JP2013203704A - Method of producing olefin - Google Patents

Method of producing olefin Download PDF

Info

Publication number
JP2013203704A
JP2013203704A JP2012074743A JP2012074743A JP2013203704A JP 2013203704 A JP2013203704 A JP 2013203704A JP 2012074743 A JP2012074743 A JP 2012074743A JP 2012074743 A JP2012074743 A JP 2012074743A JP 2013203704 A JP2013203704 A JP 2013203704A
Authority
JP
Japan
Prior art keywords
reaction
olefin
alcohol
catalyst
phosphoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012074743A
Other languages
Japanese (ja)
Other versions
JP5883328B2 (en
Inventor
Shingo Takada
慎吾 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2012074743A priority Critical patent/JP5883328B2/en
Publication of JP2013203704A publication Critical patent/JP2013203704A/en
Application granted granted Critical
Publication of JP5883328B2 publication Critical patent/JP5883328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a long-chain olefin within a short reaction time in high yield in a dehydration reaction of a long-chain aliphatic alcohol.SOLUTION: In a method of producing an olefin, a dehydration reaction of an alcohol is carried out in the presence of a catalyst wherein at least one selected from a phosphoric acid, a phosphate or a condensate of them is carried by a titanium oxide.

Description

本発明はオレフィンの製造方法に関し、詳しくは、長鎖脂肪族第一級アルコールの脱水反応により長鎖オレフィンを製造する方法に関する。   The present invention relates to a method for producing an olefin, and more particularly to a method for producing a long-chain olefin by a dehydration reaction of a long-chain aliphatic primary alcohol.

アルコールの脱水反応によるオレフィン化合物の製造方法として種々の方法が知られており、例えば、気相でのアルコールの脱水反応によるオレフィン化合物の製造方法が知られている。ここで、気相反応とは、原料アルコールの沸点以上での反応をいう。
特許文献1には、酸化ジルコニウムの存在下、反応温度300〜400℃、気相での第二級アルコールの脱水反応によるオレフィン化合物の製造方法が開示されている。また、特許文献2には、第一級アルコール又はエーテルを原料として使用し、気相条件での反応となるように反応温度を150〜350℃の範囲内で設定して、アミン共存下でアルミナ触媒を使用して気相での脱離反応を行うα−オレフィンの製造方法が開示されている。
Various methods are known as a method for producing an olefin compound by dehydration reaction of alcohol. For example, a method for producing an olefin compound by dehydration reaction of alcohol in a gas phase is known. Here, the gas phase reaction means a reaction at a boiling point or higher of the raw material alcohol.
Patent Document 1 discloses a method for producing an olefin compound by dehydration reaction of a secondary alcohol in a gas phase at a reaction temperature of 300 to 400 ° C. in the presence of zirconium oxide. In Patent Document 2, primary alcohol or ether is used as a raw material, and the reaction temperature is set within a range of 150 to 350 ° C. so that the reaction is performed under gas phase conditions. A method for producing an α-olefin which performs a gas phase elimination reaction using a catalyst is disclosed.

一方、本発明者らは、特定の弱酸点を有する触媒を用いて長鎖アルコールの液相脱水反応を行うことにより、エネルギーの消費を抑えつつ、短時間かつ高収率でオレフィンが得られることを見出し、先に特許出願をしている(特許文献3参照)。   On the other hand, the present inventors can obtain olefins in a short time and in a high yield while suppressing energy consumption by conducting a liquid phase dehydration reaction of a long-chain alcohol using a catalyst having a specific weak acid point. And have filed a patent application first (see Patent Document 3).

特開昭61−53230号公報JP 61-53230 A 特開2003−95994号公報JP 2003-95994 A 国際公開第2011/052732号International Publication No. 2011/052732

しかしながら、特許文献1及び2に記載の方法に代表される気相反応では、原料を全て気化させる必要があり、特に高沸点である長鎖脂肪族アルコールに関してはエネルギーの消費が大きく、コスト的にも不利である。更に、高温条件でのオレフィン化は、アルキル転位による分岐化及びオレフィンの多量化を併発しやすく、生成物の収率低下が問題となる。   However, in the gas phase reaction represented by the methods described in Patent Documents 1 and 2, it is necessary to vaporize all of the raw materials, and particularly for long-chain aliphatic alcohols having a high boiling point, energy consumption is large and costly. Is also disadvantageous. Furthermore, olefination under high-temperature conditions tends to cause both branching by alkyl rearrangement and olefin quantification, resulting in a problem of reduced product yield.

特許文献3に記載の方法で得られるオレフィンは、多量化や分岐化等による副生成物が少ないものであり、油剤や界面活性剤の原料として有用であるが、界面活性剤として用いる場合には、アルキル鎖の末端に二重結合を有するものばかりではなく、アルキル鎖の内部(アルキル鎖の末端以外の部分)に二重結合を有するものが、溶解性や乳化特性といった機能面から求められている。
本発明は、長鎖脂肪族アルコールの脱水反応において、短い反応時間で高収率に長鎖オレフィンを製造する方法を提供するものであって、特に二重結合がアルキル鎖の内部に異性化した長鎖オレフィンを効率的に製造することができる製造方法を提供する。
The olefin obtained by the method described in Patent Document 3 has few by-products due to multimerization, branching, etc., and is useful as a raw material for oils and surfactants, but when used as a surfactant, In addition to those having a double bond at the end of the alkyl chain, those having a double bond inside the alkyl chain (parts other than the end of the alkyl chain) are required from the functional aspects such as solubility and emulsification characteristics. Yes.
The present invention provides a method for producing a long-chain olefin in a high yield in a short reaction time in a dehydration reaction of a long-chain aliphatic alcohol, and in particular, a double bond is isomerized inside an alkyl chain. A production method capable of efficiently producing a long-chain olefin is provided.

本発明者は、特定の触媒の存在下で長鎖脂肪族アルコールの脱水反応を行ったところ、反応が速やかに進行し、長鎖オレフィンが高収率で得られることを見出した。すなわち、本発明は、酸化チタンにリン酸、リン酸塩、及びそれらの縮合物から選ばれる少なくとも1種を担持させた触媒の存在下でアルコールの脱水反応を行うオレフィンの製造方法である。   The present inventor found that when a dehydration reaction of a long-chain aliphatic alcohol was performed in the presence of a specific catalyst, the reaction proceeded rapidly and a long-chain olefin was obtained in a high yield. That is, the present invention is a method for producing an olefin in which a dehydration reaction of an alcohol is performed in the presence of a catalyst in which at least one selected from phosphoric acid, a phosphate, and a condensate thereof is supported on titanium oxide.

本発明は、長鎖脂肪族アルコールの脱水反応において、短い反応時間で高収率に長鎖オレフィンを製造する方法を提供するものであって、特に二重結合がアルキル鎖の内部に異性化した長鎖オレフィンを効率的に製造することができる。   The present invention provides a method for producing a long-chain olefin in a high yield in a short reaction time in a dehydration reaction of a long-chain aliphatic alcohol, and in particular, a double bond is isomerized inside an alkyl chain. Long chain olefins can be produced efficiently.

本発明のオレフィンの製造方法は、長鎖アルコールの脱水反応を、酸化チタンにリン酸、リン酸塩、及びそれらの縮合物(以下、「リン酸等」と略記する場合がある)から選ばれる少なくとも1種を担持させた触媒の存在下で行う。   The method for producing an olefin of the present invention is selected from the dehydration reaction of a long-chain alcohol from titanium oxide to phosphoric acid, a phosphate, and a condensate thereof (hereinafter sometimes abbreviated as “phosphoric acid etc.”). The reaction is carried out in the presence of a catalyst supporting at least one kind.

[触媒]
本発明の製造方法においては、触媒として酸化チタンにリン酸等を担持させたものを用いる。なお、本明細書において担持とは、酸化チタンへの物理的及び/又は化学的な結合力による結合を意味する。
本発明において使用する触媒は、酸化チタンに対してリン酸及びその縮合物、リン酸塩及びその縮合物のうちの少なくとも1種を担持させたものでも、リン酸、リン酸塩及びそれらの縮合物の混合物を担持させたものであってもよい。
ここで、リン酸の縮合物とは、リン酸が担持後の焼成過程で縮合して生成する、ピロリン酸、ポリリン酸、無水リン酸等を含むものである。同様にリン酸塩の縮合物は、リン酸塩のうち、一つ又は二つの水素を有するものが担持後の焼成過程で縮合して生成する、ピロリン酸塩、ポリリン酸塩等を含むものである。本発明においては、反応速度を向上させる観点から、酸化チタンにリン酸及び/又はその縮合物を担持させた触媒を用いることが好ましい。
[catalyst]
In the production method of the present invention, a catalyst in which phosphoric acid or the like is supported on titanium oxide is used as a catalyst. In this specification, the term “supported” means bonding by physical and / or chemical bonding force to titanium oxide.
The catalyst used in the present invention is one in which at least one of phosphoric acid and its condensate, phosphate and its condensate is supported on titanium oxide, and phosphoric acid, phosphate and their condensation. It is also possible to carry a mixture of products.
Here, the phosphoric acid condensate includes pyrophosphoric acid, polyphosphoric acid, phosphoric anhydride, and the like, which are produced by condensation in the firing process after the phosphoric acid is supported. Similarly, phosphate condensates include pyrophosphates, polyphosphates, and the like, which are formed by condensation of phosphates having one or two hydrogens in the firing process after loading. In the present invention, from the viewpoint of improving the reaction rate, it is preferable to use a catalyst in which phosphoric acid and / or a condensate thereof are supported on titanium oxide.

前記リン酸塩としては、触媒調製の容易さの観点から、可溶性のリン酸塩であることが好ましく、アルカリ金属、アルカリ土類金属の部分中和塩が好ましい。かかるリン酸塩の具体例としては、リン酸一水素マグネシウム(MgHPO4)、リン酸二水素ナトリウム(NaH2PO4)、リン酸水素二ナトリウム(Na2HPO4)、リン酸ナトリウム(Na3PO4)、ピロリン酸ナトリウム(Na427)、ピロリン酸二水素二ナトリウム(Na2227)、トリポリリン酸ナトリウム(Na5310)、テトラポリリン酸ナトリウム(Na6413)、リン酸二水素カリウム(KH2PO4)、リン酸水素二カリウム(K2HPO4)、リン酸カリウム(K3PO4)等が挙げられ、これらの中では、反応速度向上、及び収率向上の観点から、リン酸一水素マグネシウムが好ましい。 The phosphate is preferably a soluble phosphate from the viewpoint of ease of catalyst preparation, and is preferably a partially neutralized salt of an alkali metal or alkaline earth metal. Specific examples of such phosphates include magnesium monohydrogen phosphate (MgHPO 4 ), sodium dihydrogen phosphate (NaH 2 PO 4 ), disodium hydrogen phosphate (Na 2 HPO 4 ), sodium phosphate (Na 3). PO 4 ), sodium pyrophosphate (Na 4 P 2 O 7 ), disodium dihydrogen pyrophosphate (Na 2 H 2 P 2 O 7 ), sodium tripolyphosphate (Na 5 P 3 O 10 ), sodium tetrapolyphosphate ( Na 6 P 4 O 13 ), potassium dihydrogen phosphate (KH 2 PO 4 ), dipotassium hydrogen phosphate (K 2 HPO 4 ), potassium phosphate (K 3 PO 4 ), etc. From the viewpoints of improving the reaction rate and yield, magnesium monohydrogen phosphate is preferred.

本発明において使用する触媒は、いわゆる含浸法により調製することができる。具体的な調製方法としては、酸化チタンの水性懸濁液又は含水固体と、リン酸及び/又はリン酸塩の水溶液とを混合して含浸物を調製し、得られた含浸物を乾燥、焼成する方法が挙げられる。
担体となる酸化チタンは例えば、チタンアルコキシド、四塩化チタン、硫酸チタニルのような可溶性前駆体を含水溶媒中で加水分解することにより得られる。このようにして得られた酸化チタン担体は水酸化チタンの含有率が高いものであり、スラリーのまま次の含浸工程に用いることもできるし、濾過、遠心分離等によってケークにしたり、さらに乾燥、焼成して固体としたものを用いることもできる。酸化チタン担体としては、可溶性前駆体を加水分解して得た水酸化チタンの含有率が高い酸化チタンを乾燥、焼成せずに用いることが好ましい。
The catalyst used in the present invention can be prepared by a so-called impregnation method. As a specific preparation method, an aqueous suspension or aqueous solid of titanium oxide and an aqueous solution of phosphoric acid and / or phosphate are mixed to prepare an impregnated product, and the obtained impregnated product is dried and fired. The method of doing is mentioned.
Titanium oxide serving as a carrier can be obtained, for example, by hydrolyzing a soluble precursor such as titanium alkoxide, titanium tetrachloride, or titanyl sulfate in a water-containing solvent. The titanium oxide support thus obtained has a high content of titanium hydroxide and can be used in the next impregnation step as a slurry, or can be made into a cake by filtration, centrifugation, etc., and further dried. What was baked and made into the solid can also be used. As the titanium oxide carrier, it is preferable to use titanium oxide having a high content of titanium hydroxide obtained by hydrolyzing a soluble precursor without drying and baking.

リン酸又はその縮合物を担持させた酸化チタンは、リン酸そのものを含浸、担持させる方法以外に、リン酸水素二アンモニウム((NH4)2HPO4)等のアンモニウムを対イオンとするリン酸塩を含浸、担持させた後、乾燥、焼成によって対イオンを蒸発あるいは分解させる方法によっても得ることができる。なお、この方法においては焼成後の酸化チタン上に((NH4)2HPO4)等の塩が残存していてもよい。 In addition to the method of impregnating and supporting phosphoric acid itself, titanium oxide supporting phosphoric acid or a condensate thereof is phosphoric acid using ammonium such as diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a counter ion. It can also be obtained by a method of impregnating and supporting a salt and then evaporating or decomposing counter ions by drying and baking. In this method, a salt such as ((NH 4 ) 2 HPO 4 ) may remain on the baked titanium oxide.

リン酸、リン酸塩を酸化チタンに含浸させる際の温度は、担持速度と得られる触媒の均一性の観点から、0〜100℃が好ましく、20〜95℃がより好ましく、50〜90℃がさらに好ましい。含浸させる時間は0.1〜10時間が好ましく、0.2〜5時間がさらに好ましく、0.5〜2時間がさらに好ましい。
含浸後の焼成温度は200〜1000℃が好ましく、300〜800℃がより好ましく、400〜600℃がより更に好ましい。焼成時間は通常1〜10時間である。
このようにして得られた触媒は、凝集状態にあるので、適当に粉砕して粉末、粒状としたり、ヌードル、ペレット状等に成形して用いることができる。
なお、本発明におけるケークとは、チタンアルコキシドを加水分解後、遠心分離等の分離手段により液の一部又は全部を分離除去することにより得られるものである。
The temperature at which the phosphoric acid and phosphate are impregnated with titanium oxide is preferably 0 to 100 ° C, more preferably 20 to 95 ° C, and more preferably 50 to 90 ° C, from the viewpoint of the carrying rate and the uniformity of the resulting catalyst. Further preferred. The impregnation time is preferably 0.1 to 10 hours, more preferably 0.2 to 5 hours, and further preferably 0.5 to 2 hours.
The firing temperature after impregnation is preferably 200 to 1000 ° C, more preferably 300 to 800 ° C, and still more preferably 400 to 600 ° C. The firing time is usually 1 to 10 hours.
Since the catalyst thus obtained is in an agglomerated state, it can be appropriately pulverized into powder, granules, or formed into noodles, pellets, or the like.
The cake in the present invention is obtained by hydrolyzing titanium alkoxide and then separating and removing a part or all of the liquid by a separating means such as centrifugal separation.

前記リン酸、リン酸塩、及びそれらの縮合物から選ばれる少なくとも1種の担持量は、酸化チタンの1〜50質量%が好ましく、5〜50質量%がより好ましく、15〜50質量%が更に好ましい。リン酸等の割合が前記範囲内であると、反応を短時間で終了させることが可能である。   The supported amount of at least one selected from the phosphoric acid, phosphate, and condensates thereof is preferably 1 to 50 mass%, more preferably 5 to 50 mass%, and more preferably 15 to 50 mass% of titanium oxide. Further preferred. When the ratio of phosphoric acid and the like is within the above range, the reaction can be completed in a short time.

触媒の使用量は、原料アルコールに対して1〜60質量%が好ましく、2〜40質量%がより好ましく、3〜20質量%が更に好ましい。触媒の使用量が前記範囲内であると、反応温度を低く抑えることができるため経済的である。   1-60 mass% is preferable with respect to raw material alcohol, and, as for the usage-amount of a catalyst, 2-40 mass% is more preferable, and 3-20 mass% is still more preferable. When the amount of the catalyst used is within the above range, the reaction temperature can be kept low, which is economical.

前記触媒を用いた場合の反応メカニズムの詳細は明らかになっていないが、以下のように反応が進行しているものと考えられる。すなわち、酸化チタン上のルイス酸点に加えて、担持されたリン酸基がブレンステッド酸として機能し、それらの協奏的な効果によってアルコールの脱水反応活性及びオレフィンの異性化反応活性が高められるものと考えられる。   Although the details of the reaction mechanism when the catalyst is used are not clarified, it is considered that the reaction proceeds as follows. That is, in addition to the Lewis acid point on titanium oxide, the supported phosphate group functions as a Bronsted acid, and the concerted effects enhance alcohol dehydration activity and olefin isomerization activity. it is conceivable that.

[原料アルコール]
本発明において原料として用いられるアルコールは、好ましくは炭素数12〜24、より好ましくは炭素数14〜20、より更に好ましくは炭素数16〜18の脂肪族第一級アルコールである。
原料アルコールの具体例としては、1−ドデカノール、1−トリデカノール、1−テトラデカノール、1−ペンタデカノール、1−ヘキサデカノール、1−ヘプタデカノール、1−オクタデカノール、1−ノナデカノール、1−エイコサノール等が挙げられる。
これらの原料アルコールは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
[Raw alcohol]
The alcohol used as a raw material in the present invention is preferably an aliphatic primary alcohol having 12 to 24 carbon atoms, more preferably 14 to 20 carbon atoms, and still more preferably 16 to 18 carbon atoms.
Specific examples of the raw material alcohol include 1-dodecanol, 1-tridecanol, 1-tetradecanol, 1-pentadecanol, 1-hexadecanol, 1-heptadecanol, 1-octadecanol, 1-nonadecanol, Examples include 1-eicosanol.
These raw material alcohols may be used alone or in a combination of two or more.

[有機溶媒]
本発明の製造方法においては、必要に応じて有機溶媒を用いてもよい。本発明に用いることができる有機溶媒としては、反応温度において液体であり、基質及び生成物と相溶し、かつ反応を阻害しないものであれば特に限定されず、混合物であってもよい。また、反応後、沸点差を利用して生成物と分離できるものが好ましい。
本発明に使用することができる有機溶媒としては、飽和脂肪族炭化水素、不飽和脂肪族炭化水素、芳香族炭化水素等の炭化水素系有機溶媒が好ましい。
[Organic solvent]
In the production method of the present invention, an organic solvent may be used as necessary. The organic solvent that can be used in the present invention is not particularly limited as long as it is liquid at the reaction temperature, is compatible with the substrate and the product, and does not inhibit the reaction, and may be a mixture. Moreover, what can isolate | separate from a product using a boiling point difference after reaction is preferable.
As the organic solvent that can be used in the present invention, hydrocarbon-based organic solvents such as saturated aliphatic hydrocarbons, unsaturated aliphatic hydrocarbons, and aromatic hydrocarbons are preferable.

飽和脂肪族炭化水素としては、直鎖状、分岐状又は環状のいずれでもよい。
飽和脂肪族炭化水素の具体例としては、トリデカン、ヘキサデカン、オクタデカン、エイコサン、ドコサン、トリアコンタン、スクアラン等の炭素数10〜35の化合物が挙げられる。
また、飽和脂肪族炭化水素としては、流動パラフィンや、ナフテン系炭化水素、イソパラフィン系炭化水素のような混合物であってもよい。また、固形パラフィンのように、常温において固体であるが反応温度において液体であるものも使用することができる。
また、飽和脂肪族炭化水素としては、プロピレン、イソブテン等のオリゴマーを使用することもできる。
The saturated aliphatic hydrocarbon may be linear, branched or cyclic.
Specific examples of the saturated aliphatic hydrocarbon include compounds having 10 to 35 carbon atoms such as tridecane, hexadecane, octadecane, eicosane, docosane, triacontane, squalane and the like.
The saturated aliphatic hydrocarbon may be a mixture such as liquid paraffin, naphthene hydrocarbon, and isoparaffin hydrocarbon. Moreover, what is solid at normal temperature but liquid at the reaction temperature, such as solid paraffin, can also be used.
In addition, as the saturated aliphatic hydrocarbon, oligomers such as propylene and isobutene can be used.

不飽和脂肪族炭化水素としては、直鎖状、分岐状又は環状のいずれでもよい。
不飽和脂肪族炭化水素の具体例としては、エイコセン、ヘンイコセン、ドコセン、トリコセン、スクアレン等の炭素数15〜35の化合物が挙げられる。不飽和脂肪族炭化水素は混合物であってもよい。
The unsaturated aliphatic hydrocarbon may be linear, branched or cyclic.
Specific examples of the unsaturated aliphatic hydrocarbon include compounds having 15 to 35 carbon atoms such as eicosene, heicosene, dococene, tricosene, and squalene. The unsaturated aliphatic hydrocarbon may be a mixture.

芳香族炭化水素の具体例としては、n−ドデシルベンゼン、n−トリデシルベンゼン、n−テトラデシルベンゼン、n−ペンタデシルベンゼン、n−ヘキサデシルベンゼン、ジイソプロピルナフタレン等のアルキルベンゼン及びアルキルナフタレンを挙げられる。   Specific examples of the aromatic hydrocarbon include alkylbenzene and alkylnaphthalene such as n-dodecylbenzene, n-tridecylbenzene, n-tetradecylbenzene, n-pentadecylbenzene, n-hexadecylbenzene, diisopropylnaphthalene and the like. .

[脱水反応(オレフィン化反応)]
本発明の方法における反応はアルコールの脱水反応であり、副生した水が系内に滞留すると反応速度が低下するおそれがある。したがって、反応速度向上の観点から、撹拌下、通常0.03〜0.09MPa程度の減圧下又は常圧で反応系内に窒素、アルゴン等の不活性ガスを導入し、生成する水を系外に除去しながら反応を行うことが好ましい。
反応温度は、反応速度の観点及びアルキル転位や多量化等の副反応抑制の観点から、原料アルコールの沸点以下であり、200〜300℃が好ましく、230〜300℃がより好ましく、250〜290℃が更に好ましく、260〜280℃がより更に好ましい。
[Dehydration reaction (olefination reaction)]
The reaction in the method of the present invention is a dehydration reaction of alcohol, and if the by-produced water stays in the system, the reaction rate may decrease. Therefore, from the viewpoint of improving the reaction rate, an inert gas such as nitrogen or argon is introduced into the reaction system under stirring, usually under a reduced pressure of about 0.03 to 0.09 MPa or at normal pressure, and the generated water is discharged outside the system. It is preferable to carry out the reaction while removing it.
The reaction temperature is not higher than the boiling point of the raw alcohol from the viewpoint of reaction rate and suppression of side reactions such as alkyl rearrangement and multimerization, preferably 200 to 300 ° C, more preferably 230 to 300 ° C, and 250 to 290 ° C. Is more preferable, and 260-280 degreeC is still more preferable.

本発明においては、前記オレフィン化反応を液相反応とすることが好ましい。なお、液相反応とは、原料アルコールの沸点以下、すなわち液相が存在する温度以下での反応のことを指す。液相反応とした場合には、原料を全て気化させる必要がないため、製造コストを抑制することができる。また、アルキル転位による分岐化及びオレフィンの多量化を抑制することもできるため、高収率で目的とする生成物を得ることができる。   In the present invention, the olefination reaction is preferably a liquid phase reaction. The liquid phase reaction refers to a reaction below the boiling point of the raw alcohol, that is, below the temperature at which the liquid phase exists. In the case of a liquid phase reaction, it is not necessary to vaporize all the raw materials, so that the manufacturing cost can be suppressed. In addition, branching due to alkyl rearrangement and olefin multimerization can be suppressed, so that the desired product can be obtained in high yield.

反応時間としては、目的とするオレフィンの収率の観点から、アルコール反応率が好ましくは95%以上、より好ましくは97%以上、更に好ましくは98%以上になるような時間であることが好ましい。そのような反応時間は、反応温度、有機溶媒の種類、並びに触媒の種類やその使用量等によって変動し得るが、懸濁床バッチ反応においては、好ましくは0.1〜20時間、より好ましくは0.5〜10時間、更に好ましくは1〜7時間である。固定床反応においては、LHSV(液空間速度)0.1〜5.0/hが好ましく、0.2〜3.5/hがより好ましく、0.3〜2.0/hが更に好ましい。   The reaction time is preferably such that the alcohol reaction rate is preferably 95% or more, more preferably 97% or more, and still more preferably 98% or more, from the viewpoint of the yield of the desired olefin. Such reaction time may vary depending on the reaction temperature, the type of organic solvent, the type of catalyst and the amount used, etc., but in a suspension bed batch reaction, preferably 0.1 to 20 hours, more preferably 0.5 to 10 hours, more preferably 1 to 7 hours. In the fixed bed reaction, LHSV (liquid space velocity) is preferably 0.1 to 5.0 / h, more preferably 0.2 to 3.5 / h, and still more preferably 0.3 to 2.0 / h.

本発明の製造方法によれば、アルコール反応率が通常80%以上、好ましくは90%以上に達し、しかもオレフィンの収率は、通常90%以上となる。またオレフィンに含まれる分岐オレフィン及び二量化体の生成率は、それぞれ通常5%以下となる。
さらに、本発明の製造方法によって得られるオレフィンは、内部異性化したものの割合が高く、全オレフィン中30%以上が内部異性化したものが容易に得られる。
According to the production method of the present invention, the alcohol reaction rate is usually 80% or more, preferably 90% or more, and the yield of olefin is usually 90% or more. Moreover, the production | generation rate of the branched olefin and dimerization body which are contained in olefin becomes normally 5% or less, respectively.
Furthermore, the olefin obtained by the production method of the present invention has a high ratio of those internally isomerized, and those having 30% or more of all olefins internally isomerized can be easily obtained.

本発明においては、上記のようにして得られた反応生成物から、オレフィンのみを蒸留精製してもよい。蒸溜精製により得られた純度が高いオレフィンは、界面活性剤、有機溶剤、柔軟剤、サイズ剤等の原料又は中間原料として有用である。   In the present invention, only the olefin may be purified by distillation from the reaction product obtained as described above. Highly purified olefins obtained by distillation purification are useful as raw materials or intermediate raw materials for surfactants, organic solvents, softeners, sizing agents and the like.

<1>酸化チタンにリン酸、リン酸塩、及びそれらの縮合物から選ばれる少なくとも1種を担持させた触媒の存在下でアルコールの脱水反応を行うオレフィンの製造方法。
<2>前記触媒が酸化チタンに、少なくともリン酸及び/又はその縮合物を担持させたものである、前記<1>に記載のオレフィンの製造方法。
<3>前記アルコールが炭素数12〜24の1級アルコールであり、より好ましくは炭素数14〜20、より更に好ましくは炭素数16〜18の脂肪族第一級アルコールであり、具体的には、1−ドデカノール、1−トリデカノール、1−テトラデカノール、1−ペンタデカノール、1−ヘキサデカノール、1−ヘプタデカノール、1−オクタデカノール、1−ノナデカノール、1−エイコサノール等から選ばれる少なくとも1種である、前記<1>又は<2>に記載のオレフィンの製造方法。
<1> A method for producing an olefin in which a dehydration reaction of an alcohol is performed in the presence of a catalyst in which at least one selected from phosphoric acid, a phosphate, and a condensate thereof is supported on titanium oxide.
<2> The method for producing an olefin according to <1>, wherein the catalyst is obtained by supporting at least phosphoric acid and / or a condensate thereof on titanium oxide.
<3> The alcohol is a primary alcohol having 12 to 24 carbon atoms, more preferably 14 to 20 carbon atoms, still more preferably an aliphatic primary alcohol having 16 to 18 carbon atoms, specifically 1-dodecanol, 1-tridecanol, 1-tetradecanol, 1-pentadecanol, 1-hexadecanol, 1-heptadecanol, 1-octadecanol, 1-nonadecanol, 1-eicosanol, etc. The method for producing an olefin according to <1> or <2>, which is at least one kind.

<4>前記脱水反応を200〜300℃、好ましくは230〜300℃、より好ましくは250〜290℃、更に好ましくは260〜280℃で行う、前記<1>〜<3>のいずれかに記載のオレフィンの製造方法。
<5>前記脱水反応を液相で行う、前記<1>〜<4>のいずれかに記載のオレフィンの製造方法。
<6>前記リン酸、リン酸塩、及びそれらの縮合物から選ばれる少なくとも1種の担持量が、酸化チタンの質量の好ましくは5〜50質量%、より好ましくは15〜50質量%である、前記<1>〜<5>のいずれかに記載のオレフィンの製造方法。
<4> The dehydration reaction is performed at 200 to 300 ° C., preferably 230 to 300 ° C., more preferably 250 to 290 ° C., and still more preferably 260 to 280 ° C., according to any one of <1> to <3> Of producing olefins.
<5> The method for producing an olefin according to any one of <1> to <4>, wherein the dehydration reaction is performed in a liquid phase.
<6> The supported amount of at least one selected from the phosphoric acid, phosphate, and condensates thereof is preferably 5 to 50% by mass, more preferably 15 to 50% by mass of the mass of titanium oxide. The method for producing an olefin according to any one of <1> to <5>.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
実施例1
<触媒の調製>
実施例1で使用した触媒は以下の方法により調製した。すなわち、チタンイソプロポキシド71g、エタノール800gを混合し、これにイオン交換水600gを室温で1時間かけて滴下した後、室温で1時間撹拌した。次いで、生じた沈殿物を濾過することにより水酸化チタンケークを作成した。この水酸化チタンケークに対して、リン酸水素二アンモニウム1.3gとイオン交換水200gとを加え、エバポレーター(60℃)で加温、撹拌することにより水酸化チタンケークにリン酸水素二アンモニウムとイオン交換水とを含浸させた。含浸物を120℃で12時間乾燥させた後、500℃で3時間焼成したものを触媒として用いた。なお、この方法により得られる触媒は、酸化チタンにリン酸が主成分として担持されたものである。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
Example 1
<Preparation of catalyst>
The catalyst used in Example 1 was prepared by the following method. That is, 71 g of titanium isopropoxide and 800 g of ethanol were mixed, and 600 g of ion-exchanged water was added dropwise thereto at room temperature over 1 hour, followed by stirring at room temperature for 1 hour. The resulting precipitate was then filtered to make a titanium hydroxide cake. To this titanium hydroxide cake, 1.3 g of diammonium hydrogen phosphate and 200 g of ion-exchanged water are added, and heated and stirred with an evaporator (60 ° C.), whereby diammonium hydrogen phosphate and Impregnated with ion exchange water. The impregnated material was dried at 120 ° C. for 12 hours and then calcined at 500 ° C. for 3 hours, and used as a catalyst. The catalyst obtained by this method is one in which phosphoric acid is supported as a main component on titanium oxide.

<オレフィンの製造>
撹拌装置付きフラスコに、1−オクタデカノール(商品名:カルコール8098、花王株式会社製、沸点:336℃)25.0g(0.19モル)、触媒(リン酸又はその縮合物を二酸化チタンに対して5質量%担持させたもの(リン酸量=5質量%))0.75g(原料アルコールに対して3.0質量%)を仕込み、撹拌下、280℃にて窒素を系内に流通させながら(窒素流通量:50mL/min)、5時間、反応を行った。
<Manufacture of olefins>
In a flask equipped with a stirrer, 15.0-octadecanol (trade name: Calcoal 8098, manufactured by Kao Corporation, boiling point: 336 ° C.) 25.0 g (0.19 mol), catalyst (phosphoric acid or its condensate into titanium dioxide) 0.75 g (3.0% by mass with respect to the raw material alcohol)) of 5% by mass supported (phosphoric acid amount = 5% by mass)) is charged, and nitrogen is circulated in the system at 280 ° C. with stirring. (Nitrogen flow rate: 50 mL / min) for 5 hours.

反応終了後の溶液はヘキサンにより希釈した後、ガスクロマトグラフ分析装置(商品名:HP6890、HEWLETT PACKARD社製)、[カラム:Ultra ALLOY−1キャピラリーカラム30.0m×250μm(商品名、フロンティア・ラボ株式会社製)、検出器:水素炎イオン検出器(FID)、インジェクション温度:300℃、ディテクター温度:350℃、He流量:4.6mL/分]を用いて分析し、生成物を定量した。結果を表1に示す。   The solution after completion of the reaction was diluted with hexane, and then a gas chromatograph analyzer (trade name: HP6890, manufactured by HEWLETT PACKARD), [Column: Ultra ALLOY-1 capillary column 30.0 m × 250 μm (trade name, Frontier Laboratories, Inc.) Product), detector: hydrogen flame ion detector (FID), injection temperature: 300 ° C., detector temperature: 350 ° C., He flow rate: 4.6 mL / min], and the product was quantified. The results are shown in Table 1.

なお、アルコール反応率、オレフィン収率、及びオレフィン選択比率(内部/末端)は、以下の式により算出した。
アルコール反応率(%)=100−[残存アルコール量(モル)/原料アルコール仕込み量(モル)]×100
オレフィン収率(%)=[オレフィン量(モル)/原料アルコール仕込み量(モル)]×100
オレフィン選択比率(内部/末端比率)=内部オレフィン選択率/末端オレフィン選択率
二量体生成率(%)=[二量体オレフィン量(モル)/原料アルコール仕込み量(モル)]×100
反応条件及び結果を表1にまとめて示す。
In addition, the alcohol reaction rate, the olefin yield, and the olefin selectivity (internal / terminal) were calculated by the following formulas.
Alcohol reaction rate (%) = 100- [residual alcohol amount (mol) / raw material alcohol charge amount (mol)] × 100
Olefin yield (%) = [Olefin amount (mol) / Feed amount of raw material alcohol (mol)] × 100
Olefin selectivity (internal / terminal ratio) = internal olefin selectivity / terminal olefin selectivity dimer production rate (%) = [dimer olefin amount (mol) / raw alcohol charge (mol)] × 100
The reaction conditions and results are summarized in Table 1.

比較例1〜7
反応条件を表1に記載のとおり変更したこと以外は、実施例1と同様にして反応を行い生成物を分析した。反応条件及び結果を表1にまとめて示す。なお、比較例1,3,5,7は、それぞれ、リン酸又はその縮合物を担持させていない金属酸化物を触媒として用い、比較例2,4,6は、それぞれ、チタンアルコキシドを対応する金属アルコキシドに代えて、実施例1に記載の触媒調製方法と同様の方法により触媒を調製した。結果を表1に示す。
Comparative Examples 1-7
The reaction was carried out in the same manner as in Example 1 except that the reaction conditions were changed as shown in Table 1, and the products were analyzed. The reaction conditions and results are summarized in Table 1. In addition, Comparative Examples 1, 3, 5, and 7 each use a metal oxide that does not carry phosphoric acid or its condensate as a catalyst, and Comparative Examples 2, 4, and 6 correspond to titanium alkoxides, respectively. Instead of the metal alkoxide, a catalyst was prepared by the same method as the catalyst preparation method described in Example 1. The results are shown in Table 1.

Figure 2013203704
Figure 2013203704

表1の結果より、金属酸化物としてはチタン酸化物を用いたときに特異的に高い反応率と高い内部異性化率が得られることが分かる。   From the results of Table 1, it can be seen that when titanium oxide is used as the metal oxide, a specifically high reaction rate and high internal isomerization rate can be obtained.

実施例2〜6
リン酸等の担持量(リン酸量)、反応温度をそれぞれ表2に記載のとおり変更したこと以外は実施例1と同様に反応を行った。結果を表2に示す。

Figure 2013203704
Examples 2-6
The reaction was carried out in the same manner as in Example 1 except that the loading amount of phosphoric acid (phosphoric acid amount) and the reaction temperature were changed as shown in Table 2. The results are shown in Table 2.
Figure 2013203704

表2より明らかなように、リン酸等の担持量が多い場合に、内部オレフィンの生成比率が高いことがわかる。   As is apparent from Table 2, when the amount of phosphoric acid and the like supported is large, the production ratio of internal olefin is high.

実施例7,8
触媒量、反応温度及び反応時間を表3に記載のとおり変更したこと以外は実施例5と同様に反応を行ったものを実施例7とした。また、原料アルコール及び反応温度を表3に記載のとおり変更したこと以外は、実施例7と同様に反応を行ったものを実施例8とした。結果を表3に示す。
Examples 7 and 8
Example 7 was the same as in Example 5 except that the amount of catalyst, reaction temperature and reaction time were changed as shown in Table 3. Further, Example 8 was subjected to the reaction in the same manner as Example 7 except that the raw material alcohol and the reaction temperature were changed as shown in Table 3. The results are shown in Table 3.

Figure 2013203704
Figure 2013203704

表3に示す結果より、本発明の製造方法によればアルコールの鎖長に関わらずオレフィンを製造可能であることがわかる。また、広い温度範囲条件下でオレフィンの製造が可能であることがわかる。   From the results shown in Table 3, it can be seen that according to the production method of the present invention, an olefin can be produced regardless of the chain length of the alcohol. It can also be seen that olefins can be produced under a wide temperature range.

実施例9
リン酸等、反応時間を表4に記載のとおり変更したこと以外は実施例3と同様に反応を行い実施例9とした。結果を表4に示す。
Example 9
A reaction was carried out in the same manner as in Example 3 except that the reaction time such as phosphoric acid was changed as shown in Table 4. The results are shown in Table 4.

Figure 2013203704
Figure 2013203704

表4より、リン酸又はその縮合物が担持された触媒でも、リン酸塩又はその縮合物が担持された触媒でも、高い反応率でオレフィンが得られることがわかる。
以上のとおり、本発明の製造方法は、長鎖脂肪族第一級アルコールの脱水反応において、短い反応時間で高収率に長鎖オレフィンを製造することができる。
It can be seen from Table 4 that an olefin can be obtained at a high reaction rate, regardless of whether the catalyst supports phosphoric acid or its condensate, or the catalyst supports phosphoric acid salt or its condensate.
As described above, the production method of the present invention can produce a long-chain olefin in a high yield in a short reaction time in the dehydration reaction of a long-chain aliphatic primary alcohol.

Claims (6)

酸化チタンにリン酸、リン酸塩、及びそれらの縮合物から選ばれる少なくとも1種を担持させた触媒の存在下でアルコールの脱水反応を行うオレフィンの製造方法。   A method for producing an olefin, wherein a dehydration reaction of an alcohol is carried out in the presence of a catalyst in which at least one selected from phosphoric acid, a phosphate, and a condensate thereof is supported on titanium oxide. 前記触媒が酸化チタンに、少なくともリン酸及び/又はその縮合物を担持させたものである、請求項1に記載のオレフィンの製造方法。   The method for producing an olefin according to claim 1, wherein the catalyst is obtained by supporting at least phosphoric acid and / or a condensate thereof on titanium oxide. 前記アルコールが炭素数12〜24の1級アルコールである、請求項1又は2に記載のオレフィンの製造方法。   The method for producing an olefin according to claim 1 or 2, wherein the alcohol is a primary alcohol having 12 to 24 carbon atoms. 前記脱水反応を200〜300℃で行う、請求項1〜3のいずれかに記載のオレフィンの製造方法。   The manufacturing method of the olefin in any one of Claims 1-3 which perform the said dehydration reaction at 200-300 degreeC. 前記脱水反応を液相で行う、請求項1〜4のいずれかに記載のオレフィンの製造方法。   The method for producing an olefin according to claim 1, wherein the dehydration reaction is performed in a liquid phase. 前記リン酸、リン酸塩、及びそれらの縮合物から選ばれる少なくとも1種の担持量が酸化チタンの質量の1〜50質量%である、請求項1〜5のいずれかに記載のオレフィンの製造方法。   The production of an olefin according to any one of claims 1 to 5, wherein the supported amount of at least one selected from the phosphoric acid, the phosphate, and a condensate thereof is 1 to 50% by mass of the mass of titanium oxide. Method.
JP2012074743A 2012-03-28 2012-03-28 Olefin production method Active JP5883328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012074743A JP5883328B2 (en) 2012-03-28 2012-03-28 Olefin production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012074743A JP5883328B2 (en) 2012-03-28 2012-03-28 Olefin production method

Publications (2)

Publication Number Publication Date
JP2013203704A true JP2013203704A (en) 2013-10-07
JP5883328B2 JP5883328B2 (en) 2016-03-15

Family

ID=49523195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074743A Active JP5883328B2 (en) 2012-03-28 2012-03-28 Olefin production method

Country Status (1)

Country Link
JP (1) JP5883328B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103898A1 (en) * 2012-12-26 2014-07-03 花王株式会社 Method for producing olefin

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55160728A (en) * 1979-05-29 1980-12-13 Mitsubishi Chem Ind Ltd Preparation of hydrocarbon
JPS6126A (en) * 1984-06-08 1986-01-06 Mitsui Petrochem Ind Ltd Production of tertiary olefin
JPH02172924A (en) * 1988-12-24 1990-07-04 Kuraray Co Ltd Production of octane derivative
JP2004535435A (en) * 2001-06-25 2004-11-25 エクソンモービル・ケミカル・パテンツ・インク Hydrocarbon conversion method using non-zeolitic molecular sieve catalyst
JP2008289991A (en) * 2007-05-24 2008-12-04 National Institute Of Advanced Industrial & Technology Catalyst for synthesis of propylene
WO2011052732A1 (en) * 2009-10-30 2011-05-05 花王株式会社 Method for manufacturing olefins

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55160728A (en) * 1979-05-29 1980-12-13 Mitsubishi Chem Ind Ltd Preparation of hydrocarbon
JPS6126A (en) * 1984-06-08 1986-01-06 Mitsui Petrochem Ind Ltd Production of tertiary olefin
JPH02172924A (en) * 1988-12-24 1990-07-04 Kuraray Co Ltd Production of octane derivative
JP2004535435A (en) * 2001-06-25 2004-11-25 エクソンモービル・ケミカル・パテンツ・インク Hydrocarbon conversion method using non-zeolitic molecular sieve catalyst
JP2008289991A (en) * 2007-05-24 2008-12-04 National Institute Of Advanced Industrial & Technology Catalyst for synthesis of propylene
WO2011052732A1 (en) * 2009-10-30 2011-05-05 花王株式会社 Method for manufacturing olefins

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015028156; SUPRUN,W. et al.: 'Acidic catalysts for the dehydration of glycerol: Activity and deactivation' Journal of Molecular Catalysis A: Chemical Vol.309, No.1-2, 2009, p.71-78 *
JPN6015028157; SAMANTARAY,S. K. and PARIDA, K.: 'Studies on anion-promoted titania3. Effect of concentration and source of phosphate ion, method ofpr' Journal of Molecular Catalysis A: Chemical 176, 2001, p.151-163 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103898A1 (en) * 2012-12-26 2014-07-03 花王株式会社 Method for producing olefin
JP2014141466A (en) * 2012-12-26 2014-08-07 Kao Corp Method for producing olefin
US9968914B2 (en) 2012-12-26 2018-05-15 Kao Corporation Method for producing olefin

Also Published As

Publication number Publication date
JP5883328B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
EP3453695B1 (en) A process for the production of olefins and use thereof
Tsukuda et al. Production of acrolein from glycerol over silica-supported heteropoly acids
Zhang et al. Catalytic selective hydrogenation and rearrangement of 5-hydroxymethylfurfural to 3-hydroxymethyl-cyclopentone over a bimetallic nickel–copper catalyst in water
JP5221773B2 (en) Process for producing olefins
KR20100102704A (en) Dehydration of alcohols on crystalline silicates
CN105121394B (en) The method that higher-boiling compound is formed during reducing by 1,1,1,3 four chloropropane dehydrochlorination
De Meireles et al. Esterification of camphene over heterogeneous heteropoly acid catalysts: Synthesis of isobornyl carboxylates
EP3233767B1 (en) Process for producing alkenes from oxygenates by using supported partially neutralised heteropolyacid catalysts
EP2990395B1 (en) Method for producing olefin
CA2580581C (en) Silica support, heteropolyacid catalyst produced therefrom and ester synthesis using the silica supported heteropolyacid catalyst
JP5883328B2 (en) Olefin production method
US20130345483A1 (en) Alkylation Process Using Phosphonium-Based Ionic Liquids
JP5763406B2 (en) Method for producing α-olefin
JP6280186B2 (en) Method for preparing N, N&#39;-bis (2-cyanoethyl) -1,2-ethylenediamine
Molnar et al. The acidity and catalytic activity of supported acidic cesium dodecatungstophosphates studied by MAS NMR, FTIR, and catalytic test reactions
JP2014141466A (en) Method for producing olefin
CN104024194A (en) Process for preparing mixture of alcohols
CN103998407A (en) Method for preparing a mixture of alcohols
Lana et al. One-pot synthesis of diisobornyl ether from camphene using heteropoly acid catalysts
KR102658500B1 (en) Method for producing butene polymer
EP0147156A2 (en) Process for the production of alpha, beta-ethylenically unsaturated esters
KR20220083701A (en) Process for the preparation of propylene oligomers
EP2563748B1 (en) Method of preparing alkene compound
JP2016530264A (en) Method for producing p-cymene
JP2012254405A (en) Method for producing 2-4c olefin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160205

R151 Written notification of patent or utility model registration

Ref document number: 5883328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250