JP2013203152A - Vehicle driving device - Google Patents

Vehicle driving device Download PDF

Info

Publication number
JP2013203152A
JP2013203152A JP2012072102A JP2012072102A JP2013203152A JP 2013203152 A JP2013203152 A JP 2013203152A JP 2012072102 A JP2012072102 A JP 2012072102A JP 2012072102 A JP2012072102 A JP 2012072102A JP 2013203152 A JP2013203152 A JP 2013203152A
Authority
JP
Japan
Prior art keywords
torque
slip
braking
driving
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012072102A
Other languages
Japanese (ja)
Inventor
Takeshi Nishimori
剛 西森
Yoshihiro Kanamaru
善博 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012072102A priority Critical patent/JP2013203152A/en
Publication of JP2013203152A publication Critical patent/JP2013203152A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle driving device capable of simply suppressing a slip of a wheel.SOLUTION: A target front wheel driving (braking) torque Ff (Ff') of a driving source 20 when switching from a rear wheel only driving/braking state to a front and rear wheel driving/braking state is controlled to be reduced to less than a slip torque X (X') by a torque control unit 42, and thereby occurrence of a slip of a front wheel Wf driven by the driving source 20 can be suppressed without calculation of a road surface friction coefficient, and the like. Furthermore, the slip torque X (X') acquired by a slip torque acquisition unit 32 is a rear wheel driving (braking) torque Fr (Fr') of an electric motor 10 in occurrence of a slip of a rear wheel Wr driven/braked by the electric motor 10 and thereby can be more accurately detected, and occurrence of a slip of the front wheel Wf in the front and rear wheel driving/braking state can be more reliably suppressed.

Description

本発明は、車両用駆動装置に関する。   The present invention relates to a vehicle drive device.

特許文献1には、車両に設けられた複数の車輪それぞれを独立して駆動する電動モータと、車両が停止状態を維持しつつ、車輪がスリップを生じるように、電動モータから出力される駆動トルクを調節する駆動力制御部と、複数の車輪それぞれの駆動トルクを検出する駆動トルク検出部と、いずれかの車輪がスリップを開始する時点の該車輪の駆動トルクに基づいて路面摩擦係数を算出する摩擦係数算出部と、を備える路面摩擦係数検出装置が記載されており、走行前の車両停止時に路面摩擦係数を検出することを図っている。   Patent Document 1 discloses an electric motor that independently drives each of a plurality of wheels provided in a vehicle, and a driving torque that is output from the electric motor so that the wheels slip while maintaining the vehicle in a stopped state. A road surface friction coefficient is calculated based on a driving torque control unit that adjusts the driving torque, a driving torque detection unit that detects the driving torque of each of the plurality of wheels, and a driving torque of the wheel when any of the wheels starts to slip. A road surface friction coefficient detection device including a friction coefficient calculation unit is described, and the road surface friction coefficient is detected when the vehicle stops before traveling.

特開2005−207953号公報JP 2005-207953 A

ところで、雪上路面や濡れた路面など、摩擦係数が低い路面を車両が走行する場合、ドライバによってアクセルペダル開度が大きくされた際に、車輪のスリップが発生することがあり、車両の走行性能が適切に維持できないという問題があった。そこで、上述の特許文献1記載の発明を用いることによって路面摩擦係数を検出し、当該路面摩擦係数に基づいて車輪の制駆動を制御して、車輪のスリップを抑制することが一案として考えられる。   By the way, when a vehicle travels on a road surface with a low coefficient of friction such as a snowy road surface or a wet road surface, a wheel slip may occur when the accelerator pedal opening is increased by the driver, and the vehicle's running performance is reduced. There was a problem that it could not be maintained properly. Therefore, it is conceivable to detect the road surface friction coefficient by using the invention described in Patent Document 1 described above and control the braking / driving of the wheel based on the road surface friction coefficient to suppress the wheel slip. .

しかしながら、特許文献1記載の技術では、路面摩擦係数を算出する際に、スリップ開始時点の駆動トルク、車輪の動半径、及び車輪荷重を考慮しなければならない等、算出方法が煩雑であり、算出値が精確でない虞があった。   However, in the technique described in Patent Document 1, when calculating the road surface friction coefficient, the calculation method is complicated, such as driving torque at the start of slip, wheel radius, and wheel load must be taken into account. There was a possibility that the value was not accurate.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、簡便に車輪のスリップを抑制することが可能な車両用駆動装置を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a vehicle drive device capable of easily suppressing wheel slip.

上記の目的を達成するために、請求項1に記載の発明は、
車両(例えば、後述の実施形態の車両3)の前輪(例えば、後述の実施形態の前輪Wf)及び後輪(例えば、後述の実施形態の後輪Wr)の何れか一方の車輪を制駆動する電動機(例えば、後述の実施形態の電動機10)と
前記前輪と前記後輪の何れか他方の車輪を制駆動する駆動源(例えば、後述の実施形態の駆動源20)と
前記一方の車輪に所定以上のスリップである超過スリップが発生したことを取得するスリップ取得装置(例えば、後述の実施形態のスリップ取得装置30)と、
前記電動機及び前記駆動源による前記車輪の制駆動を制御する車両制御装置(例えば、後述の実施形態の車両制御装置40)と、
を備え、
前記スリップ取得装置は、前記超過スリップが発生したときの前記電動機のトルク(例えば、後述の実施形態の後輪駆動トルクFr、後輪制動トルクFr´)であるスリップトルク(例えば、後述の実施形態のスリップトルクX、X´)を取得するスリップトルク取得手段(例えば、後述の実施形態のスリップトルク取得部32)を有し、
前記車両制御装置は、
前記電動機が発生するトルク及び前記駆動源が発生するトルクを制御するトルク制御手段(例えば、後述の実施形態のトルク制御部42)と、
前記電動機のみによって前記車両の総トルク(例えば、後述の実施形態の総駆動トルク、総制動トルク)を発生する一方輪単独制駆動状態と、前記電動機及び前記駆動源によって前記車両の総トルクを発生する前後輪制駆動状態と、を切り替える制駆動状態制御手段(例えば、後述の実施形態の制駆動状態制御部44)と、
を有する車両用駆動装置(例えば、後述の実施形態の車両用駆動装置1)であって、
前記制駆動状態制御手段は、前記一方輪単独制駆動状態で前記スリップ取得装置が前記超過スリップが発生したことを取得したときに、前記前後輪制駆動状態に切り替え、
前記トルク制御手段は、前記一方輪単独制駆動状態から前記前後輪制駆動状態に切り替えたときの前記駆動源のトルク(例えば、後述の実施形態の目標前輪駆動トルクFf、目標前輪制動トルクFf´)を、前記スリップトルク未満に抑制制御する
ことを特徴とする。
In order to achieve the above object, the invention described in claim 1
One of the front wheels (for example, the front wheel Wf of the embodiment described later) and the rear wheel (for example, the rear wheel Wr of the embodiment described later) of the vehicle (for example, the vehicle 3 of the embodiment described later) is braked / driven. An electric motor (for example, an electric motor 10 in an embodiment described later), a drive source for braking / driving one of the front wheels and the rear wheels (for example, a drive source 20 in an embodiment described later), and a predetermined value for the one wheel A slip acquisition device (for example, a slip acquisition device 30 in an embodiment described later) that acquires that an excess slip that is the above slip has occurred;
A vehicle control device that controls braking and driving of the wheels by the electric motor and the drive source (for example, a vehicle control device 40 according to an embodiment described later);
With
The slip acquisition device is a slip torque (for example, an embodiment described later) that is a torque of the electric motor (for example, a rear wheel driving torque Fr, a rear wheel braking torque Fr ′ described later) when the excess slip occurs. Slip torque acquisition means (for example, slip torque acquisition unit 32 of an embodiment described later)
The vehicle control device includes:
Torque control means for controlling the torque generated by the electric motor and the torque generated by the drive source (for example, a torque control unit 42 in an embodiment described later);
The one-wheel single braking / driving state in which the total torque of the vehicle (for example, the total driving torque and total braking torque in the embodiments described later) is generated only by the electric motor, and the total torque of the vehicle is generated by the electric motor and the driving source. Braking / driving state control means for switching between front and rear wheel braking / driving states (for example, braking / driving state control unit 44 in an embodiment described later);
A vehicle drive device (for example, a vehicle drive device 1 of an embodiment described later),
The braking / driving state control means switches to the front / rear wheel braking / driving state when the slip acquisition device acquires that the excess slip has occurred in the one-wheel single braking / driving state,
The torque control means includes torque of the drive source when the single wheel single braking / driving state is switched to the front / rear wheel braking / driving state (for example, a target front wheel driving torque Ff, a target front wheel braking torque Ff ′ in an embodiment described later). ) Is controlled to be less than the slip torque.

また、請求項2に記載の発明は、請求項1に記載の構成に加えて、
前記トルク制御手段は、前記抑制制御の実行中に、前記一方の車輪と前記他方の車輪との回転数差が所定の閾値以下となったとき、前記抑制制御を解除する
ことを特徴とする。
Moreover, in addition to the structure of Claim 1, the invention of Claim 2 is
The torque control means cancels the suppression control when the rotational speed difference between the one wheel and the other wheel becomes a predetermined threshold value or less during execution of the suppression control.

また、請求項3に記載の発明は、請求項1又は2に記載の構成に加えて、
前記駆動源は、内燃機関(例えば、後述の実施形態の内燃機関22)である
ことを特徴とする。
In addition to the configuration described in claim 1 or 2, the invention described in claim 3
The drive source is an internal combustion engine (for example, an internal combustion engine 22 of an embodiment described later).

請求項1に記載の発明によれば、制駆動状態制御手段は、一方輪単独制駆動状態でスリップ取得装置が一方の車輪にスリップが発生したことを取得したときに、前後輪制駆動状態に切り替えるので、スリップ発生時の車両の駆動性能及び制動性能を向上させることが可能である。
さらに、トルク制御手段は、一方輪単独制駆動状態から前後輪制駆動状態に切り替えたときの駆動源のトルクをスリップトルク未満に抑制制御するトルク抑制手段を有するので、路面摩擦係数の算出等をすることがなく、駆動源が制駆動する車輪(他方の車輪)のスリップ発生を抑制することが可能である。
また、スリップトルク取得手段が取得するスリップトルクは、電動機によって制駆動される車輪(一方の車輪)にスリップが発生したときの電動機のトルクであるので、より精確に検出可能であり、前後輪制駆動状態における他方の車輪のスリップ発生をより確実に抑制可能である。
According to the first aspect of the present invention, the braking / driving state control means enters the front / rear wheel braking / driving state when the slip acquisition device acquires that one wheel has slipped in the one-wheel single braking / driving state. Since switching is performed, it is possible to improve the driving performance and braking performance of the vehicle when a slip occurs.
Furthermore, the torque control means has torque suppression means for controlling the torque of the drive source to be less than the slip torque when switching from the one-wheel single braking / driving state to the front / rear wheel braking / driving state. Therefore, it is possible to suppress the occurrence of slipping on the wheel (the other wheel) driven and controlled by the drive source.
Further, the slip torque acquired by the slip torque acquisition means is the torque of the motor when a slip is generated on the wheel (one wheel) driven and controlled by the motor, so that it can be detected more accurately, and the front and rear wheel control It is possible to more reliably suppress the occurrence of slipping on the other wheel in the driving state.

請求項2に記載の発明によれば、トルク制御手段は、抑制制御の実行中に一方の車輪と他方の車輪との回転数差が所定の閾値以下となったとき、抑制制御を解除する。したがって、前後輪制駆動状態における他方の車輪のスリップ発生を抑制した上で、駆動源のトルクを大きくし、車両の総トルクを大きくすることが可能となる。   According to the second aspect of the present invention, the torque control means releases the suppression control when the rotational speed difference between the one wheel and the other wheel becomes equal to or less than a predetermined threshold during the execution of the suppression control. Accordingly, it is possible to increase the torque of the drive source and increase the total torque of the vehicle while suppressing the occurrence of slipping of the other wheel in the front and rear wheel braking drive state.

請求項3に記載の発明によれば、前輪及び後輪の一方の車輪は電動機によって制駆動され、他方の車輪は内燃機関によって制駆動されるので、走行条件によって電動機及び内燃機関の出力割合を変化させて、効率の良い走行が可能となる。   According to the third aspect of the present invention, one of the front wheels and the rear wheels is controlled by the electric motor, and the other wheel is controlled by the internal combustion engine. It is possible to change the driving efficiency.

本発明に係る車両用駆動装置を搭載可能な車両の一実施形態を示すブロック図である。1 is a block diagram showing an embodiment of a vehicle on which a vehicle drive device according to the present invention can be mounted. 時間と各パラメータとの関係を表すグラフであり、(a)はアクセルペダル開度、(b)はトルク、(c)は4WD要求フラグ及びスリップ判定フラグを示すグラフである。It is a graph showing the relationship between time and each parameter, (a) is an accelerator pedal opening, (b) is a torque, (c) is a graph which shows a 4WD request flag and a slip determination flag. 車輪のスリップを抑制する制御フローを示す図である。It is a figure which shows the control flow which suppresses the slip of a wheel. 比較例に係る時間と各パラメータとの関係を表すグラフであり、(a)はアクセルペダル開度、(b)はトルク、(c)は4WD要求フラグ及びスリップ判定フラグ、(d)は車輪速を示すグラフである。It is a graph showing the relationship between the time which concerns on a comparative example, and each parameter, (a) is an accelerator pedal opening degree, (b) is a torque, (c) is a 4WD request flag and a slip determination flag, (d) is a wheel speed. It is a graph which shows.

先ず、本発明に係る車両用駆動装置の一実施形態を図面に基づいて説明する。
本発明に係る車両用駆動装置1は、例えば、図1に示すような駆動システムのハイブリッド車両3に用いられ、車両3の後輪Wr(RWr、LWr)を制動又は駆動する(以後「制駆動する」という。)電動機10と、前輪Wfを制駆動する駆動源20と、を備える。
First, an embodiment of a vehicle drive device according to the present invention will be described with reference to the drawings.
The vehicle drive device 1 according to the present invention is used, for example, in a hybrid vehicle 3 having a drive system as shown in FIG. 1, and brakes or drives the rear wheels Wr (RWr, LWr) of the vehicle 3 (hereinafter referred to as “braking and driving”). The electric motor 10 and the drive source 20 for braking / driving the front wheels Wf are provided.

電動機10は、第1及び第2電動機10A、10Bからなり、これら第1及び第2電動機10A、10Bの動力は、それぞれ減速機12A、12Bによって減速されて後輪RWr、LWrに伝達される。駆動源20は、内燃機関22と電動機24とが直列に接続されることによって構成されており、その動力はトランスミッション26を介して前輪Wfに伝達される。また、第1及び第2電動機10A、10Bと電動機24とは、バッテリ5に接続され、バッテリ5からの電力供給と、バッテリ5へのエネルギー回生が可能となっている。   The electric motor 10 includes first and second electric motors 10A and 10B. The powers of the first and second electric motors 10A and 10B are decelerated by the speed reducers 12A and 12B and transmitted to the rear wheels RWr and LWr, respectively. The drive source 20 is configured by connecting an internal combustion engine 22 and an electric motor 24 in series, and the power is transmitted to the front wheels Wf via the transmission 26. Further, the first and second electric motors 10A and 10B and the electric motor 24 are connected to the battery 5 so that power supply from the battery 5 and energy regeneration to the battery 5 are possible.

後輪Wrには、所定以上の加速スリップ又は減速スリップ(以後、単に「スリップ」と呼ぶことがある。)が発生したことを取得可能なスリップ取得装置30が設けられている。スリップ取得装置30は、後輪Wrにスリップが発生したときの電動機10の後輪駆動(制動)トルクFr(Fr´)をスリップトルクX(X´)として取得及び記憶するスリップトルク取得部32を有している。なお、スリップトルク取得部32による、電動機10の後輪駆動(制動)トルクFr(Fr´)の取得は、実測によるものでも、電動機10の電流値や回転数等に基づく推定によるものでもよい。   The rear wheel Wr is provided with a slip acquisition device 30 that can acquire that an acceleration slip or a deceleration slip (hereinafter, simply referred to as “slip”) that exceeds a predetermined value has occurred. The slip acquisition device 30 includes a slip torque acquisition unit 32 that acquires and stores the rear wheel drive (braking) torque Fr (Fr ′) when the slip occurs in the rear wheel Wr as the slip torque X (X ′). Have. The acquisition of the rear wheel drive (braking) torque Fr (Fr ′) of the electric motor 10 by the slip torque acquisition unit 32 may be based on actual measurement or estimation based on the current value, the rotational speed, etc. of the electric motor 10.

さらに、車両用駆動装置1は、入力されるシフトポジション、車速、アクセルペダル開度、ブレーキペダル踏込量等に基づいた車両状態の判定をし、且つ電動機10及び駆動源20による後輪Wr及び前輪Wfの制駆動を制御する車両制御装置40を備える。車両制御装置40は、電動機10が発生するトルク(後輪駆動トルクFr又は後輪制動トルクFr´)及び駆動源20が発生するトルク(前輪駆動トルク又は前輪制動トルク)を制御するトルク制御部42と、電動機10及び駆動源20の制駆動状態を切り替える制駆動状態制御部44と、を有する。制駆動状態制御部44は、電動機10のみによって車両3の総トルク(総駆動トルク又は総制動トルク)を発生する後輪単独制駆動状態(一方輪単独制駆動状態)と、電動機10及び駆動源20によって車両3の総トルクを発生する前後輪制駆動状態と、駆動源20のみによって車両3の総トルクを発生する前輪単独制駆動状態と、を切り替えることが可能である。   Further, the vehicle drive device 1 determines the vehicle state based on the input shift position, vehicle speed, accelerator pedal opening, brake pedal depression amount, and the like, and the rear wheel Wr and front wheel by the electric motor 10 and the drive source 20. A vehicle control device 40 that controls braking / driving of Wf is provided. The vehicle control device 40 controls the torque (rear wheel driving torque Fr or rear wheel braking torque Fr ′) generated by the electric motor 10 and the torque (front wheel driving torque or front wheel braking torque) generated by the drive source 20. And a braking / driving state control unit 44 for switching the braking / driving states of the electric motor 10 and the drive source 20. The braking / driving state control unit 44 includes a rear wheel single braking / driving state (one-wheel single braking / driving state) in which the total torque (total driving torque or total braking torque) of the vehicle 3 is generated only by the electric motor 10, and the electric motor 10 and the driving source. It is possible to switch between a front and rear wheel braking / driving state in which the total torque of the vehicle 3 is generated by 20 and a front wheel single braking / driving state in which the total torque of the vehicle 3 is generated only by the drive source 20.

例えば車両3を駆動する場合、制駆動状態制御部44は、低車速域では後輪単独駆動状態(RWD)に切り替えてEV発進、EV加速がなされ、アクセルペダルが深く踏まれた時や、後述する後輪Wrにスリップが発生した時など加速が必要とされる状況では前後輪駆動状態(4WD)に切り替え、車速があがりエンジン効率の良い高車速走行に至った状況では、前輪単独駆動状態(FWD)に切り替えてENG走行がなされる。   For example, when driving the vehicle 3, the braking / driving state control unit 44 switches to the rear wheel single drive state (RWD) in the low vehicle speed range to start EV and accelerate, and when the accelerator pedal is stepped on deeply, In the situation where acceleration is required, such as when the rear wheel Wr slips, the front-wheel drive state (4WD) is switched, and in the situation where the vehicle speed increases and the engine efficiency is high, the front-wheel alone drive state ( FNG) is switched to ENG traveling.

次に、上述のように構成された車両用駆動装置1によって、前輪Wf及び後輪Wrのスリップ発生を抑制する方法について、車両3の発進時を例にして図2及び3を用いて説明する。   Next, a method for suppressing the occurrence of slippage of the front wheels Wf and the rear wheels Wr by the vehicle drive device 1 configured as described above will be described with reference to FIGS. .

先ず、車両3を発進させる場合、図2(a)に示すように、アクセルペダル(AP)開度に基づいて車両3の目標総駆動トルクFcarが設定される(ステップS1)。そして、制駆動状態制御部44によって車両3の駆動状態が後輪単独駆動状態(RWD)とされ、トルク制御部42によって電動機10の後輪駆動トルクFrが目標総駆動トルクFcarと等しくなるよう(Fr=Fcar)に制御される(ステップS2)。したがって、ドライバがアクセルペダル開度を大きくするにしたがって、目標総駆動トルクFcar及び後輪駆動トルクFrは大きくなる。   First, when starting the vehicle 3, as shown in FIG. 2A, the target total drive torque FCar of the vehicle 3 is set based on the accelerator pedal (AP) opening (step S1). Then, the braking / driving state control unit 44 changes the driving state of the vehicle 3 to the rear wheel single driving state (RWD), and the torque control unit 42 makes the rear wheel driving torque Fr of the electric motor 10 equal to the target total driving torque FCar ( Fr = FCar) (step S2). Accordingly, the target total drive torque FCar and the rear wheel drive torque Fr increase as the driver increases the accelerator pedal opening.

ここで、スリップ取得装置30は後輪Wrに加速スリップが発生したか否かをリアルタイムで検出し(ステップS3)、加速スリップが発生していない場合には、ステップS10に移行し後輪単独駆動状態(RWD)のままノーマルモードとして走行を続ける。   Here, the slip acquisition device 30 detects in real time whether or not an acceleration slip has occurred in the rear wheel Wr (step S3), and if no acceleration slip has occurred, the process proceeds to step S10 to drive the rear wheel alone. Continue running in normal mode with the state (RWD).

一方、ステップS3で、車両3が発進して時間Tsだけ経ったときに、スリップ取得装置30が後輪Wrの加速スリップ発生を検出した場合には、スリップ判定フラグが立つと同時に4WD要求フラグが立つ(図2(c)参照)。そして、スリップトルク取得部32は、後輪Wrの加速スリップが発生したときの電動機10の後輪駆動トルクFrを取得してスリップトルクXとして記憶する(ステップS4)。その後、後輪Wrの加速スリップを防止するために、トルク制御部42は、電動機10の後輪駆動トルクFrをスリップトルクX未満となるように制御する(Fr<X)。   On the other hand, if the slip acquisition device 30 detects the occurrence of acceleration slip of the rear wheel Wr when the vehicle 3 has started in step S3 and time Ts has elapsed, the slip determination flag is set and at the same time the 4WD request flag is set. Stand up (see FIG. 2C). Then, the slip torque acquisition unit 32 acquires the rear wheel drive torque Fr when the acceleration slip of the rear wheel Wr occurs and stores it as the slip torque X (step S4). Thereafter, in order to prevent acceleration slip of the rear wheel Wr, the torque control unit 42 controls the rear wheel drive torque Fr of the electric motor 10 to be less than the slip torque X (Fr <X).

次に、前輪Wfの加速スリップ発生を防ぐために、トルク制御部42が駆動源20の目標前輪駆動トルクFfを上述のスリップトルクX未満に抑制制御した上で(Ff<X)(ステップS5)、4WD要求がなされ(ステップS6)、制駆動状態制御部44によって車両3の駆動状態が前後輪駆動状態(4WD)に切り替えられてスリップ4WDモードとして走行する(ステップS7)。なお、図2(b)においては、目標前輪駆動トルクFfは、スリップトルクXの0.9倍程度(Ff≒0.9X)となるように設定した例を示したが、スリップトルクXの1未満のゲイン倍(Ff=aX、0<a<1)となるように設定される限り、特に限定されない。   Next, in order to prevent the occurrence of acceleration slip of the front wheel Wf, the torque control unit 42 controls the target front wheel drive torque Ff of the drive source 20 to be less than the above-described slip torque X (Ff <X) (step S5). A 4WD request is made (step S6), and the driving state of the vehicle 3 is switched to the front and rear wheel driving state (4WD) by the braking / driving state control unit 44 to travel in the slip 4WD mode (step S7). FIG. 2B shows an example in which the target front wheel drive torque Ff is set to be about 0.9 times the slip torque X (Ff≈0.9X). The gain is not particularly limited as long as the gain is set to be less than (Ff = aX, 0 <a <1).

ここで、図2(b)に示すように、目標総駆動トルクFcarがスリップトルクXの2倍以上である場合(Fcar≧2X)、後輪駆動トルクFrと目標前輪駆動トルクFfとの和は、スリップトルクXの2倍未満であるから(Fr+Ff<2X)目標総駆動トルクFcar未満となる(Fr+Ff<Fcar)。このように、発進時におけるスリップ4WDモードのまま走行すると、ドライバーが要求するトルクに十分に対応できず、加速感が鈍った印象を与える虞がある。   Here, as shown in FIG. 2B, when the target total drive torque FCar is twice or more the slip torque X (Fcar ≧ 2X), the sum of the rear wheel drive torque Fr and the target front wheel drive torque Ff is Since it is less than twice the slip torque X (Fr + Ff <2X), it becomes less than the target total drive torque FCar (Fr + Ff <FCar). As described above, if the vehicle travels in the slip 4WD mode at the time of starting, it may not be able to sufficiently cope with the torque required by the driver and may give an impression that the feeling of acceleration is dull.

そこで、本発明では、目標前輪駆動トルクFfをスリップトルクX未満(Ff<X)に抑制する制御の実行中に、前輪Wfと後輪Wrの回転数差が事前に設定した閾値以下となったとき、スリップが収束したと判断し、目標前輪駆動トルクFfの抑制制御を解除する。そして、目標前輪駆動トルクFfを徐々に大きくし、後輪駆動トルクFrと目標前輪駆動トルクFfとの和が目標総駆動トルクFcarと等しくなるように制御する(Ff=Fcar−Fr)。このように制御することによって、発進時のスリップ発生を抑制しつつ、ドライバーの加速要求に対応することが可能となる。   Therefore, in the present invention, the difference between the rotational speeds of the front wheel Wf and the rear wheel Wr becomes equal to or less than a preset threshold value during execution of the control for suppressing the target front wheel drive torque Ff to be less than the slip torque X (Ff <X). At this time, it is determined that the slip has converged, and the suppression control of the target front wheel drive torque Ff is released. Then, the target front wheel driving torque Ff is gradually increased, and control is performed so that the sum of the rear wheel driving torque Fr and the target front wheel driving torque Ff becomes equal to the target total driving torque FCar (Ff = Fcar−Fr). By controlling in this way, it becomes possible to respond to the driver's acceleration request while suppressing the occurrence of slipping at the start.

なお、図示しないが、目標総駆動トルクFcarがスリップトルクXの2倍未満である場合は(Fcar<2X)、後輪駆動トルクFrと目標前輪駆動トルクFfとの和を目標総駆動トルクFcarと等しくすることが可能であるので(Fr+Ff=Fcar)、上述のような問題は発生しない。   Although not shown, when the target total driving torque Fcar is less than twice the slip torque X (Fcar <2X), the sum of the rear wheel driving torque Fr and the target front wheel driving torque Ff is set as the target total driving torque Fcar. Since they can be made equal (Fr + Ff = FCar), the above-mentioned problem does not occur.

また、本発明の車両用駆動装置1は、車両3の制動時においても、前輪Wf及び後輪Wrの減速スリップ発生を抑制することが可能である。より具体的に、車両3を制動させる場合、先ず、ブレーキペダルの踏込量に基づいて車両3の目標総制動トルクFcar´が設定される。そして、制駆動状態制御部44によって車両3の制動状態が後輪単独制動状態(一方輪単独制動状態)とされ、トルク制御部42によって電動機10の後輪制動(回生)トルクFr´が車両3の目標総制動トルクFcar´と等しくなるよう(Fr´=Fcar´)に制御される。次いで、スリップトルク取得部32は、後輪単独制動状態で後輪Wrに減速スリップ(ロック)が発生したときの電動機10の後輪制動トルクFr´をスリップトルクX´として取得する。そして、トルク制御部42によって駆動源20の目標前輪制動トルクFf´がスリップトルクX´未満に抑制された上で(Ff´<X´)、制駆動状態制御部44は前後輪制動状態に切り替える。このように構成することで、前後輪制動状態に移行した際に、前輪Wfに減速スリップが発生することを防止することが可能である。   Further, the vehicle drive device 1 of the present invention can suppress the occurrence of deceleration slip of the front wheels Wf and the rear wheels Wr even when the vehicle 3 is braked. More specifically, when the vehicle 3 is braked, first, the target total braking torque FCar ′ of the vehicle 3 is set based on the depression amount of the brake pedal. The braking / driving state control unit 44 changes the braking state of the vehicle 3 to the rear wheel single braking state (one wheel single braking state), and the torque control unit 42 applies the rear wheel braking (regeneration) torque Fr ′ to the vehicle 3. The target total braking torque FCar 'is controlled to be equal to (Fr' = Fcar '). Next, the slip torque acquisition unit 32 acquires, as the slip torque X ′, the rear wheel braking torque Fr ′ when the deceleration slip (lock) occurs in the rear wheel Wr in the rear wheel single braking state. Then, after the target front wheel braking torque Ff ′ of the drive source 20 is suppressed to be less than the slip torque X ′ by the torque control unit 42 (Ff ′ <X ′), the braking / driving state control unit 44 switches to the front and rear wheel braking state. . By configuring in this way, it is possible to prevent a deceleration slip from occurring on the front wheel Wf when shifting to the front and rear wheel braking state.

(比較例)
次に、比較例として、後輪単独駆動状態(RWD)から前後輪駆動状態(4WD)に切り替えた際に、駆動源10の目標前輪駆動トルクFfをスリップトルクX未満(Ff<X)に抑制制御しない場合について、図4を用いて説明する。
(Comparative example)
Next, as a comparative example, when the rear wheel single drive state (RWD) is switched to the front and rear wheel drive state (4WD), the target front wheel drive torque Ff of the drive source 10 is suppressed to less than the slip torque X (Ff <X). A case where the control is not performed will be described with reference to FIG.

上述の実施形態と同様、車両3を発進させる場合、アクセルペダル開度に基づいて車両3の目標総駆動トルクFcarが設定され、後輪単独駆動状態(RWD)とされ、電動機10の後輪駆動トルクFrが目標総駆動トルクFcarと等しくなるよう(Fr=Fcar)に制御される。そして、後輪Wrの加速スリップ発生を検出した場合には、スリップ判定フラグが立つと同時に4WD要求フラグが立つ。   As in the above-described embodiment, when the vehicle 3 is started, the target total drive torque FCar of the vehicle 3 is set based on the accelerator pedal opening, the rear wheel single drive state (RWD) is set, and the rear wheel drive of the electric motor 10 is performed. The torque Fr is controlled to be equal to the target total drive torque FCar (Fr = Fcar). When the occurrence of acceleration slip of the rear wheel Wr is detected, the 4WD request flag is set at the same time as the slip determination flag is set.

ここで、目標総駆動トルクFcarがスリップトルクXの2倍以上である場合に(Fcar≧2X)、後輪駆動トルクFrと目標前輪駆動トルクFfとの和が目標総駆動トルクFcarと等しくなるように目標前輪駆動トルクFfを設定したとき(Ff=Fcar−Fr)、目標前輪駆動トルクFfはスリップトルクXよりも大きくなり(Ff>X)、図4(d)に示すように前輪Wfに加速スリップが発生してしまう。このような車両発進時及び加速時の制御を、雪上路のような路面摩擦係数の低い路面で適用すると、4WDとして著しく劣った発進・加速性能となってしまう。以上のことからも、本発明の車両用駆動装置1が、路面摩擦係数の低い路面における発進・加速に非常に適したものであることがわかる。   Here, when the target total driving torque FCar is more than twice the slip torque X (Fcar ≧ 2X), the sum of the rear wheel driving torque Fr and the target front wheel driving torque Ff is equal to the target total driving torque Fcar. When the target front wheel drive torque Ff is set to (Ff = FCar−Fr), the target front wheel drive torque Ff becomes larger than the slip torque X (Ff> X), and the front wheel Wf is accelerated as shown in FIG. Slip occurs. When such vehicle start and acceleration control is applied to a road surface having a low road surface friction coefficient such as a snowy road, the start / acceleration performance is extremely inferior as 4WD. From the above, it can be seen that the vehicle drive device 1 of the present invention is very suitable for starting and acceleration on a road surface having a low road surface friction coefficient.

以上、説明したように、本実施形態の車両用駆動装置1によれば、制駆動状態制御部44は、後輪単独制駆動状態でスリップ取得装置30がスリップが発生したことを取得したときに、前後輪制駆動状態に切り替えるので、スリップ発生時の車両3の駆動性能及び制動性能を向上させることが可能である。
さらに、トルク制御部42は、後輪単独制駆動状態から前後輪制駆動状態に切り替えたときの駆動源20の目標前輪駆動(制動)トルクFf(Ff´)をスリップトルクX(X´)未満に抑制制御するので、路面摩擦係数の算出等をすることがなく、駆動源20が駆動する前輪Wfのスリップ発生を抑制することが可能である。
また、スリップトルク取得部32が取得するスリップトルクX(X´)は、電動機10によって制駆動される後輪Wrにスリップが発生したときの電動機10の後輪駆動(制動)トルクFr(Fr´)であるので、より精確に検出可能であり、前後輪制駆動状態における前輪Wfのスリップ発生をより確実に抑制可能である。
As described above, according to the vehicle drive device 1 of the present embodiment, when the braking / driving state control unit 44 acquires that the slip acquisition device 30 has slipped in the rear wheel single braking / driving state, Since the front / rear wheel braking drive state is switched, it is possible to improve the driving performance and braking performance of the vehicle 3 when a slip occurs.
Further, the torque control unit 42 reduces the target front wheel drive (braking) torque Ff (Ff ′) of the drive source 20 when the rear wheel single braking / driving state is switched from the rear wheel independent braking / driving state to less than the slip torque X (X ′). Therefore, the slip generation of the front wheels Wf driven by the drive source 20 can be suppressed without calculating the road surface friction coefficient.
Further, the slip torque X (X ′) acquired by the slip torque acquiring unit 32 is the rear wheel drive (braking) torque Fr (Fr ′) when the slip occurs in the rear wheel Wr driven by the motor 10. Therefore, it is possible to detect more accurately, and it is possible to more reliably suppress the occurrence of slip of the front wheel Wf in the front and rear wheel braking drive state.

また、トルク制御部42による抑制制御の実行中に、前輪Wfと後輪Wrとの回転数差が所定の閾値以下となったとき、上記抑制制御を解除するので、前後輪制駆動状態における前輪Wfのスリップ発生を抑制した上で、駆動源10の後輪駆動(制動)トルクFr(Fr´)を大きくし、車両3の総トルクを大きくすることが可能となる。   Further, when the rotational speed difference between the front wheel Wf and the rear wheel Wr becomes equal to or smaller than a predetermined threshold during the execution of the suppression control by the torque control unit 42, the suppression control is released, so the front wheel in the front and rear wheel braking drive state It is possible to increase the total torque of the vehicle 3 by increasing the rear wheel drive (braking) torque Fr (Fr ′) of the drive source 10 while suppressing the occurrence of slip of Wf.

また、後輪Wrは電動機10によって制駆動され、前輪Wfは駆動源20の内燃機関22によって制駆動されるので、走行条件によって電動機10及び内燃機関22の出力割合を変化させて、効率の良い走行が可能となる。   Further, since the rear wheel Wr is braked and driven by the electric motor 10 and the front wheel Wf is braked and driven by the internal combustion engine 22 of the drive source 20, the output ratio of the electric motor 10 and the internal combustion engine 22 is changed depending on the traveling conditions, and the efficiency is high. Driving is possible.

尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.

前輪Wfを制駆動する駆動源20は、内燃機関22と電動機24とが直列に接続されて構成されるとしたが、内燃機関22のみ又は電動機24のみからなる構成としてもよく、他の原動機からなる構成としてもよい。   The drive source 20 for braking / driving the front wheels Wf is configured by connecting the internal combustion engine 22 and the electric motor 24 in series. However, the drive source 20 may be configured by only the internal combustion engine 22 or only the electric motor 24, and from other prime movers. It is good also as composition which becomes.

後輪Wrを制駆動する電動機10は、第1及び第2電動機10A、10Bから構成されるとしたが、単一の電動機のみからなる構成としてもよい。   Although the electric motor 10 that brakes and drives the rear wheel Wr is configured by the first and second electric motors 10A and 10B, the electric motor 10 may be configured by only a single electric motor.

また、電動機10が前輪Wfを制駆動し、駆動源20が後輪Wrを制駆動する構成としてもよい。この場合、例えば、低車速域では前輪単独駆動状態(FWD)でEV発進、EV加速がなされ、前輪Wfがスリップしたときには、後輪Wrのスリップを抑制するために駆動源20の目標後輪駆動トルクをスリップトルク以下に抑制制御した上で、前後輪駆動状態(4WD)に切り替えられる。このような構成は、転舵状態において前輪駆動(FWD)で発進・加速して前後輪駆動状態(4WD)に切り替えられた場合、後輪Wrは特にスリップし易く、スピン状態になることもありえるため、特に有効であると考えられる。   The electric motor 10 may brake / drive the front wheel Wf, and the drive source 20 may brake / drive the rear wheel Wr. In this case, for example, in the low vehicle speed range, EV start and EV acceleration are performed in the front wheel single drive state (FWD), and when the front wheel Wf slips, the target rear wheel drive of the drive source 20 is performed to suppress the slip of the rear wheel Wr. It is possible to switch to the front and rear wheel drive state (4WD) after controlling the torque to be below the slip torque. In such a configuration, when the vehicle is started and accelerated by the front wheel drive (FWD) in the steered state and switched to the front and rear wheel drive state (4WD), the rear wheel Wr is particularly easily slipped and may be in a spin state. Therefore, it is considered to be particularly effective.

1 車両用駆動装置
3 車両
5 バッテリ
10、10A、10B 電動機
12A、12B 減速機
20 駆動源
22 内燃機関
24 電動機
26 トランスミッション
30 スリップ取得装置
32 スリップトルク取得部(スリップトルク取得手段)
40 車両制御装置
42 トルク制御部(トルク制御手段)
44 制駆動状態制御部(制駆動状態制御手段)
Fcar 目標総駆動トルク
Fcar´ 目標総制動トルク
Fr 後輪駆動トルク
Fr´ 後輪制動トルク
Ff 目標前輪駆動トルク
Ff´ 目標前輪制動トルク
Wf 前輪
Wr、RWr、LWr 後輪
X、X´ スリップトルク
DESCRIPTION OF SYMBOLS 1 Vehicle drive device 3 Vehicle 5 Battery 10, 10A, 10B Electric motor 12A, 12B Reducer 20 Drive source 22 Internal combustion engine 24 Electric motor 26 Transmission 30 Slip acquisition device 32 Slip torque acquisition part (slip torque acquisition means)
40 Vehicle control device 42 Torque control unit (torque control means)
44 Braking / driving state control unit (braking / driving state control means)
Fcar Target total driving torque Fcar 'Target total braking torque Fr Rear wheel driving torque Fr' Rear wheel braking torque Ff Target front wheel driving torque Ff 'Target front wheel braking torque Wf Front wheels Wr, RWr, LWr Rear wheels X, X' Slip torque

Claims (3)

車両の前輪及び後輪の何れか一方の車輪を制駆動する電動機と
前記前輪と前記後輪の何れか他方の車輪を制駆動する駆動源と
前記一方の車輪に所定以上のスリップである超過スリップが発生したことを取得するスリップ取得装置と、
前記電動機及び前記駆動源による前記車輪の制駆動を制御する車両制御装置と、
を備え、
前記スリップ取得装置は、前記超過スリップが発生したときの前記電動機のトルクであるスリップトルクを取得するスリップトルク取得手段を有し、
前記車両制御装置は、
前記電動機が発生するトルク及び前記駆動源が発生するトルクを制御するトルク制御手段と、
前記電動機のみによって前記車両の総トルクを発生する一方輪単独制駆動状態と、前記電動機及び前記駆動源によって前記車両の総トルクを発生する前後輪制駆動状態と、を切り替える制駆動状態制御手段と、
を有する車両用駆動装置であって、
前記制駆動状態制御手段は、前記一方輪単独制駆動状態で前記スリップ取得装置が前記超過スリップが発生したことを取得したときに、前記前後輪制駆動状態に切り替え、
前記トルク制御手段は、前記一方輪単独制駆動状態から前記前後輪制駆動状態に切り替えたときの前記駆動源のトルクを、前記スリップトルク未満に抑制制御する
ことを特徴とする車両用駆動装置。
An electric motor for braking / driving any one of the front wheels and the rear wheels of the vehicle; a drive source for braking / driving either the front wheels or the rear wheels; and an excess slip which is a predetermined slip or more on the one wheel A slip acquisition device for acquiring that occurred,
A vehicle control device for controlling braking / driving of the wheels by the electric motor and the drive source;
With
The slip acquisition device has slip torque acquisition means for acquiring a slip torque that is a torque of the electric motor when the excess slip occurs,
The vehicle control device includes:
Torque control means for controlling the torque generated by the electric motor and the torque generated by the drive source;
Braking / driving state control means for switching between a one-wheel single braking / driving state in which the total torque of the vehicle is generated only by the electric motor and a front / rear wheel braking / driving state in which the total torque of the vehicle is generated by the electric motor and the driving source. ,
A vehicle drive device comprising:
The braking / driving state control means switches to the front / rear wheel braking / driving state when the slip acquisition device acquires that the excess slip has occurred in the one-wheel single braking / driving state,
The vehicle drive apparatus according to claim 1, wherein the torque control means suppresses and controls the torque of the drive source to be less than the slip torque when the one-wheel single braking / driving state is switched to the front / rear wheel braking / driving state.
前記トルク制御手段は、前記抑制制御の実行中に、前記一方の車輪と前記他方の車輪との回転数差が所定の閾値以下となったとき、前記抑制制御を解除する
ことを特徴とする請求項1に記載の車両用駆動装置。
The torque control means cancels the suppression control when a rotational speed difference between the one wheel and the other wheel becomes a predetermined threshold value or less during execution of the suppression control. Item 2. The vehicle drive device according to Item 1.
前記駆動源は、内燃機関である
ことを特徴とする請求項1又は2に記載の車両用駆動装置。
The vehicle drive device according to claim 1, wherein the drive source is an internal combustion engine.
JP2012072102A 2012-03-27 2012-03-27 Vehicle driving device Pending JP2013203152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012072102A JP2013203152A (en) 2012-03-27 2012-03-27 Vehicle driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012072102A JP2013203152A (en) 2012-03-27 2012-03-27 Vehicle driving device

Publications (1)

Publication Number Publication Date
JP2013203152A true JP2013203152A (en) 2013-10-07

Family

ID=49522742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012072102A Pending JP2013203152A (en) 2012-03-27 2012-03-27 Vehicle driving device

Country Status (1)

Country Link
JP (1) JP2013203152A (en)

Similar Documents

Publication Publication Date Title
JP6546199B2 (en) Drive control device and control method, and recording medium
JP4120504B2 (en) Vehicle and vehicle control method
JP5596756B2 (en) Electric vehicle
JP2012200076A (en) Electric vehicle control device
JP2005151800A (en) Regenerative braking control method and system of four-wheel drive electric automobile
WO2013151104A1 (en) Hybrid vehicle control apparatus
JP2007210418A (en) Controller for vehicle
JP5560480B2 (en) Electric vehicle wheel slip control device
JP2008094123A (en) Vehicle controller
WO2015098933A1 (en) Vehicle drive system
JP2013132166A (en) Control device of electric vehicle
JP2013215063A (en) Creep control device of electric vehicle
JP6146292B2 (en) Hybrid car
JP2008265616A (en) Vehicle and control method for the same
JP2010241166A (en) Four-wheel drive controller and four-wheel drive control method for vehicle
JP2005006395A (en) Start driving force controller of hybrid vehicle
JP2009045946A (en) Vehicle drive force control unit
JP2014166845A (en) Wheel slip control device for electric vehicle
JP2015070779A (en) Control device for driving force during slipping of wheel of vehicle independently driving left and right wheel
JP2013183504A (en) Play elimination control device of electric vehicle
JP2013203152A (en) Vehicle driving device
JP5598103B2 (en) Electric vehicle motor lock countermeasure control device
KR100579925B1 (en) A slip control system for 4 wheel hybrid electric vehicle and method thereof
JP2007313959A (en) Control device and method for hybrid vehicle
JP2010288343A (en) Regenerative braking controller