JP2013035742A - Apparatus and method for drawing optical fiber - Google Patents

Apparatus and method for drawing optical fiber Download PDF

Info

Publication number
JP2013035742A
JP2013035742A JP2012126920A JP2012126920A JP2013035742A JP 2013035742 A JP2013035742 A JP 2013035742A JP 2012126920 A JP2012126920 A JP 2012126920A JP 2012126920 A JP2012126920 A JP 2012126920A JP 2013035742 A JP2013035742 A JP 2013035742A
Authority
JP
Japan
Prior art keywords
tube
shutter
optical fiber
core tube
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012126920A
Other languages
Japanese (ja)
Inventor
Iwao Okazaki
巌 岡崎
Norihiro Kaminoyama
憲博 上ノ山
Manabu Shiozaki
学 塩崎
Tadashi Enomoto
正 榎本
Taku Yamazaki
卓 山崎
Masatoshi Hayakawa
正敏 早川
Masaru Kosho
勝 古庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012126920A priority Critical patent/JP2013035742A/en
Publication of JP2013035742A publication Critical patent/JP2013035742A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • C03B37/02727Annealing or re-heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/82Means for sealing the fibre exit or lower end of the furnace
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles
    • C03B2205/92Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles using means for gradually reducing the cross-section towards the outlet or around the preform draw end, e.g. tapered

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and method for drawing an optical fiber, which maintains the pressure in a furnace tube at a predetermined or higher value to the drawing velocity of an optical fiber to thereby suppress the involvement of outside air.SOLUTION: A shutter tube section 19 is installed under a fiber lead-out port. If the outer diameter of a glass fiber 12 is taken as 2r; the inner diameter of the shutter tube 19, as 2r; the drawing velocity of the glass fiber 12, as V; and the flow volume of an inert gas flowing down a furnace tube 13, as Q, expression [1] is satisfied. It is preferable that the inner diameter of the shutter tube is 5 mm to 15 mm, and the length thereof is ≥30 mm and ≤500 mm.

Description

本発明は、光ファイバ用のガラス母材を加熱溶融して、光ファイバを線引きする光ファイバの線引装置および線引方法に関する。   The present invention relates to an optical fiber drawing apparatus and a drawing method for drawing an optical fiber by heating and melting a glass base material for an optical fiber.

光ファイバは、専用の線引炉を用いて光ファイバ用ガラス母材(以下、ガラス母材という)を加熱溶融してガラスファイバを線引きし、その外面に保護被覆を施して製造される。ガラスファイバの線引きに際しては、ガラス母材が挿入される炉心管に耐熱性のあるカーボンが用いられるが、このカーボンは、高温の酸素含有雰囲気中では、酸化して消耗する。これを防止するために、炉心管内には、アルゴンガスやヘリウムガス等の希ガスや窒素ガス(以下、不活性ガス等という)が送り込まれる。   An optical fiber is manufactured by heating and melting an optical fiber glass base material (hereinafter referred to as a glass base material) using a dedicated drawing furnace, drawing the glass fiber, and applying a protective coating to the outer surface thereof. When drawing a glass fiber, heat-resistant carbon is used for a furnace core tube into which a glass base material is inserted. This carbon is oxidized and consumed in a high-temperature oxygen-containing atmosphere. In order to prevent this, a rare gas such as argon gas or helium gas or nitrogen gas (hereinafter referred to as an inert gas) is sent into the furnace core tube.

炉心管内に送り込まれた不活性ガスの多くは、炉心管の上方から下方に向かって流れ、ガラス母材の下端から垂下して線引きされたガラスファイバと共に、ファイバ導出口から外部に放出される。この場合、ファイバ導出口が大きく開いていると外気が炉心管内に入りやすく、炉心管等カーボン部品の劣化につながる。炉心管内への外気の浸入を抑制するには多くの不活性ガスを流す必要があるが、線引炉に用いる不活性ガス等は製造コストに影響するため、できるだけその使用を抑制することが要望されている。   Most of the inert gas sent into the core tube flows downward from the top of the core tube, and is discharged to the outside through the fiber outlet along with the glass fiber drawn from the lower end of the glass base material. In this case, if the fiber outlet is wide open, outside air easily enters the core tube, leading to deterioration of carbon parts such as the core tube. Although it is necessary to flow a lot of inert gas to suppress the intrusion of outside air into the furnace core tube, the inert gas used in the drawing furnace affects the manufacturing cost, so it is desired to suppress the use of it as much as possible. Has been.

このため、例えば、特許文献1には、ファイバ導出口にシャッターを設けること、また、ガラス母材の下端から垂下して線引きされた軟化状態にあるガラスファイバが、線引炉の外に出るまではある程度温度を下げて硬化された状態とするために、炉心管下端に円筒状の隔壁(下煙突とも言う)を設け、この隔壁の下端にシャッターを設けることが開示されている。   For this reason, for example, in Patent Document 1, a shutter is provided at the fiber outlet, and until the glass fiber in a softened state drawn from the lower end of the glass base material comes out of the drawing furnace. In order to obtain a cured state by lowering the temperature to some extent, it is disclosed that a cylindrical partition wall (also called a lower chimney) is provided at the lower end of the core tube, and a shutter is provided at the lower end of the partition wall.

また、特許文献2には、ガラス母材の下端の軟化形状(ネックダウン形状)に沿うように、炉心管の形状をテーパ状に縮径して、ガラス母材の下端部の不活性ガスの流れを安定させ、ガラスファイバの外径変動を抑制すると共に、テーパ状の延長筒(下煙突とも言う)のファイバ導出口に、さらに細径の口金を設けることが開示されている。
また、特許文献3には、ファイバ導出口のシャッターとして、小径の口径と該口径の10倍以上の長さを有する管状のノズルを設けることが開示されている。
In Patent Document 2, the shape of the core tube is reduced in a taper shape so as to follow the softened shape (neck down shape) of the lower end of the glass base material, and the inert gas at the lower end portion of the glass base material is reduced. It is disclosed that the flow is stabilized and fluctuations in the outer diameter of the glass fiber are suppressed, and that a thinner cap is provided at the fiber outlet of the tapered extension tube (also referred to as a lower chimney).
Patent Document 3 discloses that a tubular nozzle having a small diameter and a length of 10 times or more the diameter is provided as a shutter for the fiber outlet.

特許第2787983号公報Japanese Patent No. 2778783 特開平8−91862号公報JP-A-8-91862 特開平2−92838号公報Japanese Patent Laid-Open No. 2-92938

線引炉に用いる不活性ガスの使用を抑制する方法として、上記の特許文献1〜3に示すように、ファイバ導出口を細くしてガスの流出を抑制することは有効であるが、単にファイバ導出口を細めると、線引きされたガラスファイバが接触して断線するおそれがある。また、光ファイバの製造線速が高速化すると、光ファイバの導出口の内圧、光ファイバの線速等の条件によっては、外気の巻き込みが生じることがある。   As a method for suppressing the use of an inert gas used in a drawing furnace, it is effective to narrow the fiber outlet and suppress the outflow of gas as shown in Patent Documents 1 to 3 above. If the outlet is narrowed, the drawn glass fiber may come into contact and break. Further, when the production speed of the optical fiber is increased, outside air may be involved depending on conditions such as the internal pressure of the outlet of the optical fiber and the linear speed of the optical fiber.

なお、特許文献2,3には、光ファイバの導出口に細径の管体を設けることが提案されているが、光ファイバの線引速度、外部に放出されるガス量との関係が明らかでなく、管体のファイバ導出口部分で、外気の巻き込みが発生するおそれがある。   In Patent Documents 2 and 3, it is proposed to provide a thin tube at the outlet of the optical fiber, but the relationship between the drawing speed of the optical fiber and the amount of gas released to the outside is clear. In addition, there is a possibility that outside air may be caught in the fiber outlet portion of the tube.

本発明は、上述した実状に鑑みてなされたもので、光ファイバの線引速度に対し、炉心管内の圧力を所定値以上の陽圧に維持して外気の巻き込みを抑制する光ファイバの線引装置と線引方法を提供することを目的とする。   The present invention has been made in view of the above-described situation, and the drawing of an optical fiber that suppresses the entrainment of outside air by maintaining the pressure in the core tube at a positive pressure equal to or higher than a predetermined value with respect to the drawing speed of the optical fiber. An object is to provide an apparatus and a drawing method.

本発明による光ファイバ線引装置および線引方法は、光ファイバ用ガラス母材が挿入される炉心管と、炉心管を外部から加熱するヒータを収納する炉筐体を備え、炉心管内に不活性ガスを上方から下方に向けて流し、炉心管の下部のファイバ導出口から線引きされたガラスファイバを外部に導出すると共に、不活性ガスを外部に放出する光ファイバの線引装置および線引方法である。
そして、ファイバ導出口の下方にシャッター管部を設け、ガラスファイバの外径を2r、シャッター管の内径を2r、ガラスファイバの線引速度をV、炉心管の下方に流れてくる不活性ガスの流量をQとしたとき、

Figure 2013035742
を満足することを特徴とする。
なお、シャッター管部の内径が5mm〜15mmであり、シャッター管部の長さは、30mm以上500mm以下とするのが好ましい。 An optical fiber drawing apparatus and a drawing method according to the present invention include a furnace core tube into which a glass preform for an optical fiber is inserted, and a furnace housing that houses a heater that heats the furnace core tube from the outside. An optical fiber drawing apparatus and drawing method for flowing a gas from the upper side to the lower side, leading out the glass fiber drawn from the fiber outlet at the bottom of the core tube, and discharging the inert gas to the outside. is there.
Then, a shutter tube portion is provided below the fiber outlet, the outer diameter of the glass fiber is 2r 1 , the inner diameter of the shutter tube is 2r 2 , the drawing speed of the glass fiber is V 1 , and the non-flowing gas flows below the core tube. When the active gas flow rate is Q,
Figure 2013035742
It is characterized by satisfying.
The inner diameter of the shutter tube portion is 5 mm to 15 mm, and the length of the shutter tube portion is preferably 30 mm or more and 500 mm or less.

上記の本発明によれば、光ファイバの線引速度が大きい場合でも、炉心管内の圧力を所定値以上の陽圧に維持して外気の巻き込みを抑制しながら、光ファイバを製造することができる。   According to the present invention, even when the drawing speed of the optical fiber is high, an optical fiber can be manufactured while maintaining the pressure in the furnace core tube at a positive pressure equal to or higher than a predetermined value and suppressing entrainment of outside air. .

本発明で用いる光ファイバ線引炉の実施形態の一例を説明する図である。It is a figure explaining an example of an embodiment of an optical fiber drawing furnace used by the present invention. 図1の実施形態の他の例を説明する図である。It is a figure explaining the other example of embodiment of FIG. シャッター管内のガス流量と圧損を説明するための図である。It is a figure for demonstrating the gas flow rate and pressure loss in a shutter pipe | tube. ガス流量ごとによるシャッター管の内径と圧損勾配との関係を示す図である。It is a figure which shows the relationship between the internal diameter of a shutter pipe | tube with respect to every gas flow rate, and a pressure loss gradient. シャッター管の長さごとによるガス流量と圧損との関係を示す図である。It is a figure which shows the relationship between the gas flow rate and pressure loss by every length of a shutter pipe | tube. シャッター管の内径ごとによるガス流量と圧損勾配との関係を示す図である。It is a figure which shows the relationship between the gas flow rate by the inside diameter of a shutter pipe | tube, and a pressure loss gradient.

図1,2により本発明の光ファイバ線引装置の概略を説明する。図において、10は光ファイバ線引炉、11は光ファイバ用ガラス母材(ガラス母材)、11aはガラス母材の下端部、12はガラスファイバ、13は炉心管、14は炉筐体、15はヒータ、16は断熱材、17は延長管(下煙突)、18は炉心管受け部材、19,20はシャッター管、20aは太径部、20bはテーパ部、20cは細径部を示す。   An outline of the optical fiber drawing apparatus of the present invention will be described with reference to FIGS. In the figure, 10 is an optical fiber drawing furnace, 11 is an optical fiber glass base material (glass base material), 11a is a lower end portion of the glass base material, 12 is a glass fiber, 13 is a furnace core tube, 14 is a furnace housing, 15 is a heater, 16 is a heat insulating material, 17 is an extension tube (lower chimney), 18 is a core tube receiving member, 19 and 20 are shutter tubes, 20a is a large diameter portion, 20b is a tapered portion, and 20c is a small diameter portion. .

光ファイバの線引きは、図1に示すように、吊下げ支持されるガラス母材11の下部を加熱し、溶融された下端部11aからガラスファイバ12を溶融垂下させて所定の外径となるように線引きして行われる。このための光ファイバ線引炉10は、ガラス母材11が挿入供給される炉心管13を囲むようにして、加熱用のヒータ15を配し、このヒータ15の熱が外部に放散されないように断熱材16で囲い、その外側全体を炉筐体14で囲って構成される。   As shown in FIG. 1, the drawing of the optical fiber is performed such that the lower part of the glass base material 11 supported by suspension is heated, and the glass fiber 12 is melted and drooped from the melted lower end part 11a to have a predetermined outer diameter. It is done by drawing a line. For this purpose, the optical fiber drawing furnace 10 is provided with a heater 15 so as to surround a furnace core tube 13 into which the glass base material 11 is inserted and supplied, and a heat insulating material is provided so that the heat of the heater 15 is not dissipated to the outside. 16, and the entire outside thereof is surrounded by a furnace casing 14.

ガラス母材11は、母材吊り機構(図示省略)により吊り下げ支持され、光ファイバの線引き進行にしたがって下方に順次移動制御される。炉筐体14は、ステンレス等の耐食性に優れた金属で形成され、中心部に高純度のカーボンで形成された円筒状の炉心管13が配される。炉心管13の酸化・劣化を防ぐために、炉心管13内には窒素、アルゴン、ヘリウム等の希ガスや窒素ガスが導入される。この不活性ガス等は、ガラス母材と炉心管13の隙間を通って、その大部分は炉心管13の下方から延長管17を経て外部に放出される。   The glass base material 11 is suspended and supported by a base material suspension mechanism (not shown), and is sequentially controlled to move downward as the optical fiber is drawn. The furnace casing 14 is made of a metal having excellent corrosion resistance such as stainless steel, and a cylindrical furnace core tube 13 made of high-purity carbon is arranged at the center. In order to prevent oxidation and deterioration of the core tube 13, a rare gas such as nitrogen, argon, helium, or nitrogen gas is introduced into the core tube 13. The inert gas or the like passes through the gap between the glass base material and the core tube 13, and most of the inert gas is discharged to the outside through the extension tube 17 from below the core tube 13.

また、炉筐体14にも、カーボン製のヒータ15や断熱材16の酸化・劣化を防ぐために、同様に窒素、アルゴン、ヘリウム等の不活性ガス等が流し込まれる。炉筐体14に流し込まれるガスは、炉心管13内に流し込まれるガスと別に制御されるが、通常、同じガスが用いられる。なお、炉筐体14の下方には、延長管(下煙突とも言う)17が、炉心管13の下端に連結される。   Similarly, an inert gas such as nitrogen, argon, or helium is poured into the furnace casing 14 in order to prevent oxidation and deterioration of the carbon heater 15 and the heat insulating material 16. The gas that flows into the furnace casing 14 is controlled separately from the gas that flows into the furnace core tube 13, but the same gas is usually used. An extension pipe (also called a lower chimney) 17 is connected to the lower end of the furnace core tube 13 below the furnace casing 14.

延長管17は、加熱軟化しているガラスファイバ12の急冷を緩和すると同時に、ある程度冷却硬化させて外径変動を抑える機能を有している。この延長管17は、メンテナンス等の面から炉心管13とは分割可能に形成され、炉心管13と連通するように炉筐体14の下壁14aに取外し可能に取付けられる。炉心管13と延長管17との接合部は、石英等の耐熱電気絶縁材からなる炉心管受け部材18を介して炉筐体14の下壁14a上に載置する形で支持され、炉心管13と炉筐体14を電気的に絶縁し、大きな短絡事故に至らないようにしている。しかし、炉心管受け部材18は、石英に限らずカーボンを使用したり、炉心管受け部材18を用いることなく炉心管13と延長管17とを直接接合する場合もある。   The extension tube 17 has a function of reducing the outer diameter fluctuation by cooling and hardening to some extent while simultaneously relaxing the rapid cooling of the heated and softened glass fiber 12. The extension pipe 17 is formed so as to be separable from the core tube 13 in terms of maintenance and the like, and is detachably attached to the lower wall 14a of the furnace casing 14 so as to communicate with the core tube 13. A joint portion between the core tube 13 and the extension tube 17 is supported by being placed on the lower wall 14a of the furnace casing 14 via a core tube receiving member 18 made of a heat-resistant electrical insulating material such as quartz. 13 and the furnace casing 14 are electrically insulated so as not to cause a large short-circuit accident. However, the core tube receiving member 18 is not limited to quartz but may be made of carbon or the core tube 13 and the extension tube 17 may be directly joined without using the core tube receiving member 18.

本発明は、延長管17の下端に板状のシャッター部材を設ける代わりに、図1のような形状の管であるシャッター管19を用いることを特徴としている。シャッター管19は、例えば、耐食性に優れた金属で形成することができ、後述するように内径が5mm〜15mmで均一径の管で、長さ(Ls)が30mm以上で形成される。延長管17は、このシャッター管19の内径にスムーズに連通するように、テーパ部を設けるようにしてもよいが、テーパ部を有しない形状であってもよい。   The present invention is characterized in that instead of providing a plate-like shutter member at the lower end of the extension pipe 17, a shutter pipe 19 which is a pipe having a shape as shown in FIG. 1 is used. The shutter tube 19 can be formed of, for example, a metal having excellent corrosion resistance. The shutter tube 19 is a tube having an inner diameter of 5 mm to 15 mm and a uniform diameter as described later, and is formed with a length (Ls) of 30 mm or more. The extension tube 17 may be provided with a tapered portion so as to communicate smoothly with the inner diameter of the shutter tube 19, but may have a shape without the tapered portion.

図2は、他の実施形態を示す図で、図1の実施形態と比べて、シャッター管にテーパ部を有している点が異なる。
なお、図1、図2の炉心管13は、ガラス母材11の下端部11aの形状に沿うように縮径部13aを設けることで、下方に流れてくる不活性ガスの流れを安定にすることの他に、ヒータ15による加熱効率を高めることができる。すなわち、ガラス母材11の下端部11aより下方の炉心管を縮径することで、下方に放射される熱を遮断して省エネ化を図ることができる。
FIG. 2 is a diagram showing another embodiment, which is different from the embodiment of FIG. 1 in that the shutter tube has a tapered portion.
In addition, the core tube 13 of FIG. 1, FIG. 2 stabilizes the flow of the inert gas which flows downward by providing the reduced diameter part 13a so that the shape of the lower end part 11a of the glass base material 11 may be followed. In addition to this, the heating efficiency by the heater 15 can be increased. That is, by reducing the diameter of the core tube below the lower end portion 11a of the glass base material 11, heat radiated downward can be cut off to save energy.

また、縮径部13aの下方を炉心管13の上方部の径より細くした縮径管部13bとすることで、不活性ガスの流れを安定にすることができる。そして、図1の例と同様に縮径管部13bの下端に、さらに延長管17を連結する場合は、この延長管17の内径は縮径管部13bの内径と異ならせてもよいが、同じ内径とするのが好ましい。
縮径管部13bの下端または延長管17の下端には、図1の場合と同様にシャッター管が設けられるが、このシャッター管20はテーパ部を有する形状のものである。
Moreover, the flow of an inert gas can be stabilized by making the diameter-reduced tube part 13b below the diameter-reduced part 13a thinner than the diameter of the upper part of the core tube 13. And when connecting the extension pipe 17 to the lower end of the reduced diameter pipe portion 13b as in the example of FIG. 1, the inner diameter of the extension pipe 17 may be different from the inner diameter of the reduced diameter pipe portion 13b. The inner diameter is preferably the same.
A shutter tube is provided at the lower end of the reduced diameter tube portion 13b or the lower end of the extension tube 17 as in the case of FIG. 1, but the shutter tube 20 has a tapered portion.

このテーパ部を有するシャッター管20は、例えば、太径部20a、テーパ部20b、細径部20cの3つのa,b,c部分に分け、それぞれの長さを、シャッター管の全長(Ls)の1/3ずつとする。シャッター管の内径等については、後述するように、太径部20a(内径2r’)を15mm以下、細径部20c(内径2r’’)を5mm以上とし、長さ(Ls)が30mm以上で形成される。なお、太径側が15mm以下、細径側が5mm以上の範囲であれば、均一径の太径部20a、細径部20cは無くてもよい。また、テーパ部20bの長さは全長の1/3より短くても良く、テーパ角θは、テーパ部20bの長さに応じて、0°(直管の場合)を超え90°未満とすることができる。なお、テーパ角が90°以上になると、ガスの流れが不安定になるため、90°未満とすることが望ましい。 The shutter tube 20 having the tapered portion is divided into, for example, three a, b, and c portions of a large-diameter portion 20a, a tapered portion 20b, and a small-diameter portion 20c, and the lengths of the respective portions are the total length (Ls) of the shutter tube. 1/3 of each. The inner diameter or the like of the shutter tube, as will be described later, 'below 15mm and small-diameter portion 20c (inner diameter 2r 2 large diameter portion 20a (inner diameter 2r 2)' a ') not less than 5 mm, a length (Ls) is 30mm It is formed as described above. In addition, if the large diameter side is 15 mm or less and the small diameter side is in the range of 5 mm or more, the large diameter portion 20a and the small diameter portion 20c having a uniform diameter may be omitted. Moreover, the length of the taper part 20b may be shorter than 1/3 of the entire length, and the taper angle θ is greater than 0 ° (in the case of a straight pipe) and less than 90 °, depending on the length of the taper part 20b. be able to. Note that when the taper angle is 90 ° or more, the gas flow becomes unstable.

なお、図1,2において、シャッター管19,20は、延長管17を介して連結する例で説明したが、延長管17を用いることなく、炉心管13の下端に直接連結する構成であってもよい。また、シャッター管19,20は、延長管17と一体構造で形成されていてもよく、管形状以外に厚板を筒状にくり抜いた形状のものであってもよい。   In FIGS. 1 and 2, the shutter tubes 19 and 20 have been described as being connected via the extension tube 17, but are configured to be directly connected to the lower end of the core tube 13 without using the extension tube 17. Also good. In addition, the shutter tubes 19 and 20 may be formed integrally with the extension tube 17, or may have a shape in which a thick plate is hollowed out in addition to the tube shape.

図3は、上述したシャッター管19,20内の不活性ガス等の流れを解析するための模式図である。図において、ガラスファイバ12は、ファイバ径が2rで、Z方向に走行速度(線速)Vで走行しているものとする。シャッター管19,20は、内径が2rで、管内には、流量Qで粘性係数μの不活性ガスが上方から下方へ流れているとする。 FIG. 3 is a schematic diagram for analyzing the flow of the inert gas or the like in the shutter tubes 19 and 20 described above. In the figure, it is assumed that the glass fiber 12 has a fiber diameter of 2r 1 and travels in the Z direction at a travel speed (linear speed) V 1 . It is assumed that the shutter tubes 19 and 20 have an inner diameter of 2r 2 and an inert gas having a flow rate Q and a viscosity coefficient μ flows from the upper side to the lower side in the tube.

そして、上記のシャッター管内で、光ファイバの移動でハーゲン・ポアズイユ流れが生じていると仮定すると、下記の理論式を用いることができる。なお、式中のPは圧力、VはZ方向の速度、rは径方向距離を示す。

Figure 2013035742
Assuming that the Hagen-Poiseuille flow is generated by the movement of the optical fiber in the shutter tube, the following theoretical formula can be used. In the formula, P is pressure, VZ is speed in the Z direction, and r is radial distance.
Figure 2013035742

ここで、半径rの光ファイバ表面の流体速度をV、半径rのシャッター管内径面の流体速度をゼロとすると、

Figure 2013035742
が得られる。 Here, when the fluid velocity of the surface of the optical fiber having the radius r 1 is V 1 and the fluid velocity of the inner surface of the shutter tube having the radius r 2 is zero,
Figure 2013035742
Is obtained.

シャッター管内の全体流量をQ(m/s)とすると、

Figure 2013035742
が得られる。 If the total flow rate in the shutter tube is Q (m 3 / s),
Figure 2013035742
Is obtained.

これに、上記のA,Bを代入して、dP/dzで纏めると、

Figure 2013035742
となり、圧力損失(圧損)の評価式を得ることができる。 Substituting the above A and B into this and summing up with dP / dz,
Figure 2013035742
Thus, an evaluation formula for pressure loss (pressure loss) can be obtained.

上記の圧損評価式から、

Figure 2013035742
が得られる。この式により、圧力勾配(dP/dz)が、ゼロとなる点(クロスポイント)を求めることができる。 From the pressure loss evaluation formula above,
Figure 2013035742
Is obtained. From this equation, a point (cross point) where the pressure gradient (dP / dz) becomes zero can be obtained.

このクロスポイントは、ガスの種類によらず、光ファイバの線速Vとシャッター管の内径rのみに依存し、後述する図5に示すように横軸をガス流量、縦軸を圧損とし、異なるシャッター管の長さごとに示したグラフで、管の長さに係らず一点で交わる交点Kで示される。このクロスポイントKにおけるガス流量が、シャッター管に外気が入り込まないようにする必要最低限のガス流量となる。すなわち、ガス流量をこのクロスポイントKにおけるQの値以上にすることによって、シャッター管に外気が入り込まないようにすることができる。 This cross point depends on only the linear velocity V 1 of the optical fiber and the inner diameter r 2 of the shutter tube, regardless of the type of gas, and the horizontal axis represents the gas flow rate and the vertical axis represents the pressure loss as shown in FIG. In the graph shown for each length of the different shutter tube, it is indicated by an intersection point K that intersects at one point regardless of the tube length. The gas flow rate at the cross point K is the minimum gas flow rate necessary to prevent outside air from entering the shutter tube. That is, by setting the gas flow rate to be equal to or higher than the Q value at the cross point K, it is possible to prevent outside air from entering the shutter tube.

一方、ガス流量Qが一定である場合、シャッター管の内径2rを小さくすることにより圧損を高め、所定の陽圧を確保することができる。図4は、横軸をシャッター管内径(mm)、縦軸を圧損勾配(Pa/m)とし、管内のガス流量を各々10,20,30(L/min)としたときのグラフである。なお、前記したように、ガス流量が少ないほどコスト的には有利であり、ガス流量を30L/min以下にすることが望ましい。図4(A)は、シャッター管内径を30mm以下で計算した例であり、図4(B)は、図(A)の領域Pの部分を拡大した図である。 On the other hand, if the gas flow rate Q is constant, increases the pressure loss by reducing the internal diameter 2r 2 of the shutter tube, it is possible to secure a predetermined positive pressure. FIG. 4 is a graph when the horizontal axis is the shutter tube inner diameter (mm), the vertical axis is the pressure loss gradient (Pa / m), and the gas flow rates in the tube are 10, 20, and 30 (L / min), respectively. As described above, the smaller the gas flow rate, the more advantageous in terms of cost, and the gas flow rate is desirably 30 L / min or less. 4A is an example in which the inner diameter of the shutter tube is calculated to be 30 mm or less, and FIG. 4B is an enlarged view of a region P in FIG.

この図からシャッター管内径が15mm以下でないと、有効な圧損勾配は得られないことが判明した。また、シャッター管内の陽圧は、大気圧に対して、少なくとも5Pa以上とするのが好ましく、この陽圧確保の観点からもシャッター管内径が15mm以下とするのが望ましい。しかし、シャッター管内径は、小さいほど大きな圧損勾配を得られるが、あまり小さいと光ファイバと接触するおそれがあり、最小のシャッター管内径は、経験的に5mm以上とするのが望ましい。   From this figure, it was found that an effective pressure loss gradient cannot be obtained unless the inner diameter of the shutter tube is 15 mm or less. The positive pressure in the shutter tube is preferably at least 5 Pa or more with respect to the atmospheric pressure, and the inner diameter of the shutter tube is preferably 15 mm or less from the viewpoint of securing this positive pressure. However, the smaller the inner diameter of the shutter tube, the larger the pressure loss gradient can be obtained. However, if the inner diameter of the shutter tube is too small, there is a risk of contact with the optical fiber, and the minimum inner diameter of the shutter tube is preferably 5 mm or more empirically.

図5は、横軸をガス流量(L/min)、縦軸を圧損(Pa)とし、シャッター管の内径10mmを一定とし、長さ(Ls)を各々0,30,50,100,200,500(mm)としたときのグラフである。
この図から、シャッター管の内径が一定で、長さも一定なら、ガス流量を増加させることで圧損を大きくすることができることがわかる。一方、シャッター管の内径が一定で、ガス流量が一定なら、シャッター管の長さを増加させることで、圧損を大きくすることができる。そして、例えば、圧損10Paを得るのに、シャッター管無し(Ls=0)の場合は、ガス流量を24L/min必要とするのに対し、シャッター管有り(Ls=500mm)の場合は、ガス流量が7L/minでよいことになる。すなわち、この場合、シャッター管を付けることにより、17L/minのガス流量を減らすことが可能となる。
In FIG. 5, the horizontal axis represents the gas flow rate (L / min), the vertical axis represents the pressure loss (Pa), the inner diameter of the shutter tube is 10 mm, and the length (Ls) is 0, 30, 50, 100, 200, respectively. It is a graph when it is set to 500 (mm).
From this figure, it can be seen that if the inner diameter of the shutter tube is constant and the length is constant, the pressure loss can be increased by increasing the gas flow rate. On the other hand, if the inner diameter of the shutter tube is constant and the gas flow rate is constant, the pressure loss can be increased by increasing the length of the shutter tube. For example, in order to obtain a pressure loss of 10 Pa, a gas flow rate of 24 L / min is required when there is no shutter tube (Ls = 0), whereas a gas flow rate when a shutter tube is present (Ls = 500 mm). Is 7 L / min. That is, in this case, the gas flow rate of 17 L / min can be reduced by attaching a shutter tube.

シャッター管の長さLsは、例え短くても、全く付けない場合(Ls=0mm)よりは、圧損の増加を期待することができる。例えば、炉心管内の陽圧を、大気圧に対して+5Pa以上を確保するには、図5のグラフからシャッター管の長さLs=30mm程度であれば、ガス流量12L/min以上流せばよく、これにより、Ls=0mmのガス流量に比べてガス流量を1/3程度削減することが期待される。したがって、シャッター管の長さLsは、少なくとも30mm以上とすることが好ましい。   Even if the length Ls of the shutter tube is short, an increase in pressure loss can be expected as compared with the case where it is not attached at all (Ls = 0 mm). For example, in order to secure the positive pressure in the reactor core tube to +5 Pa or more with respect to the atmospheric pressure, if the shutter tube length Ls is about 30 mm from the graph of FIG. This is expected to reduce the gas flow rate by about 1/3 compared to the gas flow rate of Ls = 0 mm. Therefore, the length Ls of the shutter tube is preferably at least 30 mm.

一方、シャッター管をあまり長くすると、設備や光ファイバに振動(例えば地震)などが生じた場合に、シャッター管と光ファイバとが接触するおそれがある。また、長いシャッター管は線引装置の高さ方向の距離を必要とするため、設備的な面から制約を受ける。このため、シャッター管の長さは、経験的には500mm以下とするのが望ましい。   On the other hand, if the shutter tube is too long, the shutter tube and the optical fiber may come into contact with each other when vibration (for example, an earthquake) occurs in the equipment or the optical fiber. Further, since a long shutter tube requires a distance in the height direction of the drawing device, it is restricted from the viewpoint of equipment. For this reason, it is desirable that the length of the shutter tube is empirically set to 500 mm or less.

図6は、横軸をガス流量(L/min)、縦軸を圧損勾配(Pa/m)とし、シャッター管の内径(2r)を各々5,10,15(mm)としたときのグラフである。
図6は、図4において、望ましいシャッター管の内径を5mm〜15mmとしたので、これの圧損勾配とガス流量の関係を示したものであり、シャッター管の内径を一定とすると、圧損勾配はガス流量に比例して増加する。
なお、図2に示したテーパ部を有するシャッター管においては、例えば、テーパの細径側の内径を10mm、太径側の内径を15mmとし、テーパ部の長さが全長の1/3とした場合、内径10mm管と15mm管の中間付近を通るグラフを、テーパ管の圧損勾配とすることができる。
FIG. 6 is a graph when the horizontal axis is the gas flow rate (L / min), the vertical axis is the pressure loss gradient (Pa / m), and the inner diameter (2r 2 ) of the shutter tube is 5, 10, and 15 (mm), respectively. It is.
FIG. 6 shows the relationship between the pressure loss gradient and the gas flow rate in FIG. 4 because the desirable inner diameter of the shutter tube is 5 mm to 15 mm. If the inner diameter of the shutter tube is constant, the pressure drop gradient is It increases in proportion to the flow rate.
In the shutter tube having the tapered portion shown in FIG. 2, for example, the inner diameter on the small diameter side of the taper is 10 mm, the inner diameter on the large diameter side is 15 mm, and the length of the tapered portion is 1/3 of the entire length. In this case, a graph passing near the middle between the 10 mm inner diameter tube and the 15 mm inner tube can be a pressure loss gradient of the tapered tube.

10…光ファイバ線引炉、11…ガラス母材、11a…ガラス母材の下端部、12…ガラスファイバ、13…炉心管、13a…縮径部、13b…縮径管部、14…炉筐体、15…ヒータ、16…断熱材、17…延長管、18…炉心管受け部材、19,20…シャッター管、20a…太径部、20b…テーパ部、20c…細径部。 DESCRIPTION OF SYMBOLS 10 ... Optical fiber drawing furnace, 11 ... Glass base material, 11a ... Lower end part of glass base material, 12 ... Glass fiber, 13 ... Core tube, 13a ... Reduced diameter part, 13b ... Reduced diameter pipe part, 14 ... Furnace housing Body, 15 ... heater, 16 ... heat insulating material, 17 ... extension tube, 18 ... core tube receiving member, 19, 20 ... shutter tube, 20a ... large diameter portion, 20b ... taper portion, 20c ... small diameter portion.

Claims (4)

光ファイバ用ガラス母材が挿入される炉心管と、前記炉心管を外側から加熱するヒータを収納する炉筐体とを備え、前記炉心管内に不活性ガスを上方から下方に向けて流し、前記炉心管の下部のファイバ導出口から線引きされたガラスファイバを外部に導出すると共に、前記不活性ガスを外部に放出する光ファイバの線引装置であって、
前記ファイバ導出口の下方にシャッター管部を設け、
前記ガラスファイバの外径を2r、前記シャッター管の内径を2r、前記ガラスファイバの線引速度をV、前記炉心管の下方に流れてくる不活性ガスの流量をQとしたとき、
Figure 2013035742
を満足することを特徴とする光ファイバの線引装置。
A furnace core tube into which a glass base material for optical fibers is inserted; and a furnace housing that houses a heater for heating the furnace core tube from the outside, and flowing an inert gas in the furnace core tube from above to below, An optical fiber drawing device that guides the glass fiber drawn from the fiber outlet at the bottom of the core tube to the outside and discharges the inert gas to the outside,
A shutter tube is provided below the fiber outlet,
When the outer diameter of the glass fiber is 2r 1 , the inner diameter of the shutter tube is 2r 2 , the drawing speed of the glass fiber is V 1 , and the flow rate of the inert gas flowing below the furnace core tube is Q,
Figure 2013035742
An optical fiber drawing device satisfying the above requirements.
前記シャッター管部の内径が5mm〜15mmであることを特徴とする請求項1に記載の光ファイバの線引装置。   2. The optical fiber drawing device according to claim 1, wherein an inner diameter of the shutter tube portion is 5 mm to 15 mm. 前記シャッター管部の長さが30mm以上500mm以下であることを特徴とする請求項2に記載の光ファイバの線引装置。   3. The optical fiber drawing device according to claim 2, wherein a length of the shutter tube portion is 30 mm or more and 500 mm or less. 光ファイバ用ガラス母材が挿入される炉心管と、前記炉心管を外側から加熱するヒータを収納する炉筐体とを備え、前記炉心管内に不活性ガスを上方から下方に向けて流し、前記炉心管の下部のファイバ導出口から線引きされたガラスファイバを外部に導出すると共に、前記不活性ガスを外部に放出する光ファイバの線引方法であって、
前記ファイバ導出口の下方にシャッター管部を設け、
前記ガラスファイバの外径を2r、前記シャッター管の内径を2r、前記ガラスファイバの線引速度をV、前記炉心管の下方に流れてくる不活性ガスの流量をQとしたとき、
Figure 2013035742
を満足することを特徴とする光ファイバの線引方法。
A furnace core tube into which a glass base material for optical fibers is inserted; and a furnace housing that houses a heater for heating the furnace core tube from the outside, and flowing an inert gas in the furnace core tube from above to below, An optical fiber drawing method for drawing out a glass fiber drawn from a fiber outlet at a lower part of a furnace core tube to the outside and discharging the inert gas to the outside,
A shutter tube is provided below the fiber outlet,
When the outer diameter of the glass fiber is 2r 1 , the inner diameter of the shutter tube is 2r 2 , the drawing speed of the glass fiber is V 1 , and the flow rate of the inert gas flowing below the furnace core tube is Q,
Figure 2013035742
An optical fiber drawing method characterized by satisfying
JP2012126920A 2011-07-08 2012-06-04 Apparatus and method for drawing optical fiber Pending JP2013035742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012126920A JP2013035742A (en) 2011-07-08 2012-06-04 Apparatus and method for drawing optical fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011152030 2011-07-08
JP2011152030 2011-07-08
JP2012126920A JP2013035742A (en) 2011-07-08 2012-06-04 Apparatus and method for drawing optical fiber

Publications (1)

Publication Number Publication Date
JP2013035742A true JP2013035742A (en) 2013-02-21

Family

ID=47885709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012126920A Pending JP2013035742A (en) 2011-07-08 2012-06-04 Apparatus and method for drawing optical fiber

Country Status (1)

Country Link
JP (1) JP2013035742A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017036184A (en) * 2015-08-11 2017-02-16 株式会社フジクラ Optical fiber strand manufacturing method
CN107082560A (en) * 2017-05-15 2017-08-22 江苏亨通光纤科技有限公司 A kind of optical fiber annealing extension tube
EP3995313A3 (en) * 2016-04-25 2022-07-27 Jetronica Limited Industrial printhead

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162647A (en) * 1986-01-14 1987-07-18 Sumitomo Electric Ind Ltd Drawing device for optical fiber
JPH0292838A (en) * 1988-09-29 1990-04-03 Furukawa Electric Co Ltd:The Heating furnace for drawing optical fiber
US20020178762A1 (en) * 2001-06-01 2002-12-05 Foster John D. Methods and apparatus for forming and controlling the diameter of drawn optical glass fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162647A (en) * 1986-01-14 1987-07-18 Sumitomo Electric Ind Ltd Drawing device for optical fiber
JPH0292838A (en) * 1988-09-29 1990-04-03 Furukawa Electric Co Ltd:The Heating furnace for drawing optical fiber
US20020178762A1 (en) * 2001-06-01 2002-12-05 Foster John D. Methods and apparatus for forming and controlling the diameter of drawn optical glass fiber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017036184A (en) * 2015-08-11 2017-02-16 株式会社フジクラ Optical fiber strand manufacturing method
WO2017026498A1 (en) * 2015-08-11 2017-02-16 株式会社フジクラ Method for manufacturing optical fiber strand
EP3187470A4 (en) * 2015-08-11 2018-06-20 Fujikura Ltd. Method for manufacturing optical fiber strand
CN109362229A (en) * 2015-08-11 2019-02-19 株式会社藤仓 The manufacturing method of optical fiber wire
US10427969B2 (en) 2015-08-11 2019-10-01 Fujikura Ltd. Method of manufacturing optical fiber
CN109362229B (en) * 2015-08-11 2021-10-12 株式会社藤仓 Method for manufacturing optical fiber
EP3995313A3 (en) * 2016-04-25 2022-07-27 Jetronica Limited Industrial printhead
CN107082560A (en) * 2017-05-15 2017-08-22 江苏亨通光纤科技有限公司 A kind of optical fiber annealing extension tube
CN107082560B (en) * 2017-05-15 2023-02-10 江苏亨通光纤科技有限公司 Optical fiber annealing extension tube

Similar Documents

Publication Publication Date Title
KR102110322B1 (en) Apparatus for use in direct resistance heating of platinum-containing vessels
US7823419B2 (en) Optical fiber drawing furnace with gas flow tubes
JP5880522B2 (en) Optical fiber manufacturing method and optical fiber drawing furnace
KR0165004B1 (en) Optical fiber drawing furnace and drawing method
CN104936909B (en) Optical fiber manufacturing device and manufacturing method
KR102594267B1 (en) Manufacturing method of optical fiber
WO1999051534A1 (en) Furnace and method for optical fiber wire drawing
JP2011230978A (en) Apparatus and method for manufacturing optical fiber strand
JP5904204B2 (en) Glass melting apparatus, glass fiber manufacturing apparatus, and glass fiber manufacturing method
JP2016537285A (en) Apparatus and method for producing glass ribbon
JP2013035742A (en) Apparatus and method for drawing optical fiber
US8464554B2 (en) Method for stabilizing a column of molten material
JP2015074600A (en) Method of manufacturing optical fiber
EP2789590A1 (en) Sintering apparatus
CN108495825A (en) Heat-staple glass tube former and method
JP7073379B2 (en) Methods and equipment for controlling glass flow for glass forming equipment
KR102290968B1 (en) Glass tube manufacturing apparatus and method
JP6107193B2 (en) Optical fiber drawing furnace
US20020178762A1 (en) Methods and apparatus for forming and controlling the diameter of drawn optical glass fiber
JP2013203621A (en) Drawing furnace and drawing method for optical fiber
JP2870058B2 (en) Optical fiber drawing furnace and drawing method
JP2013203623A (en) Drawing furnace and drawing method for optical fiber
JP5805030B2 (en) Stopper
JP4404203B2 (en) Optical fiber manufacturing method
JP6638076B2 (en) Apparatus for generating a vapor-containing gas atmosphere and system components including such an apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161025