JP2013203056A - Method for manufacturing hollow molded body, hollow molded body, and manufacturing apparatus - Google Patents

Method for manufacturing hollow molded body, hollow molded body, and manufacturing apparatus Download PDF

Info

Publication number
JP2013203056A
JP2013203056A JP2012077993A JP2012077993A JP2013203056A JP 2013203056 A JP2013203056 A JP 2013203056A JP 2012077993 A JP2012077993 A JP 2012077993A JP 2012077993 A JP2012077993 A JP 2012077993A JP 2013203056 A JP2013203056 A JP 2013203056A
Authority
JP
Japan
Prior art keywords
hollow molded
mounting table
container
lid
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012077993A
Other languages
Japanese (ja)
Other versions
JP6071122B2 (en
Inventor
Mitsuo Maeda
光男 前田
Takashi Suzuki
尚 鈴木
Hideaki Nezu
秀明 根津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2012077993A priority Critical patent/JP6071122B2/en
Priority to CN201380016095.XA priority patent/CN104205322B/en
Priority to CN201611041184.1A priority patent/CN107030957B/en
Priority to US14/387,717 priority patent/US20150037525A1/en
Priority to PCT/JP2013/059308 priority patent/WO2013147044A1/en
Publication of JP2013203056A publication Critical patent/JP2013203056A/en
Application granted granted Critical
Publication of JP6071122B2 publication Critical patent/JP6071122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/001Joining in special atmospheres
    • B29C66/0012Joining in special atmospheres characterised by the type of environment
    • B29C66/0014Gaseous environments
    • B29C66/00145Vacuum, e.g. partial vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • B29C66/2424Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain
    • B29C66/24243Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral
    • B29C66/24244Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral forming a rectangle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • B29C66/652General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool moving the welding tool around the fixed article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/746Joining plastics material to non-plastics material to inorganic materials not provided for in groups B29C66/742 - B29C66/744
    • B29C66/7465Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8126General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/81266Optical properties, e.g. transparency, reflectivity
    • B29C66/81267Transparent to electromagnetic radiation, e.g. to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/818General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps
    • B29C66/8181General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the cooling constructional aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/824Actuating mechanisms
    • B29C66/8242Pneumatic or hydraulic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7802Positioning the parts to be joined, e.g. aligning, indexing or centring
    • B29C65/7805Positioning the parts to be joined, e.g. aligning, indexing or centring the parts to be joined comprising positioning features
    • B29C65/7814Positioning the parts to be joined, e.g. aligning, indexing or centring the parts to be joined comprising positioning features in the form of inter-cooperating positioning features, e.g. tenons and mortises
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/022Mechanical pre-treatments, e.g. reshaping
    • B29C66/0224Mechanical pre-treatments, e.g. reshaping with removal of material
    • B29C66/02245Abrading, e.g. grinding, sanding, sandblasting or scraping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/026Chemical pre-treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30321Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of protrusions belonging to at least one of the parts to be joined
    • B29C66/30322Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of protrusions belonging to at least one of the parts to be joined in the form of rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7316Surface properties
    • B29C66/73161Roughness or rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3481Housings or casings incorporating or embedding electric or electronic elements

Landscapes

  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Laser Beam Processing (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hollow molded body excellent in hermetic properties, a method for manufacturing the hollow molded body excellent in hermetic properties, and a manufacturing apparatus capable of manufacturing the hollow molded body.SOLUTION: A method for manufacturing a hollow molded body 1 includes the steps of: using a container 2 made by molding a forming material including a thermoplastic resin and a lid 3 made by molding a light transmitting material; laser-furing a contact part of the top part of the sidewall and the lid 3 while decompressing a storing space S surrounded by a sidewall and a bottom part of the container 2; and sealing the decompressed storing space S.

Description

本発明は、中空成形体の製造方法、中空成形体および製造装置に関するものである。   The present invention relates to a method for manufacturing a hollow molded body, a hollow molded body, and a manufacturing apparatus.

従来、内部に収容空間を有し、気密に密閉された樹脂製の成形体(以下、中空成形体と称することがある)が知られている。このような成形体の具体例としては、絶縁性を有する容器内部に電子回路などの部品を封入し、キャップ(蓋)で密閉する中空パッケージを挙げることができる。   2. Description of the Related Art Conventionally, a resin molded body (hereinafter sometimes referred to as a hollow molded body) that has a housing space and is hermetically sealed is known. As a specific example of such a molded body, a hollow package in which a component such as an electronic circuit is enclosed in an insulating container and sealed with a cap (lid) can be mentioned.

このような中空成形体を製造する方法としては、容器とキャップとをレーザー溶着で一体化する方法が知られている(例えば、特許文献1参照)。   As a method for producing such a hollow molded body, a method of integrating a container and a cap by laser welding is known (for example, see Patent Document 1).

特開2004−235484号公報JP 2004-235484 A

このような中空成形体では、大気中の水分や酸素による封入する部品の破損を防ぐために高い気密性が要求されることがある。そのため、気密性の高い中空成形体を製造する方法が求められていた。また、気密性の高い中空成形体を容易に製造可能な製造装置が求められていた。   In such a hollow molded body, high airtightness may be required in order to prevent damage to the parts to be sealed due to moisture and oxygen in the atmosphere. Therefore, a method for producing a highly airtight hollow molded body has been demanded. There has also been a demand for a production apparatus that can easily produce a highly airtight hollow molded body.

本発明はこのような事情に鑑みてなされたものであって、気密性に優れた中空成形体の製造方法を提供することを目的とする。また、このような中空成形体の製造方法で製造された中空成形体を提供することをあわせて目的とする。また、気密性に優れた中空成形体を製造可能な製造装置を提供することをあわせて目的とする。   This invention is made | formed in view of such a situation, Comprising: It aims at providing the manufacturing method of the hollow molded object excellent in airtightness. Another object of the present invention is to provide a hollow molded body produced by such a method for producing a hollow molded body. Another object of the present invention is to provide a production apparatus capable of producing a hollow molded article having excellent airtightness.

上記の課題を解決するため、本発明の一態様は、熱可塑性樹脂を含む形成材料を成形してなる容器と、光透過性材料を成形してなる蓋とを用い、前記容器の側壁と底部とで囲まれた収容空間を減圧した状態で、前記側壁の頂部と前記蓋との接触部をレーザー溶着し、前記収容空間を減圧した状態で封止する工程を有する中空成形体の製造方法を提供する。   In order to solve the above-described problems, one embodiment of the present invention uses a container formed by molding a forming material containing a thermoplastic resin and a lid formed by molding a light-transmitting material, and includes a side wall and a bottom portion of the container. A method for producing a hollow molded body, comprising: a step of laser welding a contact portion between the top of the side wall and the lid in a state where the housing space surrounded by the pressure is reduced, and sealing in a state where the housing space is decompressed. provide.

本発明の一態様においては、前記容器を前記蓋で閉じた後、前記容器と前記蓋とを載置した作業空間を減圧することにより前記収容空間を減圧した上で、レーザー溶着を行うことが望ましい。   In one aspect of the present invention, after the container is closed by the lid, the work space in which the container and the lid are placed is depressurized to depressurize the storage space, and then laser welding is performed. desirable.

本発明の一態様においては、予め減圧した環境下で前記容器を前記蓋で密閉した後、レーザー溶着を行うことが望ましい。   In one embodiment of the present invention, it is desirable to perform laser welding after the container is sealed with the lid in a previously decompressed environment.

本発明の一態様においては、前記熱可塑性樹脂が液晶ポリエステルであることが望ましい。   In one aspect of the present invention, the thermoplastic resin is preferably a liquid crystal polyester.

本発明の一態様においては、前記光透過性材料が液晶ポリエステルを含む形成材料であることが望ましい。   In one aspect of the present invention, it is desirable that the light transmissive material is a forming material containing liquid crystal polyester.

また、本発明の一態様は、中空成形体の製造方法により製造した中空成形体を提供する。   Moreover, one aspect of the present invention provides a hollow molded body produced by a method for producing a hollow molded body.

また、本発明の一態様は、レーザー溶着を行う対象物を載置する載置台と、前記対象物にレーザー光を照射するレーザー光源と、前記載置台に面し、前記載置台との離間距離を相対的に変更可能な対向部材と、弾性材料を含む形成材料を閉環状に成形してなり、前記載置台と前記対向部材との間において、前記載置台の前記対象物を載置する領域の周囲を囲む壁材と、を有し、前記対向部材は、少なくとも前記壁材の開口部と平面的に重なって前記レーザー光を透過させるレーザー光透過部が設けられ、前記載置台と前記対向部材とは、前記離間距離が狭まることにより、前記壁材を挟持し前記載置台と前記対向部材と前記壁材とで囲まれ密閉された作業空間を形成し、かつ前記離間距離が広がることにより、前記載置台または前記対向部材と前記壁材との間が離間し、前記載置台、前記対向部材または前記壁材には、前記作業空間に接続された貫通孔が設けられ、前記貫通孔を介して前記作業空間を減圧する減圧装置をさらに有する製造装置を提供する。   Further, one embodiment of the present invention is a mounting table on which an object to be laser-welded is mounted, a laser light source that irradiates the object with laser light, and a distance from the mounting table that faces the mounting table. A region in which the object of the mounting table is placed between the mounting table and the facing member, which is formed by forming a facing member that can be relatively changed, and a forming material including an elastic material into a closed ring shape. And the counter member is provided with a laser beam transmitting portion that is at least planarly overlapped with the opening of the wall member and transmits the laser beam, and is opposed to the mounting table. When the separation distance is narrowed, the member sandwiches the wall material to form a sealed work space surrounded by the mounting table, the opposing member, and the wall material, and the separation distance increases. The mounting table or the counter member described above The wall member is spaced apart, and the mounting table, the opposing member, or the wall member is provided with a through hole connected to the work space, and the pressure is reduced through the through hole. A manufacturing apparatus further comprising the apparatus is provided.

本発明の一態様においては、前記対向部材は、光透過性材料からなり前記レーザー光透過部に設けられる放熱部材と、前記放熱部材を支持する支持体とを有することが望ましい。   In one aspect of the present invention, it is preferable that the facing member includes a heat radiating member made of a light transmissive material and provided in the laser light transmitting portion, and a support that supports the heat radiating member.

本発明の一態様においては、前記対向部材は、前記載置台と対向する面に、前記対象物を保持する治具を有することが望ましい。   In one aspect of the present invention, it is preferable that the facing member has a jig for holding the object on a surface facing the mounting table.

本発明によれば、気密性に優れた中空成形体の製造方法を提供することができる。また、このような中空成形体の製造方法で製造された中空成形体を提供することができる。また、気密性に優れた中空成形体を製造可能な製造装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the hollow molded object excellent in airtightness can be provided. Moreover, the hollow molded object manufactured with such a manufacturing method of a hollow molded object can be provided. Moreover, the manufacturing apparatus which can manufacture the hollow molded object excellent in airtightness can be provided.

本実施形態の製造方法で製造される中空成形体の一例を示す模式図である。It is a schematic diagram which shows an example of the hollow molded object manufactured with the manufacturing method of this embodiment. 本実施形態の製造装置を説明する模式図である。It is a schematic diagram explaining the manufacturing apparatus of this embodiment. 本実施形態の中空成形体の製造方法の工程図である。It is process drawing of the manufacturing method of the hollow molded object of this embodiment. 本実施形態の中空成形体の製造方法の工程図である。It is process drawing of the manufacturing method of the hollow molded object of this embodiment.

本実施形態の中空成形体の製造方法は、熱可塑性樹脂を含む形成材料を成形してなる容器と、光透過性材料を成形してなる蓋とを用い、前記容器の側壁と底部とで囲まれた収容空間を減圧した状態で、前記側壁の頂部と前記蓋との接触部をレーザー溶着し、前記収容空間を減圧した状態で封止する工程を有するものである。   The method for producing a hollow molded body of the present embodiment uses a container formed by molding a forming material containing a thermoplastic resin and a lid formed by molding a light transmissive material, and is surrounded by the side wall and the bottom of the container. In a state where the storage space is decompressed, a contact portion between the top of the side wall and the lid is laser-welded, and the housing space is sealed in a decompressed state.

また、本実施形態の中空成形体は、上述の中空成形体の製造方法により製造したものである。   Moreover, the hollow molded object of this embodiment is manufactured with the manufacturing method of the above-mentioned hollow molded object.

また、本実施形態の製造装置は、レーザー溶着を行う対象物を載置する載置台と、前記対象物にレーザー光を照射するレーザー光源と、前記載置台に面し、前記載置台との離間距離を相対的に変更可能な対向部材と、弾性材料を含む形成材料を閉環状に成形してなり、前記載置台と前記対向部材との間において、前記載置台の前記対象物を載置する領域の周囲を囲む壁材と、を有し、前記対向部材は、少なくとも前記壁材の開口部と平面的に重なって前記レーザー光を透過させるレーザー光透過部が設けられ、前記載置台と前記対向部材とは、前記離間距離が狭まることにより、前記壁材を挟持し前記載置台と前記対向部材と前記壁材とで囲まれ密閉された作業空間を形成し、かつ前記離間距離が広がることにより、前記載置台または前記対向部材と前記壁材との間が離間し、前記載置台、前記対向部材または前記壁材には、前記作業空間に接続された貫通孔が設けられ、前記貫通孔を介して前記作業空間を減圧する減圧装置をさらに有するものである。
以下、順に説明する。
In addition, the manufacturing apparatus of the present embodiment includes a mounting table on which an object to be laser-welded is mounted, a laser light source that irradiates the object with laser light, a front surface of the mounting table, and a distance from the mounting table. A facing member capable of relatively changing the distance and a forming material including an elastic material are formed in a closed ring shape, and the object of the mounting table is placed between the mounting table and the facing member. A wall material surrounding the periphery of the region, and the opposing member is provided with a laser beam transmitting portion that overlaps at least the opening of the wall material and transmits the laser beam, With the facing member, when the separation distance is narrowed, the wall material is sandwiched to form a sealed work space surrounded by the mounting table, the facing member, and the wall material, and the separation distance is widened. By the mounting table or the pair The member and the wall material are separated from each other, and the mounting table, the opposing member, or the wall material is provided with a through hole connected to the work space, and the work space is decompressed through the through hole. It further has a pressure reducing device.
Hereinafter, it demonstrates in order.

[中空成形体]
図1は、本実施形態の製造方法で製造される中空成形体の一例を示す模式図であり、図1(a)は分解斜視図、図1(b)は概略断面図である。図1(a)(b)に示すように、中空成形体1は、射出成形などの公知の方法で成形された容器2と蓋3とを有している。本実施形態の中空成形体1において、容器2と蓋3とは、レーザー溶着法を用いて接合されるものである。
[Hollow molding]
1A and 1B are schematic views showing an example of a hollow molded body manufactured by the manufacturing method of the present embodiment, in which FIG. 1A is an exploded perspective view and FIG. 1B is a schematic cross-sectional view. As shown in FIGS. 1 (a) and 1 (b), the hollow molded body 1 has a container 2 and a lid 3 molded by a known method such as injection molding. In the hollow molded body 1 of the present embodiment, the container 2 and the lid 3 are joined using a laser welding method.

容器2は、底部21と、底部21に交差する側壁22とで囲まれ、一面に開口部23が形成された収容空間Sを有する成形体である。容器2の形状は、収容空間Sに収容する部品の形状に応じて適宜設定することができる。例えば、一般に直方体の形状を有する半導体素子を収容空間Sに収容する場合は、図1(a)(b)に示すように、直方体の底部21と直交する側壁22とを有し、収容空間Sを直方体形状とすることが好ましい。その他、円柱状の外形や多角柱状の外形を有する中空成形体としてもよい。さらには、円錐台や多角錘台の外形を有する中空成形体としても構わない。   The container 2 is a molded body having a housing space S surrounded by a bottom 21 and a side wall 22 intersecting the bottom 21 and having an opening 23 formed on one surface. The shape of the container 2 can be set as appropriate according to the shape of the components housed in the housing space S. For example, when a semiconductor element having a generally rectangular parallelepiped shape is accommodated in the accommodating space S, as shown in FIGS. 1A and 1B, the rectangular parallelepiped bottom 21 and the side wall 22 orthogonal to the accommodating space S are provided. Is preferably a rectangular parallelepiped shape. In addition, a hollow molded body having a cylindrical outer shape or a polygonal columnar outer shape may be used. Furthermore, a hollow molded body having an outer shape of a truncated cone or a polygonal truncated cone may be used.

容器2には、レーザー光を吸収しエネルギーを熱に変換する着色剤が含有されている。この着色剤としては、カーボンブラック、モノアゾ染料、アントラキノン染料、ペリレン染料、フタロシアニン染料、ニグロシン染料、チタン黒、黒色酸化鉄、黄色酸化鉄、赤色酸化鉄、カドミウム黄、ニッケルチタン黄、ストロンチウム黄、含水酸化クロム、酸化クロム、アルミン酸コバルト、ウルトラマリン青などが挙げられ、1種または2種以上を使用してもよい。これらの中でも、耐熱性が高いことから、カーボンブラック、チタン黒、黒色酸化鉄が好ましい。   The container 2 contains a colorant that absorbs laser light and converts energy into heat. As this colorant, carbon black, monoazo dye, anthraquinone dye, perylene dye, phthalocyanine dye, nigrosine dye, titanium black, black iron oxide, yellow iron oxide, red iron oxide, cadmium yellow, nickel titanium yellow, strontium yellow, water content Examples thereof include chromium oxide, chromium oxide, cobalt aluminate, and ultramarine blue, and one or more kinds may be used. Among these, carbon black, titanium black, and black iron oxide are preferable because of high heat resistance.

このような着色剤は、容器2の全量(100質量部)に対して、0.01質量部以上10質量部以下含まれていることが好ましく、0.05質量部以上5質量部以下含まれていることがより好ましい。   Such a colorant is preferably contained in an amount of 0.01 parts by mass or more and 10 parts by mass or less, and 0.05 parts by mass or more and 5 parts by mass or less with respect to the total amount (100 parts by mass) of the container 2. More preferably.

また、容器2には、本発明の効果を損なわない範囲で、無機フィラーや種々の添加剤などが含有されていてもよい。   Moreover, the container 2 may contain an inorganic filler, various additives, etc. in the range which does not impair the effect of this invention.

なお、容器2の射出成形時に、収容空間Sと容器2の外部とを接続する端子を側壁22に埋め込むこともできる。例えば、あらかじめ端子形状に加工したリードフレームを金型にインサートした後、射出成形することにより、外部接続端子を有する容器2とすることができる。   Note that a terminal for connecting the accommodation space S and the outside of the container 2 can be embedded in the side wall 22 at the time of injection molding of the container 2. For example, it is possible to obtain a container 2 having external connection terminals by inserting a lead frame that has been processed into a terminal shape in advance into a mold and then performing injection molding.

蓋3は、平面視で容器2と同じ形状を有し、光透過性材料を形成材料とする板状の成形体である。   The lid 3 is a plate-like molded body having the same shape as the container 2 in plan view and made of a light transmissive material.

ここで、本明細書において「光透過性材料」の「光透過性」とは、レーザー溶着法を用いて容器2と蓋3とを溶着させるという趣旨において、レーザー溶着を行うためのレーザー光を透過させ、容器2にレーザー光を照射可能である程度の光透過率を有することを指す。したがって、ある材料が、全波長領域において光透過率が高い透明な材料ではなくても、用いるレーザー光の波長との関係において、当該波長の光に対して高い光透過率を示し、容器2にレーザー光を照射可能な蓋3を成形可能である場合には、当該材料は本明細書の「光透過性材料」であるとする。   Here, in the present specification, “light transmittance” of “light transmissive material” means that laser light for laser welding is used to weld the container 2 and the lid 3 using a laser welding method. It refers to having a certain degree of light transmittance so that the container 2 can be irradiated with laser light. Therefore, even if a certain material is not a transparent material having a high light transmittance in the entire wavelength region, it shows a high light transmittance with respect to the light of the wavelength in relation to the wavelength of the laser light to be used. In the case where the lid 3 capable of irradiating laser light can be formed, the material is assumed to be a “light transmissive material” in the present specification.

図では、蓋3は、平面視矩形の容器2と同じく、平面視矩形の形状を有している。また、蓋3において容器2と面する側には、中央部に容器2の開口部23に嵌合する凸部31が設けられている。図では、容器2の開口部23の形状に合わせて、凸部31も平面視矩形の形状を有している。   In the figure, the lid 3 has a rectangular shape in plan view, like the rectangular container 2 in plan view. Further, on the side of the lid 3 facing the container 2, a convex portion 31 that fits into the opening 23 of the container 2 is provided at the center. In the figure, in accordance with the shape of the opening 23 of the container 2, the convex portion 31 also has a rectangular shape in plan view.

なお、本実施形態では、蓋3の形状が、容器2の平面視形状や開口部23の形状に応じて、同じ平面視形状とすることとしているが、容器2と蓋3との平面視形状が異なることとしてもよい。また、蓋3の中央部が上に盛り上がっていてもよく、窪んでいてもよい。もちろん、図で示した蓋3のような凸部31を有さない、平板状の蓋を用いることとしても構わない。   In the present embodiment, the shape of the lid 3 is the same as the planar view shape of the container 2 and the shape of the opening 23, but the planar view shape of the container 2 and the lid 3. May be different. Moreover, the center part of the lid | cover 3 may be rising up and it may be depressed. Of course, a flat lid that does not have the convex portion 31 like the lid 3 shown in the figure may be used.

凸部31の周囲(周縁部32)の厚みTFは、側壁22の頂部24の幅LAに対して、0.2≦TF/LA≦1であることが好ましく、0.2≦TF/LA≦0.5であることがより好ましい。TF/LA≧0.2であると、得られる中空成形体の強度が十分なものとなる。TF/LA≦1であると、側壁22の頂部24に達する光量の減衰を抑制できる。これは、レーザー溶着時に周縁部32を透過させるレーザー光は、一部が周縁部32で散乱しレーザー光の光線軸と交差する方向に照射される成分が増えるところ、TF/LA≦1であると、散乱したとしてもレーザー光が広がる前に頂部24に照射されやすいためである。   The thickness TF around the convex portion 31 (peripheral portion 32) is preferably 0.2 ≦ TF / LA ≦ 1 with respect to the width LA of the top portion 24 of the side wall 22, and 0.2 ≦ TF / LA ≦. More preferably, it is 0.5. When TF / LA ≧ 0.2, the strength of the obtained hollow molded article is sufficient. When TF / LA ≦ 1, attenuation of the amount of light reaching the top 24 of the side wall 22 can be suppressed. This is because TF / LA ≦ 1 when the laser light transmitted through the peripheral portion 32 at the time of laser welding has a component that is partially scattered at the peripheral portion 32 and irradiated in a direction intersecting the beam axis of the laser light. This is because even if the light is scattered, the top portion 24 is likely to be irradiated before the laser light spreads.

なお、蓋3には、本発明の効果を損なわない範囲で、無機フィラーや種々の添加剤などが含有されていてもよい。   The lid 3 may contain an inorganic filler, various additives, and the like as long as the effects of the present invention are not impaired.

容器2と蓋3とは、容器2の開口部23に蓋3の凸部31が嵌合した状態で、頂部24と周縁部32とを接触させ、接触部がレーザー溶着法を用いて接合されている。すなわち、本実施形態の中空成形体の製造方法では、容器2と蓋3との接触部は、中空成形体1を平面視したときの、頂部24と周縁部32との重なり部分である。頂部24の上面と周縁部32の下面とがいずれも水平面(互いに平行な面)となっているため、接触部の大きさや形状は、頂部24の大きさや形状と一致している。   The container 2 and the lid 3 are brought into contact with the top 24 and the peripheral edge 32 in a state in which the convex portion 31 of the lid 3 is fitted to the opening 23 of the container 2, and the contact portion is joined using a laser welding method. ing. That is, in the manufacturing method of the hollow molded body of this embodiment, the contact portion between the container 2 and the lid 3 is an overlapping portion of the top 24 and the peripheral edge portion 32 when the hollow molded body 1 is viewed in plan. Since both the upper surface of the top portion 24 and the lower surface of the peripheral edge portion 32 are horizontal surfaces (surfaces parallel to each other), the size and shape of the contact portion coincide with the size and shape of the top portion 24.

容器2および蓋3の形成材料としては、光透過性を有する樹脂材料であるポリスチレン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリフェニレンエーテル樹脂、フッ素樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリアリレート樹脂、ポリエーテルイミド樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、液晶ポリエステル、ポリアミドイミド樹脂、ポリイミド樹脂などを例示することができるが、これらの中でも、流動性、耐熱性、剛性およびガスバリア性が良好であることから液晶ポリエステルが好ましい。   As a material for forming the container 2 and the lid 3, polystyrene resin, acrylic resin, polycarbonate resin, polyester resin, polyamide resin, polyacetal resin, polyphenylene ether resin, fluororesin, polyphenylene sulfide resin, polysulfone, which are resin materials having optical transparency, are used. Examples include resins, polyarylate resins, polyetherimide resins, polyethersulfone resins, polyetherketone resins, liquid crystal polyesters, polyamideimide resins, polyimide resins, etc. Among these, fluidity, heat resistance, rigidity Liquid crystal polyester is preferred because of its good gas barrier properties.

(液晶ポリエステル)
本実施形態の中空成形体の形成材料として使用可能な液晶ポリエステルは、溶融状態で液晶性を示す液晶ポリエステルであり、450℃以下の温度で溶融するものであることが好ましい。なお、液晶ポリエステルは、液晶ポリエステルアミドであってもよいし、液晶ポリエステルエーテルであってもよいし、液晶ポリエステルカーボネートであってもよいし、液晶ポリエステルイミドであってもよい。液晶ポリエステルは、原料モノマーとして芳香族化合物のみを用いてなる全芳香族液晶ポリエステルであることが好ましい。
(Liquid crystal polyester)
The liquid crystalline polyester that can be used as a material for forming the hollow molded body of the present embodiment is a liquid crystalline polyester that exhibits liquid crystallinity in a molten state, and is preferably melted at a temperature of 450 ° C. or lower. The liquid crystal polyester may be a liquid crystal polyester amide, a liquid crystal polyester ether, a liquid crystal polyester carbonate, or a liquid crystal polyester imide. The liquid crystal polyester is preferably a wholly aromatic liquid crystal polyester using only an aromatic compound as a raw material monomer.

液晶ポリエステルの典型的な例としては、
(I)芳香族ヒドロキシカルボン酸と、芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、を重合(重縮合)させてなるもの
(II)複数種の芳香族ヒドロキシカルボン酸を重合させてなるもの
(III)芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、を重合させてなるもの
(IV)ポリエチレンテレフタレート等のポリエステルと、芳香族ヒドロキシカルボン酸と、を重合させてなるもの
が挙げられる。ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンは、それぞれ独立に、その一部又は全部に代えて、その重合可能な誘導体が用いられてもよい。
As a typical example of liquid crystal polyester,
(I) An aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine, and an aromatic diamine are polymerized (polycondensed). (II) Polymerized from plural kinds of aromatic hydroxycarboxylic acids (III) At least one compound selected from the group consisting of aromatic dicarboxylic acids and aromatic diols, aromatic hydroxyamines and aromatic diamines (IV) Polyesters such as polyethylene terephthalate and aromatic hydroxycarboxylic acids are polymerized. Here, the aromatic hydroxycarboxylic acid, the aromatic dicarboxylic acid, the aromatic diol, the aromatic hydroxyamine, and the aromatic diamine are each independently replaced with a part or all of the polymerizable derivative. Also good.

芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸のようなカルボキシ基を有する化合物の重合可能な誘導体の例としては、カルボキシ基をアルコキシカルボニル基又はアリールオキシカルボニル基に変換してなるもの(エステル)、カルボキシ基をハロホルミル基に変換してなるもの(酸ハロゲン化物)、及びカルボキシ基をアシルオキシカルボニル基に変換してなるもの(酸無水物)が挙げられる。
芳香族ヒドロキシカルボン酸、芳香族ジオール及び芳香族ヒドロキシアミンのようなヒドロキシ基を有する化合物の重合可能な誘導体の例としては、ヒドロキシ基をアシル化してアシルオキシル基に変換してなるもの(アシル化物)が挙げられる。
芳香族ヒドロキシアミン及び芳香族ジアミンのようなアミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換してなるもの(アシル化物)が挙げられる。
Examples of polymerizable derivatives of a compound having a carboxy group such as an aromatic hydroxycarboxylic acid and an aromatic dicarboxylic acid include those obtained by converting a carboxy group into an alkoxycarbonyl group or an aryloxycarbonyl group (ester), carboxy Examples include those obtained by converting a group into a haloformyl group (acid halide), and those obtained by converting a carboxy group into an acyloxycarbonyl group (acid anhydride).
Examples of polymerizable derivatives of compounds having a hydroxy group such as aromatic hydroxycarboxylic acids, aromatic diols and aromatic hydroxyamines include those obtained by acylating a hydroxy group and converting it to an acyloxyl group (acylated product) ).
Examples of polymerizable derivatives of amino group-containing compounds such as aromatic hydroxyamines and aromatic diamines include those obtained by acylating an amino group and converting it to an acylamino group (acylated product).

液晶ポリエステルは、下記一般式(1)で表される繰返し単位(以下、「繰返し単位(1)」ということがある。)を有することが好ましく、繰返し単位(1)と、下記一般式(2)で表される繰返し単位(以下、「繰返し単位(2)」ということがある。)と、下記一般式(3)で表される繰返し単位(以下、「繰返し単位(3)」ということがある。)と、を有することがより好ましい。   The liquid crystalline polyester preferably has a repeating unit represented by the following general formula (1) (hereinafter sometimes referred to as “repeating unit (1)”). The repeating unit (1) and the following general formula (2) ) (Hereinafter sometimes referred to as “repeat unit (2)”) and a repeat unit represented by the following general formula (3) (hereinafter referred to as “repeat unit (3)”). More preferably).

(1)−O−Ar−CO−
(2)−CO−Ar−CO−
(3)−X−Ar−Y−
(式中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基であり;Ar及びArは、それぞれ独立にフェニレン基、ナフチレン基、ビフェニリレン基又は下記一般式(4)で表される基であり;X及びYは、それぞれ独立に酸素原子又はイミノ基であり;前記Ar、Ar及びAr中の一つ以上の水素原子は、それぞれ独立にハロゲン原子、アルキル基又はアリール基で置換されていてもよい。)
(4)−Ar−Z−Ar
(式中、Ar及びArは、それぞれ独立にフェニレン基又はナフチレン基であり;Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキリデン基である。)
(1) —O—Ar 1 —CO—
(2) —CO—Ar 2 —CO—
(3) -X-Ar 3 -Y-
(In the formula, Ar 1 is a phenylene group, a naphthylene group or a biphenylylene group; Ar 2 and Ar 3 are each independently a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following general formula (4): Yes; X and Y are each independently an oxygen atom or imino group; one or more hydrogen atoms in Ar 1 , Ar 2 and Ar 3 are each independently substituted with a halogen atom, an alkyl group or an aryl group May be.)
(4) -Ar 4 -Z-Ar 5-
(In the formula, Ar 4 and Ar 5 are each independently a phenylene group or a naphthylene group; Z is an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, or an alkylidene group.)

Ar、Ar又はArで表される前記基にある水素原子と置換可能なハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 Examples of the halogen atom that can be substituted for the hydrogen atom in the group represented by Ar 1 , Ar 2, or Ar 3 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

Ar、Ar又はArで表される前記基にある水素原子と置換可能なアルキル基の例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基、n−ヘキシル基、n−へプチル基、2−エチルヘキシル基、n−オクチル基、ノニル基及びn−デシル基等が挙げられ、その炭素数は、1〜10であることが好ましい。 Examples of the alkyl group that can be substituted for the hydrogen atom in the group represented by Ar 1 , Ar 2, or Ar 3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group. , S-butyl group, t-butyl group, n-hexyl group, n-heptyl group, 2-ethylhexyl group, n-octyl group, nonyl group, n-decyl group, etc. 10 is preferable.

Ar、Ar又はArで表される前記基にある水素原子と置換可能なアリール基の例としては、フェニル基、o−トリル基、m−トリル基、p−トリル基等のような単環式芳香族基、1−ナフチル基及び2−ナフチル基等のような縮環式芳香族基が挙げられ、その炭素数は、6〜20であることが好ましい。 Examples of the aryl group that can be substituted for the hydrogen atom in the group represented by Ar 1 , Ar 2, or Ar 3 include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, and the like. Examples thereof include condensed aromatic groups such as a monocyclic aromatic group, 1-naphthyl group and 2-naphthyl group, and the carbon number thereof is preferably 6-20.

Ar、ArまたはArで表される前記基の水素原子がこれらの基で置換されている場合、その数は、Ar、Ar又はArで表される前記基毎に、それぞれ独立に、好ましくは1個または2個であり、より好ましくは1個である。 When the hydrogen atom of the group represented by Ar 1 , Ar 2 or Ar 3 is substituted with these groups, the number of each group is represented by Ar 1 , Ar 2 or Ar 3 , respectively. Independently, it is preferably one or two, more preferably one.

前記アルキリデン基の例としては、メチレン基、エチリデン基、イソプロピリデン基、n−ブチリデン基及び2−エチルヘキシリデン基等が挙げられ、その炭素数は1〜10であることが好ましい。   Examples of the alkylidene group include a methylene group, an ethylidene group, an isopropylidene group, an n-butylidene group, and a 2-ethylhexylidene group, and the number of carbon atoms is preferably 1 to 10.

繰返し単位(1)は、所定の芳香族ヒドロキシカルボン酸に由来する繰返し単位である。繰返し単位(1)としては、Arがp−フェニレン基であるもの(p−ヒドロキシ安息香酸に由来する繰返し単位)、及びArが2,6−ナフチレン基であるもの(6−ヒドロキシ−2−ナフトエ酸に由来する繰返し単位)が好ましい。 The repeating unit (1) is a repeating unit derived from a predetermined aromatic hydroxycarboxylic acid. As the repeating unit (1), Ar 1 is a p-phenylene group (repeating unit derived from p-hydroxybenzoic acid), and Ar 1 is a 2,6-naphthylene group (6-hydroxy-2). -Repeating units derived from naphthoic acid) are preferred.

繰返し単位(2)は、所定の芳香族ジカルボン酸に由来する繰返し単位である。繰返し単位(2)としては、Arがp−フェニレン基であるもの(テレフタル酸に由来する繰返し単位)、Arがm−フェニレン基であるもの(イソフタル酸に由来する繰返し単位)、Arが2,6−ナフチレン基であるもの(2,6−ナフタレンジカルボン酸に由来する繰返し単位)、及びArがジフェニルエ−テル−4,4’−ジイル基であるもの(ジフェニルエ−テル−4,4’−ジカルボン酸に由来する繰返し単位)が好ましい。 The repeating unit (2) is a repeating unit derived from a predetermined aromatic dicarboxylic acid. As the repeating unit (2), Ar 2 is a p-phenylene group (a repeating unit derived from terephthalic acid), Ar 2 is an m-phenylene group (a repeating unit derived from isophthalic acid), Ar 2 Is a 2,6-naphthylene group (a repeating unit derived from 2,6-naphthalenedicarboxylic acid), and Ar 2 is a diphenyl ether-4,4′-diyl group (diphenyl ether- 4,4′-dicarboxylic acid-derived repeating units) are preferred.

繰返し単位(3)は、所定の芳香族ジオール、芳香族ヒドロキシルアミン又は芳香族ジアミンに由来する繰返し単位である。繰返し単位(3)としては、Arがp−フェニレン基であるもの(ヒドロキノン、p−アミノフェノール又はp−フェニレンジアミンに由来する繰返し単位)、及びArが4,4’−ビフェニリレン基であるもの(4,4’−ジヒドロキシビフェニル、4−アミノ−4’−ヒドロキシビフェニル又は4,4’−ジアミノビフェニルに由来する繰返し単位)が好ましい。 The repeating unit (3) is a repeating unit derived from a predetermined aromatic diol, aromatic hydroxylamine or aromatic diamine. As the repeating unit (3), Ar 3 is a p-phenylene group (a repeating unit derived from hydroquinone, p-aminophenol or p-phenylenediamine), and Ar 3 is a 4,4′-biphenylylene group. Those (4,4′-dihydroxybiphenyl, 4-amino-4′-hydroxybiphenyl or repeating units derived from 4,4′-diaminobiphenyl) are preferred.

繰返し単位(1)の含有量は、液晶ポリエステルを構成する全繰返し単位の合計量(液晶ポリエステルを構成する各繰返し単位の質量をその各繰返し単位の式量で割ることにより、各繰返し単位の物質量相当量(モル)を求め、それらを合計した値)に対して、好ましくは30モル%以上、より好ましくは30〜80モル%、さらに好ましくは40〜70モル%、特に好ましくは45〜65モル%である。   The content of the repeating unit (1) is the total amount of all repeating units constituting the liquid crystal polyester (the substance of each repeating unit is obtained by dividing the mass of each repeating unit constituting the liquid crystal polyester by the formula weight of each repeating unit). The equivalent amount (mole) is obtained, and the total value thereof) is preferably 30 mol% or more, more preferably 30 to 80 mol%, still more preferably 40 to 70 mol%, particularly preferably 45 to 65. Mol%.

繰返し単位(2)の含有量は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、好ましくは35モル%以下、より好ましくは10〜35モル%、さらに好ましくは15〜30モル%、特に好ましくは17.5〜27.5モル%である。   The content of the repeating unit (2) is preferably 35 mol% or less, more preferably 10 to 35 mol%, still more preferably 15 to 30 mol%, based on the total amount of all repeating units constituting the liquid crystal polyester. Most preferably, it is 17.5-27.5 mol%.

繰返し単位(3)の含有量は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、好ましくは35モル%以下、より好ましくは10〜35モル%、さらに好ましくは15〜30モル%、特に好ましくは17.5〜27.5モル%である。   The content of the repeating unit (3) is preferably 35 mol% or less, more preferably 10 to 35 mol%, still more preferably 15 to 30 mol%, based on the total amount of all repeating units constituting the liquid crystal polyester. Most preferably, it is 17.5-27.5 mol%.

例えば、液晶ポリエステルが繰返し単位(1)、繰返し単位(2)および繰返し単位(3)から構成される場合には、繰返し単位(1)の含有率が30モル%以上80モル%以下、繰返し単位(2)の含有率が10モル%以上35モル%以下、繰返し単位(3)の含有率が10モル%以上35モル%以下であることが好ましい。   For example, when the liquid crystalline polyester is composed of the repeating unit (1), the repeating unit (2), and the repeating unit (3), the content of the repeating unit (1) is 30 mol% or more and 80 mol% or less. The content of (2) is preferably 10 mol% or more and 35 mol% or less, and the content of the repeating unit (3) is preferably 10 mol% or more and 35 mol% or less.

液晶ポリエステルは、繰返し単位(1)の含有量が多いほど、溶融流動性、耐熱性、強度・剛性が向上し易いが、あまり多いと、溶融温度や溶融粘度が高くなり易く、成形に必要な温度が高くなり易い。   As the content of the repeating unit (1) increases, the liquid crystalline polyester tends to improve the melt fluidity, heat resistance, strength and rigidity. However, if the content is too large, the melting temperature and the melt viscosity tend to increase, which is necessary for molding. Temperature tends to be high.

繰返し単位(2)の含有量と繰返し単位(3)の含有量との割合は、[繰返し単位(2)の含有量]/[繰返し単位(3)の含有量](モル/モル)で表して、好ましくは0.9/1〜1/0.9、より好ましくは0.95/1〜1/0.95、さらに好ましくは0.98/1〜1/0.98である。   The ratio between the content of the repeating unit (2) and the content of the repeating unit (3) is expressed as [content of repeating unit (2)] / [content of repeating unit (3)] (mol / mol). The ratio is preferably 0.9 / 1 to 1 / 0.9, more preferably 0.95 / 1 to 1 / 0.95, and still more preferably 0.98 / 1 to 1 / 0.98.

なお、液晶ポリエステルは、繰返し単位(1)〜(3)を、それぞれ独立に2種以上有してもよい。また、液晶ポリエステルは、繰返し単位(1)〜(3)以外の繰返し単位を有してもよいが、その含有量は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、好ましくは10モル%以下、より好ましくは5モル%以下である。   In addition, liquid crystalline polyester may have 2 or more types of repeating units (1)-(3) each independently. The liquid crystal polyester may have a repeating unit other than the repeating units (1) to (3), and the content thereof is preferably 10 with respect to the total amount of all repeating units constituting the liquid crystal polyester. The mol% or less, more preferably 5 mol% or less.

液晶ポリエステルは、繰返し単位(3)として、X及びYがそれぞれ酸素原子であるものを有すること、すなわち、所定の芳香族ジオールに由来する繰返し単位を有することが好ましく、繰返し単位(3)として、X及びYがそれぞれ酸素原子であるもののみを有することがより好ましい。このようにすることで、液晶ポリエステルは、溶融粘度が低くなり易い。   The liquid crystal polyester preferably has, as the repeating unit (3), X and Y each having an oxygen atom, that is, a repeating unit derived from a predetermined aromatic diol. As the repeating unit (3), More preferably, X and Y each have only an oxygen atom. By doing in this way, liquid crystalline polyester tends to become low in melt viscosity.

液晶ポリエステルは、これを構成する繰返し単位に対応する原料モノマーを溶融重合させ、得られた重合物(プレポリマー)を固相重合させることにより、製造することが好ましい。これにより、耐熱性や強度・剛性が高い高分子量の液晶ポリエステルを操作性良く製造することができる。溶融重合は、触媒の存在下で行ってもよく、この場合の触媒の例としては、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモン等の金属化合物や、4−(ジメチルアミノ)ピリジン、1−メチルイミダゾール等の含窒素複素環式化合物が挙げられ、含窒素複素環式化合物が好ましく用いられる。   The liquid crystal polyester is preferably produced by melt polymerization of raw material monomers corresponding to the repeating units constituting the liquid crystal polyester and solid-phase polymerization of the obtained polymer (prepolymer). Thereby, high molecular weight liquid crystal polyester having high heat resistance, strength and rigidity can be produced with good operability. Melt polymerization may be carried out in the presence of a catalyst. Examples of the catalyst in this case include metals such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and antimony trioxide. Compounds, nitrogen-containing heterocyclic compounds such as 4- (dimethylamino) pyridine, 1-methylimidazole and the like can be mentioned, and nitrogen-containing heterocyclic compounds are preferably used.

液晶ポリエステルは、その流動開始温度が、好ましくは270℃以上、より好ましくは270℃以上400℃以下、さらに好ましくは280℃以上380℃以下である。流動開始温度が高いほど、耐熱性や強度・剛性が向上し易いが、あまり高いと、溶融させるために高温を要し、成形時に熱劣化しやすくなったり、溶融時の粘度が高くなり、流動性が低下したりする。   The liquid crystal polyester has a flow initiation temperature of preferably 270 ° C. or higher, more preferably 270 ° C. or higher and 400 ° C. or lower, and further preferably 280 ° C. or higher and 380 ° C. or lower. The higher the flow start temperature, the easier it is to improve heat resistance, strength and rigidity. However, if the flow start temperature is too high, a high temperature is required for melting, heat deterioration during molding is likely, and viscosity during melting increases. The sex will be reduced.

なお、流動開始温度は、フロー温度又は流動温度とも呼ばれ、毛細管レオメーターを用いて、9.8MPa(100kgf/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、内径1mm及び長さ10mmのノズルから押し出すときに、4800Pa・s(48000ポイズ)の粘度を示す温度であり、液晶ポリエステルの分子量の目安となるものである(小出直之編、「液晶ポリマー−合成・成形・応用−」、株式会社シーエムシー、1987年6月5日、p.95参照)。 The flow start temperature is also called the flow temperature or flow temperature, and the liquid crystal polyester is heated at a rate of 4 ° C./min under a load of 9.8 MPa (100 kgf / cm 2 ) using a capillary rheometer. Is a temperature showing a viscosity of 4800 Pa · s (48000 poise) when extruded from a nozzle having an inner diameter of 1 mm and a length of 10 mm, and is a measure of the molecular weight of the liquid crystalline polyester (Naide Koide, “ “Liquid Crystal Polymer—Synthesis / Molding / Application—”, CMC Co., Ltd., June 5, 1987, p. 95).

その他、蓋3の形成材料としては、光透過性を有する無機材料を用いることもできる。蓋3の形成材料としては、例えば、ソーダ石灰ガラス、石英ガラス、リン珪酸ガラス、フッ化物ガラス、鉛ガラス、ランタンガラス、バリウムガラス、硼珪酸ガラス、アルミノ珪酸ガラスなどのガラスなどが挙げられる。   In addition, as a material for forming the lid 3, an optically transparent inorganic material can be used. Examples of the material for forming the lid 3 include soda lime glass, quartz glass, phosphosilicate glass, fluoride glass, lead glass, lanthanum glass, barium glass, borosilicate glass, and aluminosilicate glass.

蓋3の形成材料がガラスのような無機材料である場合、周縁部32は、本発明の効果を損なわない範囲で、フッ化マグネシウム、ジルコニア、酸化アルミニウムからなる群より選択される1種以上の処理剤によって表面処理されていることが好ましい。表面処理は、例えば、処理剤を適切な溶媒に溶解または分散させた溶液または分散液を調製し、これをスピンコート等により塗布することで行うことができる。また、処理剤を構成する物質からなるターゲットを用い、スパッタ処理や蒸着処理を行うことにより、周縁部32を表面処理することもできる。   When the forming material of the lid 3 is an inorganic material such as glass, the peripheral edge 32 is at least one selected from the group consisting of magnesium fluoride, zirconia, and aluminum oxide as long as the effects of the present invention are not impaired. It is preferable that the surface is treated with a treatment agent. The surface treatment can be performed, for example, by preparing a solution or dispersion in which the treatment agent is dissolved or dispersed in an appropriate solvent and applying the solution by spin coating or the like. Moreover, the peripheral part 32 can also be surface-treated by performing the sputtering process and the vapor deposition process using the target which consists of a substance which comprises a processing agent.

具体的には、フッ化マグネシウムによる表面処理としては、例えば、スパッタガスとしてアルゴンガス、反応ガスとしてアルゴンで希釈したフッ素ガスを用いて、マグネシウムターゲットをスパッタし、スパッタにより発生したガスを周縁部32の表面に堆積させる方法や、蒸着材料としてフッ化マグネシウムを用い、これに電子線を照射して加熱蒸着させ、蒸発ガスを周縁部32の表面に蒸着する方法、フッ酸および酢酸マグネシウムで調整したゾル液をスピンコートなどによって周縁部32の表面に塗工する方法などが挙げられる。   Specifically, as the surface treatment using magnesium fluoride, for example, argon gas is used as a sputtering gas, and fluorine gas diluted with argon is used as a reaction gas. A method of depositing on the surface of the substrate, using magnesium fluoride as a deposition material, irradiating it with an electron beam and heating and vapor-depositing it, evaporating an evaporation gas on the surface of the peripheral portion 32, and adjusting with hydrofluoric acid and magnesium acetate For example, a method of applying the sol solution to the surface of the peripheral portion 32 by spin coating or the like.

ジルコニアによる表面処理としては、例えば、蒸着材料としてジルコニアを用い、これに電子線を照射して加熱蒸着させ、蒸発ガスを周縁部32の表面に蒸着する方法、酸化ジルコニウムゾルをスピンコートなどによって塗工する方法などが挙げられる。   As the surface treatment with zirconia, for example, zirconia is used as a vapor deposition material, it is heated and evaporated by irradiating it with an electron beam, and vaporized gas is vapor-deposited on the surface of the peripheral portion 32. The method of crafting is mentioned.

酸化アルミニウムによる表面処理としては、例えば、スパッタガスとしてアルゴンガス、反応ガスとして酸素を用い、アルミニウムターゲットをスパッタし、スパッタにより発生したガスを周縁部32の表面に堆積させる方法、蒸着材料として金属アルミニウムを用い、これに電子線を照射して加熱し、発生する蒸発ガスを酸素ガスとともに周縁部32の表面に蒸着する方法、酸化アルミニウムゾルを用い、スピンコート等により塗工する方法などが挙げられる。   As the surface treatment with aluminum oxide, for example, argon gas is used as a sputtering gas, oxygen is used as a reactive gas, an aluminum target is sputtered, and a gas generated by sputtering is deposited on the surface of the peripheral portion 32, and metal aluminum is used as a vapor deposition material. And a method of evaporating the generated evaporating gas together with oxygen gas on the surface of the peripheral portion 32, a method of coating by spin coating using an aluminum oxide sol, and the like. .

また、蓋3の形成材料がガラスのような無機材料である場合、周縁部32は、溶着強度を向上させるための粗化処理を施すこととしてもよい。この粗化処理は、例えば、クロム酸および硫酸の混合水溶液、フッ酸などのエッチング液によりエッチング処理する方法や、サンドブラスト法により、実施することができる。   Moreover, when the forming material of the lid | cover 3 is an inorganic material like glass, it is good also as performing the roughening process for improving the welding strength. This roughening treatment can be performed, for example, by a method of etching with an etching solution such as a mixed aqueous solution of chromic acid and sulfuric acid or hydrofluoric acid, or a sand blast method.

なお、上述した周縁部32の表面処理と粗化処理とは、互いに組み合わせて実施することとしても構わない。   The surface treatment and the roughening treatment of the peripheral edge portion 32 described above may be performed in combination with each other.

レーザー溶着法を用いると、少なくとも容器2を一部溶融させることで、容器2と蓋3とを溶着させるが、より高い溶着強度を得るためには、容器2および蓋3の形成材料がいずれも熱可塑性樹脂であることが好ましい。この場合、容器2および蓋3は、融点または流動開始温度が同一の形成材料を用いることが好ましく、着色剤の添加の有無以外は同じ材料を用いることがより好ましい。
本実施形態の中空成形体は、以上のような構成となっている。
When the laser welding method is used, at least a part of the container 2 is melted to weld the container 2 and the lid 3. However, in order to obtain higher welding strength, both of the forming materials of the container 2 and the lid 3 are used. A thermoplastic resin is preferred. In this case, it is preferable to use a forming material having the same melting point or flow start temperature for the container 2 and the lid 3, and it is more preferable to use the same material except for the presence or absence of the addition of a colorant.
The hollow molded body of the present embodiment is configured as described above.

[中空成形体の製造方法]
図2は、本実施形態の製造装置を説明する模式図である。
図に示す製造装置100Aは、レーザー溶着すべき容器(対象物)2および蓋(対象物)3を載置する載置台101と、容器2および蓋3を載置台101との間で挟持するヒートシンク(放熱部材、レーザー光透過部)102と、開口部103aを有しヒートシンク102を抑える枠体(支持体)103と、を備えている。ヒートシンク102と枠体103は、本発明における対向部材に該当する。枠体103の開口部103aには、光透過性材料で形成された透明部材が嵌合していてもよい。
[Method for producing hollow molded body]
FIG. 2 is a schematic diagram for explaining the manufacturing apparatus of the present embodiment.
A manufacturing apparatus 100A shown in the figure includes a mounting table 101 on which a container (object) 2 and a lid (object) 3 to be laser-welded are mounted, and a heat sink that holds the container 2 and the lid 3 between the mounting table 101. (A heat radiating member, a laser beam transmitting portion) 102 and a frame body (supporting body) 103 that has an opening 103 a and suppresses the heat sink 102. The heat sink 102 and the frame 103 correspond to opposing members in the present invention. A transparent member made of a light transmissive material may be fitted in the opening 103a of the frame 103.

載置台101は、金属材料や無機材料などの通気性が低い、または通気性がない材料を用いて形成された板状の部材である。   The mounting table 101 is a plate-like member formed using a material having a low air permeability such as a metal material or an inorganic material or a material having no air permeability.

ヒートシンク102は、後述するレーザー光の透過率が50%以上であるとともに、熱伝導率が1W/mK以上であるものである。ヒートシンク102は、レーザー光の透過率が90%以上であると好ましい。また、熱伝導率が5W/mK以上であると好ましい。このようなヒートシンク102の形成材料としては、例えば、透明アルミナ、透明ベリリア、透明マグネシウム、石英ガラス、サファイア、シリコン等を挙げることができる。   The heat sink 102 has a laser light transmittance of 50% or more, which will be described later, and a thermal conductivity of 1 W / mK or more. The heat sink 102 preferably has a laser light transmittance of 90% or more. Moreover, it is preferable in thermal conductivity being 5 W / mK or more. Examples of the material for forming the heat sink 102 include transparent alumina, transparent beryllia, transparent magnesium, quartz glass, sapphire, and silicon.

載置台101は、ばねや油圧シリンダーのような昇降機104により昇降自在に設けられており、載置台101とヒートシンク102および枠体103(対向部材)との離間距離を相対的に変更可能な構成となっている。載置台101と枠体103とは、複数(図では4本)の支柱105で接続されている。図では、昇降機104が油圧シリンダーであることとして示している。   The mounting table 101 is provided so as to be movable up and down by an elevator 104 such as a spring or a hydraulic cylinder, and the distance between the mounting table 101, the heat sink 102, and the frame body 103 (opposing member) can be relatively changed. It has become. The mounting table 101 and the frame body 103 are connected by a plurality of (four in the figure) support columns 105. In the figure, the elevator 104 is shown as a hydraulic cylinder.

また、レーザー光を射出するレーザー光源106は、水平方向に走査可能に設けられ、載置台101の方向(下方向)にレーザー光を射出可能に設けられている。レーザー光源106は、光学ミラー、光ファイバー、レンズなどを用いることにより、レーザー光を微小領域に選択的に照射したり、レーザー光の焦点距離をずらして照射したりするなど、用途に応じてレーザー光の伝達経路を変えることができる構成であるとよい。   The laser light source 106 that emits laser light is provided so as to be able to scan in the horizontal direction, and is provided so that laser light can be emitted in the direction of the mounting table 101 (downward). The laser light source 106 uses an optical mirror, an optical fiber, a lens, or the like to selectively irradiate a laser beam to a minute region or to irradiate the laser beam with a different focal length. It is preferable that the transmission path can be changed.

レーザー光源106から照射するレーザー光の種類としては、色素レーザー、エキシマレーザー、アルゴンレーザー、クリプトンレーザー、ヘリウムーネオンレーザーなどの気体レーザー、ルビーレーザー、YAGレーザーなどの固体レーザー、半導体レーザー等が挙げられる。これらの中でも、800〜1200nmの範囲の波長を有するレーザー光が、容器2および蓋3を劣化させず、容器2と蓋3とを安定的に溶着させることができるため好ましい。   Examples of the type of laser light emitted from the laser light source 106 include gas lasers such as dye lasers, excimer lasers, argon lasers, krypton lasers, helium-neon lasers, solid lasers such as ruby lasers and YAG lasers, and semiconductor lasers. . Among these, laser light having a wavelength in the range of 800 to 1200 nm is preferable because the container 2 and the lid 3 can be stably welded without deteriorating the container 2 and the lid 3.

載置台101の上には、載置台101において容器2および蓋3を載置する領域の周囲を閉環状に囲む壁材107が設けられている。壁材107は、ヒートシンク102に向けて開口しており、壁材107の開口部は、ヒートシンク102と平面的に重なっている。   On the mounting table 101, a wall material 107 is provided that surrounds the area where the container 2 and the lid 3 are mounted on the mounting table 101 in a closed ring shape. The wall material 107 opens toward the heat sink 102, and the opening of the wall material 107 overlaps the heat sink 102 in a planar manner.

壁材107は、シリコーンゴム等の合成ゴムや天然ゴムなどの弾性材料を用いて形成されている。壁材107は、載置台101と対向部材との離間距離が狭まることにより、両者の間に挟持され、載置台101とヒートシンク102と壁材107とに囲まれた作業空間を形成する。
また、壁材107は、載置台101とヒートシンク102との離間距離が広がることにより、ヒートシンク102と離間し、壁材107の上方の開口部から、レーザー溶着の対象物である容器2および蓋3を出し入れすることが可能となる。
The wall material 107 is formed using an elastic material such as synthetic rubber such as silicone rubber or natural rubber. The wall material 107 is sandwiched between the mounting table 101, the heat sink 102, and the wall material 107 by forming a working space surrounded by the mounting table 101, the heat sink 102, and the wall material 107 by reducing the distance between the mounting table 101 and the opposing member.
Further, the wall material 107 is separated from the heat sink 102 by increasing the separation distance between the mounting table 101 and the heat sink 102, and the container 2 and the lid 3 that are objects of laser welding from the opening above the wall material 107. Can be taken in and out.

壁材107の高さは、レーザー溶着の対象物である容器2および蓋3を重ね合わせた際の高さ(以下、この高さを「基準高さ」と称して説明する)を考慮して設定する。
壁材107の高さを、基準高さよりも高く設定している場合、壁材107が載置台101とヒートシンク102との間に挟持される圧力で壁材107が変形して載置台101およびヒートシンク102に密着する。その結果、密閉された作業空間を形成しやすい。
また、容器2および蓋3が、載置台101とヒートシンク102との間に挟持される圧力で変形することにより、載置台101とヒートシンク102との間の隙間が基準高さ以下となる場合には、壁材107の高さを基準高さよりも低く設定することも可能である。この場合には、載置台101とヒートシンク102との圧力がまず容器2および蓋3に加わるため、容器2および蓋3を強固に密着させやすい。
The height of the wall material 107 is determined in consideration of the height when the container 2 and the lid 3 that are objects of laser welding are overlapped (hereinafter, this height is referred to as “reference height”). Set.
When the height of the wall material 107 is set higher than the reference height, the wall material 107 is deformed by the pressure with which the wall material 107 is sandwiched between the mounting table 101 and the heat sink 102, and the mounting table 101 and the heat sink. It adheres to 102. As a result, it is easy to form a sealed work space.
Further, when the container 2 and the lid 3 are deformed by the pressure sandwiched between the mounting table 101 and the heat sink 102, the gap between the mounting table 101 and the heat sink 102 becomes a reference height or less. It is also possible to set the height of the wall material 107 lower than the reference height. In this case, since the pressure between the mounting table 101 and the heat sink 102 is first applied to the container 2 and the lid 3, the container 2 and the lid 3 can easily be firmly adhered to each other.

なお、壁材107は、壁材107全体が弾性材料で形成されていなくてもよい。例えば、載置台101に接する部分は載置台101と同じ材料(例えば、金属材料)で形成し、ヒートシンク102と接する壁材107の上端側のみを弾性材料で形成することとしても構わない。   Note that the wall material 107 does not have to be formed entirely of an elastic material. For example, the portion in contact with the mounting table 101 may be formed of the same material (for example, a metal material) as the mounting table 101, and only the upper end side of the wall material 107 in contact with the heat sink 102 may be formed of an elastic material.

載置台101には、載置台101とヒートシンク102と壁材107とに囲まれた作業空間に面し、該作業空間に接続する貫通孔108aが設けられている。貫通孔108aには配管108を介して減圧装置109が接続されている。減圧装置109としては、通常知られた真空ポンプを用いることができる。   The mounting table 101 is provided with a through hole 108 a that faces a work space surrounded by the mounting table 101, the heat sink 102, and the wall material 107 and connects to the work space. A decompression device 109 is connected to the through hole 108a via a pipe 108. As the decompression device 109, a generally known vacuum pump can be used.

なお、図に示す製造装置100Aでは、昇降機104が接続された載置台101を昇降する構成としたが、載置台101とヒートシンク102との離間距離を相対的に変化させることが可能であれば、他の構成も採用できる。例えば、載置台101を固定し、ヒートシンク102と枠体103とを昇降させる構成としても構わない。   In the manufacturing apparatus 100A shown in the figure, the mounting table 101 to which the elevator 104 is connected is moved up and down. However, if the separation distance between the mounting table 101 and the heat sink 102 can be relatively changed, Other configurations can also be employed. For example, the mounting table 101 may be fixed and the heat sink 102 and the frame 103 may be moved up and down.

図3は、レーザー溶着の工程図である。
まず、図3(a)に示すように、必要に応じて容器2の収容空間Sに半導体素子などを収容した後、容器2および蓋3を重ね合わせ、載置台101に載置する。
FIG. 3 is a process diagram of laser welding.
First, as shown in FIG. 3A, a semiconductor element or the like is accommodated in the accommodation space S of the container 2 as needed, and then the container 2 and the lid 3 are overlapped and placed on the placing table 101.

次いで、昇降機104により載置台101を上昇させる。載置台101の上昇により、蓋3がヒートシンク102に当接し、容器2および蓋3は載置台101と枠体103との間に挟持され加圧される。これにより、容器2および蓋3が密着し固定される。また、これと同時に、壁材107がヒートシンク102に当接し、載置台101とヒートシンク102と壁材107とで囲まれた作業空間が形成される。   Next, the mounting table 101 is raised by the elevator 104. As the mounting table 101 rises, the lid 3 comes into contact with the heat sink 102, and the container 2 and the lid 3 are sandwiched and pressed between the mounting table 101 and the frame body 103. Thereby, the container 2 and the lid | cover 3 contact | adhere and are fixed. At the same time, the wall material 107 comes into contact with the heat sink 102 to form a work space surrounded by the mounting table 101, the heat sink 102, and the wall material 107.

この際、載置台101の上昇により容器2、蓋3および壁材107に加わる圧力は、容器2および蓋3の形状を損なわないため、および形成される作業空間(図3(b)に示す)の気密性を高めるために、10MPa以下が好ましい。なお、載置台101と容器2の間に、シリコーンゴムなどで形成された台座のような弾性部材を挟むこととしてもよい。このような弾性部材を有すると、容器2および蓋3に加わる圧力が高すぎる場合にも、圧力を緩和し、容器2や蓋3の破損を抑制することができる。   At this time, the pressure applied to the container 2, the lid 3, and the wall material 107 by raising the mounting table 101 does not impair the shapes of the container 2 and the lid 3, and the work space to be formed (shown in FIG. 3B). In order to improve the airtightness of the material, 10 MPa or less is preferable. An elastic member such as a base made of silicone rubber or the like may be sandwiched between the mounting table 101 and the container 2. With such an elastic member, even when the pressure applied to the container 2 and the lid 3 is too high, the pressure can be relieved and damage to the container 2 and the lid 3 can be suppressed.

次いで、図3(b)に示すように、載置台101とヒートシンク102と壁材107とに囲まれた作業空間αを、貫通孔108a、配管108を介して不図示の減圧装置を用いて脱気する。図では、排出される気体を矢印Gで示している。これにより、作業空間α内が減圧される。さらに、容器2および蓋3の接触部分にわずかに生じる隙間から、容器2の収容空間Sの内部も脱気され減圧される。   Next, as shown in FIG. 3B, the work space α surrounded by the mounting table 101, the heat sink 102, and the wall material 107 is removed using a decompression device (not shown) through the through hole 108a and the pipe 108. I care. In the figure, the discharged gas is indicated by an arrow G. As a result, the working space α is depressurized. Furthermore, the inside of the accommodation space S of the container 2 is also evacuated and depressurized from a slight gap generated at the contact portion between the container 2 and the lid 3.

その後、レーザー光源106から容器2と蓋3との接触部にレーザー光LBを照射する。レーザー光LBのエネルギーは、容器2の分解・劣化や変形を抑制するため、100W以下であるとよい。また、レーザー光源106の走査速度は、2mm/秒以上が好ましい。   Thereafter, a laser beam LB is irradiated from the laser light source 106 to the contact portion between the container 2 and the lid 3. The energy of the laser beam LB is preferably 100 W or less in order to suppress decomposition / deterioration and deformation of the container 2. The scanning speed of the laser light source 106 is preferably 2 mm / second or more.

レーザー光LBは、蓋3を透過して容器2に照射される。容器2にはレーザー光LBを吸収し発熱する着色剤が含有されているため、容器2における蓋3との接触部にレーザー光LBが照射されたときに、接触部が加熱され容器2および蓋3が互いに溶融する。   The laser beam LB passes through the lid 3 and is irradiated to the container 2. Since the container 2 contains a colorant that absorbs the laser beam LB and generates heat, the contact portion is heated when the contact portion of the container 2 with the lid 3 is irradiated with the laser beam LB. 3 melt together.

上述のようにしてレーザー光を照射し容器2と蓋3とをレーザー溶着した後、溶融した樹脂が冷却され固化することにより、容器2が蓋3で密閉された中空成形体1を得ることができる。
本実施形態の中空成形体の製造方法は、以上のような構成となっている。
After the laser beam is irradiated and the container 2 and the lid 3 are laser-welded as described above, the molten resin is cooled and solidified to obtain the hollow molded body 1 in which the container 2 is sealed with the lid 3. it can.
The manufacturing method of the hollow molded object of this embodiment becomes the above structures.

このようにして得られた中空成形体1は、収容空間Sが減圧された状態で封止されているため、収容空間Sが減圧されていない中空成形体と比べて、後の製造工程でアニールやリフローなどの加熱処理を行っても、収容空間Sが陽圧になりにくく破損しにくい。したがって、以上のような中空成形体の製造方法によれば、気密性に優れ,さらに加熱処理を行っても高い気密性を維持することが可能な中空成形体を容易に製造することができる。   The hollow molded body 1 thus obtained is sealed in a state in which the accommodation space S is depressurized. Therefore, compared with a hollow molded body in which the accommodation space S is not depressurized, annealing is performed in a later manufacturing process. Even if heat treatment such as reflow is performed, the accommodation space S is unlikely to become positive pressure and is not easily damaged. Therefore, according to the method for producing a hollow molded body as described above, it is possible to easily produce a hollow molded body that is excellent in airtightness and that can maintain high airtightness even when heat treatment is performed.

また、以上のような構成の中空成形体によれば、上述の中空成形体の製造方法を用いて製造されるため、気密性に優れた中空成形体を提供することができる。   Moreover, according to the hollow molded object of the above structures, since it is manufactured using the manufacturing method of the above-mentioned hollow molded object, the hollow molded object excellent in airtightness can be provided.

また、以上のような構成の製造装置によれば、気密性に優れた中空成形体を製造することができる。   Moreover, according to the manufacturing apparatus having the above configuration, a hollow molded body having excellent airtightness can be manufactured.

(変形例)
なお、図3(b)に示した状態において、容器2および蓋3の接触部分に、容器2の収容空間Sの内部から脱気できるほどの隙間が形成されていない場合、図4に示すような製造装置100Bを用いるとよい。図4は、製造装置100Bを用いたレーザー溶着の工程図であり、図3に対応する図である。
(Modification)
In the state shown in FIG. 3B, when the gap between the container 2 and the lid 3 where the container 2 and the lid 3 can be degassed from the inside of the accommodation space S is not formed, as shown in FIG. A suitable manufacturing apparatus 100B may be used. FIG. 4 is a process diagram of laser welding using the manufacturing apparatus 100B, corresponding to FIG.

図に示す製造装置100Bは、ヒートシンク102において載置台101と対向する面に、蓋3を保持する治具110を備えている。治具110は、例えば、鈎状に屈曲させた板ばね状の部材であり、蓋3の周縁部を下から支持するとともに、容器2の上昇により容器2が当接すると、容器2から加わる圧力によって装置の外側に待避することで蓋3を解放するような構成のものを採用することができる。また、蓋3の側面を横から支持するような構成であってもよい。   The manufacturing apparatus 100B shown in the figure includes a jig 110 that holds the lid 3 on the surface of the heat sink 102 that faces the mounting table 101. The jig 110 is, for example, a leaf spring-like member bent in a bowl shape, supports the peripheral edge of the lid 3 from below, and the pressure applied from the container 2 when the container 2 comes into contact with the container 2 ascending. Therefore, it is possible to adopt a configuration in which the lid 3 is released by retracting outside the apparatus. Moreover, the structure which supports the side surface of the lid | cover 3 from a side may be sufficient.

製造装置100Bを用いる場合、まず図4(a)に示すように、治具110に蓋3を保持させた状態で載置台101を上昇させ、壁材107とヒートシンク102とを当接させて、載置台101とヒートシンク102と壁材107とに囲まれた作業空間αを形成する。製造装置100Bにおいては、壁材107の高さが、容器2と蓋3とを合わせた高さよりも高く設定されている。そのため、ヒートシンク102に保持された蓋3は、容器2には接触していない状態で、作業空間αを形成することができる。   When using the manufacturing apparatus 100B, first, as shown in FIG. 4A, the mounting table 101 is lifted in a state where the lid 3 is held on the jig 110, and the wall material 107 and the heat sink 102 are brought into contact with each other. A work space α surrounded by the mounting table 101, the heat sink 102, and the wall material 107 is formed. In the manufacturing apparatus 100 </ b> B, the height of the wall material 107 is set higher than the combined height of the container 2 and the lid 3. Therefore, the lid 3 held by the heat sink 102 can form the work space α in a state where the lid 3 is not in contact with the container 2.

この状態で、作業空間αから、貫通孔108aおよび配管108を介し不図示の減圧装置を用いて脱気する。図では、排出される空気を矢印で示している。これにより、作業空間α内が減圧され、同時に、容器2の収容空間Sの内部も脱気され減圧される。   In this state, the work space α is deaerated using a decompression device (not shown) through the through hole 108 a and the pipe 108. In the figure, the discharged air is indicated by arrows. Thereby, the inside of the work space α is depressurized, and at the same time, the inside of the storage space S of the container 2 is also deaerated and depressurized.

その後、図4(b)に示すように、載置台101をさらに上昇させることで、容器2および蓋3は載置台101と枠体103との間に挟持され加圧される。これにより、収容空間Sの内部が減圧された状態で容器2および蓋3が密着し固定される。   Thereafter, as shown in FIG. 4B, by further raising the mounting table 101, the container 2 and the lid 3 are sandwiched and pressed between the mounting table 101 and the frame body 103. Thereby, the container 2 and the lid 3 are brought into close contact and fixed in a state where the inside of the accommodation space S is decompressed.

次いで、レーザー光源106から容器2と蓋3との接触部にレーザー光LBを照射し、レーザー溶着を行う。これにより、収容空間Sが減圧された状態で封止された中空成形体1を製造することができる。   Next, the laser light source 106 irradiates the contact portion between the container 2 and the lid 3 with the laser beam LB to perform laser welding. Thereby, the hollow molded object 1 sealed in the state by which the storage space S was pressure-reduced can be manufactured.

以上のような中空成形体の製造方法によっても、加熱処理を行っても高い気密性を維持することが可能な、気密性に優れた中空成形体を容易に製造することができる。   Also by the manufacturing method of the above hollow molded objects, the hollow molded object excellent in airtightness which can maintain high airtightness even if it heat-processes can be manufactured easily.

なお、本実施形態の製造方法で製造される中空成形体は、内部の収容空間に半導体素子を封入することにより、半導体素子収納用ケースとして使用することができる。その他、半導体素子以外にも、イメージセンサー、加速度センサーなどのセンサー、振動子などを封入した電子部品収納用ケースとして使用することもできる。   In addition, the hollow molded object manufactured with the manufacturing method of this embodiment can be used as a case for a semiconductor element accommodation by enclosing a semiconductor element in an internal accommodation space. In addition to the semiconductor element, it can also be used as a case for storing an electronic component in which a sensor such as an image sensor or an acceleration sensor, a vibrator, or the like is enclosed.

以下、本発明の実施例について説明する。なお、本発明は実施例に限定されるものではない。   Examples of the present invention will be described below. In addition, this invention is not limited to an Example.

[実施例1]
着色剤を含有する液晶ポリエステル(住友化学製、スミカスーパーLCP E6808THF BZ、流動開始温度306℃、分解開始温度499℃)を射出成形して容器を成形し、着色剤を含有しない液晶ポリエステル(住友化学製、スミカスーパーLCP E6808THF Z、流動開始温度306℃、分解開始温度499℃)を射出成形して蓋を成形した。容器と蓋との形状は図1に示すものと同様のものである。
[Example 1]
Liquid crystalline polyester containing a colorant (Sumitomo Chemical, Sumika Super LCP E6808THF BZ, flow start temperature 306 ° C., decomposition start temperature 499 ° C.) is injection molded to form a container, and liquid crystal polyester containing no colorant (Sumitomo Chemical) Manufactured by Sumika Super LCP E6808THF Z, flow start temperature 306 ° C., decomposition start temperature 499 ° C.) was injection molded to form a lid. The shape of the container and the lid is the same as that shown in FIG.

成形した容器は、外寸8.6mm×8.6mm×1.44mm、中空部内寸6.8mm×6.8mm×0.94mmであった。   The molded container had an outer size of 8.6 mm × 8.6 mm × 1.44 mm and a hollow portion inner size of 6.8 mm × 6.8 mm × 0.94 mm.

また、成形した蓋は、平面視9mm×9mm角、周縁部の幅1.2mm、周縁部の厚み0.3mm、凸部の厚み0.35mmであった。   The molded lid had a plan view of 9 mm × 9 mm square, a peripheral width of 1.2 mm, a peripheral thickness of 0.3 mm, and a convex thickness of 0.35 mm.

製造装置として、図2に示した製造装置100Aと同様の装置を用いた。図2に示した製造装置100Aとの違いは、昇降機104の代わりにばねを用いて載置台を上方に付勢することである。以下の説明では、図2に示した符号と同じ符号を用いて説明する。   As the manufacturing apparatus, an apparatus similar to the manufacturing apparatus 100A shown in FIG. 2 was used. The difference from the manufacturing apparatus 100A shown in FIG. 2 is that the mounting table is urged upward using a spring instead of the elevator 104. In the following description, the same reference numerals as those shown in FIG.

実施例で用いた製造装置では、載置台101の上に、シリコーンゴム(硬度50°)を形成材料とする壁材107を接着剤で固定した。壁材107の高さは3mmであった。   In the manufacturing apparatus used in the examples, a wall material 107 made of silicone rubber (hardness 50 °) is formed on the mounting table 101 with an adhesive. The height of the wall material 107 was 3 mm.

載置台101の上に、シリコーンゴムからなる台座(図2では不図示)を載置し、台座の上に、凸部31を容器2に嵌合させて容器2を蓋3で閉じた状態で容器2と蓋3とを載置した。台座、容器2および蓋3を重ねた合計高さは、3.7mmであった。   A base made of silicone rubber (not shown in FIG. 2) is placed on the mounting base 101, and the convex portion 31 is fitted to the container 2 on the base and the container 2 is closed by the lid 3. The container 2 and the lid 3 were placed. The total height of the stacked base, container 2 and lid 3 was 3.7 mm.

蓋3の上に石英ガラスからなるヒートシンク102を載置し、ばねで付勢して台座、容器2、蓋3、ヒートシンク102を互いに密着させた。同時に、壁材107の上端とヒートシンク102とを密着させ、載置台101、ヒートシンク102および壁材107で囲まれた作業空間を形成した。   A heat sink 102 made of quartz glass was placed on the lid 3 and biased by a spring to bring the pedestal, the container 2, the lid 3 and the heat sink 102 into close contact with each other. At the same time, the upper end of the wall material 107 and the heat sink 102 were brought into close contact with each other to form a work space surrounded by the mounting table 101, the heat sink 102 and the wall material 107.

その後、載置台101の貫通孔108aを介して接続された減圧装置(ドライポンプ)を運転し、作業空間を20KPaに減圧した。   Then, the decompression device (dry pump) connected through the through hole 108a of the mounting table 101 was operated, and the work space was decompressed to 20 KPa.

ドライポンプを運転した状態で、容器2と蓋3との接触部に、レーザー光源106((株)ファインディバイス製、FD−200−50)から、10mm/秒の速度で走査させながらレーザー光(波長940nm、焦点におけるレーザー径0.2mm、レーザー出力9.7W)を照射した。
その後、容器および蓋を冷却し中空成形体を得た。中空成形体は合計10個作製した。
While operating the dry pump, a laser beam (scanning at a speed of 10 mm / second from a laser light source 106 (manufactured by Fine Devices, FD-200-50) is applied to the contact portion between the container 2 and the lid 3 with a laser beam ( Irradiation was conducted at a wavelength of 940 nm, a laser diameter of 0.2 mm at the focal point, and a laser output of 9.7 W).
Thereafter, the container and the lid were cooled to obtain a hollow molded body. A total of 10 hollow molded articles were produced.

中空成形体は、以下のバブルリークテストで気密性を確認した。
また、バブルリークテストを合格した中空成形体について、以下のリフローテストで、加熱後の気密性の変化を確認した。
The hollow molded body was confirmed to be airtight by the following bubble leak test.
Moreover, about the hollow molded object which passed the bubble leak test, the change of the airtightness after a heating was confirmed with the following reflow tests.

(バブルリークテスト)
125℃に加温したフロリナート中に、中空成形体を浸漬させ、1分間の間に気泡の発生の有無を確認し、気泡の発生がなければ合格とした。合格数が0〜3のものは「×」、合格数が4〜6のものは「△」、合格数が7〜10のものは「○」と評価し、「×」のものを不合格と評価した。
(Bubble leak test)
The hollow molded body was immersed in Fluorinert heated to 125 ° C., and the presence or absence of bubbles was confirmed in 1 minute. Those with a pass number of 0-3 are evaluated as “×”, those with a pass number of 4-6 are evaluated as “△”, those with a pass number of 7-10 are evaluated as “◯”, and those with a “×” are rejected. It was evaluated.

(リフローテスト)
窒素雰囲気下、中空成形体を室温(23℃)から280℃まで200秒で昇温した後、280℃で10秒間保持し、さらに50℃まで330秒で降温した。その後、上記バブルリークテストを再度行った。
(Reflow test)
Under a nitrogen atmosphere, the hollow molded body was heated from room temperature (23 ° C.) to 280 ° C. in 200 seconds, held at 280 ° C. for 10 seconds, and further cooled to 50 ° C. in 330 seconds. Thereafter, the bubble leak test was performed again.

[実施例2]
レーザー溶着を50KPaに減圧した環境下で行ったこと以外は、実施例1と同様にして中空成形体を作製し、気密性の評価を行った。
[Example 2]
Except that the laser welding was performed in an environment where the pressure was reduced to 50 KPa, a hollow molded body was produced in the same manner as in Example 1, and hermeticity was evaluated.

[比較例1]
レーザー溶着を常圧(101.3KPa)で行ったこと以外は、実施例1と同様にして中空成形体を作製し、気密性の評価を行った。
[Comparative Example 1]
A hollow molded body was produced in the same manner as in Example 1 except that laser welding was performed at normal pressure (101.3 KPa), and hermeticity was evaluated.

実施例1、2および比較例1において、得られた中空成形体についてのバブルリークテスト、リフローテストの結果を表1に示す。   Table 1 shows the results of the bubble leak test and the reflow test for the hollow molded bodies obtained in Examples 1 and 2 and Comparative Example 1.

Figure 2013203056
Figure 2013203056

評価の結果、実施例1、2の製造方法で得られた、収容空間Sが減圧された中空成形体は、加熱前のバブルリークテストを全て合格した上、リフローテストも全て合格し、加熱後も気密が維持されていた。   As a result of the evaluation, the hollow molded body in which the housing space S was decompressed by the production method of Examples 1 and 2 passed all the bubble leak tests before heating, passed all the reflow tests, and after the heating Even airtightness was maintained.

対して、比較例1の製造方法で得られた、収容空間Sが常圧の中空成形体は、加熱前のバブルリークテストは全て合格したが、リフローテストでは合格数が減少し、加熱後は気密性が低下していた。また、リフローテストに合格した中空成形体は、いずれも蓋がふくれていた。これは、リフローテスト時に内圧が高まった結果、変形したものと考えられる。   On the other hand, the hollow molded body with the accommodation space S obtained at the normal pressure obtained by the manufacturing method of Comparative Example 1 passed all bubble leak tests before heating, but the number of passes decreased in the reflow test, and after heating, Hermeticity was reduced. Moreover, the lid of each hollow molded body that passed the reflow test was swollen. This is considered to be a result of deformation as a result of an increase in internal pressure during the reflow test.

これらの結果から、本発明の中空成形体の製造方法では、気密性が高い中空成形体を提供できることが確かめられた。   From these results, it was confirmed that the hollow molded body of the present invention can provide a highly airtight hollow molded body.

1…中空成形体、2…容器、21…底部、22…側壁、23…開口部、24…頂部、3…蓋、31…凸部、32…周縁部、100…溶着装置、101…載置台、102…ヒートシンク、103a…開口部、103…枠体、104…昇降機、105…支柱、106…レーザー光源、107…壁材、108…配管、108a…貫通孔、109…減圧装置、110…治具、S…収容空間、α…作業空間 DESCRIPTION OF SYMBOLS 1 ... Hollow molded object, 2 ... Container, 21 ... Bottom part, 22 ... Side wall, 23 ... Opening part, 24 ... Top part, 3 ... Cover, 31 ... Convex part, 32 ... Peripheral part, 100 ... Welding apparatus, 101 ... Mounting stand DESCRIPTION OF SYMBOLS 102 ... Heat sink, 103a ... Opening part, 103 ... Frame, 104 ... Elevator, 105 ... Strut, 106 ... Laser light source, 107 ... Wall material, 108 ... Piping, 108a ... Through-hole, 109 ... Decompression device, 110 ... Oji Tools, S ... accommodation space, α ... work space

Claims (9)

熱可塑性樹脂を含む形成材料を成形してなる容器と、光透過性材料を成形してなる蓋とを用い、前記容器の側壁と底部とで囲まれた収容空間を減圧した状態で、前記側壁の頂部と前記蓋との接触部をレーザー溶着し、前記収容空間を減圧した状態で封止する工程を有する中空成形体の製造方法。   Using a container formed by molding a forming material containing a thermoplastic resin and a lid formed by molding a light transmissive material, the side wall in a state where the housing space surrounded by the side wall and the bottom of the container is decompressed A method for producing a hollow molded body comprising a step of laser-welding a contact portion between a top portion of the substrate and the lid and sealing the housing space in a decompressed state. 前記容器を前記蓋で閉じた後、前記容器と前記蓋とを載置した作業空間を減圧することにより前記収容空間を減圧した上で、レーザー溶着を行う請求項1に記載の中空成形体の製造方法。   2. The hollow molded body according to claim 1, wherein after closing the container with the lid, laser welding is performed after decompressing the storage space by decompressing a work space in which the container and the lid are placed. Production method. 予め減圧した環境下で前記容器を前記蓋で密閉した後、レーザー溶着を行う請求項1に記載の中空成形体の製造方法。   The manufacturing method of the hollow molded object of Claim 1 which performs laser welding, after sealing the said container with the said lid | cover in the environment pressure-reduced beforehand. 前記熱可塑性樹脂が液晶ポリエステルである請求項1から3のいずれか1項に記載の中空成形体の製造方法。   The method for producing a hollow molded body according to any one of claims 1 to 3, wherein the thermoplastic resin is a liquid crystal polyester. 前記光透過性材料が液晶ポリエステルを含む形成材料である請求項1から4のいずれか1項に記載の中空成形体の製造方法。   The method for producing a hollow molded body according to any one of claims 1 to 4, wherein the light transmissive material is a forming material containing liquid crystal polyester. 請求項1から5に記載の中空成形体の製造方法により製造した中空成形体。   The hollow molded object manufactured by the manufacturing method of the hollow molded object of Claim 1 to 5. レーザー溶着を行う対象物を載置する載置台と、
前記対象物にレーザー光を照射するレーザー光源と、
前記載置台に面し、前記載置台との離間距離を相対的に変更可能な対向部材と、
弾性材料を含む形成材料を閉環状に成形してなり、前記載置台と前記対向部材との間において、前記載置台の前記対象物を載置する領域の周囲を囲む壁材と、を有し、
前記対向部材は、少なくとも前記壁材の開口部と平面的に重なって前記レーザー光を透過させるレーザー光透過部が設けられ、
前記載置台と前記対向部材とは、前記離間距離が狭まることにより、前記壁材を挟持し前記載置台と前記対向部材と前記壁材とで囲まれ密閉された作業空間を形成し、かつ前記離間距離が広がることにより、前記載置台または前記対向部材と前記壁材との間が離間し、
前記載置台、前記対向部材または前記壁材には、前記作業空間に接続された貫通孔が設けられ、前記貫通孔を介して前記作業空間を減圧する減圧装置をさらに有する製造装置。
A mounting table for mounting an object to be laser welded;
A laser light source for irradiating the object with laser light;
An opposing member that faces the mounting table and is capable of relatively changing a separation distance from the mounting table;
A forming material including an elastic material is formed in a closed ring shape, and includes a wall material surrounding a region on which the object of the mounting table is placed between the mounting table and the facing member. ,
The facing member is provided with a laser beam transmitting portion that overlaps at least the opening of the wall material and transmits the laser beam,
The mounting table and the opposing member form a sealed work space sandwiched between the mounting table, the opposing member, and the wall material by sandwiching the wall material by reducing the separation distance; and By spreading the separation distance, the mounting table or the facing member and the wall material are separated,
The manufacturing apparatus further comprising a decompression device in which a through hole connected to the work space is provided in the mounting table, the facing member, or the wall material, and the work space is decompressed through the through hole.
前記対向部材は、光透過性材料からなり前記レーザー光透過部に設けられる放熱部材と、前記放熱部材を支持する支持体とを有する請求項7に記載の製造装置。   The manufacturing apparatus according to claim 7, wherein the facing member includes a heat radiating member made of a light transmissive material and provided in the laser light transmitting portion, and a support body that supports the heat radiating member. 前記対向部材は、前記載置台と対向する面に、前記対象物を保持する治具を有する請求項7または8に記載の製造装置。   The manufacturing apparatus according to claim 7 or 8, wherein the facing member has a jig for holding the object on a surface facing the mounting table.
JP2012077993A 2012-03-29 2012-03-29 Hollow molded body manufacturing method, hollow molded body and manufacturing apparatus Active JP6071122B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012077993A JP6071122B2 (en) 2012-03-29 2012-03-29 Hollow molded body manufacturing method, hollow molded body and manufacturing apparatus
CN201380016095.XA CN104205322B (en) 2012-03-29 2013-03-28 The manufacture method of blow moldings, blow moldings and manufacture device
CN201611041184.1A CN107030957B (en) 2012-03-29 2013-03-28 Manufacturing method, blow moldings and the manufacturing device of blow moldings
US14/387,717 US20150037525A1 (en) 2012-03-29 2013-03-28 Method for manufacturing hollow molded article, hollow molded article, and manufacturing apparatus
PCT/JP2013/059308 WO2013147044A1 (en) 2012-03-29 2013-03-28 Method for manufacturing hollow molded article, hollow molded article and manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012077993A JP6071122B2 (en) 2012-03-29 2012-03-29 Hollow molded body manufacturing method, hollow molded body and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2013203056A true JP2013203056A (en) 2013-10-07
JP6071122B2 JP6071122B2 (en) 2017-02-01

Family

ID=49522667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012077993A Active JP6071122B2 (en) 2012-03-29 2012-03-29 Hollow molded body manufacturing method, hollow molded body and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP6071122B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107000327A (en) * 2014-12-05 2017-08-01 欧姆龙株式会社 The manufacture method and mesh body of mesh body
JP6223611B1 (en) * 2017-02-10 2017-11-01 日新製鋼株式会社 Vacuum insulating panel manufacturing method and vacuum insulating panel
JP2017223251A (en) * 2016-06-13 2017-12-21 日新製鋼株式会社 Vacuum insulation panel manufacturing device
JP2017223252A (en) * 2016-06-13 2017-12-21 日新製鋼株式会社 Vacuum heat insulation panel manufacturing method and vacuum heat insulation panel
EP3181463A4 (en) * 2014-08-12 2018-04-04 Ueda Seitai Co., Ltd. Apparatus for sealing cryopreservation bag
JP7528408B2 (en) 2020-08-18 2024-08-06 エルジー エナジー ソリューション リミテッド Welding device for manufacturing secondary batteries and welding method using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102695706B1 (en) * 2022-05-24 2024-08-16 레이저쎌 주식회사 Compression type laser reflow apparatus with vacuum chamber

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172799A (en) * 1984-02-15 1985-09-06 松下冷機株式会社 Manufacture of heat-insulating material pack
JPH09321164A (en) * 1996-05-31 1997-12-12 Nec Corp Electronic component package cap, metal mold for manufacturing electronic component package, and manufacture thereof
JP2006256311A (en) * 2005-02-15 2006-09-28 Sumitomo Chemical Co Ltd Resin lid member for storage case of solid-state image pickup device and its manufacturing process
JP2007016927A (en) * 2005-07-08 2007-01-25 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and its manufacturing method
JP2007069602A (en) * 2005-08-08 2007-03-22 Sumitomo Chemical Co Ltd Case for housing solid-state image pickup device, its manufacturing method and solid-state image pickup device
JP2008047878A (en) * 2006-07-21 2008-02-28 Sumitomo Chemical Co Ltd Case for housing solid-state imaging element, manufacturing method thereof, and solid-state imaging device
JP2009038269A (en) * 2007-08-03 2009-02-19 Nippon Avionics Co Ltd Method of hermetically sealing electronic component package and hermetic sealing device
WO2010035696A1 (en) * 2008-09-29 2010-04-01 芝浦メカトロニクス株式会社 Bonded structural body, bonding method and bonding apparatus
JP2011084009A (en) * 2009-10-16 2011-04-28 Kyoshin Engineering:Kk Laminate device, article processing apparatus, and method for manufacturing solar cell panel
JP2012049252A (en) * 2010-08-25 2012-03-08 Citizen Finetech Miyota Co Ltd Electronic component package

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172799A (en) * 1984-02-15 1985-09-06 松下冷機株式会社 Manufacture of heat-insulating material pack
JPH09321164A (en) * 1996-05-31 1997-12-12 Nec Corp Electronic component package cap, metal mold for manufacturing electronic component package, and manufacture thereof
JP2006256311A (en) * 2005-02-15 2006-09-28 Sumitomo Chemical Co Ltd Resin lid member for storage case of solid-state image pickup device and its manufacturing process
JP2007016927A (en) * 2005-07-08 2007-01-25 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and its manufacturing method
JP2007069602A (en) * 2005-08-08 2007-03-22 Sumitomo Chemical Co Ltd Case for housing solid-state image pickup device, its manufacturing method and solid-state image pickup device
JP2008047878A (en) * 2006-07-21 2008-02-28 Sumitomo Chemical Co Ltd Case for housing solid-state imaging element, manufacturing method thereof, and solid-state imaging device
JP2009038269A (en) * 2007-08-03 2009-02-19 Nippon Avionics Co Ltd Method of hermetically sealing electronic component package and hermetic sealing device
WO2010035696A1 (en) * 2008-09-29 2010-04-01 芝浦メカトロニクス株式会社 Bonded structural body, bonding method and bonding apparatus
JP2011084009A (en) * 2009-10-16 2011-04-28 Kyoshin Engineering:Kk Laminate device, article processing apparatus, and method for manufacturing solar cell panel
JP2012049252A (en) * 2010-08-25 2012-03-08 Citizen Finetech Miyota Co Ltd Electronic component package

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3181463A4 (en) * 2014-08-12 2018-04-04 Ueda Seitai Co., Ltd. Apparatus for sealing cryopreservation bag
CN107000327A (en) * 2014-12-05 2017-08-01 欧姆龙株式会社 The manufacture method and mesh body of mesh body
US10525658B2 (en) 2014-12-05 2020-01-07 Omron Corporation Method for producing mesh, and mesh
JP2017223251A (en) * 2016-06-13 2017-12-21 日新製鋼株式会社 Vacuum insulation panel manufacturing device
JP2017223252A (en) * 2016-06-13 2017-12-21 日新製鋼株式会社 Vacuum heat insulation panel manufacturing method and vacuum heat insulation panel
JP6223611B1 (en) * 2017-02-10 2017-11-01 日新製鋼株式会社 Vacuum insulating panel manufacturing method and vacuum insulating panel
JP2018128129A (en) * 2017-02-10 2018-08-16 日新製鋼株式会社 Manufacturing method of vacuum heat insulation panel, and vacuum heat insulation panel
JP7528408B2 (en) 2020-08-18 2024-08-06 エルジー エナジー ソリューション リミテッド Welding device for manufacturing secondary batteries and welding method using the same

Also Published As

Publication number Publication date
JP6071122B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6071122B2 (en) Hollow molded body manufacturing method, hollow molded body and manufacturing apparatus
WO2013147044A1 (en) Method for manufacturing hollow molded article, hollow molded article and manufacturing device
JP2013203047A (en) Hollow molded body and method for manufacturing hollow molded body
TWI394732B (en) Method of sealing a glass envelope
JP2013203057A (en) Method for manufacturing hollow molded body and apparatus for manufacturing hollow molded body
JP6666838B2 (en) Laminated sealing sheet
TWI344315B (en) Method of making a glass envelope
JP2013203026A (en) Hollow molded body and method for manufacturing the same
JP5529032B2 (en) Method and apparatus for packaging electronic components
CN110959130B (en) MEMS mirror assembly and method for manufacturing a MEMS mirror assembly
JP2011207056A (en) Method of manufacturing composite body
WO2004094331A2 (en) Hermetically sealed glass package and method of fabrication
TW200930671A (en) Method and apparatus for sealing a glass package
WO2007058451A1 (en) Liquid lens and a method for producing the same
JP2014033024A (en) Laser dicing device and method and wafer processing method
CN104793399B (en) Display device and preparation method thereof
TW200914943A (en) Optical element package, backlight, and liquid crystal display
CN109071325A (en) Sealing device comprising transparent laser welding region
CN113678033A (en) Optical film
US20100227175A1 (en) Method for fusion bonding molded article of liquid crystalline polymer and glass substrate to each other and composite article obtained by the method
JP2013203054A (en) Method for manufacturing hollow molded body, and hollow molded body
US9201245B2 (en) Optical system and substrate sealing method
US8379392B2 (en) Light-based sealing and device packaging
JP2010266551A (en) Liquid crystal lens
JP4974683B2 (en) Manufacturing method of liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R150 Certificate of patent or registration of utility model

Ref document number: 6071122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350