JP2013203622A - Drawing furnace and drawing method for optical fiber - Google Patents

Drawing furnace and drawing method for optical fiber Download PDF

Info

Publication number
JP2013203622A
JP2013203622A JP2012076033A JP2012076033A JP2013203622A JP 2013203622 A JP2013203622 A JP 2013203622A JP 2012076033 A JP2012076033 A JP 2012076033A JP 2012076033 A JP2012076033 A JP 2012076033A JP 2013203622 A JP2013203622 A JP 2013203622A
Authority
JP
Japan
Prior art keywords
core tube
furnace
optical fiber
tube
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012076033A
Other languages
Japanese (ja)
Inventor
Masatoshi Hayakawa
正敏 早川
Taku Yamazaki
卓 山崎
Iwao Okazaki
巌 岡崎
Manabu Shiozaki
学 塩崎
Norihiro Kaminoyama
憲博 上ノ山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012076033A priority Critical patent/JP2013203622A/en
Publication of JP2013203622A publication Critical patent/JP2013203622A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/56Annealing or re-heating the drawn fibre prior to coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles
    • C03B2205/92Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles using means for gradually reducing the cross-section towards the outlet or around the preform draw end, e.g. tapered

Abstract

PROBLEM TO BE SOLVED: To provide a drawing apparatus and a drawing method for an optical fiber, effective for suppressing crossing of a downflow gas stream and upper-flow gas stream at a lower end of a constricted part of a furnace core tube and preventing deposition of soot in an inner diameter direction.SOLUTION: There is provided a drawing apparatus for optical fibers provided with a furnace core tube 13 for inserting a glass preform 11 for optical fiber, a lower extension tube 17 provided under the furnace core tube and having a shutter mechanism 19 at a lower end, and a furnace case 14 housing a heater 15 to heat the glass preform for optical fiber from outside. Optical fiber is drawn by passing an inert gas through the furnace core tube downward from the top. The lower extension tube 17 has an inner diameter larger than the furnace core tube, and a gas stream reversing member 20 composed of a tubular body 20b having a diameter nearly equal to the diameter of the furnace core tube and protruding downward from the lower part of the furnace core tube is placed between the furnace core tube 13 and the lower extension tube 17 to again reverse the gas stream from the lower part.

Description

本発明は、光ファイバ用ガラス母材を加熱溶融して、光ファイバを線引きする光ファイバ用線引炉と線引方法に関する。   The present invention relates to an optical fiber drawing furnace and a drawing method for drawing an optical fiber by heating and melting a glass base material for an optical fiber.

線引炉による光ファイバの線引きは、ヒータで光ファイバ用ガラス母材(以下、ガラス母材という)を加熱溶融することにより行われる。線引炉の炉内の温度が大よそ2200℃位と、非常に高温となることから、ガラス母材を囲う炉心管等の材質には、通常カーボンが用いられるが、このカーボンは、高温の酸素含有雰囲気中では、酸化して消耗する。これを防止するために、炉心管内には、アルゴンガスやヘリウムガス等の希ガスや窒素ガス(以下、不活性ガス等という)が送り込まれる。   Drawing of an optical fiber by a drawing furnace is performed by heating and melting a glass preform for optical fiber (hereinafter referred to as a glass preform) with a heater. Since the temperature inside the drawing furnace is about 2200 ° C., which is extremely high, carbon is usually used as the material for the furnace core tube and the like surrounding the glass base material. In an oxygen-containing atmosphere, it is oxidized and consumed. In order to prevent this, a rare gas such as argon gas or helium gas or nitrogen gas (hereinafter referred to as an inert gas) is sent into the furnace core tube.

炉心管内に送り込まれた不活性ガス等の多くは、炉心管の上方から下方に向かって流れ、ガラス母材の下端から垂下して線引きされたガラスファイバと共に、ファイバ導出口から外部に放出される。この場合、ファイバ導出口が大きく開いていると外気が炉心管内に入りやすく、炉心管等カーボン部品の劣化につながる。炉心管内への外気の浸入を抑制するには多くの不活性ガス等を流す必要があるが、線引炉に用いる不活性ガス等は製造コストに影響するため、できるだけその使用を抑制することが要望されている。   Most of the inert gas or the like sent into the core tube flows from the top to the bottom of the core tube, and is released to the outside from the fiber outlet along with the glass fiber drawn from the lower end of the glass base material. . In this case, if the fiber outlet is wide open, outside air easily enters the core tube, leading to deterioration of carbon parts such as the core tube. It is necessary to flow a lot of inert gas etc. to suppress the intrusion of outside air into the furnace core tube, but the inert gas etc. used for the drawing furnace affects the manufacturing cost, so the use of it should be suppressed as much as possible. It is requested.

このため、例えば、特許文献1には、ファイバ導出口にシャッターを設けること、また、ガラス母材の下端から垂下して線引きされた軟化状態にあるガラスファイバが、線引炉の外に出るまでは、ある程度温度を下げて硬化された状態とするために、炉心管下端に円筒状の下部延長管(下煙突とも言う)を設け、この隔壁の下端にシャッターを設けることが開示されている。
また、特許文献2には、ガラス母材の下端の軟化形状に沿うように、炉心管の形状をテーパ状に縮径して、ガラス母材の下端部のガスの流れを安定させ、ガラスファイバの外径変動を抑制すると共に、ファイバ導出口に細径の口金を設けることが開示されている。
For this reason, for example, in Patent Document 1, a shutter is provided at the fiber outlet, and until the glass fiber in a softened state drawn from the lower end of the glass base material comes out of the drawing furnace. Discloses that a cylindrical lower extension pipe (also referred to as a lower chimney) is provided at the lower end of the core tube and a shutter is provided at the lower end of the partition wall in order to lower the temperature to a certain extent and to obtain a cured state.
Further, in Patent Document 2, the shape of the core tube is reduced in a taper shape so as to follow the softened shape of the lower end of the glass base material, and the gas flow at the lower end portion of the glass base material is stabilized. In addition, it is disclosed that a thin base is provided at the fiber outlet.

特許第2787983号公報Japanese Patent No. 2778783 特開平8−91862号公報JP-A-8-91862

線引炉に用いる不活性ガス等の使用を抑制する方法として、上記の特許文献1,2に開示されているように、下部延長管のファイバ導出口を細くしてガスの流出を抑制することは有効である。また、流れをガスの流れを安定させるために、縮径部を設けることも有効である。
しかし、下向きに流れる不活性ガス等は、光ファイバの線速により加速されたガス流(牽引流)となって、その大部分は光ファイバとともに炉外に流出するものの、一部はシャッター出口部分で跳ね返り、下部延長管の内壁に沿って上方に流れるガス流(アッパーフロー)となる。このアッパーフローのガス流は、炉心管の縮径部内にまで及ぶなど、悪影響を及ぼす可能性があるため、アッパーフローのガス流が炉心管内に直接入り込むのを抑制するためのひとつの手段として、下部延長管の内径を縮径部より拡大させた構成が考えられる。
As a method of suppressing the use of inert gas used in the drawing furnace, as disclosed in Patent Documents 1 and 2, the fiber outlet of the lower extension pipe is narrowed to suppress the outflow of gas. Is valid. It is also effective to provide a reduced diameter portion in order to stabilize the flow of gas.
However, the inert gas that flows downward becomes a gas flow (traction flow) accelerated by the linear velocity of the optical fiber, and most of it flows out of the furnace together with the optical fiber, but a part is the shutter exit part. The gas flow rebounds and flows upward along the inner wall of the lower extension pipe (upper flow). Since the gas flow of the upper flow may have an adverse effect such as reaching the reduced diameter portion of the core tube, as one means for suppressing the gas flow of the upper flow from directly entering the core tube, A configuration in which the inner diameter of the lower extension pipe is enlarged from the reduced diameter part is conceivable.

しかし、下部延長管が炉心管より拡大している場合、このアッパーフローのガス流は、下部延長管が取付けられた上壁面に当たって、縮径部から下方に流れる本流のダウンフローのガス流に交差するようにして当たる。
このように、炉心管に対して下部延長管の径が大きく、本流のダウンフローのガス流と上記のアッパーフローによるガス流が交差することになると、炉心管の下端部周辺で内径方向にススが堆積して突き出してくることがある。この場合、ガラスファイバに堆積したススが接触すると、ガラスファイバの強度が低下し、スクリーニング断線頻度が多くなるなど、光ファイバの特性低下の一因となる虞がある。
However, when the lower extension pipe is larger than the core tube, the gas flow of the upper flow hits the upper wall surface to which the lower extension pipe is attached and intersects the main flow downflow gas flow flowing downward from the reduced diameter portion. Hit as you do.
As described above, when the diameter of the lower extension pipe is larger than that of the core tube, and the main downflow gas flow intersects the gas flow by the upper flow, the soot is increased in the inner diameter direction around the lower end portion of the core tube. May accumulate and stick out. In this case, when the soot deposited on the glass fiber comes into contact with the glass fiber, the strength of the glass fiber is lowered, and the frequency of screening disconnection is increased.

本発明は、上述した実状に鑑みてなされたもので、炉心管縮径部の下端部におけるダウンフローのガス流とアッパーフローのガス流が交差するのを抑制し、内径方向にススが堆積せず、ガラスファイバの強度低下が生じない光ファイバ用線引装置と線引方法の提供を目的とする。   The present invention has been made in view of the above-described circumstances, and suppresses the crossing of the downflow gas flow and the upper flow gas flow at the lower end of the core tube diameter-reduced portion, so that soot accumulates in the inner diameter direction. Therefore, an object of the present invention is to provide an optical fiber drawing device and a drawing method in which the strength of the glass fiber does not decrease.

本発明による光ファイバ用線引炉および線引方法は、光ファイバ用ガラス母材が挿入される炉心管と、該炉心管の下方に配され下端にシャッター機構を有する下部延長管と、光ファイバ用ガラス母材を外側から加熱するヒータを収納する炉筐体とを備え、炉心管内に不活性ガスを上方から下方に向けて流す光ファイバの線引炉および線引方法である。そして、上記の下部延長管は炉心管より大きい内径を有しており、炉心管と下部延長管との間に、炉心管の径と略同径で炉心管下部から下方向に突き出る管状体からなる、下方からのガス流を再度反転させるガス流反転部材を配したことを特徴とする。
なお、ガス流反転部材の管状体の下方への突き出し長さは、40mm〜60mmであることが好ましい。
An optical fiber drawing furnace and a drawing method according to the present invention include a furnace core tube into which a glass preform for an optical fiber is inserted, a lower extension tube having a shutter mechanism at the lower end thereof, and an optical fiber. And an optical fiber drawing furnace and method for drawing an inert gas in a furnace core tube from the top to the bottom. The lower extension tube has an inner diameter larger than that of the core tube, and is formed between the core tube and the lower extension tube from a tubular body having a diameter substantially the same as the core tube and projecting downward from the lower portion of the core tube. The gas flow reversing member for reversing the gas flow from below is provided.
In addition, it is preferable that the protrusion length below the tubular body of a gas flow inversion member is 40 mm-60 mm.

本発明によれば、下部延長管の内壁に沿うアッパーフローのガス流は、ガス流反転部材によって下方に反転され、炉心管から下方に流れるダウンフローのガス流との交差が回避される。この結果、ススが内径方向に堆積するのを抑制でき、ガラスファイバにススが接触したり付着するのを低減し、光ファイバのスクリーニングでの断線頻度を減少させることができる。   According to the present invention, the gas flow of the upper flow along the inner wall of the lower extension pipe is reversed downward by the gas flow reversal member, and the intersection with the gas flow of the down flow flowing downward from the core tube is avoided. As a result, accumulation of soot can be suppressed in the inner diameter direction, soot can be prevented from coming into contact with or attached to the glass fiber, and the frequency of disconnection in optical fiber screening can be reduced.

本発明による光ファイバ用線引炉の一例を説明する図である。It is a figure explaining an example of the drawing furnace for optical fibers by this invention. 従来例を説明する図である。It is a figure explaining a prior art example.

図1,2により本発明の光ファイバ用線引炉と従来技術の概略を説明する。図において、10は光ファイバ線引炉、11は光ファイバ用ガラス母材(ガラス母材)、12はガラスファイバ、13は炉心管、13aは炉心管の縮径部、14は炉筐体、14aは下壁、14bは中心開口、15はヒータ、16は断熱材、17は下部延長管、18は炉心管受け部材、19はシャッター機構、19aファイバ導出口、19bはシャッター板、20はガス流反転部材、20aは水平壁、20bは管状体、21は間隙を示す。   An outline of the drawing furnace for optical fibers of the present invention and the prior art will be described with reference to FIGS. In the figure, 10 is an optical fiber drawing furnace, 11 is an optical fiber glass base material (glass base material), 12 is a glass fiber, 13 is a core tube, 13a is a reduced diameter portion of the core tube, 14 is a furnace housing, 14a is a lower wall, 14b is a central opening, 15 is a heater, 16 is a heat insulating material, 17 is a lower extension tube, 18 is a core tube receiving member, 19 is a shutter mechanism, 19a fiber outlet, 19b is a shutter plate, and 20 is a gas. A flow reversal member, 20a is a horizontal wall, 20b is a tubular body, and 21 is a gap.

光ファイバの線引きは、図に示すように、吊下げ支持されるガラス母材11の下部を加熱し、溶融された下端部からガラスファイバ12を溶融垂下させて所定の外径となるように線引きして行われる。このための光ファイバ線引炉10は、ガラス母材11が挿入供給される炉心管13を囲むようにして、加熱用のヒータ15を配し、このヒータ15の熱が外部に放散されないように断熱材16で囲い、その外側全体を炉筐体14で囲って構成される。   As shown in the drawing, the optical fiber is drawn so that the lower part of the glass base material 11 supported by suspension is heated, and the glass fiber 12 is melted and dripped from the melted lower end portion so as to have a predetermined outer diameter. Done. For this purpose, the optical fiber drawing furnace 10 is provided with a heater 15 so as to surround a furnace core tube 13 into which a glass base material 11 is inserted and supplied, and a heat insulating material is provided so that the heat of the heater 15 is not dissipated outside. 16, and the entire outside thereof is surrounded by a furnace casing 14.

ガラス母材11は、母材吊り機構(図示省略)により吊り下げ支持され、光ファイバの線引きの進行にしたがって下方に順次移動制御される。炉筐体14は、ステンレス等の耐食性に優れた金属で形成され、中心部に高純度のカーボンで形成された円筒状の炉心管13が配される。炉心管13の酸化・劣化を防ぐために、炉心管13内にはアルゴンガスやヘリウムガス等の希ガスや窒素ガスなどの不活性ガス等が導入される。この不活性ガス等は、ガラス母材11と炉心管13の隙間を通って、その大部分は炉心管13の下方から下部延長管17を経て外部に放出される。   The glass base material 11 is suspended and supported by a base material suspension mechanism (not shown), and is sequentially controlled to move downward as the optical fiber is drawn. The furnace casing 14 is made of a metal having excellent corrosion resistance such as stainless steel, and a cylindrical furnace core tube 13 made of high-purity carbon is arranged at the center. In order to prevent oxidation / deterioration of the furnace core tube 13, an inert gas such as a rare gas such as argon gas or helium gas or a nitrogen gas is introduced into the furnace core tube 13. The inert gas or the like passes through the gap between the glass base material 11 and the core tube 13, and most of the inert gas is released to the outside through the lower extension tube 17 from below the core tube 13.

炉心管13は、下方部分にガラス母材の下端部の溶融形状に沿うように断面がY字状の縮径部13aを設けることで、不活性ガス等の流れを安定にすると共に、下方に放射される熱を遮断してヒータ15による加熱効率を高めることができるが、縮径部13aが無い構造であっても良い。なお、炉心管13は、例えば、石英またはカーボン等の耐熱性の材料からなる炉心管受け部材18を介して炉筐体14の下壁14a上に載置する形で支持される。なお、下壁14aの中心開口14bは、縮径部13aの内径とほぼ同径で形成されている。   The core tube 13 is provided with a reduced diameter portion 13a having a Y-shaped cross section so as to follow the melting shape of the lower end portion of the glass base material at the lower portion, thereby stabilizing the flow of inert gas and the like downward. Although it is possible to block the radiated heat and increase the heating efficiency of the heater 15, a structure without the reduced diameter portion 13a may be used. The core tube 13 is supported in such a manner that it is placed on the lower wall 14a of the furnace casing 14 via a core tube receiving member 18 made of a heat-resistant material such as quartz or carbon. The central opening 14b of the lower wall 14a is formed with substantially the same diameter as the inner diameter of the reduced diameter portion 13a.

下部延長管17は、加熱軟化しているガラスファイバ12の急冷を緩和すると同時に、ある程度冷却硬化させて外径変動を抑える機能を有している。また、下部延長管17の内径は、炉心管の縮径部13aの内径より大きくし、その上端を炉筐体14の下壁14aに着脱可能にして取付けられる。下部延長管17の下端には、シャッター機構19が取付けられる。シャッター機構19は、例えば、特許文献1に示すような径を小さくしたファイバ導出口19aを有する開閉可能な一対のシャッター板19bで形成される。この他、特許文献2に示されるような、ファイバ導出口に細径の口金を設けるようにしたものであってもよい。   The lower extension pipe 17 has a function of suppressing rapid fluctuation of the glass fiber 12 that has been heated and softened, and at the same time, cooling and hardening to some extent to suppress fluctuations in the outer diameter. Further, the inner diameter of the lower extension pipe 17 is made larger than the inner diameter of the reduced diameter portion 13a of the core tube, and the upper end thereof is attached to the lower wall 14a of the furnace casing 14 so as to be detachable. A shutter mechanism 19 is attached to the lower end of the lower extension pipe 17. The shutter mechanism 19 is formed, for example, by a pair of openable and closable shutter plates 19b having a fiber outlet port 19a having a reduced diameter as shown in Patent Document 1. In addition to this, as shown in Patent Document 2, a thin base may be provided at the fiber outlet.

上記した光ファイバ線引炉10で、炉心管13内に上方から不活性ガス等が導入され、該ガスはガラス母材11との間を通って縮径部13aから下部延長管17の下方に流れ、ガラスファイバ12の高速線引により牽引されてダウンフローのガス流Q1となる。ダウンフローのガス流Q1の一部は、ガラスファイバ12と共に、このシャッター機構19のファイバ導出口19aから外部に放出されるが、一部はシャッター板19bに当たって跳ね返り、下部延長管17の内壁に沿って上方に流れるアッパーフローのガス流Q2となる。   In the optical fiber drawing furnace 10 described above, an inert gas or the like is introduced into the furnace core tube 13 from above, and the gas passes between the glass base material 11 and the reduced diameter portion 13a below the lower extension tube 17. The flow is pulled by the high speed drawing of the glass fiber 12 to become a downflow gas flow Q1. A part of the down flow gas flow Q1 is discharged to the outside together with the glass fiber 12 from the fiber outlet 19a of the shutter mechanism 19. However, a part of the downflow hits the shutter plate 19b and rebounds along the inner wall of the lower extension pipe 17. Thus, the upper flow gas flow Q2 flows upward.

このアッパーフローのガス流Q2が、炉心管13の縮径部13a内に入り込んで炉心管内のガス流に影響が及ばないようにする、などのため、下部延長管17の内径が縮径部13aの内径より大きくされる。
この場合、図2の従来例で示すように、アッパーフローのガス流Q2は、下部延長管17が取付けられる炉筺体の下壁14aの中心開口14b付近の壁面に当たって、内径方向に向かうガス流となる。
In order to prevent the gas flow Q2 of the upper flow from entering the reduced diameter portion 13a of the core tube 13 and affecting the gas flow in the core tube, the inner diameter of the lower extension tube 17 is reduced. Larger than the inner diameter.
In this case, as shown in the conventional example of FIG. 2, the gas flow Q2 of the upper flow hits the wall surface near the central opening 14b of the lower wall 14a of the furnace housing to which the lower extension pipe 17 is attached, Become.

内径方向に流れを変えられたアッパーフローのガス流Q2は、中心を通るダウンフローのガス流Q1に交差するように横方向から当たる。このガス流Q1とQ2が交差することにより、縮径部13aの下端部周辺に炉心管内で生成されたススS(SiC,C,SiO等)が堆積して、内径方向に突き出してくることがある。この内径方向に堆積したススSは、線引直後のガラスファイバ12に接触または付着しやすい状態となり、ファイバ強度が低下し、スクリーニング断線頻度が多くなるなど、光ファイバの特性低下の一因となる虞がある。なお、縮径部13aの下端部周辺とは、炉心管受け部材18の内径面や炉筐体の下壁14aの中心開口14bを含む領域である。 The gas flow Q2 of the upper flow whose flow is changed in the inner diameter direction strikes from the lateral direction so as to intersect the gas flow Q1 of the down flow passing through the center. As the gas flows Q1 and Q2 intersect, soot S (SiC, C, SiO 2, etc.) generated in the core tube is deposited around the lower end of the reduced diameter portion 13a and protrudes in the inner diameter direction. There is. The soot S deposited in the inner diameter direction is likely to contact or adhere to the glass fiber 12 immediately after drawing, which contributes to the deterioration of the optical fiber characteristics such as a decrease in fiber strength and an increase in the frequency of screening disconnection. There is a fear. The periphery of the lower end portion of the reduced diameter portion 13a is a region including the inner diameter surface of the core tube receiving member 18 and the central opening 14b of the lower wall 14a of the furnace casing.

本発明は、図1に示すように、炉心管13の下端と下部延長管17の上端との間にガス流反転部材20を配して、アッパーフローのガス流Q2が中心を通るダウンフローのガス流Q1に当たらないようにしたことを特徴とする。
ガス流反転部材20は、石英、カーボン等の耐熱材で形成され、炉心管13(縮径部がある場合は縮径部13a)の内径と略同径で、炉心管下部から垂直に下方向に突き出る管状体20bからなる。なお、ガス流反転部材20は、管状体20bの上部に環状の水平壁20aを備えるようにし、このガス流反転部材20は、例えば、水平壁20aを下部延長管17の上端の取付けフランジと炉筐体の下壁14aとの間で支持するようにして、着脱容易な形態で設置することとしてもよい。
In the present invention, as shown in FIG. 1, a gas flow reversal member 20 is disposed between the lower end of the core tube 13 and the upper end of the lower extension tube 17 so that the gas flow Q2 of the upper flow passes through the center. It is characterized by not hitting the gas flow Q1.
The gas flow reversing member 20 is formed of a heat-resistant material such as quartz or carbon, and has a diameter substantially the same as the inner diameter of the core tube 13 (the reduced diameter portion 13a when there is a reduced diameter portion). It consists of the tubular body 20b which protrudes into. The gas flow reversing member 20 is provided with an annular horizontal wall 20a on the upper portion of the tubular body 20b. For example, the gas flow reversing member 20 includes a horizontal wall 20a and a mounting flange at the upper end of the lower extension pipe 17 and a furnace. It is good also as installing in the form with easy attachment or detachment so that it may support between the lower walls 14a of a housing | casing.

また、ガス流反転部材20は、図1のように下部延長管17と炉筐体の下壁14aとの間で支持するようにする他に、炉心管13の下端に配される炉心管受け部材18と炉心管13の下端との間で、水平壁20aを挟むようにして支持させるようにしてもよい。また、この他に、炉心管受け部材18と炉筐体14の下壁14aとの間で、水平壁20aを挟むようにして支持させるようにしてもよい。   Further, the gas flow reversing member 20 is supported between the lower extension pipe 17 and the lower wall 14a of the furnace casing as shown in FIG. You may make it support so that the horizontal wall 20a may be pinched | interposed between the member 18 and the lower end of the core tube 13. As shown in FIG. In addition, the horizontal core 20a may be supported between the core tube receiving member 18 and the lower wall 14a of the furnace casing 14 so as to be supported.

ガス流反転部材20の管状体20bは、上述したように炉心管13と下部延長管17との間に設置された状態で、下方に突き出ており、炉心管13(縮径部がある場合は縮径部13a)の内径とほぼ同程度となるように形成されている。また、管状体20bの外面と下部延長管17の内面との間に、アッパーフローのガス流Q2が流れ込む程度の環状の間隙21が生じるように形成され、このための管状体20bの長さは、40mm〜60mm程度とするのが好ましい。   As described above, the tubular body 20b of the gas flow reversing member 20 protrudes downward in a state of being installed between the core tube 13 and the lower extension tube 17, and the core tube 13 (when there is a reduced diameter portion) It is formed to be approximately the same as the inner diameter of the reduced diameter portion 13a). Further, an annular gap 21 is formed between the outer surface of the tubular body 20b and the inner surface of the lower extension pipe 17 so that the upper flow gas flow Q2 flows, and the length of the tubular body 20b for this purpose is as follows. The thickness is preferably about 40 mm to 60 mm.

上述のように構成された線引炉で、線引されるガラスファイバ12は、炉心管13と下部延長管17内を所定の線速で高速移動する。このとき、ガラスファイバ12は、炉心管内に導入された不活性ガス等を牽引したダウンフローのガス流Q1を、下部延長管17の下端のシャッター機構19のファイバ導出口19aから排出しながら引き出される。   In the drawing furnace configured as described above, the glass fiber 12 to be drawn moves at high speed in the furnace core tube 13 and the lower extension tube 17 at a predetermined drawing speed. At this time, the glass fiber 12 is drawn out while discharging a downflow gas flow Q1 pulled by an inert gas or the like introduced into the core tube from the fiber outlet 19a of the shutter mechanism 19 at the lower end of the lower extension pipe 17. .

ガラスファイバ12に牽引されるダウンフローのガス流Q1の一部は、シャッター機構19のシャッター板19bに当たって跳ね返り、下部延長管17の内壁に沿って上方に流れるアッパーフローのガス流Q2となる。このガス流Q2は、ガス流反転部材20の水平壁20aと管状体20bとで形成される環状の間隙21により反転され、下方に流れが変えられ、ダウンフローのガス流Q1とは交差しないようにされる。これにより、炉心管13の縮径部13aの下端部近傍で、ススが内径方向に突き出るように堆積するのを抑制することができ、ガラスファイバの強度低下が生じないようにすることができる。
なお、上述したガス流反転部材を配した光ファイバ用線引炉で、100万kmの光ファイバの線引きを実施すると、ガス流反転部材20を設けない場合に比べてスクリーニングでの断線頻度が約20%減少する。
A part of the downflow gas flow Q1 pulled by the glass fiber 12 hits the shutter plate 19b of the shutter mechanism 19 and rebounds to become an upper flow gas flow Q2 flowing upward along the inner wall of the lower extension pipe 17. This gas flow Q2 is reversed by an annular gap 21 formed by the horizontal wall 20a of the gas flow reversing member 20 and the tubular body 20b, the flow is changed downward, so that it does not intersect with the downflow gas flow Q1. To be. Thereby, it is possible to prevent soot from being deposited so as to protrude in the inner diameter direction in the vicinity of the lower end portion of the reduced diameter portion 13a of the core tube 13, and it is possible to prevent the strength of the glass fiber from being lowered.
In the optical fiber drawing furnace in which the gas flow reversing member is arranged as described above, when the drawing of the optical fiber of 1 million km is performed, the disconnection frequency in screening is approximately compared with the case where the gas flow reversing member 20 is not provided. Decrease by 20%.

10…光ファイバ線引炉、11…光ファイバ用ガラス母材(ガラス母材)、12…ガラスファイバ、13…炉心管、13a…縮径部、14…炉筐体、14a…下壁、14b…中心開口、15…ヒータ、16…断熱材、17…下部延長管、18…炉心管受け部材、19…シャッター機構、19a…ファイバ導出口、19b…シャッター板、20…ガス流反転部材、20a…水平壁、20b…管状体、21…間隙。 DESCRIPTION OF SYMBOLS 10 ... Optical fiber drawing furnace, 11 ... Glass base material (glass base material) for optical fibers, 12 ... Glass fiber, 13 ... Furnace core tube, 13a ... Reduced diameter part, 14 ... Furnace housing, 14a ... Lower wall, 14b ... Center opening, 15 ... Heater, 16 ... Heat insulating material, 17 ... Lower extension pipe, 18 ... Core tube receiving member, 19 ... Shutter mechanism, 19a ... Fiber outlet, 19b ... Shutter plate, 20 ... Gas flow reversing member, 20a ... horizontal wall, 20b ... tubular body, 21 ... gap.

Claims (3)

光ファイバ用ガラス母材が挿入される炉心管と、該炉心管の下方に配され下端にシャッター機構を有する下部延長管と、前記光ファイバ用ガラス母材を外側から加熱するヒータを収納する炉筐体とを備え、前記炉心管内に不活性ガスを上方から下方に向けて流す光ファイバの線引炉であって、
前記下部延長管は前記炉心管より大きい内径を有しており、前記炉心管と前記下部延長管との間に、前記炉心管の径と略同径で前記炉心管下部から下方向に突き出る管状体からなる、下方からのガス流を再度反転させるガス流反転部材を配したことを特徴とする光ファイバ用線引炉。
A furnace containing a furnace tube into which a glass preform for an optical fiber is inserted, a lower extension tube having a shutter mechanism at the lower end thereof and a heater for heating the glass preform from the outside. A drawing furnace of an optical fiber comprising a housing and flowing an inert gas from above to below in the furnace core tube,
The lower extension tube has an inner diameter larger than the core tube, and is a tube projecting downward from the lower portion of the core tube between the core tube and the lower extension tube and having substantially the same diameter as the core tube. An optical fiber drawing furnace comprising a body and a gas flow reversing member for reversing a gas flow from below.
前記ガス流反転部材の管状体の下方への突き出し長さは40mm〜60mmであることを特徴とする請求項1に記載の光ファイバ用線引炉。   The drawing furnace for an optical fiber according to claim 1, wherein a length of the gas flow reversing member protruding downward from the tubular body is 40 mm to 60 mm. 光ファイバ用ガラス母材が挿入される炉心管と、該炉心管の下方に配され下端にシャッター機構を有する下部延長管と、前記光ファイバ用ガラス母材を外側から加熱するヒータを収納する炉筐体とを備えた線引炉を用い、前記炉心管内に不活性ガスを上方から下方に向けて流す光ファイバの線引方法であって、
前記下部延長管は前記炉心管より大きい内径を有しており、前記炉心管と前記下部延長管との間に、前記炉心管の径と略同径で前記炉心管下部から下方向に突き出る管状体からなるガス流反転部材を配して、下方からのガス流を再度反転させることを特徴とする光ファイバ線引方法。
A furnace containing a furnace tube into which a glass preform for an optical fiber is inserted, a lower extension tube having a shutter mechanism at the lower end thereof and a heater for heating the glass preform from the outside. A drawing furnace provided with a housing, and a drawing method of an optical fiber for flowing an inert gas downward from above in the furnace core tube,
The lower extension tube has an inner diameter larger than the core tube, and is a tube projecting downward from the lower portion of the core tube between the core tube and the lower extension tube and having substantially the same diameter as the core tube. An optical fiber drawing method characterized by disposing a gas flow reversal member comprising a body and reversing a gas flow from below again.
JP2012076033A 2012-03-29 2012-03-29 Drawing furnace and drawing method for optical fiber Pending JP2013203622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012076033A JP2013203622A (en) 2012-03-29 2012-03-29 Drawing furnace and drawing method for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012076033A JP2013203622A (en) 2012-03-29 2012-03-29 Drawing furnace and drawing method for optical fiber

Publications (1)

Publication Number Publication Date
JP2013203622A true JP2013203622A (en) 2013-10-07

Family

ID=49523121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012076033A Pending JP2013203622A (en) 2012-03-29 2012-03-29 Drawing furnace and drawing method for optical fiber

Country Status (1)

Country Link
JP (1) JP2013203622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402163A (en) * 2021-07-26 2021-09-17 郭俊滔 Airflow stabilizing structure of heating furnace for optical fiber drawing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402163A (en) * 2021-07-26 2021-09-17 郭俊滔 Airflow stabilizing structure of heating furnace for optical fiber drawing
CN113402163B (en) * 2021-07-26 2023-08-08 郭俊滔 Heating furnace airflow stabilizing structure for optical fiber drawing

Similar Documents

Publication Publication Date Title
US7814767B2 (en) Method and induction furnace for drawing large diameter preforms to optical fibres
US5637130A (en) Method and furnace for drawing optical fibers
RU2673094C2 (en) Method of optical fiber drawing (options)
US8464554B2 (en) Method for stabilizing a column of molten material
JP5556117B2 (en) Optical fiber drawing method and drawing apparatus
JP5830979B2 (en) Sintering apparatus and sintering method for glass base material
JP2013203622A (en) Drawing furnace and drawing method for optical fiber
JP2013203623A (en) Drawing furnace and drawing method for optical fiber
JPS62246837A (en) Drawing furnace for optical fiber
JP6107193B2 (en) Optical fiber drawing furnace
JP2013203621A (en) Drawing furnace and drawing method for optical fiber
JP2013035742A (en) Apparatus and method for drawing optical fiber
US20020178762A1 (en) Methods and apparatus for forming and controlling the diameter of drawn optical glass fiber
JP2000247688A (en) Cooling device for optical fiber
CN105834386A (en) Continuous casting device of high temperature alloy tubes and continuous casting method of high temperature alloy tubes
JP2965037B1 (en) Optical fiber drawing furnace and optical fiber drawing method
JPH038738A (en) Furnace and method for drawing optical fiber
CN214167777U (en) Graphite piece structure for optical fiber drawing furnace
JP5429561B2 (en) Glass rod manufacturing apparatus and manufacturing method
WO2021193567A1 (en) Optical fiber wiredrawing furnace and method for producing optical fiber
JP2002068773A (en) Furnace for drawing optical fiber and method of drawing the same
JP5429585B2 (en) Glass base material manufacturing method and manufacturing apparatus
JP2014070010A (en) Optical fiber drawing furnace, and optical fiber drawing method
JPH05147969A (en) Optical fiber drawing furnace
JPS62162647A (en) Drawing device for optical fiber