] and the reduction reaction type charge transfer catalyst (c) described in [4]. The low-temperature curing type charge transfer catalyst-containing coating composition according to [1], which is a charge transfer type catalyst (d).
[6]
The hydrolyzable silane (A) is converted into H 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCH 3 ) 3 , H 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCH 2 CH 3 ) 3 , H 2 NCH 2 CH 2 NHCH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCH 3 ) 3 or [3- (1-imidazolyl) propyl] trimethoxysilane, wherein [1] to [5] The low-temperature curable charge transfer catalyst-containing coating composition according to any of the above.
[7]
The hydrolyzable silane (B) is one selected from Si (OCH 3 ) 4 , Si (OCH 2 CH 3 ) 4 , CH 3 Si (OCH 3 ) 3 and CH 3 Si (OCH 2 CH 3 ) 3 The low-temperature curing type charge transfer catalyst-containing coating composition according to any one of [1] to [6], wherein the coating composition is at least two kinds.
[8]
A surface-treated base material, wherein a coating film of the low-temperature curable charge transfer catalyst-containing coating composition according to any one of [1] to [7] is formed on a base material surface.

本発明の低温硬化型電荷移動型触媒含有コーティング組成物は、基材に処理後、低温乾燥させることで容易に電荷移動型触媒含有被膜を形成でき、その被膜耐久性の向上が可能で、安定的に防汚性・抗菌性・防臭性を付与可能である。また、特に光や熱などを必要とせずに、通常の環境下で特性を発揮できる。通常低温での形成では擦ったり、触るということで簡単に膜が剥がれる場合が多かったが、特定の有機ケイ素化合物をバインダーとして使用することにより、低温形成でも強固な膜ができる。更に、防汚性でありながら、撥水性に持っていけるという新たな効果も発現した。このため、該組成物は、金属、ガラス、タイル、繊維、建築材等の基材へ処理するためのコーティング剤として最適である。   The low-temperature curable charge-transfer catalyst-containing coating composition of the present invention can form a charge-transfer catalyst-containing coating easily by treating the substrate and then drying at low temperature, and the durability of the coating can be improved and stable. Antifouling, antibacterial and deodorizing properties can be imparted. In addition, the characteristics can be exhibited in a normal environment without requiring light or heat. Usually, in the formation at low temperature, the film is often easily peeled off by rubbing or touching, but by using a specific organosilicon compound as a binder, a strong film can be formed even at low temperature formation. Furthermore, a new effect of being able to bring water repellency while being antifouling was also exhibited. For this reason, this composition is optimal as a coating agent for processing to base materials, such as a metal, glass, a tile, a fiber, and a construction material.

本発明につき、更に詳しく説明する。
本発明の低温硬化型電荷移動型触媒含有コーティング組成物は、下記(I)〜(III)成分を含有してなるものである。
(I)電荷移動型触媒、
(II)バインダーとして、下記一般式(1)
YR1 mSiR2 3-m …(1)
(式中、R1は炭素数1〜8の非置換又は置換の一価炭化水素基であり、R2は炭素数1〜4のアルコキシ基又はアシロキシ基であり、Yは窒素原子含有有機基であり、mは0又は1である。)
で表される窒素原子含有有機基を含有する加水分解性シラン(A)及び/又はその部分加水分解物と、下記一般式(2)
3 nSiR4 4-n …(2)
(式中、R3は炭素数1〜8の非置換又は置換の一価炭化水素基であり、R4は炭素数1〜4のアルコキシ基又はアシロキシ基であり、nは0,1又は2である。)
で表される加水分解性シラン(B)及び/又はその部分加水分解物とを加水分解することによって得られる有機ケイ素化合物、及び
(III)水及び/又は水含有溶剤。
The present invention will be described in more detail.
The low-temperature curable charge transfer catalyst-containing coating composition of the present invention comprises the following components (I) to (III).
(I) a charge transfer catalyst;
(II) As a binder, the following general formula (1)
YR 1 m SiR 2 3-m (1)
(In the formula, R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, R 2 is an alkoxy group or acyloxy group having 1 to 4 carbon atoms, and Y is a nitrogen atom-containing organic group. And m is 0 or 1.)
Hydrolyzable silane (A) and / or a partial hydrolyzate thereof containing a nitrogen atom-containing organic group represented by the following general formula (2)
R 3 n SiR 4 4-n (2)
Wherein R 3 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, R 4 is an alkoxy group or acyloxy group having 1 to 4 carbon atoms, and n is 0, 1 or 2 .)
And (III) water and / or a water-containing solvent obtained by hydrolyzing the hydrolyzable silane (B) and / or a partial hydrolyzate thereof.

本発明の低温硬化型電荷移動型触媒含有コーティング組成物に用いられる(I)成分の電荷移動型触媒は、下記(a)〜(d)から選ばれるものである。
(a)電子供与元素と、電子受容元素と、前記電子供与元素から前記電子受容元素への電子の移動を促進する電子キャリアー物質と、前記電子受容元素に移動した電子により還元反応を行う還元中心元素と、電子の移動により生じた前記電子供与元素の正孔により酸化反応を行う酸化中心元素との複合酸化物結晶からなる電荷移動型触媒。
(b)電子供与元素と、電子受容元素と、前記電子供与元素から前記電子受容元素への電子の移動を促進する電子キャリアー物質と、電子の移動により生じた前記電子供与元素の正孔により酸化反応を行う酸化中心元素との複合酸化物結晶からなり、必要により更に該複合酸化物の結晶構造内外に酸化反応を活性化する酸化活性化剤を含んでなる酸化反応型の電荷移動型触媒。
(c)電子供与元素と、電子受容元素と、前記電子供与元素から前記電子受容元素への電子の移動を促進する電子キャリアー物質と、前記電子受容元素に移動した電子により還元反応を行う還元中心元素との複合酸化物結晶からなり、必要により更に該複合酸化物の結晶構造内外に還元反応を活性化する還元活性化剤を含んでなる還元反応型の電荷移動型触媒。
(d)前記酸化反応型の電荷移動型触媒(b)と、前記還元反応型の電荷移動型触媒(c)との混合物からなる電荷移動型触媒。
The charge transfer catalyst of component (I) used in the low temperature curable charge transfer catalyst-containing coating composition of the present invention is selected from the following (a) to (d).
(A) an electron-donating element, an electron-accepting element, an electron carrier substance that promotes the movement of electrons from the electron-donating element to the electron-accepting element, and a reduction center that performs a reduction reaction by electrons transferred to the electron-accepting element A charge transfer catalyst comprising a complex oxide crystal of an element and an oxidation center element that undergoes an oxidation reaction by holes of the electron donating element generated by electron transfer.
(B) an electron-donating element, an electron-accepting element, an electron carrier material that promotes electron transfer from the electron-donating element to the electron-accepting element, and oxidation by holes of the electron-donating element generated by the electron transfer An oxidation reaction type charge transfer catalyst comprising a complex oxide crystal with an oxidation center element that performs a reaction, and further comprising an oxidation activator that activates an oxidation reaction inside and outside the crystal structure of the complex oxide, if necessary.
(C) an electron-donating element, an electron-accepting element, an electron carrier substance that promotes the movement of electrons from the electron-donating element to the electron-accepting element, and a reduction center that performs a reduction reaction by electrons transferred to the electron-accepting element A reduction reaction type charge transfer catalyst comprising a complex oxide crystal with an element, and further comprising a reduction activator for activating a reduction reaction inside and outside the crystal structure of the complex oxide, if necessary.
(D) A charge transfer catalyst comprising a mixture of the oxidation reaction type charge transfer catalyst (b) and the reduction reaction type charge transfer catalyst (c).

前記(a)の基本構成における電荷移動型触媒は、電子供与元素(ドナー)と、電子受容元素(アクセプター)と、電子キャリアー物質と、還元中心元素と、酸化中心元素との複合酸化物結晶からなる。ここで、電子供与元素は電子受容元素に電子を供与する機能を、電子受容元素は電子供与元素から電子を受容する機能を、電子キャリアー物質は電子供与元素から電子受容元素への電子の移動を橋渡しする機能をそれぞれ有している。また、還元中心元素は電子受容元素に移動した電子を受け取って還元反応を行う機能を、酸化中心元素は電子の移動により生じた電子供与元素の正孔を受け取って酸化反応を行う機能をそれぞれ有している。   The charge transfer type catalyst in the basic configuration (a) includes a composite oxide crystal of an electron donating element (donor), an electron accepting element (acceptor), an electron carrier substance, a reducing center element, and an oxidation center element. Become. Here, the electron donating element has a function of donating electrons to the electron accepting element, the electron accepting element has a function of accepting electrons from the electron donating element, and the electron carrier substance has a function of transferring electrons from the electron donating element to the electron accepting element. Each has a bridging function. In addition, the reduction center element has a function to receive the electrons transferred to the electron accepting element and perform a reduction reaction, and the oxidation center element has a function to receive the holes of the electron donating element generated by the electron transfer and perform an oxidation reaction. doing.

本発明の電荷移動型触媒における電荷移動は、構成元素中の電子供与元素と電子受容元素との間で行われる電子移動による電荷分離を指しており、化合物結晶格子の熱的振動により生ずると考えられる。このときの電子移動は電子供与元素と電子受容元素とのd−d軌道間,d−f軌道間,s−d軌道間,p−d軌道間で行われると考えられる。   Charge transfer in the charge transfer catalyst of the present invention refers to charge separation by electron transfer performed between an electron donor element and an electron acceptor element in the constituent elements, and is considered to be caused by thermal vibration of the compound crystal lattice. It is done. It is considered that the electron transfer at this time is performed between the dd orbit, the df orbit, the sd orbit, and the pd orbit between the electron donor element and the electron acceptor element.

本発明による電荷移動型触媒は、かかる電荷(電子)の結晶内移動を有効かつ効率的に行わせるため、電子供与元素と電子受容元素を配位した結晶格子間に、酸化物が半導体特性をもつ物質(電子キャリアー物質)を配位させたペロブスカイト構造酸化物結晶又はスピネル構造酸化物結晶、あるいはこれらの混晶であることが好ましい。なお、本発明の電荷移動型触媒は、電子供与元素、電子受容元素、電子キャリアー物質の3元素(物質)を含む複合酸化物結晶構造であれば、上記の結晶構造に限られるものではない。   In the charge transfer type catalyst according to the present invention, in order to effectively and efficiently transfer the charges (electrons) in the crystal, the oxide exhibits a semiconductor characteristic between the crystal lattices in which the electron donating element and the electron accepting element are coordinated. A perovskite structure oxide crystal, a spinel structure oxide crystal, or a mixed crystal thereof is preferably coordinated with a substance (electron carrier substance). The charge transfer catalyst of the present invention is not limited to the above crystal structure as long as it is a complex oxide crystal structure containing three elements (substances) of an electron donating element, an electron accepting element, and an electron carrier substance.

そして、本発明の電荷移動型触媒(a)は、電子供与元素と電子受容元素間の電子移動による電荷分離を駆動力(ドライビング力)として、結晶構造内に配位した酸化反応点で酸化反応を、還元反応点で還元反応を行わせるため、酸化中心元素及び還元中心元素を格子点に配位せしめるものである。   Then, the charge transfer catalyst (a) of the present invention has an oxidation reaction at an oxidation reaction point coordinated in a crystal structure with charge separation by electron transfer between an electron donating element and an electron accepting element as a driving force (driving force). In order to cause a reduction reaction at a reduction reaction point, the oxidation center element and the reduction center element are coordinated to lattice points.

前記(a)の基本構成による電荷移動型触媒の作用を説明する。触媒結晶構造内のドナー元素(電子供与元素)から電子が電子キャリアー物質を介してアクセプター元素(電子受容元素)へ移動すると、ドナー元素は正電荷(+)、アクセプター元素は負電荷(−)をもつ。そして、アクセプター元素の近くの格子点に配位した還元中心元素では、アクセプター元素へ移動した電子を受け取って、外部から近づいた物質に対し還元反応を行う。一方、ドナー元素の近くの格子点に配位した酸化中心元素では、ドナー元素に生じた正孔が酸化中心元素へ移動(ホール移動)して、外部から近づいた物質に対し酸化反応を行う。   The operation of the charge transfer catalyst having the basic configuration (a) will be described. When electrons move from the donor element (electron donor element) in the catalyst crystal structure to the acceptor element (electron acceptor element) via the electron carrier material, the donor element has a positive charge (+) and the acceptor element has a negative charge (-). Have. The reducing center element coordinated at a lattice point near the acceptor element receives electrons transferred to the acceptor element and performs a reduction reaction on a substance approaching from the outside. On the other hand, in an oxidation center element coordinated at a lattice point near the donor element, holes generated in the donor element move to the oxidation center element (hole movement), and an oxidation reaction is performed on a substance approaching from the outside.

前記(a)の基本構成による電荷移動型触媒は、このように、酸化反応と還元反応を一つの触媒内で行わせて、外部から近づいた物質を酸化分解及び還元分解する機能を有している。従って、外部から近づいた汚れ成分、各種菌類、臭い成分等を酸化還元分解して、防汚性、抗菌性、防臭性等の機能を発揮する。   The charge transfer type catalyst having the basic configuration (a) has a function of oxidizing and reductively decomposing a substance approaching from the outside by performing an oxidation reaction and a reduction reaction in one catalyst as described above. Yes. Accordingly, the soil components, various fungi, odor components, and the like approached from the outside are oxidized and reduced to exhibit functions such as antifouling properties, antibacterial properties and deodorizing properties.

前記(b)の基本構成における電荷移動型触媒は、電子供与元素と、電子受容元素と、電子キャリアー物質と、酸化反応を行う酸化中心元素との複合酸化物結晶からなり、必要により更に該複合酸化物の結晶構造内外に酸化反応を活性化する酸化活性化剤を含んでなる。かかる前記(b)の基本構成における電荷移動型触媒は、酸化反応により分解する成分に対して有効に作用する。   The charge transfer type catalyst in the basic configuration (b) comprises a complex oxide crystal of an electron donating element, an electron accepting element, an electron carrier substance, and an oxidation center element that performs an oxidation reaction. An oxidation activator for activating the oxidation reaction is contained inside and outside the crystal structure of the oxide. The charge transfer catalyst in the basic structure (b) effectively acts on components that are decomposed by an oxidation reaction.

前記(c)の基本構成における電荷移動型触媒は、電子供与元素と、電子受容元素と、電子キャリアー物質と、還元反応を行う還元中心元素との複合酸化物結晶からなり、必要により更に該複合酸化物の結晶構造内外に還元反応を活性化する還元活性化剤を含んでなる。かかる前記(c)の基本構成における電荷移動型触媒は、還元反応により分解する成分に対して有効に作用する。   The charge transfer type catalyst in the basic structure of (c) is composed of a complex oxide crystal of an electron donating element, an electron accepting element, an electron carrier material, and a reducing center element that performs a reduction reaction, and if necessary, the complex A reduction activator that activates the reduction reaction is contained inside and outside the crystal structure of the oxide. The charge transfer catalyst in the basic configuration (c) effectively acts on components that are decomposed by a reduction reaction.

前記(d)の基本構成における電荷移動型触媒は、前記(b)の基本構成における酸化反応型の電荷移動型触媒と、前記(c)の基本構成における還元反応型の電荷移動型触媒との混合物からなる。該電荷移動型触媒は、酸化反応により分解する成分に対しては前記(b)の基本構成における酸化反応型の電荷移動型触媒が、還元反応により分解する成分に対しては前記(c)の基本構成における還元反応型の電荷移動型触媒がそれぞれ有効に作用する。   The charge transfer catalyst in the basic configuration of (d) is an oxidation reaction type charge transfer catalyst in the basic configuration of (b) and a reduction reaction type charge transfer catalyst in the basic configuration of (c). Consists of a mixture. The charge transfer catalyst is a component that decomposes by an oxidation reaction, and the component (b) of the oxidation reaction type charge transfer catalyst in the basic configuration of (b) is a component that decomposes by a reduction reaction. Each of the reduction reaction type charge transfer catalysts in the basic configuration works effectively.

なお、前記(b)、(c)、(d)の各基本構成において、電荷移動の原理、結晶構造、作用等は前記(a)の基本構成において述べたとおりである。   In each of the basic configurations (b), (c), and (d), the principle of charge transfer, crystal structure, action, etc. are as described in the basic configuration (a).

本発明において、電荷移動型触媒としては、上記(a)〜(d)のいずれの構成のものでもよいが、酸化反応により分解する成分と還元反応により分解する成分の両方に作用することから、(a)及び(d)の構成のものであることが特に好ましい。   In the present invention, the charge transfer catalyst may have any of the above-described structures (a) to (d), but acts on both a component that decomposes by an oxidation reaction and a component that decomposes by a reduction reaction. It is especially preferable that it is a thing of the structure of (a) and (d).

ここで、電子供与元素としては、モリブデン、タングステン、ニッケル及びコバルトからなる群から選ばれる1種又は2種以上の元素が使用でき、モリブデン及びタングステンから選ばれる1種又は2種が好ましい。
電子受容元素としては、アルミニウム、ケイ素、錫、チタン及び鉄からなる群から選ばれる1種又は2種以上の元素が好ましく、特にアルミニウムが好ましい。
電子キャリアー物質としては、その酸化物が半導体特性をもち、電子移動度の高い元素であることを必要としており、ジルコニウム、アルミナとシリカの混合物又は複合酸化物が好ましく、特にアルミナとシリカの混合物又は複合酸化物が好ましい。
酸化中心元素としては、ホール移動度の高い元素であることが要求され、ロジウムが好ましい。
還元中心元素としては、電子移動度の高い元素であることが要求され、パラジウム、バリウムが好ましく、特にバリウムが好ましい。
Here, as the electron donating element, one or more elements selected from the group consisting of molybdenum, tungsten, nickel and cobalt can be used, and one or two elements selected from molybdenum and tungsten are preferable.
As the electron accepting element, one or more elements selected from the group consisting of aluminum, silicon, tin, titanium, and iron are preferable, and aluminum is particularly preferable.
As the electron carrier material, the oxide needs to be an element having semiconductor characteristics and high electron mobility. Zirconium, a mixture of alumina and silica, or a composite oxide is preferable, and in particular, a mixture of alumina and silica or A composite oxide is preferred.
The oxidation center element is required to be an element having a high hole mobility, and rhodium is preferable.
The reduction center element is required to be an element having a high electron mobility, and palladium and barium are preferable, and barium is particularly preferable.

本発明において、酸化活性化剤及び還元活性化剤は、採用することを要件としているものではないが、これらの活性化剤を付加することを本発明では排除しているわけではない。
酸化活性化剤としては、リチウム、ベリリウム及びバリウムからなる群から選ばれる1種又は2種以上の元素の酸化物が好ましく、特にリチウム、バリウムの酸化物が好ましい。
還元活性化剤としては、イットリウム、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム及び白金からなる群から選ばれる1種又は2種以上の元素の酸化物が好ましく、特にイットリウム、ジルコニウム、ロジウムの酸化物が好ましい。
In the present invention, the oxidation activator and the reduction activator are not required to be employed, but the addition of these activators is not excluded in the present invention.
The oxidation activator is preferably an oxide of one or more elements selected from the group consisting of lithium, beryllium and barium, and particularly preferably an oxide of lithium or barium.
The reduction activator is preferably an oxide of one or more elements selected from the group consisting of yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium and platinum, and particularly yttrium, zirconium and rhodium. The oxide is preferred.

具体的に、電荷移動型触媒(a)の場合、前記電子供与元素としてはモリブデンあるいはタングステンが好ましく、前記電子受容元素としてはアルミニウムが好ましく、前記電子キャリアー物質としてはアルミナ及びシリカの複合酸化物又は混合物が好ましく、前記還元中心元素としてはバリウムが好ましく、前記酸化中心元素としてはロジウムが好ましい。
上記各機能成分の配合割合は、モル比で、電子供与元素:電子受容元素:電子キャリアー物質:酸化中心元素:還元中心元素=1:1:0.5〜1:0.2〜1:0.2〜1の範囲が好ましく、特に1:1:0.7〜1.0:0.5〜1.0:0.5〜1.0の範囲であることが好ましい。
Specifically, in the case of the charge transfer catalyst (a), the electron donating element is preferably molybdenum or tungsten, the electron accepting element is preferably aluminum, and the electron carrier substance is a composite oxide of alumina and silica or A mixture is preferred, barium is preferred as the reducing center element, and rhodium is preferred as the oxidation center element.
The blending ratio of the above functional components is a molar ratio of electron donor element: electron acceptor element: electron carrier substance: oxidation center element: reduction center element = 1: 1: 0.5-1: 0.2-1: 0. The range of 0.1 to 1 is preferable, and the range of 1: 1: 0.7 to 1.0: 0.5 to 1.0: 0.5 to 1.0 is particularly preferable.

電荷移動型触媒(b)の場合、前記電子供与元素としてはモリブデンあるいはタングステンが好ましく、前記電子受容元素としてはアルミニウムが好ましく、前記電子キャリアー物質としてはアルミナ及びシリカの複合酸化物又は混合物が好ましく、前記酸化中心元素としてはロジウムが好ましく、前記酸化活性化剤としてはリチウムあるいはバリウムの酸化物が好ましい。
上記各機能成分の配合割合は、モル比で、電子供与元素:電子受容元素:電子キャリアー物質:酸化中心元素=1:1:0.5〜1:0.2〜1の範囲が好ましく、特に1:1:0.7〜1:0.5〜1の範囲であることが好ましい。また、酸化活性化剤を用いる場合、その配合割合は、モル比で、電子供与元素:電子受容元素:電子キャリアー物質:酸化中心元素:酸化活性剤=1:1:0.5〜1:0.2〜1:0.001〜0.005の範囲が好ましく、特に1:1:0.5〜1:0.2〜1:0.001〜0.003の範囲であることが好ましい。
In the case of the charge transfer catalyst (b), the electron donating element is preferably molybdenum or tungsten, the electron accepting element is preferably aluminum, and the electron carrier substance is preferably a composite oxide or mixture of alumina and silica, The oxidation center element is preferably rhodium, and the oxidation activator is preferably lithium or barium oxide.
The blending ratio of each of the above functional components is preferably in a molar ratio of electron donor element: electron acceptor element: electron carrier substance: oxidation center element = 1: 1: 0.5-1: 0.2-1 The range of 1: 1: 0.7-1: 0.5-1 is preferable. Moreover, when using an oxidation activator, the compounding ratio is a molar ratio, and electron donor element: electron acceptor element: electron carrier substance: oxidation center element: oxidation activator = 1: 1: 0.5-1: 0. The range of 2-1 to 0.001 to 0.005 is preferable, and the range of 1: 1 to 0.5 to 1: 0.2 to 1: 0.001 to 0.003 is particularly preferable.

電荷移動型触媒(c)の場合、前記電子供与元素としてはモリブデンあるいはタングステンが好ましく、前記電子受容元素としてはアルミニウムが好ましく、前記電子キャリアー物質としてはアルミナ及びシリカの複合酸化物又は混合物が好ましく、前記還元中心元素としてはバリウムが好ましく、前記還元活性化剤としてはイットリウム、ジルコニウムあるいはロジウムの酸化物が好ましい。
上記各機能成分の配合割合は、モル比で、電子供与元素:電子受容元素:電子キャリアー物質:還元中心元素=1:1:0.5〜1:0.2〜1の範囲が好ましく、特に1:1:0.7〜1:0.5〜1の範囲であることが好ましい。また、還元活性化剤を用いる場合、その配合割合は、モル比で、電子供与元素:電子受容元素:電子キャリアー物質:酸化中心元素:還元活性剤=1:1:0.5〜1:0.2〜1:0.001〜0.005の範囲が好ましく、特に1:1:0.5〜1:0.2〜1:0.001〜0.003の範囲であることが好ましい。
In the case of the charge transfer catalyst (c), the electron donating element is preferably molybdenum or tungsten, the electron accepting element is preferably aluminum, and the electron carrier substance is preferably a composite oxide or mixture of alumina and silica, The reduction center element is preferably barium, and the reduction activator is preferably an oxide of yttrium, zirconium or rhodium.
The blending ratio of each functional component is preferably a molar ratio of electron donating element: electron accepting element: electron carrier substance: reducing center element = 1: 1: 0.5-1: 0.2-1. The range of 1: 1: 0.7-1: 0.5-1 is preferable. Moreover, when using a reduction activator, the mixture ratio is molar ratio, and electron donor element: electron acceptor element: electron carrier substance: oxidation center element: reduction activator = 1: 1: 0.5-1: 0. The range of 2-1 to 0.001 to 0.005 is preferable, and the range of 1: 1 to 0.5 to 1: 0.2 to 1: 0.001 to 0.003 is particularly preferable.

電荷移動型触媒(d)の場合、前記(b)の基本構成における酸化反応型の電荷移動型触媒と、前記(c)の基本構成における還元反応型の電荷移動型触媒との混合割合は、(b):(c)の質量比で、90:10〜10:90、特に60:30〜30:60、とりわけ等量であることが好ましい。   In the case of the charge transfer catalyst (d), the mixing ratio of the oxidation reaction type charge transfer catalyst in the basic configuration of (b) and the reduction reaction type charge transfer catalyst in the basic configuration of (c) is: It is preferable that the mass ratio of (b) :( c) is 90:10 to 10:90, particularly 60:30 to 30:60, and especially equivalent.

上記各機能成分を用いて電荷移動型触媒を調製する方法は、電体供与体、電子受容体、電子キャリアー物質、酸化中心元素、還元中心元素、酸化活性剤及び還元活性剤を混合撹拌し、均一に混ぜ合わせた後、バインダー成分を加えスラリーを作製する。この時のバインダーは特に規定はないが、ポリビニルアルコールなどのようなものが好ましい。バインダー添加量は、電荷移動型触媒固形分100質量部に対して0.1〜500質量部が好ましい。より好ましくは10〜100質量部である。この量が0.1質量部より少ないとスラリー形状にならずに操作性が悪くなる。またこの量が500質量部より多いと、スラリーでなく液状となり好ましくない。このスラリーを焼成させる。このときの焼成温度は1,000〜2,000℃が好ましく、より好ましくは1,100〜1,500℃が好ましい。焼成時間は0.5〜24時間であり、より好ましくは1〜10時間である。得られたセラミックス状の電荷移動触媒を粉砕機により粉砕することにより目的の電荷移動触媒粉末を調製することができる。   A method for preparing a charge transfer catalyst using each of the above functional components is a method of mixing and stirring an electric donor, an electron acceptor, an electron carrier substance, an oxidation center element, a reduction center element, an oxidation activator, and a reduction activator. After mixing uniformly, a binder component is added to prepare a slurry. The binder at this time is not particularly specified, but polyvinyl alcohol or the like is preferable. The added amount of the binder is preferably 0.1 to 500 parts by mass with respect to 100 parts by mass of the charge transfer catalyst solid content. More preferably, it is 10-100 mass parts. If the amount is less than 0.1 parts by mass, the slurry does not form a slurry and the operability is deteriorated. On the other hand, when the amount is more than 500 parts by mass, it is not preferable because it becomes liquid instead of slurry. The slurry is fired. The firing temperature at this time is preferably 1,000 to 2,000 ° C, more preferably 1,100 to 1,500 ° C. The firing time is 0.5 to 24 hours, more preferably 1 to 10 hours. The target charge transfer catalyst powder can be prepared by pulverizing the obtained ceramic charge transfer catalyst with a pulverizer.

このようにして得られた電荷移動型触媒は、堀場製作所レーザー回析粒子径分布測定装置LA−950V2により測定した平均粒径が、好ましくは0.1〜10μm、特には0.5〜5μmのものである。   The charge transfer type catalyst thus obtained has an average particle size measured by a Horiba laser diffraction particle size distribution measuring apparatus LA-950V2, preferably 0.1 to 10 μm, particularly 0.5 to 5 μm. Is.

上記で得られた電荷移動型触媒中の各機能成分は、結晶構造内において酸化物の形態で存在する。即ち、電子供与体は電子供与元素の酸化物、電子受容体は電子受容元素の酸化物、電子キャリアーは電子キャリアー物質の酸化物、酸化中心体は酸化中心元素の酸化物、還元中心体は還元中心元素の酸化物の形態で存在する。   Each functional component in the charge transfer catalyst obtained above is present in the form of an oxide in the crystal structure. That is, an electron donor is an oxide of an electron donor element, an electron acceptor is an oxide of an electron acceptor element, an electron carrier is an oxide of an electron carrier substance, an oxidation center is an oxide of an oxidation center element, and a reduction center is a reduction It exists in the form of an oxide of the central element.

次に、(II)成分のバインダーについて説明する。
(II)成分のバインダーに使用し得る加水分解性シラン(A)は、系を水溶性にするために用いられる成分であり、下記一般式(1)で表されるもので、目的とする有機ケイ素化合物に水溶性を付与させるために、その1種又は2種以上を適宜選定して用いられる。また、その部分加水分解物を用いることもできる。
YR1 mSiR2 3-m …(1)
Next, the binder of component (II) will be described.
The hydrolyzable silane (A) that can be used as the binder of the component (II) is a component that is used to make the system water-soluble, and is represented by the following general formula (1). In order to impart water solubility to the silicon compound, one or more of them are appropriately selected and used. Moreover, the partial hydrolyzate can also be used.
YR 1 m SiR 2 3-m (1)

ここで、R1は炭素数1〜8の窒素原子を含まない非置換又は置換の一価炭化水素基であり、アルキル基、アルケニル基、アリール基、アラルキル基などや、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子などで置換した、例えばハロゲン化アルキル基などが挙げられる。具体的には、−CH3,−CH2CH3,−CH2CH2CH3,−CH(CH32,−CH2CH2CH2CH3,−CH(CH3)CH2CH3,−CH2CH(CH3)CH3,−C(CH33,−C65,−C613などが例示される。 Here, R 1 is an unsubstituted or substituted monovalent hydrocarbon group not containing a nitrogen atom having 1 to 8 carbon atoms, such as an alkyl group, an alkenyl group, an aryl group, an aralkyl group, or the like, or a hydrogen atom of these groups For example, a halogenated alkyl group or the like in which a part or all of is substituted with a halogen atom such as fluorine, bromine or chlorine. Specifically, —CH 3 , —CH 2 CH 3 , —CH 2 CH 2 CH 3 , —CH (CH 3 ) 2 , —CH 2 CH 2 CH 2 CH 3 , —CH (CH 3 ) CH 2 CH 3, -CH 2 CH (CH 3 ) CH 3, -C (CH 3) 3, -C 6 H 5, etc. -C 6 H 13 is illustrated.

また、R2は炭素数1〜4のアルコキシ基又はアシロキシ基であり、具体的には、−OCH3,−OCH2CH3,−OCH2CH2CH3,−OCH(CH32,−OCH2CH2CH2CH3,−OCH(CH3)CH2CH3,−OCH2CH(CH3)CH3,−OC(CH33,−OCOCH3,−OCOCH2CH3などが例示されるが、中でも−OCH3,−OCH2CH3が好ましい。 R 2 is an alkoxy group having 1 to 4 carbon atoms or an acyloxy group. Specifically, —OCH 3 , —OCH 2 CH 3 , —OCH 2 CH 2 CH 3 , —OCH (CH 3 ) 2 , -OCH 2 CH 2 CH 2 CH 3 , -OCH (CH 3) CH 2 CH 3, -OCH 2 CH (CH 3) CH 3, -OC (CH 3) 3, -OCOCH 3, such as -OCOCH 2 CH 3 Of these, —OCH 3 and —OCH 2 CH 3 are preferred.

Yは窒素原子含有有機基であり、例えば、下記式(3)〜(7)で示されるものが挙げられる。

Figure 2013203769
Y is a nitrogen atom containing organic group, for example, what is shown by following formula (3)-(7) is mentioned.
Figure 2013203769

Figure 2013203769
(式中、R5,R6,R9〜R16は水素原子又は炭素数1〜8の一価炭化水素基で、R5とR6、R9とR10とR11、R12とR13、R14とR15とR16は互いに同一であっても異なっていてもよい。なお、R12は炭素数1〜6のアルコキシ基であってもよい。Rはフッ素、臭素、塩素等のハロゲン原子を示す。R7,R8は炭素数1〜8の二価炭化水素基で、R7とR8は互いに同一であっても異なっていてもよい。pは0又は1〜3の整数である。)
Figure 2013203769
(Wherein R 5 , R 6 , R 9 to R 16 are a hydrogen atom or a monovalent hydrocarbon group having 1 to 8 carbon atoms, R 5 and R 6 , R 9 and R 10 , R 11 , R 12 and R 13 , R 14 , R 15 and R 16 may be the same or different from each other, and R 12 may be an alkoxy group having 1 to 6 carbon atoms, where R is fluorine, bromine, chlorine R 7 and R 8 are divalent hydrocarbon groups having 1 to 8 carbon atoms, and R 7 and R 8 may be the same as or different from each other, and p is 0 or 1 to 1. It is an integer of 3.)

なお、炭素数1〜8の一価炭化水素基は、R1で説明したものと同様のものが例示できる。
アルコキシ基としては、−OCH3,−OCH2CH3,−OCH2CH2CH3,−OCH(CH32,−OCH2CH2CH2CH3,−OCH(CH3)CH2CH3,−OCH2CH(CH3)CH3,−OC(CH33などが挙げられる。
炭素数1〜8の二価炭化水素基としては、メチレン基、エチレン基、プロピレン基(トリメチレン基、メチルエチレン基)、ブチレン基(テトラメチレン基、メチルプロピレン基)、ヘキサメチレン基、オクタメチレン基等のアルキレン基などが挙げられる。
Examples of the monovalent hydrocarbon group having 1 to 8 carbon atoms are the same as those described for R 1 .
As an alkoxy group, —OCH 3 , —OCH 2 CH 3 , —OCH 2 CH 2 CH 3 , —OCH (CH 3 ) 2 , —OCH 2 CH 2 CH 2 CH 3 , —OCH (CH 3 ) CH 2 CH 3, -OCH 2 CH (CH 3 ) CH 3, and the like -OC (CH 3) 3.
Examples of the divalent hydrocarbon group having 1 to 8 carbon atoms include methylene group, ethylene group, propylene group (trimethylene group, methylethylene group), butylene group (tetramethylene group, methylpropylene group), hexamethylene group, and octamethylene group. And the like, and the like.

Yとして具体的には、下記式で示されるものを挙げることができる。
2NCH2−,H(CH3)NCH2−,H2NCH2CH2−,H(CH3)NCH2CH2−,H2NCH2CH2CH2−,H(CH3)NCH2CH2CH2−,(CH32NCH2CH2CH2−,H2NCH2CH2NHCH2CH2CH2−,H(CH3)NCH2CH2NHCH2CH2CH2−,(CH32NCH2CH2NHCH2CH2CH2−,H2NCH2CH2NHCH2CH2NHCH2CH2CH2−,H(CH3)NCH2CH2NHCH2CH2NHCH2CH2CH2−,Cl-(CH33+CH2CH2CH2−,Cl-(CH32(C65−CH2−)N+CH2CH2CH2−,
Specific examples of Y include those represented by the following formula.
H 2 NCH 2- , H (CH 3 ) NCH 2- , H 2 NCH 2 CH 2- , H (CH 3 ) NCH 2 CH 2- , H 2 NCH 2 CH 2 CH 2- , H (CH 3 ) NCH 2 CH 2 CH 2 —, (CH 3 ) 2 NCH 2 CH 2 CH 2 —, H 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 —, H (CH 3 ) NCH 2 CH 2 NHCH 2 CH 2 CH 2 — , (CH 3 ) 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 —, H 2 NCH 2 CH 2 NHCH 2 CH 2 NHCH 2 CH 2 CH 2 —, H (CH 3 ) NCH 2 CH 2 NHCH 2 CH 2 NHCH 2 CH 2 CH 2 -, Cl - (CH 3) 3 N + CH 2 CH 2 CH 2 -, Cl - (CH 3) 2 (C 6 H 5 -CH 2 -) N + CH 2 CH 2 CH 2 - ,

Figure 2013203769
Figure 2013203769

Figure 2013203769
Figure 2013203769

Figure 2013203769
Figure 2013203769

これらの中でも以下のものが好ましい。

Figure 2013203769
Among these, the following are preferable.
Figure 2013203769

なお、mは0又は1である。   Note that m is 0 or 1.

上記式(1)の窒素原子含有有機基を含有する加水分解性シラン(A)としては、下記のものを例示することができる。
2NCH2Si(OCH33,H2NCH2Si(OCH2CH33,H2NCH2SiCH3(OCH32,H2NCH2SiCH3(OCH2CH32,H2NCH2CH2Si(OCH33,H2NCH2CH2Si(OCH2CH33,H2NCH2CH2SiCH3(OCH32,H2NCH2CH2SiCH3(OCH2CH32,H2NCH2CH2CH2Si(OCH33,H2NCH2CH2CH2Si(OCH2CH33,H2NCH2CH2CH2SiCH3(OCH32,H2NCH2CH2CH2SiCH3(OCH2CH32,H(CH3)NCH2CH2CH2Si(OCH33,H(CH3)NCH2CH2CH2Si(OCH2CH33,H(CH3)NCH2CH2CH2SiCH3(OCH32,H(CH3)NCH2CH2CH2SiCH3(OCH2CH32,(CH32NCH2CH2CH2Si(OCH33,(CH32NCH2CH2CH2Si(OCH2CH33,Cl-(CH33+CH2CH2CH2Si(OCH33,Cl-(CH33+CH2CH2CH2Si(OCH2CH33,Cl-(CH32(C65−CH2−)N+CH2CH2CH2Si(OCH33,Cl-(CH32(C65−CH2−)N+CH2CH2CH2Si(OCH2CH33,H2NCH2CH2NHCH2CH2CH2Si(OCH33,H2NCH2CH2NHCH2CH2CH2Si(OCH2CH33,H2NCH2CH2NHCH2CH2CH2SiCH3(OCH32,H2NCH2CH2NHCH2CH2CH2SiCH3(OCH2CH32,H2NCH2CH2NHCH2CH2NHCH2CH2CH2Si(OCH33,H2NCH2CH2NHCH2CH2NHCH2CH2CH2Si(OCHCH33,H2NCH2CH2NHCH2CH2NHCH2CH2CH2SiCH3(OCH32,H2NCH2CH2NHCH2CH2NHCH2CH2CH2SiCH3(OCH2CH32
Examples of the hydrolyzable silane (A) containing the nitrogen atom-containing organic group of the above formula (1) include the following.
H 2 NCH 2 Si (OCH 3 ) 3 , H 2 NCH 2 Si (OCH 2 CH 3 ) 3 , H 2 NCH 2 SiCH 3 (OCH 3 ) 2 , H 2 NCH 2 SiCH 3 (OCH 2 CH 3 ) 2 , H 2 NCH 2 CH 2 Si ( OCH 3) 3, H 2 NCH 2 CH 2 Si (OCH 2 CH 3) 3, H 2 NCH 2 CH 2 SiCH 3 (OCH 3) 2, H 2 NCH 2 CH 2 SiCH 3 (OCH 2 CH 3 ) 2 , H 2 NCH 2 CH 2 CH 2 Si (OCH 3 ) 3 , H 2 NCH 2 CH 2 CH 2 Si (OCH 2 CH 3 ) 3 , H 2 NCH 2 CH 2 CH 2 SiCH 3 (OCH 3 ) 2 , H 2 NCH 2 CH 2 CH 2 SiCH 3 (OCH 2 CH 3 ) 2 , H (CH 3 ) NCH 2 CH 2 CH 2 Si (OCH 3 ) 3 , H (CH 3 ) NCH 2 CH 2 CH 2 Si (OCH 2 CH 3) 3, H (CH 3) NCH 2 CH 2 C 2 SiCH 3 (OCH 3) 2 , H (CH 3) NCH 2 CH 2 CH 2 SiCH 3 (OCH 2 CH 3) 2, (CH 3) 2 NCH 2 CH 2 CH 2 Si (OCH 3) 3, (CH 3) 2 NCH 2 CH 2 CH 2 Si (OCH 2 CH 3) 3, Cl - (CH 3) 3 N + CH 2 CH 2 CH 2 Si (OCH 3) 3, Cl - (CH 3) 3 N + CH 2 CH 2 CH 2 Si (OCH 2 CH 3) 3, Cl - (CH 3) 2 (C 6 H 5 -CH 2 -) N + CH 2 CH 2 CH 2 Si (OCH 3) 3, Cl - (CH 3) 2 (C 6 H 5 -CH 2 -) N + CH 2 CH 2 CH 2 Si (OCH 2 CH 3) 3, H 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCH 3) 3, H 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCH 2 CH 3) 3, H 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 iCH 3 (OCH 3) 2, H 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 SiCH 3 (OCH 2 CH 3) 2, H 2 NCH 2 CH 2 NHCH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCH 3 ) 3, H 2 NCH 2 CH 2 NHCH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCHCH 3) 3, H 2 NCH 2 CH 2 NHCH 2 CH 2 NHCH 2 CH 2 CH 2 SiCH 3 (OCH 3) 2, H 2 NCH 2 CH 2 NHCH 2 CH 2 NHCH 2 CH 2 CH 2 SiCH 3 (OCH 2 CH 3 ) 2 ,

Figure 2013203769
Figure 2013203769

Figure 2013203769
Figure 2013203769

Figure 2013203769
Figure 2013203769

Figure 2013203769
Figure 2013203769

これらの中で特に好ましくは、H2NCH2CH2NHCH2CH2CH2Si(OCH33,H2NCH2CH2NHCH2CH2CH2Si(OCH2CH33,H2NCH2CH2NHCH2CH2NHCH2CH2CH2Si(OCH33,[3−(1−イミダゾリル)プロピル]トリメトキシシランであり、これらの部分加水分解物を用いてもよい。 Of these, H 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCH 3 ) 3 , H 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCH 2 CH 3 ) 3 , H 2 are particularly preferred. NCH 2 CH 2 NHCH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCH 3 ) 3 , [3- (1-imidazolyl) propyl] trimethoxysilane, and these partial hydrolysates may be used.

一方、上記加水分解性シラン(A)及び/又はその部分加水分解物と混合して加水分解に用いる加水分解性シラン(B)は、下記一般式(2)で表され、その1種を単独で又は2種以上を組み合わせて用いることができ、その部分加水分解物を使用してもよい。
3 nSiR4 4-n …(2)
On the other hand, the hydrolyzable silane (B) used for hydrolysis by mixing with the hydrolyzable silane (A) and / or a partial hydrolyzate thereof is represented by the following general formula (2), and one of them is used alone. Or may be used in combination of two or more, and partial hydrolysates thereof may be used.
R 3 n SiR 4 4-n (2)

ここで、R3は炭素数1〜8の窒素原子を含まない非置換又は置換の一価炭化水素基であり、上記R1で説明したものと同様のものが例示できる。具体的には、−CH3,−CH2CH3,−CH2CH2CH3,−CH(CH32,−CH2CH2CH2CH3,−CH(CH3)CH2CH3,−CH2CH(CH3)CH3,−C(CH33,−C65,−C613などが例示される。 Here, R 3 is an unsubstituted or substituted monovalent hydrocarbon group not containing a nitrogen atom having 1 to 8 carbon atoms, and examples thereof are the same as those described for R 1 above. Specifically, —CH 3 , —CH 2 CH 3 , —CH 2 CH 2 CH 3 , —CH (CH 3 ) 2 , —CH 2 CH 2 CH 2 CH 3 , —CH (CH 3 ) CH 2 CH 3, -CH 2 CH (CH 3 ) CH 3, -C (CH 3) 3, -C 6 H 5, etc. -C 6 H 13 is illustrated.

また、R4は炭素数1〜4のアルコキシ基又はアシロキシ基であり、具体的には、−OCH3,−OCH2CH3,−OCH2CH2CH3,−OCH(CH32,−OCH2CH2CH2CH3,−OCH(CH3)CH2CH3,−OCH2CH(CH3)CH3,−OC(CH33,−OCOCH3,−OCOCH2CH3などが例示されるが、中でも−OCH3,−OCH2CH3が好ましい。なお、nは0,1又は2である。 R 4 is an alkoxy group having 1 to 4 carbon atoms or an acyloxy group. Specifically, —OCH 3 , —OCH 2 CH 3 , —OCH 2 CH 2 CH 3 , —OCH (CH 3 ) 2 , -OCH 2 CH 2 CH 2 CH 3 , -OCH (CH 3) CH 2 CH 3, -OCH 2 CH (CH 3) CH 3, -OC (CH 3) 3, -OCOCH 3, such as -OCOCH 2 CH 3 Of these, —OCH 3 and —OCH 2 CH 3 are preferred. Note that n is 0, 1 or 2.

この式(2)の加水分解性シラン(B)としては、下記のものを例示することができる。
Si(OCH34,Si(OCH2CH34,Si(OCH2CH2CH34,Si(OCH2CH2CH2CH34,CH3Si(OCH33,CH3Si(OCH2CH33,CH3Si(OCH2CH2CH33,CH3Si(OCH2CH2CH2CH33,(CH32Si(OCH32,(CH32Si(OCH2CH32,(CH32Si(OCH2CH2CH32,(CH32Si(OCH2CH2CH2CH32

Figure 2013203769
As the hydrolyzable silane (B) of the formula (2), the following can be exemplified.
Si (OCH 3 ) 4 , Si (OCH 2 CH 2 CH 3 ) 4 , Si (OCH 2 CH 2 CH 3 ) 4 , Si (OCH 2 CH 2 CH 2 CH 3 ) 4 , CH 3 Si (OCH 3 ) 3 , CH 3 Si (OCH 2 CH 3 ) 3 , CH 3 Si (OCH 2 CH 2 CH 3 ) 3 , CH 3 Si (OCH 2 CH 2 CH 2 CH 3 ) 3 , (CH 3 ) 2 Si (OCH 3 ) 2 , (CH 3) 2 Si (OCH 2 CH 3) 2, (CH 3) 2 Si (OCH 2 CH 2 CH 3) 2, (CH 3) 2 Si (OCH 2 CH 2 CH 2 CH 3) 2,
Figure 2013203769

これらの中で特に好ましくは、Si(OCH34,Si(OCH2CH34,CH3Si(OCH33,CH3Si(OCH2CH33であり、これらの部分加水分解物を用いてもよい。 Of these, particularly preferred are Si (OCH 3 ) 4 , Si (OCH 2 CH 3 ) 4 , CH 3 Si (OCH 3 ) 3 , and CH 3 Si (OCH 2 CH 3 ) 3 , A decomposition product may be used.

上記式(1)の窒素原子含有有機基を含有する加水分解性シラン(A)及び/又はその部分加水分解物と、式(2)の加水分解性シラン(B)及び/又はその部分加水分解物の混合比は、窒素原子含有有機基を含有する加水分解性シラン(A)及び/又はその部分加水分解物100質量部に対し、加水分解性シラン(B)及び/又はその部分加水分解物が5〜200質量部の割合であり、より好ましくは10〜150質量部の割合である。この量が200質量部を超えると水溶液の安定性が悪化する。また、この量が5質量部未満であると電荷移動型触媒のバインド能力が低下する場合がある。   Hydrolyzable silane (A) containing a nitrogen atom-containing organic group of the above formula (1) and / or its partial hydrolyzate, hydrolyzable silane (B) of the formula (2) and / or its partial hydrolysis The mixture ratio of the hydrolyzable silane (B) and / or its partial hydrolyzate is 100 parts by mass of the hydrolyzable silane (A) and / or its partial hydrolyzate containing a nitrogen atom-containing organic group. Is a ratio of 5 to 200 parts by mass, more preferably a ratio of 10 to 150 parts by mass. When this amount exceeds 200 parts by mass, the stability of the aqueous solution deteriorates. Further, if this amount is less than 5 parts by mass, the binding ability of the charge transfer catalyst may be lowered.

上記加水分解性シラン(A)、(B)あるいはそれらの部分加水分解物を用いて加水分解し、本発明の有機ケイ素化合物を得る場合、溶媒は主として水を使用するが、必要に応じて、水と溶解する有機溶剤であるアルコール、エステル、ケトン、グリコール類を水に添加する形で用いることができる。有機溶剤としては、メチルアルコール、エチルアルコール、1−プロピルアルコール、2−プロピルアルコール等のアルコール類、酢酸メチル、酢酸エチル、アセト酢酸エチル等のエステル類、アセトン、メチルエチルケトン等のケトン類、グリセリン、ジエチレングリコール等のグリコール類などを挙げることができる。   When the hydrolyzable silane (A), (B) or a partial hydrolyzate thereof is used to obtain the organosilicon compound of the present invention, water is mainly used as a solvent. Alcohols, esters, ketones, and glycols, which are organic solvents that dissolve in water, can be used by adding them to water. Organic solvents include alcohols such as methyl alcohol, ethyl alcohol, 1-propyl alcohol and 2-propyl alcohol, esters such as methyl acetate, ethyl acetate and ethyl acetoacetate, ketones such as acetone and methyl ethyl ketone, glycerin and diethylene glycol And the like.

溶媒の量は、上記加水分解性シラン(A)、(B)あるいはそれらの部分加水分解物(以下、原料混合シランともいう。)100質量部に対して400〜5,000質量部が好ましい。更に好ましくは1,000〜3,000質量部である。溶媒の量が400質量部より少ないと反応が進行しすぎ、系が均一にならない場合がある。また液の保存安定性も悪くなる場合がある。一方、5,000質量部より多いと経済的に不利な場合が生じる。   The amount of the solvent is preferably 400 to 5,000 parts by mass with respect to 100 parts by mass of the hydrolyzable silane (A), (B) or a partially hydrolyzed product thereof (hereinafter also referred to as raw material mixed silane). More preferably, it is 1,000-3,000 mass parts. If the amount of the solvent is less than 400 parts by mass, the reaction may proceed excessively and the system may not be uniform. In addition, the storage stability of the liquid may deteriorate. On the other hand, when the amount is more than 5,000 parts by mass, an economical disadvantage may occur.

また、溶媒中の水の量は、水/原料混合シランのモル比率で5〜50が好ましい。このモル比率が5より少ないと加水分解が完全に進行しにくく、液の安定性が悪化する場合がある。一方、50を超えると経済的に不利な場合が生じる。   The amount of water in the solvent is preferably 5 to 50 in terms of the molar ratio of water / raw material mixed silane. When this molar ratio is less than 5, hydrolysis hardly proceeds completely, and the stability of the liquid may be deteriorated. On the other hand, if it exceeds 50, an economical disadvantage may occur.

反応方法としては、(1)原料混合シランを水中あるいは加水分解に必要である以上の量の水を含む有機溶剤中に滴下する方法、(2)原料混合シランあるいは有機溶剤含有原料混合シラン中に水を滴下する方法、(3)加水分解性シラン(B)及び/又はその部分加水分解物を水中あるいは加水分解に必要である以上の量の水を含む有機溶剤中に滴下し、その後、窒素原子含有有機基を含有する加水分解性シラン(A)及び/又はその部分加水分解物を滴下する方法、(4)窒素原子含有有機基を含有する加水分解性シラン(A)及び/又はその部分加水分解物を水中あるいは加水分解に必要である以上の量の水を含む有機溶剤中に滴下し、その後、加水分解性シラン(B)及び/又はその部分加水分解物を滴下する方法などが挙げられるが、有機ケイ素化合物の安定性の点から、特に(1)の反応方法が好ましい。   As the reaction method, (1) a method in which the raw material mixed silane is dropped into water or an organic solvent containing water in an amount more than necessary for hydrolysis, (2) the raw material mixed silane or the organic solvent-containing raw material mixed silane (3) Hydrolyzable silane (B) and / or a partially hydrolyzed product thereof is dropped into water or an organic solvent containing water in an amount more than necessary for hydrolysis, and then nitrogen is added. Method of dropping hydrolyzable silane (A) and / or partial hydrolyzate thereof containing atom-containing organic group, (4) Hydrolyzable silane (A) containing nitrogen atom-containing organic group and / or part thereof Examples include a method in which a hydrolyzate is dropped into water or an organic solvent containing water in an amount more than necessary for hydrolysis, and then a hydrolyzable silane (B) and / or a partial hydrolyzate thereof is dropped. Be , From the viewpoint of the stability of the organic silicon compounds, especially the reaction method (1) preferred.

なお、得られた有機ケイ素化合物は水溶液の形で得られるが、必要に応じて、更に水を加えたり、除去したりして、有機ケイ素化合物100質量部に対して水を好ましくは10〜2,000質量部、より好ましくは10〜1,000質量部の比率に調整することにより、有機ケイ素化合物を形成することができる。この場合、水の量が10質量部より少ないと有機ケイ素化合物自体の保存安定性が悪化する場合がある。また、2,000質量部より多いと有機ケイ素化合物を加える量が多くなってしまい、コスト的に好ましくない。
なお、本発明において、上記(II)成分である有機ケイ素化合物は水溶液の形で得られるものであるが、有機ケイ素化合物以外の水等の溶媒は、後述する(III)成分としてカウントするものである。
In addition, although the obtained organosilicon compound is obtained in the form of aqueous solution, water is added or removed as necessary, and water is preferably added in an amount of 10 to 2 with respect to 100 parts by mass of the organosilicon compound. The organosilicon compound can be formed by adjusting to a ratio of 1,000 parts by mass, more preferably 10 to 1,000 parts by mass. In this case, if the amount of water is less than 10 parts by mass, the storage stability of the organosilicon compound itself may deteriorate. Moreover, when more than 2,000 mass parts, the quantity which adds an organosilicon compound will increase and it is not preferable in terms of cost.
In the present invention, the organosilicon compound as the component (II) is obtained in the form of an aqueous solution, but a solvent such as water other than the organosilicon compound is counted as the component (III) described later. is there.

この(II)成分をバインダーとして使用することにより、詳細な理由ははっきりと説明できないが、コーティング組成物を水系で安定的なものにすることが可能であり、かつ(I)成分をコーティングした塗膜中で良好にその活性を失うことなくバインドすることができる。また(I)成分の硬化触媒能により、高温下でなくても、低温で塗膜を硬化可能にすることができる。更に、このバインダーと組み合わせることで防汚性でありながら、撥水性にもっていけるという新たな効果も発現する。   Although the detailed reason cannot be clearly explained by using this component (II) as a binder, the coating composition can be made stable in an aqueous system, and the coating composition coated with the component (I) can be used. It can bind well in the membrane without losing its activity. Further, the curing catalytic ability of the component (I) makes it possible to cure the coating film at a low temperature even at a low temperature. Furthermore, when combined with this binder, a new effect that it can be made water-repellent while exhibiting antifouling properties is also exhibited.

上記(I)、(II)成分を分散させる媒体成分である(III)成分は、水及び/又は水含有溶剤が好ましい。環境的な配慮から水単独が好ましいが、場合によっては水含有溶剤でも構わない。その時の溶剤は、アルコール、エステル、ケトン、グリコール類を使用することができる。具体的には、メチルアルコール、エチルアルコール、1−プロピルアルコール、2−プロピルアルコール等のアルコール類、酢酸メチル、酢酸エチル、アセト酢酸エチル等のエステル類、アセトン、メチルエチルケトン等のケトン類、グリセリン、ジエチレングリコール等のグリコール類などを挙げることができる。   The component (III), which is a medium component in which the components (I) and (II) are dispersed, is preferably water and / or a water-containing solvent. Although water alone is preferable from environmental considerations, a water-containing solvent may be used in some cases. As the solvent at that time, alcohol, ester, ketone and glycol can be used. Specifically, alcohols such as methyl alcohol, ethyl alcohol, 1-propyl alcohol and 2-propyl alcohol, esters such as methyl acetate, ethyl acetate and ethyl acetoacetate, ketones such as acetone and methyl ethyl ketone, glycerin and diethylene glycol And the like.

(I)、(II)及び(III)成分の配合量は、これらの合計量100質量部中、(I)成分の電荷移動型触媒成分0.01〜10質量部、好ましくは0.1〜8質量部であり、(II)成分のバインダーが0.01〜30質量部、好ましくは0.1〜20質量部、及び(III)成分の水及び/又は水含有溶剤は99.98〜60質量部を含有する。
この時、(I)成分の配合量が0.01質量部未満であると防汚性・抗菌性・防臭性等を良好に付与できない。またこの量が10質量部を超える量であると経済的に不利となる。
(II)成分の量が0.01質量部未満であると(I)成分をうまくバインドできない。またこの量が30質量部を超える量であると経済的に不利となる。
(III)成分の配合量が多すぎると実質的な有効成分が減るために経済的に好ましくなく、この量が少なすぎると保存安定性が悪化する場合がある。
The compounding amount of the components (I), (II) and (III) is 0.01 to 10 parts by mass, preferably 0.1 to 10 parts by mass of the component (I) in 100 parts by mass of the total amount. 8 parts by mass, the binder of component (II) is 0.01 to 30 parts by mass, preferably 0.1 to 20 parts by mass, and the water and / or water-containing solvent of component (III) is 99.98 to 60 parts. Contains parts by weight.
At this time, when the blending amount of the component (I) is less than 0.01 parts by mass, antifouling properties, antibacterial properties, deodorizing properties and the like cannot be imparted satisfactorily. Moreover, when this amount exceeds 10 parts by mass, it is economically disadvantageous.
If the amount of component (II) is less than 0.01 parts by mass, component (I) cannot be bound well. Moreover, when this amount exceeds 30 parts by mass, it is economically disadvantageous.
If the blending amount of the component (III) is too large, the substantial active ingredient is reduced, which is economically undesirable. If the amount is too small, the storage stability may be deteriorated.

得られた低温硬化型電荷移動型触媒含有コーティング組成物の被膜を基材表面に形成することにより表面処理基材が得られる。
ここで、コーティング組成物の被膜を基材に形成するための方法としては、刷毛塗り、ディッピング、スポンジ塗り、スプレーなど一般的な塗布方法で差し支えない。硬化条件としては常温〜150℃程度までの低温条件で簡単に硬化可能である。
なお、本発明のコーティング組成物の塗布量は、有効成分(I)及び(II)の固形分が0.01〜50g/m2が好ましく、より好ましくは0.1〜25g/m2である。塗布量が少なすぎると有効な特性の発現が不十分となることがあり、多すぎると経済的に不利になる場合がある。
A surface-treated substrate is obtained by forming a film of the obtained low-temperature curable charge transfer catalyst-containing coating composition on the substrate surface.
Here, as a method for forming a coating film of the coating composition on the substrate, a general coating method such as brush coating, dipping, sponge coating or spraying may be used. As the curing condition, it can be easily cured at a low temperature condition from room temperature to about 150 ° C.
In addition, as for the application quantity of the coating composition of this invention, 0.01-50 g / m < 2 > is preferable, and, as for the solid content of active ingredient (I) and (II), More preferably, it is 0.1-25 g / m < 2 >. . If the coating amount is too small, the expression of effective characteristics may be insufficient, and if it is too large, it may be economically disadvantageous.

本発明のコーティング組成物の対象物としての基材はなんら限定されないが、自動車、航空機、電車等の車両用ガラス基材、建築・建材のガラス基材や外壁、衣類や皮革などの繊維製品、紙、またコンクリートやレンガ、石、陶器、瓦、木材のような多孔質基材、金属材料などが挙げられるが、これらに限定されるものではない。   The substrate as an object of the coating composition of the present invention is not limited at all, but glass substrates for vehicles such as automobiles, aircrafts, trains, etc., glass substrates and outer walls of construction and building materials, textile products such as clothing and leather, Examples include, but are not limited to, paper, and porous substrates such as concrete, bricks, stones, ceramics, tiles, and wood, and metal materials.

以下、実施例及び比較例を用いて本発明を具体的に説明する。なお、下記の実施例は、本発明を何ら制限するものではない。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The following examples do not limit the present invention.

〔電荷移動型酸化還元触媒の合成〕
[合成例1]
電子供与体を構成する元素として酸化モリブデンを還元することによって得られたモリブデン、電子受容体を構成する元素として酸化アルミニウム、即ちアルミナを還元することによって得られたアルミニウム、電子キャリアー(運搬体)を構成する物質としてアルミナとシリカとの混合物(アルミナとシリカとのモル比は1:1)、酸化中心体を構成する元素としてロジウム微粉末、還元中心体を構成する元素としてバリウム微粉末を各等モルずつ(即ち、モリブデン、アルミニウム、アルミナとシリカとの混合物、ロジウム、バリウムのモル比を1:1:1:1:1)となるように混合したうえで撹拌した後、7質量%のポリビニルアルコール水溶液をバインダーとして上記粉末100質量部に対して100質量部加え、2〜3時間混合微粉砕装置にかけて微粉砕して泥奨を作った。この泥奨をロータリーキルン式焼成炉で焼成温度1,350℃にて約1時間焼成した。そこで得られたセラミックス状微粉末を超微粉化するために、らい潰機にて24時間粉砕し、粒径3μmの電荷移動型触媒粉末−1を得た。
触媒を構成する各成分の配合比は非化学量論的であるが、焼成過程でペロブスカイト結晶やスピネル結晶の結晶構造を有しており、それぞれの成分は化学量論的配位を形成している。その場合、過剰な成分は結晶粒界に分布し、また、触媒結晶の中に発生する空格子の部分に酸素が配位していると考えられる。
(Synthesis of charge transfer type redox catalyst)
[Synthesis Example 1]
Molybdenum obtained by reducing molybdenum oxide as an element constituting an electron donor, aluminum oxide obtained by reducing alumina as an element constituting an electron acceptor, that is, aluminum obtained by reducing alumina, an electron carrier (carrier) A mixture of alumina and silica as a constituent material (molar ratio of alumina and silica is 1: 1), rhodium fine powder as an element constituting an oxidation center, barium fine powder as an element constituting a reduction center, etc. The mixture was stirred so that it was in a molar ratio (ie, molybdenum, aluminum, a mixture of alumina and silica, rhodium and barium had a molar ratio of 1: 1: 1: 1: 1), and then 7% by mass of polyvinyl. 100 parts by mass of 100% by mass of the above powder using an aqueous alcohol solution as a binder, and mixing for 2-3 hours I made a DoroSusumu is finely milled by grinding apparatus. This mud was baked for about 1 hour at a calcination temperature of 1,350 ° C. in a rotary kiln type calcination furnace. Thus, in order to make the ceramic fine powder obtained into an ultrafine powder, it was pulverized for 24 hours with a cracker to obtain a charge transfer catalyst powder-1 having a particle size of 3 μm.
The mixing ratio of each component constituting the catalyst is non-stoichiometric, but it has a crystal structure of perovskite crystal or spinel crystal in the firing process, and each component forms a stoichiometric coordination. Yes. In that case, it is considered that excessive components are distributed at the grain boundaries, and oxygen is coordinated in the vacant portion generated in the catalyst crystal.

〔電荷移動型の酸化触媒と還元触媒との混合物の合成〕
[合成例2]
電子供与体を構成する元素として酸化タングステンを還元したことによるタングステン、電子受容体を構成する元素として酸化アルミニウム、即ちアルミナを還元することによって得られたアルミニウム、電子キャリアー(運搬体)を構成する物質としてアルミナとシリカとの複合酸化物(アルミナとシリカとのモル比は1:1)、酸化中心体を構成する元素としてロジウム微粉末を各等モルずつ(タングステン、アルミニウム、アルミナとシリカとの複合酸化物、ロジウムの各モル比を1:1:1:1)混合撹拌した後、前記製造例1に準じた工程により、粒径3μmの酸化反応型の電荷移動型触媒粉末−2を製造した。
また、電子供与体を構成する元素として酸化タングステンを還元したことによるタングステン、電子受容体を構成する元素として酸化アルミニウム、即ちアルミナを還元することによって得られたアルミニウム、電子キャリアー(運搬体)を構成する物質としてアルミナとシリカとの複合酸化物(アルミナとシリカとのモル比は1:1)、還元中心体を構成する元素としてバリウム微粉末を各等モルずつ(タングステン、アルミニウム、アルミナとシリカとの複合酸化物、バリウムの各モル比を1:1:1:1)混合撹拌した後、前記製造例1に準じた工程により、粒径3μmの還元反応型の電荷移動型触媒粉末−3を製造した。
これら酸化反応型の電荷移動型触媒粉末−2と還元反応型の電荷移動型触媒粉末−3を等質量ずつ混合して電荷移動型触媒粉末−4を得た。
[Synthesis of a mixture of charge transfer type oxidation catalyst and reduction catalyst]
[Synthesis Example 2]
Tungsten by reducing tungsten oxide as an element constituting an electron donor, aluminum oxide as an element constituting an electron acceptor, that is, aluminum obtained by reducing alumina, a substance constituting an electron carrier (carrier) As a compound oxide of alumina and silica (molar ratio of alumina and silica is 1: 1), rhodium fine powder as an element constituting the oxidation center, each equimolar amount (composite of tungsten, aluminum, alumina and silica) After mixing and stirring each molar ratio of oxide and rhodium at 1: 1: 1: 1), an oxidation reaction type charge transfer type catalyst powder-2 having a particle size of 3 μm was produced by the process according to Production Example 1. .
In addition, tungsten by reducing tungsten oxide as an element constituting an electron donor, aluminum oxide as an element constituting an electron acceptor, that is, aluminum obtained by reducing alumina, and an electron carrier (carrier) A composite oxide of alumina and silica (a molar ratio of alumina to silica is 1: 1) as a substance to be reduced, and an equimolar amount of barium fine powder as an element constituting the reduction center (tungsten, aluminum, alumina and silica) After mixing and stirring the respective molar ratios of the composite oxide and barium (1: 1: 1: 1), the reduction reaction type charge transfer catalyst powder-3 having a particle size of 3 μm was obtained by the process according to the production example 1. Manufactured.
These oxidation reaction type charge transfer type catalyst powder-2 and reduction reaction type charge transfer type catalyst powder-3 were mixed in equal masses to obtain charge transfer type catalyst powder-4.

〔有機ケイ素化合物の合成〕
[合成例3]
水246g(13.7mol)を撹拌機、温度計及び冷却器を備えた500mLの反応器に入れ、撹拌した。ここにH2NCH2CH2NHCH2CH2CH2Si(OCH3344.4g(0.2mol)及びSi(OCH2CH3420.8g(0.1mol)を混合したものを室温で10分間かけて滴下したところ、25℃から56℃に内温が上昇した。更にオイルバスにて60〜70℃に加熱し、そのまま1時間撹拌を行った。次にエステルアダプターを取り付け、内温99℃まで上げ、副生したメタノール、エタノールを除去することにより、有機ケイ素化合物−1を250g得た。このものの不揮発分(105℃/3時間)は14.9質量%であった。
[Synthesis of organosilicon compounds]
[Synthesis Example 3]
246 g (13.7 mol) of water was placed in a 500 mL reactor equipped with a stirrer, thermometer and cooler and stirred. A mixture of 44.4 g (0.2 mol) of H 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCH 3 ) 3 and 20.8 g (0.1 mol) of Si (OCH 2 CH 3 ) 4 When the solution was added dropwise at room temperature over 10 minutes, the internal temperature rose from 25 ° C to 56 ° C. Furthermore, it heated to 60-70 degreeC with the oil bath, and stirred as it was for 1 hour. Next, an ester adapter was attached, the internal temperature was raised to 99 ° C., and methanol and ethanol by-produced were removed to obtain 250 g of organosilicon compound-1. The nonvolatile content (105 ° C./3 hours) of this product was 14.9% by mass.

[合成例4]
水278g(15.4mol)を撹拌機、温度計及び冷却器を備えた500mLの反応器に入れ、撹拌した。ここにH2NCH2CH2NHCH2CH2CH2Si(OCH3355.6g(0.25mol)及びSi(OCH2CH3410.4g(0.05mol)を混合したものを室温で10分間かけて滴下したところ、27℃から49℃に内温が上昇した。更にオイルバスにて60〜70℃に加熱し、そのまま1時間撹拌を行った。次にエステルアダプターを取り付け、内温98℃まで上げ、副生したメタノール、エタノールを除去することにより、有機ケイ素化合物−2を274g得た。このものの不揮発分(105℃/3時間)は15.1質量%であった。
[Synthesis Example 4]
278 g (15.4 mol) of water was placed in a 500 mL reactor equipped with a stirrer, thermometer and condenser and stirred. Here, a mixture of 55.6 g (0.25 mol) of H 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCH 3 ) 3 and 10.4 g (0.05 mol) of Si (OCH 2 CH 3 ) 4 was used. When the solution was added dropwise at room temperature over 10 minutes, the internal temperature rose from 27 ° C to 49 ° C. Furthermore, it heated to 60-70 degreeC with the oil bath, and stirred as it was for 1 hour. Next, an ester adapter was attached, the internal temperature was raised to 98 ° C., and methanol and ethanol by-produced were removed to obtain 274 g of organosilicon compound-2. The nonvolatile content (105 ° C./3 hours) of this product was 15.1% by mass.

[合成例5]
水202g(11.2mol)を撹拌機、温度計及び冷却器を備えた500mLの反応器に入れ、撹拌した。ここにH2NCH2CH2NHCH2CH2CH2Si(OCH3333.3g(0.15mol)及びSi(OCH2CH3431.2g(0.15mol)を混合したものを室温で10分間かけて滴下したところ、25℃から51℃に内温が上昇した。更にオイルバスにて60〜70℃に加熱し、そのまま1時間撹拌を行った。次にエステルアダプターを取り付け、内温99℃まで上げ、副生したメタノール、エタノールを除去することにより、有機ケイ素化合物−3を210g得た。このものの不揮発分(105℃/3時間)は15.3質量%であった。
[Synthesis Example 5]
202 g (11.2 mol) of water was placed in a 500 mL reactor equipped with a stirrer, thermometer and cooler and stirred. A mixture of 33.3 g (0.15 mol) of H 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCH 3 ) 3 and 31.2 g (0.15 mol) of Si (OCH 2 CH 3 ) 4 When the solution was added dropwise at room temperature over 10 minutes, the internal temperature rose from 25 ° C to 51 ° C. Furthermore, it heated to 60-70 degreeC with the oil bath, and stirred as it was for 1 hour. Next, an ester adapter was attached, the internal temperature was raised to 99 ° C., and methanol and ethanol by-produced were removed to obtain 210 g of organosilicon compound-3. The nonvolatile content (105 ° C./3 hours) of this product was 15.3% by mass.

[合成例6]
水308g(17.1mol)を撹拌機、温度計及び冷却器を備えた500mLの反応器に入れ、撹拌した。ここにH2NCH2CH2NHCH2CH2NHCH2CH2CH2Si(OCH3353.1g(0.2mol)及びSi(OCH3415.2g(0.1mol)を混合したものを室温で10分間かけて滴下したところ、28℃から53℃に内温が上昇した。更にオイルバスにて60〜70℃に加熱し、そのまま1時間撹拌を行った。次にエステルアダプターを取り付け、内温99℃まで上げ、副生したメタノールを除去することにより、有機ケイ素化合物−4を300g得た。このものの不揮発分(105℃/3時間)は15.4質量%であった。
[Synthesis Example 6]
308 g (17.1 mol) of water was placed in a 500 mL reactor equipped with a stirrer, thermometer and cooler and stirred. Here, 53.1 g (0.2 mol) of H 2 NCH 2 CH 2 NHCH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCH 3 ) 3 and 15.2 g (0.1 mol) of Si (OCH 3 ) 4 were mixed. When the product was added dropwise at room temperature over 10 minutes, the internal temperature rose from 28 ° C to 53 ° C. Furthermore, it heated to 60-70 degreeC with the oil bath, and stirred as it was for 1 hour. Next, an ester adapter was attached, the internal temperature was raised to 99 ° C., and methanol produced as a by-product was removed to obtain 300 g of organosilicon compound-4. The nonvolatile content (105 ° C./3 hours) of this product was 15.4% by mass.

[合成例7]
水253g(14.1mol)を撹拌機、温度計及び冷却器を備えた500mLの反応器に入れ、撹拌した。ここにH2NCH2CH2NHCH2CH2CH2Si(OCH3344.4g(0.2mol)及びCH3Si(OCH3313.6g(0.1mol)を混合したものを室温で10分間かけて滴下したところ、26℃から42℃に内温が上昇した。更にオイルバスにて60〜70℃に加熱し、そのまま1時間撹拌を行った。次にエステルアダプターを取り付け、内温99℃まで上げ、副生したメタノールを除去することにより、有機ケイ素化合物−5を244g得た。このものの不揮発分(105℃/3時間)は15.6質量%であった。
[Synthesis Example 7]
253 g (14.1 mol) of water was placed in a 500 mL reactor equipped with a stirrer, thermometer and cooler and stirred. A mixture of 44.4 g (0.2 mol) of H 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCH 3 ) 3 and 13.6 g (0.1 mol) of CH 3 Si (OCH 3 ) 3 When the solution was added dropwise at room temperature over 10 minutes, the internal temperature increased from 26 ° C to 42 ° C. Furthermore, it heated to 60-70 degreeC with the oil bath, and stirred as it was for 1 hour. Next, 244 g of organosilicon compound-5 was obtained by attaching an ester adapter, raising the internal temperature to 99 ° C., and removing by-produced methanol. The nonvolatile content (105 ° C./3 hours) of this product was 15.6% by mass.

[合成例8]
水241g(13.4mol)を撹拌機、温度計及び冷却器を備えた500mLの反応器に入れ、撹拌した。ここにH2NCH2CH2NHCH2CH2CH2Si(OCH3344.4g(0.2mol)、Si(OCH2CH3418.7g(0.09mol)及びCH3Si(OCH331.4g(0.01mol)を混合したものを室温で10分間かけて滴下したところ、26℃から49℃に内温が上昇した。更にオイルバスにて60〜70℃に加熱し、そのまま1時間撹拌を行った。次にエステルアダプターを取り付け、内温99℃まで上げ、副生したメタノール、エタノールを除去することにより、有機ケイ素化合物−6を241g得た。このものの不揮発分(105℃/3時間)は15.7質量%であった。
[Synthesis Example 8]
241 g (13.4 mol) of water was placed in a 500 mL reactor equipped with a stirrer, thermometer and cooler and stirred. Here, 44.4 g (0.2 mol) of H 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCH 3 ) 3, 18.7 g (0.09 mol) of Si (OCH 2 CH 3 ) 4 and CH 3 Si ( When a mixture of 1.4 g (0.01 mol) of OCH 3 ) 3 was added dropwise at room temperature over 10 minutes, the internal temperature increased from 26 ° C. to 49 ° C. Furthermore, it heated to 60-70 degreeC with the oil bath, and stirred as it was for 1 hour. Next, 241 g of organosilicon compound-6 was obtained by attaching an ester adapter, raising the internal temperature to 99 ° C., and removing methanol and ethanol by-produced. The nonvolatile content (105 ° C./3 hours) of this product was 15.7% by mass.

[合成例9]
水246g(13.7mol)を撹拌機、温度計及び冷却器を備えた500mLの反応器に入れ、撹拌した。ここに[3−(1−イミダゾリル)プロピル]トリメトキシシラン)46g(0.2mol)及びSi(OCH2CH3420.8g(0.1mol)を混合したものを室温で10分間かけて滴下したところ、25℃から59℃に内温が上昇した。更にオイルバスにて60〜70℃に加熱し、そのまま1時間撹拌を行った。次にエステルアダプターを取り付け、内温99℃まで上げ、副生したメタノール、エタノールを除去することにより、有機ケイ素化合物−7を251g得た。このものの不揮発分(105℃/3時間)は15.1質量%であった。
[Synthesis Example 9]
246 g (13.7 mol) of water was placed in a 500 mL reactor equipped with a stirrer, thermometer and cooler and stirred. A mixture of 46 g (0.2 mol) of [3- (1-imidazolyl) propyl] trimethoxysilane) and 20.8 g (0.1 mol) of Si (OCH 2 CH 3 ) 4 was added at room temperature over 10 minutes. When dropped, the internal temperature rose from 25 ° C to 59 ° C. Furthermore, it heated to 60-70 degreeC with the oil bath, and stirred as it was for 1 hour. Next, an ester adapter was attached, the internal temperature was raised to 99 ° C., and methanol and ethanol by-produced were removed to obtain 251 g of organosilicon compound-7. The nonvolatile content (105 ° C./3 hours) of this product was 15.1% by mass.

[合成例10]
テトラアルコキシシランの縮合物(コルコート社製エチルシリケート40)50質量部と、ケイ素、アルミニウム、チタン、スズ、亜鉛及びカリウムを含む触媒粉(ケイ素/アルミニウム/チタン/スズ/亜鉛/カリウム(質量比)=1/0.4/1.4/1.1/0.01/0.01、粒径10〜100nm程度の粉末状)50質量部と、水とをスターラーを用いて混合し、コーティング液1を調製した。
[Synthesis Example 10]
Catalyst powder (silicon / aluminum / titanium / tin / tin / zinc / potassium (mass ratio)) containing 50 parts by mass of a tetraalkoxysilane condensate (ethyl silicate 40 manufactured by Colcoat Co.) and silicon, aluminum, titanium, tin, zinc and potassium = 1 / 0.4 / 1.4 / 1.1 / 0.01 / 0.01, powder having a particle size of about 10 to 100 nm) 50 parts by mass and water are mixed using a stirrer to form a coating solution. 1 was prepared.

[実施例1〜10、比較例1〜4]
電荷移動型触媒粉末−1,4、有機ケイ素化合物−1〜7、加水分解性シラン及び溶媒成分を表1に示す割合で混合し、コーティング組成物を得た。コーティング組成物及びコーティング液1の保存安定性を、下記に示す方法により評価し、また、コーティング組成物を、各種基材(ガラス、タイル)や綿布に処理し、その性能について下記に示す方法により評価した。その結果を表1に示す。
[Examples 1 to 10, Comparative Examples 1 to 4]
Charge transfer catalyst powders -1,4, organosilicon compounds-1-7, hydrolyzable silane and solvent components were mixed in the proportions shown in Table 1 to obtain a coating composition. The storage stability of the coating composition and the coating liquid 1 is evaluated by the method shown below, and the coating composition is treated on various substrates (glass, tile) and cotton cloth, and the performance is shown by the method shown below. evaluated. The results are shown in Table 1.

コーティング組成物
(保存安定性)
コーティング組成物溶液の保存安定性は、40℃で2ヶ月保存後の状態を観察した。
○:溶液状態を保ち、沈降物、ゲル化なし。
×:沈降物、濁りあり。
Coating composition (storage stability)
The storage stability of the coating composition solution was observed after storage at 40 ° C. for 2 months.
○: The solution state is maintained, and there is no sediment and gelation.
X: There is sediment and turbidity.

基材:ガラスの場合
(処理方法)
ガラス板(縦100mm×横50mm×1.5mm)を市販の油膜とり剤により汚れを取り除き、よく乾燥させた。そこに表1の各種コーティング組成物をスプレー塗布(塗布量:1.5g/m2)し、80℃で20分乾燥させた。
Base material: Glass (processing method)
A glass plate (length 100 mm × width 50 mm × 1.5 mm) was cleaned with a commercially available oil film remover and dried well. Various coating compositions shown in Table 1 were applied by spraying (application amount: 1.5 g / m 2 ) and dried at 80 ° C. for 20 minutes.

(密着性評価)
JIS K 5400に準拠し、試験片をカミソリの刃で2mm間隔の縦横6本ずつ切れ目を入れて25個の碁盤目を作り、市販のセロハン粘着テープをよく密着させた後、90度手前方向に急激に剥がした時、被膜が剥離せずに残存したマス目数(X)値から下記基準で判定した。
○:25〜21
△:20〜6
×:5〜0
(Adhesion evaluation)
In accordance with JIS K 5400, test pieces are cut into 6 vertical and horizontal 6 mm intervals with a razor blade to make 25 grids, and a commercially available cellophane adhesive tape is adhered closely, then 90 degrees forward When the film was peeled off rapidly, the number of squares (X) remaining without peeling off the coating was determined according to the following criteria.
○: 25-21
Δ: 20-6
X: 5-0

(撥水性評価)
協和界面化学社製DM701機により水の接触角(水滴量2μL)を初期値と室温下で70日間放置した後の値を測定した。
なお、未処理のガラスの初期接触角は5°、70日後は47°であった。
(Water repellency evaluation)
Using a DM701 machine manufactured by Kyowa Interface Chemical Co., Ltd., the water contact angle (water droplet amount 2 μL) was measured as an initial value and a value after being allowed to stand at room temperature for 70 days.
The initial contact angle of the untreated glass was 5 °, and after 70 days it was 47 °.

(ホルムアルデヒド分解性能評価)
12Lのデシケーター中央に上記塗布ガラス試験片を置き、デシケーター内にホルムアルデヒド調整空気(6ppm)を導入した。このデシケーターを恒温恒湿条件(22℃/50%RH)条件下、8日間放置した。その後のホルムアルデヒド濃度を測定し残存率を計算した。ちなみにホルムアルデヒドは自己分解性があり、何もない状態で8日間での残存率は66%である。
(Formaldehyde decomposition performance evaluation)
The coated glass test piece was placed in the center of a 12 L desiccator, and formaldehyde-adjusted air (6 ppm) was introduced into the desiccator. This desiccator was allowed to stand for 8 days under a constant temperature and humidity condition (22 ° C./50% RH). Thereafter, the formaldehyde concentration was measured and the residual rate was calculated. By the way, formaldehyde is self-degrading, and the residual rate in 8 days in the absence of anything is 66%.

基材:タイルの場合
(処理方法)
タイル板(縦100mm×横100mm×10mm)を水により汚れを取り除き、よく乾燥させた。そこに表1の各種コーティング組成物をスプレー塗布(塗布量:1.5g/m2)し、80℃で20分乾燥させた。
Base material: Tile (processing method)
The tile plate (length 100 mm × width 100 mm × 10 mm) was cleaned with water and dried well. Various coating compositions shown in Table 1 were applied by spraying (application amount: 1.5 g / m 2 ) and dried at 80 ° C. for 20 minutes.

(密着性評価)
JIS K 5400に準拠し、試験片をカミソリの刃で2mm間隔の縦横6本ずつ切れ目を入れて25個の碁盤目を作り、市販のセロハン粘着テープをよく密着させた後、90度手前方向に急激に剥がした時、被膜が剥離せずに残存したマス目数(X)値から下記基準で判定した。
○:25〜21
△:20〜6
×:5〜0
(Adhesion evaluation)
In accordance with JIS K 5400, test pieces are cut into 6 vertical and horizontal 6 mm intervals with a razor blade to make 25 grids, and a commercially available cellophane adhesive tape is adhered closely, then 90 degrees forward When the film was peeled off rapidly, the number of squares (X) remaining without peeling off the coating was determined according to the following criteria.
○: 25-21
Δ: 20-6
X: 5-0

(撥水性評価)
協和界面化学社製DM701機により水の接触角(水滴量2μL)を初期値と室温下で70日間放置した後の値を測定した。
なお、未処理のタイルの初期接触角は32°、70日後は58°であった。
(Water repellency evaluation)
Using a DM701 machine manufactured by Kyowa Interface Chemical Co., Ltd., the water contact angle (water droplet amount 2 μL) was measured as an initial value and a value after being allowed to stand at room temperature for 70 days.
The initial contact angle of the untreated tile was 32 °, and after 70 days it was 58 °.

(ホルムアルデヒド分解性能評価)
12Lのデシケーター中央に上記塗布タイル試験片を置き、デシケーター内にホルムアルデヒド調整空気(6ppm)を導入した。このデシケーターを恒温恒湿条件(22℃/50%RH)条件下、8日間放置した。その後のホルムアルデヒド濃度を測定し残存率を計算した。ちなみにホルムアルデヒドは自己分解性があり、何もない状態で8日間での残存率は66%である。
(Formaldehyde decomposition performance evaluation)
The coated tile test piece was placed in the center of a 12 L desiccator, and formaldehyde-adjusted air (6 ppm) was introduced into the desiccator. This desiccator was allowed to stand for 8 days under a constant temperature and humidity condition (22 ° C./50% RH). Thereafter, the formaldehyde concentration was measured and the residual rate was calculated. By the way, formaldehyde is self-degrading, and the residual rate in 8 days in the absence of anything is 66%.

基材:綿布の場合
(処理方法)
表1の各種コーティング組成物に試験布(100mm×100mm)を浸漬し、マングルで絞り(絞り量(塗布量):3.0g/m2)、20℃、50RH%の室内で1日乾燥し、処理を行った。
Base material: Cotton (processing method)
A test cloth (100 mm × 100 mm) is immersed in the various coating compositions shown in Table 1, drawn with a mangle (drawing amount (coating amount): 3.0 g / m 2 ), and dried in a room at 20 ° C. and 50 RH% for one day. , Processed.

(ホルムアルデヒド分解性能評価)
12Lのデシケーター中央に上記処理布を置き、デシケーター内にホルムアルデヒド調整空気(6ppm)を導入した。このデシケーターを恒温恒湿条件(22℃/50%RH)条件下、8日間放置した。その後のホルムアルデヒド濃度を測定し残存率を計算した。ちなみにホルムアルデヒドは自己分解性があり、何もない状態で8日間での残存率は66%である。
(Formaldehyde decomposition performance evaluation)
The treated cloth was placed in the center of a 12 L desiccator, and formaldehyde-adjusted air (6 ppm) was introduced into the desiccator. This desiccator was allowed to stand for 8 days under a constant temperature and humidity condition (22 ° C./50% RH). Thereafter, the formaldehyde concentration was measured and the residual rate was calculated. By the way, formaldehyde is self-degrading, and the residual rate in 8 days in the absence of anything is 66%.

(耐久性評価)
上記処理布を全自動洗濯機の通常洗濯モードで10回洗濯した後、乾燥させたものを、上記ホルムアルデヒド試験と同様に評価した。
(Durability evaluation)
The treated cloth was washed 10 times in the normal washing mode of a fully automatic washing machine and then dried, and evaluated in the same manner as the formaldehyde test.

Figure 2013203769
Figure 2013203769

本発明の低温硬化型電荷移動型触媒含有コーティング組成物は、基材に処理後、低温乾燥させることで容易に被膜を形成でき、該被膜は防汚、防臭、抗菌性に優れ、更にその耐久性にも優れるため、車両、建築材等の基材へ処理するためのコーティング剤として有用である。   The low-temperature curable charge transfer catalyst-containing coating composition of the present invention can easily form a film by treating the substrate and then drying at a low temperature, and the film is excellent in antifouling, deodorizing, and antibacterial properties, and is durable. Because of its excellent properties, it is useful as a coating agent for treating a vehicle, a building material or the like.

Claims (8)

(I)電荷移動型触媒 0.01〜10質量部、
(II)バインダーとして、下記一般式(1)
YR1 mSiR2 3-m …(1)
(式中、R1は炭素数1〜8の非置換又は置換の一価炭化水素基であり、R2は炭素数1〜4のアルコキシ基又はアシロキシ基であり、Yは窒素原子含有有機基であり、mは0又は1である。)
で表される窒素原子含有有機基を含有する加水分解性シラン(A)及び/又はその部分加水分解物100質量部と、下記一般式(2)
3 nSiR4 4-n …(2)
(式中、R3は炭素数1〜8の非置換又は置換の一価炭化水素基であり、R4は炭素数1〜4のアルコキシ基又はアシロキシ基であり、nは0,1又は2である。)
で表される加水分解性シラン(B)及び/又はその部分加水分解物5〜200質量部とを加水分解することによって得られる有機ケイ素化合物 0.01〜30質量部、及び
(III)水及び/又は水含有溶剤 99.98〜60質量部
を含有する(但し、(I)、(II)、(III)成分の合計は100質量部である)低温硬化型電荷移動型触媒含有コーティング組成物。
(I) 0.01 to 10 parts by mass of a charge transfer catalyst
(II) As a binder, the following general formula (1)
YR 1 m SiR 2 3-m (1)
(In the formula, R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, R 2 is an alkoxy group or acyloxy group having 1 to 4 carbon atoms, and Y is a nitrogen atom-containing organic group. And m is 0 or 1.)
100 parts by mass of a hydrolyzable silane (A) and / or a partial hydrolyzate thereof containing a nitrogen atom-containing organic group represented by the following general formula (2)
R 3 n SiR 4 4-n (2)
Wherein R 3 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, R 4 is an alkoxy group or acyloxy group having 1 to 4 carbon atoms, and n is 0, 1 or 2 .)
0.01 to 30 parts by mass of an organosilicon compound obtained by hydrolyzing 5 to 200 parts by mass of a hydrolyzable silane (B) and / or a partial hydrolyzate thereof represented by: (III) water and Low-temperature curing type charge transfer catalyst-containing coating composition containing 99.98-60 parts by mass of water-containing solvent (however, the total of components (I), (II), (III) is 100 parts by mass) .
(I)成分の電荷移動型触媒が、電子供与元素と、電子受容元素と、前記電子供与元素から前記電子受容元素への電子の移動を促進する電子キャリアー物質と、前記電子受容元素に移動した電子により還元反応を行う還元中心元素と、電子の移動により生じた前記電子供与元素の正孔により酸化反応を行う酸化中心元素との複合酸化物結晶からなり、前記電子供与元素としてモリブデン及び/又はタングステンを、前記電子受容元素としてアルミニウムを、前記電子キャリアー物質としてアルミナ及びシリカの複合酸化物又は混合物を、前記還元中心元素としてバリウムを、前記酸化中心元素としてロジウムを用いた電荷移動型触媒(a)であることを特徴とする請求項1記載の低温硬化型電荷移動型触媒含有コーティング組成物。   The charge transfer catalyst of the component (I) has moved to the electron accepting element, the electron accepting element, the electron carrier substance that promotes the movement of electrons from the electron donating element to the electron accepting element, and the electron accepting element. It consists of a complex oxide crystal of a reduction center element that performs a reduction reaction with electrons and an oxidation center element that performs an oxidation reaction with holes of the electron donating element generated by the movement of electrons, and molybdenum and / or as the electron donating element Charge transfer catalyst (a) using tungsten, aluminum as the electron accepting element, a composite oxide or mixture of alumina and silica as the electron carrier substance, barium as the reducing center element, and rhodium as the oxidizing center element (a The low-temperature curing type charge transfer catalyst-containing coating composition according to claim 1, wherein (I)成分の電荷移動型触媒が、電子供与元素と、電子受容元素と、前記電子供与元素から前記電子受容元素への電子の移動を促進する電子キャリアー物質と、電子の移動により生じた前記電子供与元素の正孔により酸化反応を行う酸化中心元素との複合酸化物結晶からなり、必要により更に該複合酸化物の結晶構造内外に酸化反応を活性化する酸化活性化剤を含んでなり、前記電子供与元素としてモリブデン及び/又はタングステンを、前記電子受容元素としてアルミニウムを、前記電子キャリアー物質としてアルミナ及びシリカの複合酸化物又は混合物を、前記酸化中心元素としてロジウムを用いた酸化反応型の電荷移動型触媒(b)であることを特徴とする請求項1記載の低温硬化型電荷移動型触媒含有コーティング組成物。   The charge transfer catalyst of component (I) is an electron donating element, an electron accepting element, an electron carrier substance that promotes the movement of electrons from the electron donating element to the electron accepting element, It consists of a complex oxide crystal with an oxidation center element that performs an oxidation reaction with holes of an electron donating element, and further comprises an oxidation activator that activates the oxidation reaction inside and outside the crystal structure of the complex oxide, if necessary. Charge of oxidation reaction type using molybdenum and / or tungsten as the electron donating element, aluminum as the electron accepting element, a composite oxide or mixture of alumina and silica as the electron carrier substance, and rhodium as the oxidation center element The low-temperature curing type charge transfer catalyst-containing coating composition according to claim 1, which is a transfer catalyst (b). (I)成分の電荷移動型触媒が、電子供与元素と、電子受容元素と、前記電子供与元素から前記電子受容元素への電子の移動を促進する電子キャリアー物質と、前記電子受容元素に移動した電子により還元反応を行う還元中心元素との複合酸化物結晶からなり、必要により更に該複合酸化物の結晶構造内外に還元反応を活性化する還元活性化剤を含んでなり、前記電子供与元素としてモリブデン及び/又はタングステンを、前記電子受容元素としてアルミニウムを、前記電子キャリアー物質としてアルミナ及びシリカの複合酸化物又は混合物を、前記還元中心元素としてバリウムを用いた還元反応型の電荷移動型触媒(c)であることを特徴とする請求項1記載の低温硬化型電荷移動型触媒含有コーティング組成物。   The charge transfer catalyst of the component (I) has moved to the electron accepting element, the electron accepting element, the electron carrier substance that promotes the movement of electrons from the electron donating element to the electron accepting element, and the electron accepting element. It consists of a complex oxide crystal with a reduction center element that performs a reduction reaction with electrons, and further includes a reduction activator that activates the reduction reaction inside and outside the crystal structure of the complex oxide, if necessary, as the electron donating element Reduction reaction type charge transfer catalyst (c) using molybdenum and / or tungsten, aluminum as the electron accepting element, a composite oxide or mixture of alumina and silica as the electron carrier material, and barium as the reducing center element (c The low-temperature curing type charge transfer catalyst-containing coating composition according to claim 1, wherein (I)成分の電荷移動型触媒が、請求項3に記載の酸化反応型の電荷移動型触媒(b)と請求項4に記載の還元反応型の電荷移動型触媒(c)との混合物からなる電荷移動型触媒(d)であることを特徴とする請求項1記載の低温硬化型電荷移動型触媒含有コーティング組成物。   The charge transfer catalyst of component (I) is a mixture of the oxidation reaction type charge transfer catalyst (b) according to claim 3 and the reduction reaction type charge transfer catalyst (c) according to claim 4. The low-temperature curing type charge transfer catalyst-containing coating composition according to claim 1, which is a charge transfer type catalyst (d). 加水分解性シラン(A)が、H2NCH2CH2NHCH2CH2CH2Si(OCH33,H2NCH2CH2NHCH2CH2CH2Si(OCH2CH33,H2NCH2CH2NHCH2CH2NHCH2CH2CH2Si(OCH33又は[3−(1−イミダゾリル)プロピル]トリメトキシシランであることを特徴とする請求項1〜5のいずれか1項記載の低温硬化型電荷移動型触媒含有コーティング組成物。 The hydrolyzable silane (A) is converted into H 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCH 3 ) 3 , H 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCH 2 CH 3 ) 3 , H 2. NCH 2 CH 2 NHCH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCH 3 ) 3 or [3- (1-imidazolyl) propyl] trimethoxysilane The low-temperature curing type charge transfer catalyst-containing coating composition according to claim 1. 加水分解性シラン(B)が、Si(OCH34,Si(OCH2CH34,CH3Si(OCH33及びCH3Si(OCH2CH33から選ばれる1種又は2種以上であることを特徴とする請求項1〜6のいずれか1項記載の低温硬化型電荷移動型触媒含有コーティング組成物。 The hydrolyzable silane (B) is one selected from Si (OCH 3 ) 4 , Si (OCH 2 CH 3 ) 4 , CH 3 Si (OCH 3 ) 3 and CH 3 Si (OCH 2 CH 3 ) 3 The low-temperature curing type charge transfer catalyst-containing coating composition according to any one of claims 1 to 6, wherein there are two or more types. 請求項1〜7のいずれか1項記載の低温硬化型電荷移動型触媒含有コーティング組成物の被膜を基材表面に形成したことを特徴とする表面処理基材。   A surface-treated substrate, wherein a coating film of the low-temperature curable charge transfer catalyst-containing coating composition according to any one of claims 1 to 7 is formed on a substrate surface.
JP2012071201A 2012-03-27 2012-03-27 Low temperature curable charge transfer catalyst-containing coating composition and surface treatment substrate Active JP6069865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012071201A JP6069865B2 (en) 2012-03-27 2012-03-27 Low temperature curable charge transfer catalyst-containing coating composition and surface treatment substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012071201A JP6069865B2 (en) 2012-03-27 2012-03-27 Low temperature curable charge transfer catalyst-containing coating composition and surface treatment substrate

Publications (2)

Publication Number Publication Date
JP2013203769A true JP2013203769A (en) 2013-10-07
JP6069865B2 JP6069865B2 (en) 2017-02-01

Family

ID=49523249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012071201A Active JP6069865B2 (en) 2012-03-27 2012-03-27 Low temperature curable charge transfer catalyst-containing coating composition and surface treatment substrate

Country Status (1)

Country Link
JP (1) JP6069865B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081752A (en) * 1996-07-18 1998-03-31 Shin Etsu Chem Co Ltd Binder composition and water-based coating agent
JPH10183061A (en) * 1996-10-30 1998-07-07 Jsr Corp Coating composition
JPH1190315A (en) * 1997-09-12 1999-04-06 Shin Etsu Chem Co Ltd Coating agent composition, formation of hydrophilic film and product coated with hydrophilic coating film
JP2007038119A (en) * 2005-08-02 2007-02-15 Osaka Gas Co Ltd Method of forming catalyst layer
JP2007185553A (en) * 2005-02-02 2007-07-26 Ichimura Fukuyo Charge transfer catalyst, oxidation/reduction functional material utilizing the catalyst and charge transfer catalyst-containing material
JP2009235238A (en) * 2008-03-27 2009-10-15 Dic Corp Aqueous coating composition, organic-inorganic composite coating film, metal alkoxide condensate dispersion, and production method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081752A (en) * 1996-07-18 1998-03-31 Shin Etsu Chem Co Ltd Binder composition and water-based coating agent
JPH10183061A (en) * 1996-10-30 1998-07-07 Jsr Corp Coating composition
JPH1190315A (en) * 1997-09-12 1999-04-06 Shin Etsu Chem Co Ltd Coating agent composition, formation of hydrophilic film and product coated with hydrophilic coating film
JP2007185553A (en) * 2005-02-02 2007-07-26 Ichimura Fukuyo Charge transfer catalyst, oxidation/reduction functional material utilizing the catalyst and charge transfer catalyst-containing material
JP2007038119A (en) * 2005-08-02 2007-02-15 Osaka Gas Co Ltd Method of forming catalyst layer
JP2009235238A (en) * 2008-03-27 2009-10-15 Dic Corp Aqueous coating composition, organic-inorganic composite coating film, metal alkoxide condensate dispersion, and production method thereof

Also Published As

Publication number Publication date
JP6069865B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP5279507B2 (en) Storage-stable coating composition for wear- and weather-resistant application of easy-clean properties to smooth inorganic surfaces
JP5279506B2 (en) Storage-stable coating composition for wear- and weather-resistant application of easy-clean properties to smooth inorganic surfaces
JP5818890B2 (en) Curable composition containing dual reactive silane functional groups
JP3348635B2 (en) Coating composition, method for forming hydrophilic film, and hydrophilic film-coated article
KR20000006441A (en) Antifouling Agents, Their Production and Use, and Antifouling Coatings Produced Therefrom
CN103589336B (en) A kind of self-vulcanizing vinylformic acid heteropolysiloxane nano ceramics protective coating and preparation method thereof
JP5007812B2 (en) Surface treatment agent containing perfluoropolyether-modified aminosilane and article having cured film of aminosilane
RU99112565A (en) LAYERED MATERIALS
TW200536808A (en) Composition for use NOx as removing translucent coating
EP3135679B1 (en) Use of bis (alkoxysilyl-vinylene) group-containing silicon compounds as a curing agent for room temperature curable organopolysiloxane compositions
JP3585834B2 (en) Dispersion of titanium dioxide particles containing a polyorganosiloxane-based binder
NO140273B (en) BINDERS FOR COATING AND APPLICATION PASTS, IN PARTICULAR, ZINC SUBSTANTIC PAINTS, IN THE ESSENTIAL CONSISTING OF PARTIALLY HYDROLYSIZED ORGANIC SILICON COMPOUNDS
JP2014530168A (en) Method for hydrophobizing main body of building material containing solid organosilicon compound
JP2014144551A (en) Substrate with water-repellent film, and article for transportation equipment
JP6069865B2 (en) Low temperature curable charge transfer catalyst-containing coating composition and surface treatment substrate
CN112608676B (en) Nano-silver-doped silicone-based antibacterial antifouling agent and preparation method and application thereof
JP4024251B2 (en) Charge transfer catalyst, redox functional material using the catalyst, and charge transfer catalyst-containing material
JP6300098B2 (en) Hydrophilic treatment coating composition and hydrophilization treatment method
ES2900608T3 (en) Curable silicone compositions containing additives
JP3514702B2 (en) Charge transfer catalyst, redox functional material using the catalyst, and charge transfer catalyst-containing material
JP4172291B2 (en) Method for producing organosilicon compound
JPH11300273A (en) Method for forming photocatalytic coating
JP6653627B2 (en) Photocatalyst coating liquid, photocatalyst structure and method for producing the same
DE19603242A1 (en) Functional carbosilane dendrimers, organic-inorganic carbosilane hybrid materials, in each case a process for their preparation, a process for the preparation of paints from the functional carbosilane dendrimers and their use
JP4855584B2 (en) Processed plant fiber carrying fine particles with the ability to decompose organic compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160621

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160818

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R150 Certificate of patent or registration of utility model

Ref document number: 6069865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250